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Abstract

Change point inference refers to detection of structural breaks of a sequence observation, which may have

one or more distributional shifts subject to models such as mean or covariance changes. In this dissertation,

we consider the offline multiple change point problem that the sample size is fixed in advance or after

observation. In particular, we concentrate on high-dimensional setup where the dimension p can be much

larger than the sample size n and traditional distribution assumptions can easily fail. The goal is to employ

non-parametric approaches to identify change points without involving intermediate estimation to cross-

sectional dependence.

In the first part, we consider cumulative sum (CUSUM) statistics that are widely used in the change

point inference and identification. We study two problems for high-dimensional mean vectors based on the

`∞-norm of the CUSUM statistics. For the problem of testing for the existence of a change point in an

independent sample generated from the mean-shift model, we introduce a Gaussian multiplier bootstrap to

calibrate critical values of the CUSUM test statistics in high dimensions. The proposed bootstrap CUSUM

test is fully data-dependent and it has strong theoretical guarantees under arbitrary dependence structures

and mild moment conditions. Specifically, we show that with a boundary removal parameter the bootstrap

CUSUM test enjoys the uniform validity in size under the null and it achieves the minimax separation rate

under the sparse alternatives when p � n. Once a change point is detected, we estimate the change point

location by maximizing the `∞-norm of the generalized CUSUM statistics at two different weighting scales.

The first estimator is based on the covariance stationary CUSUM statistics, and we prove its consistency in

estimating the location at the nearly parametric rate n−1/2 for sub-exponential observations. The second

estimator is based on non-stationary CUSUM statistics, assigning less weights on the boundary data points.

In the latter case, we show that it achieves the nearly best possible rate of convergence on the order n−1.

In both cases, dimension impacts the rate of convergence only through the logarithm factors, and therefore

consistency of the CUSUM location estimators is possible when p is much larger than n. In the presence of

multiple change points, we propose a principled bootstrap-assisted binary segmentation (BABS) algorithm

to dynamically adjust the change point detection rule and recursively estimate their locations. We derive
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its rate of convergence under suitable signal separation and strength conditions. The results derived are

non-asymptotic and we provide extensive simulation studies to assess the finite sample performance. The

empirical evidence shows an encouraging agreement with our theoretical results.

In the second part, we analyze the problem of change point detection for high-dimensional distributions

in a location family. We propose a robust, tuning-free (i.e., fully data-dependent), and easy-to-implement

change point test formulated in the multivariate U -statistics framework with anti-symmetric and nonlinear

kernels. It achieves the robust purpose in a non-parametric setting when CUSUM statistics are sensitive

to outliers and heavy-tailed distributions. Specifically, the within-sample noise is canceled out by anti-

symmetry of the kernel, while the signal distortion under certain nonlinear kernels can be controlled such

that the between-sample change point signal is magnitude preserving. A (half) jackknife multiplier bootstrap

(JMB) tailored to the change point detection setting is proposed to calibrate the distribution of our `∞-

norm aggregated test statistic. Subject to mild moment conditions on kernels, we derive the uniform rates

of convergence for the JMB to approximate the sampling distribution of the test statistic, and analyze its

size and power properties. Extensions to multiple change point testing and estimation are discussed with

illustration from numeric studies.
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Chapter 1

Introduction

In the era of “Big-Data”, structure heterogeneity issue has received enormous attention in various scientific

and engineering fields with application to stock market analysis, quality control, genomics detection and

many others. Let Xi ∼ Fi, i = 1, . . . , n be a sequence of independent random vectors taking values in Rp.

In general, the question of change-point analysis in high-dimension arises in the following statistical testing:

H0 : F1 = · · · = Fn,

H1 : F1 = · · · = Fm1
6= Fm1+1 = · · · = Fm2

6= Fm2+1 = · · ·Fmν 6= Fmν+1 = · · ·Fn,

for some unknown ν ∈ N+ and change point locations 1 < m1 < · · · < mν < n. The structural stability

problem usually can be boiled down to single change point case of ν = 1 (so-called at-most-one-change

problem) and extension to multiple change points. The stream to tackle single change point case starts from

univariate Gaussian distributed {Fi}n=1 that have mean shift [32] or variance shift [25] or both [60] and then

to a generalization to location and scale parameters shift [102]. Non-parametric approach such as U-statistics

or KolmogorovSmirnov type statistic and semi-parametric approach using empirical likelihood are studied

in univariate case [84, 24, 82, 112]. In multivariate setup, we refer to [38] for a rigorous and comprehensive

study on the likelihood approach and non-parametric approaches for the aforementioned testing as well as

in broader regression and time series models together with sequential methods.

Recently, due to the explosive data enrichment in modern applications where the number of variables p

is comparable to or even much larger than the sample size n, classical methods are typically inapplicable

and the asymptotic theories developed for a fixed dimension do not generally hold. For example, suppose

{Fi}ni=1 are Gaussian distribution with mean µi and covariance Σ. Without loss of generality, we may assume

µ1 = 0. Under the single change point scenario, the log-ratio of the maximized likelihoods between H1 with

a change point at s = 1, . . . , n− 1 and H0 is

log(Λs) = Zn(s)>Σ−1Zn(s)/2, (1.1)
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where

Zn(s) =

√
s(n− s)

n

(
1

s

s∑
i=1

Xi −
1

n− s

n∑
i=s+1

Xi

)
(1.2)

are the cumulative sum (CUSUM) statistics [38], a sequence of the normalized mean differences before

and after s. Then H0 is rejected if max16s<n log(Λs) is larger than a critical value. If s is restricted

to only one location, i.e., the change point location is known, then the problem reduce to a multivariate

two-sample mean test that can be solved by Hotelling’s T-squared statistic T 2 = Zn(s)>Σ̂−1Zn(s) where

Σ̂ = 1
s−1

∑s
i=1(Xi − X̄−s )(Xi − X̄−s )T + 1

n−s−1

∑n
i=s+1(Xi − X̄+

s )(Xi − X̄+
s )T for p < s < n − p and

X̄−s = s−1
∑s
i=1Xi and X̄+

s = (n − s)−1
∑n
i=s+1Xi. In the high-dimensional setting (i.e. p � n), Σ̂,

estimation of Σ, itself becomes a challenging problem. The spectral norm consistency of Σ (or the inverse

Σ−1) is only possible under additional structural assumptions (such as sparsity or low-rankness) on the

covariance matrix [16, 17, 22, 23, 30, 11], which may be violated in practical applications. In contrast, tests

based on the CUSUM statistics in (1.2) do not involve Σ and they are more robust to the misspecification

on covariance structures. Therefore, this motivates us to study the problems of change point testing and

estimation based on the high-dimensional CUSUM statistics.

Although extensive research have been conducted on CUSUM approaches, there is still a number of

attracting questions in high-dimension including:

1. How to obtain the distribution of the CUSUM statistics when Gaussianity is violated?

2. What range can s take in both testing and estimation?

3. Is it possible to generate mean test to a broader context?

4. How robust an algorithm/approach can be in terms of various aspects?

For the first question, bootstrapping becomes an option to retrieve latent information and calibrate unknown

distribution {Fi}n=1. A large volume of papers studied the performance of resampling bootstrap [12], weighted

bootstrap [50] and multiplier bootstrap [21, 20, 42, 65], where the last technique especially enjoys the

convenience of maintaining sequence structure in change point analysis. For the second question, it should

be noted that boundary changes that happen close to end points of 1 or n are hard to detect due to insufficient

data points in one population. Under H0, asymptotic theories allow s/n ∈ (0, 1) [38]. But the connection

between signal of change in Fi and detectable range is implicit and not clearly stated. The third and fourth

questions are practical concerns when outlier exists, distributional assumption is not satisfied or Fi may

not differ in means but in other aspects. To generalize to high-dimensional methods from univariate case,
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a fundamental problem therein is to integrate changes carefully and determine relative thresholds properly

for the sake of testing and estimation.

In this dissertation, we study finite sample change point detection for high-dimensional data using mul-

tiplier bootstraps. Specifically, we propose two `∞-type of statistics based on CUSUM statistics and U-

statistics, respectively, to deal with change in mean vector and location parameter. Both of them focus on

sparse change that may occur in a small subset of dimension coordinates of Xi at an unknown location m1.

The four motivating questions will be answered in the perspective of methodology and theory.

1.1 Change point in mean vector and our contributions

In the first part of my dissertation, we focus on inference and identification for structural stability in mean

vector using CUSUM statistics. CUSUM statistics have been widely used with a long history pioneered by

[83] and followed by two lines in literature: sequential detection for online change [31, 57, 68, 85] and fixed

sample size tests and estimation for offline change [104, 24, 90], latter of which is the core point of interest

in this dissertation. Let {Fi} be a location family such that Fi(x) = F1(x − µi). In recent development

for high-dimensional data, testing and estimation for mean-shift are the most intrinsic questions that have

been studied in [43, 65] and in [37, 65, 99, 36], respectively. Among them, [43] restricted on testing for

Gaussian distribution with diagonal covariance matrix, [99] considered estimation under the same setting

and advanced in extension on temporal and spacial dependence with a brief discussion, [37, 65, 36] considered

time series sequence and introduced boundary removal concepts without explicit analysis, only [65] provided

asymptotic consistency of the bootstrap procedure.

1.1.1 Bootstrapped CUSUM test for single change point

Starting from the simplest single mean-shift model (where data-generating mechanism produces indepen-

dent Xi with mean change at most once), we propose a testing procedure based on the test statistic

Tn = maxs6s6n−s |Zn(s)|∞, which aggregates mean-shift signals over sample sequence and targets to the

maximum change across coordinates. To achieve distribution approximation of Tn where observations have

sub-exponential tails or polynomial tails, we apply Gaussian multiplier bootstrap as a computable data-

driven approach. Specifically, we define bootstrapped test statistics that capture the distribution of Tn

rather than an upper quantile for a pre-specified significance level. This allows uniform control over size

(Type I error). In addition, power can be guaranteed when signal size of change is beyond a lower bound

that achieves minimax rate for sparse alternatives. The proposed test is fully data-dependent with no tuning
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parameter except for the boundary removal parameter s. Under mild distributional conditions, we demon-

strate theoretical requirement on s to justify the difficulty of detecting boundary changes using CUSUM

statistics.

The multiplier bootstrap calibrates distribution of Tn without referring to extreme value limiting theories

that is known to be slow [87, 53, 65]. Aside from mild moment conditions, no structural condition (in contrast

with [43, 99]) nor upper bound of spatial correlation (in contrast with [36, 65]) on cross-sectional covariance

matrix is assumed. So our approach is robust to (i) any distributions that have sub-exponential or polynomial

tails, (ii) any correlation among coordinates especially heavy dependence (see simulation). In addition, the

dimension p only affect the s through log(np). The searching boundary s (or n−s) is no longer polynomially

bounded away from the two endpoints unlike the works [37, 36].

1.1.2 CUSUM based estimators for single change point

As a parallel problem to inference, we continue to study the identification issue and propose two consistent

change-point estimators based on CUSUM statistics with two different weights over data sequence. One

estimator is covariance stationary and related to Tn. The other one provides the best possible convergence

rate of n−1 up to logarithm factors of np. We establish non-asymptotic consistency for both estimators that

allow p grows sub-exponentially fast in n and can search over the whole data sequence. In application, they

can also be tailored to truncated versions in order to adapt to the boundary removal concept in testing.

Again, they are robust to distributional tails and spatial correlations that are mentioned above.

1.1.3 Algorithm for multiple change points

Despite the simplicity in single change-point problem for independent data, the appealing properties men-

tioned above can extend to multiple change-point scenarios where temporal dependence may exist. For

multiple change-point analysis of independent data, binary segmentation [45] is a natural technique to re-

cursively test and estimate change points in segments before and after a claimed change point. We propose

bootstrap-assisted binary segmentation (BABS) that combines our test and estimators to consistently search

and locate change points until nothing shows significance. To accommodate time-series, a block multi-

plier bootstrap under single change-point scenario is designed empirically and can be combined with binary

segmentation as well.

We would like to emphasize that BABS inherits the robustness from both lines of testing and estimation

without introducing additional tuning parameters, and we derive the consistency theoretically. We answered

the four questions by
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1. dealing with broader distributions with sub-exponential and polynomial tails rather than Gaussian

distribution;

2. deriving explicit rate on boundary removal parameter s;

3. discussing a natural extension to detect covariance change point for sub-Gaussian Fi;

4. relaxing weakly dependent requirement for the covariance of Fi.

To relate our work with [65, Bootstrap I and Bootstrap II], which need estimation of single change point prior

to testing, our BABS is designed reversely (or say simultaneously). Arithmetically, testing and estimation are

two separate problems that should be able to conduct independently. However, in [65], (long-run) covariance

estimators for each coordinates must be normalized according to a possible change point before performing

bootstrapping under single alternative H1. Though, [65, Bootstrap III] proposed a “naive” way to entirely

remove the estimation of change point in bootstrap under H1, their test statistic [65, Eq (1.2)] still relies

on (long-run) covariance estimators. Therefore, there is a fundamental difficulty to extend their approach

for a global detection of multiple change points except to, for instance, apply wild bootstrap technique [45]

with sacrifice on computation cost. Thus, our BABS is more aligned with statistical philosophy with no

additional estimation step nor threshold selection that of vital importance to other multiple change point

estimation algorithms [37, 99, 36].

1.2 Change point in location parameter and our contributions

In the second part, we consider the class of distribution where mean vector is not well-defined. Recall

the location-shift model such that Fi(x) = F1(x − µi). When it comes to i.i.d. observations whose latent

distribution is from a heavy-tailed location family that does not have finite mean, CUSUM-type approaches

will fail due to violation on moment conditions. As a consequence, a non-linear projection of data must be

imposed to separate H0 (no change point) and H1 (at most one location shift over the sequence of data).

This motivates us to investigate new technique for high-dimensional robust change-point analysis.

U-statistics, which sum up all permutations of samples filtered by a kernel, produce robust and unbiased

estimation of the kernel function after proper normalization. Such function must be selected properly in

order to reflect changes in location parameter. In the common choice of symmetric ones, high-order kernels

(e.g. in order-four) have been designed to cancel out within-sample means or location parameters [38, 97].

On the other hand, if the single change point is assumed known to be s, the problem falls to investigation

of two-sample (before and after s) U-statistics that can separate between-sample difference. Then a natural
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extension for unknown change point case is to take the test statistic as the maximum of between-sample

differences over s = 1, . . . , n − 1 [25, 77, 73, 52, 40]. However, such modifications are computationally

expensive to cancel out noises by lifting to high-order kernels and unnecessary to screen whole sequence for

testing only and no intention on estimation.

To remedy the issue of robustness and efficiency, we propose a novel `∞-type testing statistic based

on one-sample order-two U-statistics coupled with anti-symmetric kernels in Chapter 3. Specifically, our

statistic is defined as

Tn = n1/2

(
n

2

)−1 ∑
16i<j6n

h(Xi, Xj) (1.3)

where h : Rp × Rp → Rd is an anti-symmetric kernel, i.e., h(x, y) = −h(y, x) for all x, y ∈ Rp, which

plays a key role in testing. Under the null H0, the mean of Tn is always 0, while under the alternative

H1, the within-sample noise cancels out and the between-sample signal is properly preserved by kernel. In

the perspective of computational cost, the general order is O(n2p) for the example of robust sign-kernel

h(x, y) = sign(x− y) (component-wise) and it can be reduced to O(np) by using the one-pass linear-kernel

h(x, y) = x− y.

Our proposed U-statistics approach is robust, tuning-free and easy-to-implement. Gaussian multiplier

bootstrap is designed to calibrate the distribution of test statistic. Subject to mild moment conditions on

kernels, we derive the uniform rates of convergence for distribution approximation and the lower bound of

location-change signal through kernel. It should be noted that no boundary removal procedure is required

since the one-sample U-statistic Tn integrates “two-sample” information without referring each data point.

We can answer the four questions raised in the beginning by

1. considering kernel projection to release distributional assumption;

2. performing global testing without boundary removal;

3. leaving possibility of other tests to choices of kernel h;

4. extending to location parameter of Fi which is not necessary to have mean.

In the presence of multiple change points, the U-statistic based test is valid if location shifts accumulate

ideally. Since the signal cancellation may nullify power, a block testing is designed to gain single change point

structure with sacrifice of sample size. Due to the advantage that our test does not screen any difference

before and after each point, it limits to extend the test statistic to a change point estimator as in the CUSUM-

based approach. As a consequence, the binary segmentation based forward detection cannot directly apply

to our framework. However, a backward searching algorithm (BD) can play a role of estimation without
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introducing external estimator. Specifically, BD repeatedly merges two consecutive data segments whose

union fail to reject H0. Therefore, it is more powerful especially when there are short sequences with location

shifts.

The rest of this dissertation is organized as follows. The CUSUM based test and estimator together with

the BABS algorithm for mean change are elaborated in Chapter 2 [106]. The U-statistics based test as well

as the BD algorithm is described in Chapter 3 [107]. Main results, numerical studies and proofs are given

within each chapter, respectively.
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Chapter 2

Change point inference and
identification for high-dimensional
mean vectors

2.1 Introduction

This paper studies the problems of change point inference and identification for mean vectors of high-

dimensional data in finite samples. High-dimensional data are now ubiquitous in many scientific and engi-

neering fields and data heterogeneity is the rule rather than the exception. A central problem of studying

the data heterogeneity is to detect structural breaks in the underlying data generation process. Perhaps the

two most fundamental questions for abrupt changes are: i) is there a change point in data? ii) if so, when

does the change occur? In this work, we consider change point detection and identification for temporally

independent data with cross-sectional dependence. Specifically, let Xn
1 = {X1, . . . , Xn} be a sequence of

independent random vectors in Rp generated from the mean-shift model:

Xi = µ+ δn1(i > m) + ξi, i = 1, . . . , n, (2.1)

where µ ∈ Rp is the population mean parameter, δn ∈ Rp is the mean-shift signal parameter, m is the

change point location, and ξ1, . . . , ξn are (temporally) independent and identically distributed (i.i.d.) mean-

zero noise random vectors in Rp with common distribution function F . Let Σ = Cov(ξ1) be the unknown

noise covariance matrix that is not necessarily diagonal, and thus we allow cross-sectional (sometimes also

referred as spatial) dependence among the components Xi1, . . . , Xip for each i = 1, . . . , n. Under the mean-

shift model, if δn = 0 or m = n, then X1, . . . , Xn form a sample of i.i.d. random vectors and no change

point occurs. In this paper, our first goal is to test for whether or not there is a change point in the mean

vectors µi = E(Xi), i.e., to test for

H0 : δn = 0 and H1 : δn 6= 0 and there exists an m ∈ {1, . . . , n− 1}, (2.2)

where the alternative hypothesis H1 is parameterized by the change point signal δn and location m. If a

change point is detected in the mean vectors (i.e., H0 is rejected), then our second goal is to identify the
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change point location m.

For i.i.d. Gaussian noise ξi ∼ N(0,Σ), the log-ratio of the maximized likelihoods between H1 with a

change point at s = 1, . . . , n− 1 and H0 without change point is given by

log(Λs) = Zn(s)>Σ−1Zn(s)/2, (2.3)

where

Zn(s) =

√
s(n− s)

n

(
1

s

s∑
i=1

Xi −
1

n− s

n∑
i=s+1

Xi

)
(2.4)

is a sequence of the normalized mean differences before and after s. Then H0 is rejected if max16s<n log(Λs)

is larger than a critical value. In literature, {Zn(s)}n−1
s=1 are often called the cumulative sum (CUSUM)

statistics [38]. Note that the log-ratio statistics of the maximized likelihoods in (2.3) require the knowledge

or an estimate of the unknown covariance matrix Σ. In the high-dimensional setting where p is larger

(or even much larger) than n, estimation of Σ itself becomes a challenging problem. And the spectral

norm consistency of Σ (or the inverse Σ−1) is possible under additional structural assumptions (such as

sparsity or low-rankness) on the covariance matrix [16, 17, 22, 23, 30, 11], which may be violated in practical

applications. In contrast, tests based on the CUSUM statistics in (2.4) do not involve Σ and they are more

robust to the misspecification on covariance structures. Therefore, this motivates us to study the problems

of change point testing and estimation based on the high-dimensional CUSUM statistics.

To build a decision rule for change-point detection, we need to cautiously aggregate the (dependent)

random vectors Zn(s), s = 1, . . . , n− 1. [43] considers the change point detection on mean vectors under the

mean-shift model (2.1) with i.i.d. ξi ∼ N(0, σ2Ip). They propose the linear and scan statistics based on the `2-

norm aggregation of the CUSUM statistics and derive the change point detection boundary. [65] considers the

`∞-norm aggregation of the CUSUM statistics and establishes a Gumbel limiting distribution under H0. [65]

also considers the bootstrap approximations to improve the rate of convergence. [99] considers the estimation

problem of change points in the high-dimensional mean vectors in reduced dimensions by sparse projections

and they derive the rate of convergence for estimating the change point location. In all aforementioned papers

[43, 65, 99], strong structural assumptions (i.e., cross-sectional sparsity in the sense that the components

{Xij}pj=1 of Xi are independent or weakly dependent) are imposed to substantially reduce the intrinsic

complexity of the problem. [37] relax the sparsity assumption and consider the estimation problem of

change points in the (marginal) variances of high-dimensional time series under a multiplicative model.

They propose a sparsified binary segmentation (SBS) performing the `1-norm aggregation on a thresholded

version of the CUSUM statistics such that an additional sparsifying step with a tuning parameter is used to
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avoid noise accumulation in the aggregation. Since the SBS is sensitive to threshold tuning parameters, [36]

proposes a double CUSUM test procedure sorting the magnitudes of the p components of CUSUM statistics

and it may be viewed as a data-driven alternative for selecting the threshold in [37].

In this paper, besides some mild moment conditions, we do not make any assumption on the cross-

sectional dependence structure of the underlying data distribution. We consider the multivariate CUSUM

statistics (2.4) in the `∞-norm aggregated form:

Tn = max
s6s6n−s

|Zn(s)|∞ := max
s6s6n−s

max
16j6p

|Znj(s)|, (2.5)

where s ∈ [1, n/2] is a user-specified boundary removal parameter. Removing boundary points is necessary

in detecting a change point since the distributions of |Zn(s)|∞ that are closer to the endpoints are more

difficult to approximate because of fewer data points. Then H0 is rejected if Tn is larger than a critical value

such as the (1−α) quantile of Tn. Under H0, {Zn(s)}n−1
s=1 is a centered and covariance stationary process in

Rp (i.e., E[Zn(s)] = 0 and Cov(Zn(s)) = Σ). To approximate the distribution of Tn, extreme value theory

is a commonly used technique to derive the Gumbel-type limiting distributions [69, 87]. However, even in

p = 1 case, the convergence rate of maxima of the CUSUM process {Zn(s)}n−1
s=1 is known to be very slow

[87, 53, 65].

2.1.1 Our contributions

To overcome the fundamental difficulty in calibrating the distribution of Tn, we consider the bootstrap

approximation to the finite sample distribution of Tn without referring a weak limit of {Zn(s)}n−1
s=1 . In

Section 2.2, we propose a Gaussian multiplier bootstrap tailored to the CUSUM test statistics in (2.4). The

proposed bootstrap test is fully data-dependent and requires no tuning parameter (except for a pre-specified

boundary removal parameter s). This is in contrast with the thresholding-aggregation method in [37], which

requires further data-dependent procedures to choose the threshold and is not easy to justify. We will show

in Section 2.3.1 that the bootstrap CUSUM test is a uniformly valid inferential procedure under H0 where

p can grow sub-exponentially fast in n and no explicit condition on the dependence structure among the

components {Xij}pj=1 is needed. This is in contrast with [43, 65, 99] where the components are assumed to be

either independent or weakly dependent, and with [37, 36] where the dimension can only grow polynomially

fast in sample size. Moreover, we will show that, under a mild signal strength condition, our bootstrap

CUSUM test is consistent in the sense that the sum of type I and type II errors is asymptotically vanishing

[47, Chapter 6.2]. In addition, the requirement on the signal strength can achieve the minimax separation
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rate derived in [43] under the sparse alternative (i.e., the change occurs only in a few number of components

X1, . . . , Xn).

If a change point is detected, then we estimate the change point location by maximizing the `∞-norm of

the generalized CUSUM statistics (2.8) at two different weighting scales. The first estimator is based on the

covariance stationary CUSUM statistics in (2.4). In Section 2.3.2, we show that it is consistent in estimating

the location at the parametric rate n−1/2 (up to logarithmic factors) for sub-exponential observations. The

second estimator is a non-stationary CUSUM statistics assigning less weights on the boundary data points.

In this case, we show that it achieves the best possible rate of convergence on the order n−1 (up to logarithmic

factors) under some stronger side conditions. In both cases, dimension impacts the rate of convergence only

through the logarithmic factors. Thus consistency of the CUSUM location estimators can be achieved when

p grows sub-exponentially fast in n.

Our bootstrap change point inference can be naturally extended to handle multiple change points via the

generic binary segmentation technique. Once a change point is claimed by our bootstrap test and located

in the estimation step, the binary segmentation continues the same testing and estimation procedure on the

segments before and after the change until no further change point can be detected by the bootstrap test

(cf. Algorithm 1 in Section 2.2.3). Thus, the bootstrap CUSUM test can dynamically adjust the detection

rule during the iterations. We derive the rate of convergence of this bootstrap-assisted binary segmentation

(BABS) for recursively estimating the multiple change points under suitable signal separation and strength

conditions. No additional tuning parameter is introduced in BABS.

2.1.2 Literature review

CUSUM statistics [83] are originally introduced in the sequential testing problems to distinguish between

the in-control hypothesis δn = 0 and the out-control mean-shift hypothesis for a given δn 6= 0 in model (2.1),

aiming to minimize the expected average run length [68, 94, 95, 83, 31, 57, 101, 95, 76, 85]. This paper

uses CUSUM statistics for fixed sampled size tests, as in many other statistical change point testing and

estimation works [104, 19, 38, 67, 13, 45, 24, 75, 55, 54, 44, 46, 81, 8, 9, 15, 109, 56].

There is a recent surge of literature on change point analysis for high-dimensional data. Change point

detection is considered in [43, 65]. Estimation of the number and locations of change points are considered

in [37, 65, 99, 36]. Bootstrap inference is considered in [36] (without rigorous statistical guarantees).

Finite sample approximations to the distribution of maxima corresponding to sums of independent mean-

zero random vectors in high dimensions are studied in [33, 35]. We highlight that validity of our bootstrap

CUSUM test for the change point does not (at least directly) follow the Gaussian and bootstrap approxima-
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tion results in [33, 35]. The reason is that, in the change-point detection context, the extreme-value type test

statistic Tn defined in (2.5) is the maximum of a sequence of dependent random vectors Zn(s), s = s, . . . , n−s.

Therefore, the distributional approximation results developed in [33, 35] require considerable modifications

tailored to the change point analysis. A main technical innovation of this work is that the CUSUM statistics

are affine transformations of the independent data points in an augmented space so that we can make use of

the high-dimensional Gaussian and bootstrap approximations without overpaying the price of the increased

dimensionality in the embedded larger space.

2.1.3 Organization

The rest of this paper is organized as follows. The bootstrap change point test, estimation of the change

point location and extension to multiple change point algorithm are described in Section 2.2. In Section 2.3,

we derive the size validity, power properties of the bootstrap test and the rate of convergence for the change

point location estimator by the generalized CUSUM statistics, followed by consistency of algorithm designed

for multiple change point identification. In Section 2.4, we report extensive simulation results of testing

and estimation for a variety of distributions with different dependence structures and moment conditions.

In Section 2.5, real data examples are provided. Proofs of the main results in Section 2.3 and additional

simulation results are given in Section 2.6.

2.1.4 Notation

For q > 0 and a generic vector x ∈ Rp, we denote |x|q = (
∑p
i=1 |xi|q)1/q for the `q norm of x and we write

|x| = |x|2. For a random variable X, denote ‖X‖q = (E|X|q)1/q. For β > 0, let ψβ(x) = exp(xβ) − 1

be a function defined on [0,∞) and Lψβ be the collection of all real-valued random variables X such that

E[ψβ(|X|/C)] < ∞ for some C > 0. For X ∈ Lψβ , define ‖X‖ψβ = inf{C > 0 : E[ψβ(|X|/C)] 6 1}. Then,

for β ∈ [1,∞), ‖ · ‖ψβ is an Orlicz norm and (Lψβ , ‖ · ‖ψβ ) is a Banach space [70]. For β ∈ (0, 1), ‖ · ‖ψβ is a

quasi-norm, i.e., there exists a constant C(β) > 0 such that ‖X + Y ‖ψβ 6 C(β)(‖X‖ψβ + ‖Y ‖ψβ ) holds for

all X,Y ∈ Lψβ [1]. Let ρ(X,Y ) = supt∈R |P(X 6 t) − P(Y 6 t)| be the Kolmogorov distance between two

random variables X and Y . We shall use C1, C2, . . . and K1,K2, . . . to denote positive and finite constants

that may have different values. Throughout the paper, we assume n > 4 and p > 3.
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2.2 Methodology

2.2.1 Bootstrap CUSUM test

We first introduce a bootstrap procedure to approximate the distribution of Tn. Let e1, . . . , en be i.i.d.N(0, 1)

random variables independent of X1, . . . , Xn. Let X̄−s = s−1
∑s
i=1Xi and X̄+

s = (n − s)−1
∑n
i=s+1Xi be

the left and right sample averages at s, respectively. Define

Z∗n(s) =

√
n− s
ns

s∑
i=1

ei(Xi − X̄−s )−
√

s

n(n− s)

n∑
i=s+1

ei(Xi − X̄+
s ). (2.6)

Then the bootstrap test statistic is defined as

T ∗n = max
s6s6n−s

|Z∗n(s)|∞, (2.7)

and the (1− α) conditional quantile of T ∗n given Xn
1

qT∗n |Xn1 (1− α) = inf{t ∈ R : P(T ∗n 6 t|Xn
1 ) > 1− α}

is used as a critical value of the bootstrap test to approximate the quantiles of Tn. In particular, for any

α ∈ (0, 1), we reject H0 if Tn > qT∗n |Xn1 (1−α). Note that the Gaussian multiplier bootstrap test statistic T ∗n

and its conditional quantile qT∗n |Xn1 (1− α) are computable in the sense that we can repeatedly draw Monte

Carlo samples by simulating the multiplier random variables e1, . . . , en to approximate the distribution of

T ∗n .

Remark 1 (Comments on centering in the bootstrap CUSUM statistics Z∗n(s)). Alternatively, we can also

consider the following version of bootstrap CUSUM statistics

Z̃∗n(s) =

√
n− s
ns

s∑
i=1

eiXi −
√

s

n(n− s)

n∑
i=s+1

eiXi

without left and right centering by X̄−s and X̄+
s . It can be shown that the bootstrap CUSUM test based on

Z∗n(s) and Z̃∗n(s) have the same rate of convergence in the size and power analysis (Theorem 2.1, Corollary 2.2,
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and Theorem 2.3). However,

Cov(Z∗n(s)|Xn
1 ) =

n− s
ns

s∑
i=1

(Xi − X̄−s )(Xi − X̄−s )> +
s

n(n− s)

n∑
i=s+1

(Xi − X̄+
s )(Xi − X̄+

s )>

6
n− s
ns

s∑
i=1

XiX
>
i +

s

n(n− s)

n∑
i=s+1

XiX
>
i = Cov(Z̃∗n(s)|Xn

1 ),

where we write two square matrices A 6 B if A− B 6 0 i.e., A− B is negative semi-definite. Hence Z̃∗n(s)

incurs a larger (conditional) covariance matrix than Z∗n(s) and it is recommended to use Z∗n(s) rather than

Z̃∗n(s).

Remark 2 (Comparisons with [65] under H0). In a related work, [65] considers the change point tests for

high-dimensional time series based on the following version of the CUSUM statistics

Bnj =
1

σ̂j
√
n

max
16s6n

∣∣∣∣∣
s∑
i=1

Xij −
s

n

n∑
i=1

Xij

∣∣∣∣∣ , j = 1, . . . , p,

where σ̂2
j is a consistent estimator for the long-run variance of {Xij}i∈N. Then H0 is rejected if T̃n =

max16j6pBnj is larger than a critical value. Under H0 and the spatial sparsity conditions (Assumption

2.2 in [65]), the author establishes a Gumbel limiting distribution for T̃n (after suitable normalizations).

To improve the rate of convergence, the author also proposes a parametric bootstrap T̃Yn = max16j6pB
Y
nj ,

where

BYnj =
1√
n

max
16s6n

∣∣∣∣∣
s∑
i=1

Yij −
s

n

n∑
i=1

Yij

∣∣∣∣∣ , j = 1, . . . , p,

and {Yij : 1 6 i 6 n, 1 6 j 6 p} is an array of i.i.d. N(0, 1) random variables. Asymptotic bootstrap validity

is derived under the same spatial sparsity assumption as in the Gumbel limit. There is an important difference

between T̃Yn in [65] and our bootstrap test based on T ∗n . Note that the conditional covariance matrices of

Z∗n(s) given Xn
1 are sample analogs of covariance matrices of Zn(s). We will show in Section 2.3.1 that

T ∗n can approximate the distribution of Tn without assuming any kind of spatial (cross-sectional) sparsity

conditions. On the contrary, since {Yij} are i.i.d., even when X1, . . . , Xn are independent observations,

the parametric bootstrap BYnj does not mimic the general dependence structure among the components

{Xij}pj=1. In addition, the bootstrap validity of T ∗n we establish in Theorem 2.1 and Corollary 2.2 below is

non-asymptotic and it holds without assuming a Gumbel-type limiting distribution for Tn.
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2.2.2 Estimating the change point location under the alternative hypothesis

If a change point is detected in the mean vectors (i.e., H0 is rejected), then our next goal is to identify the

change point location m. Specifically, we estimate tm = m/n,m = 1, . . . , n, where the data X1, . . . , Xn are

observed at evenly spaced time points and their index variables are normalized to [0, 1]. We consider the

change point location estimator based on the generalized CUSUM statistics [55]

Zθ,n(s) =

[
s(n− s)

n

]1−θ
(

1

s

s∑
i=1

Xi −
1

n− s

n∑
i=s+1

Xi

)
, (2.8)

where θ is a weighting parameter satisfying 0 6 θ < 1. Obviously, the CUSUM statistics Zn(s) in (2.4) is a

special case of θ = 1/2, i.e., Zn(s) = Z1/2,n(s). Then we estimate m by

m̂θ = argmax16s<n|Zθ,n(s)|∞. (2.9)

and we use tm̂θ = m̂θ/n to estimate tm. It is easily seen that, for smaller values of θ, Zθ,n(s) assigns less

weights on the boundary data points. Therefore, if the true change point location is bounded away from the

two endpoints, we expect that tm̂θ with a smaller weighting parameter can achieve better rate of convergence.

For example, if tm ∈ (0, 1) is fixed and p = 1, then it is known that the {Z0,n(s)}n−1
s=1 converges weakly to a

functional of the Weiner process and the corresponding maximizer m̂0 achieves the rate of convergence of the

order n−1, which is clearly the best possible rate and is faster than the parametric rate n−1/2 [9, 55]. Instead

of considering the whole family of the generalized CUSUM statistics indexed by θ ∈ [0, 1), we consider two

important cases of θ = 1/2 (covariance stationary) and θ = 0 (non-stationary) in this paper. For θ = 1/2,

Z1/2,n(s) is related to the proposed bootstrap CUSUM statistics Z∗n(s) in (2.6) and the log-ratio statistics

in (2.3) under normality with Σ = σ2Idp. For θ = 0, Z0,n(s) is related to the parametric bootstrap in [65].

Remark 3 (Comments on the boundary). It should be noted that in the bootstrap CUSUM test, we must

remove the boundary points from approximating the distribution of Tn. If the boundary points are included

in the maxima Tn and T ∗n , then the conditional distribution of T ∗n (given Xn
1 ) does not provide an accurate

approximation to the distribution of Tn. Theorem 2.1 and Theorem 2.3 provide the precise rate of conver-

gence that characterizes the boundary removal parameter s to ensure the consistency (in terms of the sum

of type I and type II errors) of the bootstrap CUSUM test. On the other hand, the estimation problem in

(2.9) does not exclude the endpoints outside the interval [s, n− s]. However, in practice, if the existence of a

change point is not known as a priori and it is decided by a test, then the boundary restriction is implicitly

imposed for both testing and estimation in empirical applications [9].
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2.2.3 Bootstrap-assisted binary segmentation for multiple change points

Suppose now there are ν change points m0 = 1 < m1 < · · · < mν < mν+1 = n and consider the following

multiple mean-shifts model:

Xi = µ+

ν∑
k=1

δ(k)
n 1(i > mk) + ξi, i = 1, . . . , n, (2.10)

where δ
(k)
n ∈ Rp are non-zero mean-shift vectors and ξi are again i.i.d. mean-zero random vectors in Rp.

Without less of generality, we may assume µ = 0 and δ
(0)
n = δ

(ν+1)
n = 0. Given a beginning time point b and

an ending time point e, we can compute the CUSUM statistics on the initial data segment {Xi}ei=b:

Zn,b,e(s) =

√
(s− b+ 1)(e− s)

e− b+ 1

(
1

s− b+ 1

s∑
i=b

Xi −
1

e− s

e∑
i=s+1

Xi

)
.

Note that the normalization in Zn,b,e(s) corresponds to the case θ = 1/2 in (2.8). It can be shown that the

maximizer of |EZn,b,e(s)|∞, s = b, . . . , e always occurs at one of the change points {mk, k = 1, . . . , ν} ∩ [b, e]

(cf. Lemma 2.13). Therefore, under multiple change points model (2.10), we can use Zn,b,e(s) to locate one

shift in the interval [b, e]. If our bootstrap CUSUM test (calculated based on {Xi}ei=b) rejects H0 at the

significance level α, then m̂e
b = argmaxs=b,...,e|Zn,b,e(s)|∞ is marked as a change point. In addition, observe

that the mean vectors µi = E[Xi] are piecewise constant such that

µmk+1 = · · · = µmk+1
=

k∑
l=0

δ(l)
n .

Thus, we may recursively apply the binary segmentation to search along the two directions [b, m̂e
b] and

[m̂e
b + 1, e] until no further change point would be detected by the subsequent bootstrap tests. The pseudo-

code for our bootstrap-assisted binary segmentation algorithm for multiple change points detection, referred

as BABS(α, b, e), is summarized in the following Algorithms 1.

2.3 Theoretical results

Denote P0(·) and P1(·) as the probability computed under H0 and H1, respectively.
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Algorithm 1 BABS(α, b, e)

1: if e− b+ 1 < 2s then
2: STOP
3: else
4: m̂e

b = argmaxs=b,...,e|Zn,b,e(s)|∞
5: if our bootstrap CUSUM test concludes existence of a change in [b, e] then
6: add m̂e

b to the set of estimated change-points;
7: BABS(α, b, m̂e

b);
8: BABS(α, m̂e

b + 1, e).
9: else

10: STOP
11: end if
12: end if
13: return estimated change points.

2.3.1 Size and power of the bootstrap CUSUM test: one change point

Our first main result (cf. Theorem 2.1) is to establish finite sample bounds for the (random) Kolmogorov

distance between Tn and T ∗n :

ρ∗(Tn, T
∗
n) = sup

t∈R
|P0(Tn 6 t)− P0(T ∗n 6 t|Xn

1 )|.

From this, we can derive the asymptotic bootstrap validity for certain high-dimensional scaling limit for

(n, p). In particular, with ρ∗(Tn, T
∗
n) = oP(1), we can show that Type-I error of the bootstrap test is

asymptotically controlled at the exact nominal level α ∈ (0, 1); i.e., P0(Tn > qT∗n |Xn1 (1 − α)) → α (cf.

Corollary 2.2).

Let b, b̄, q > 0. We make the following assumptions.

(A) Var(ξij) > b for all j = 1, . . . , p.

(B) E[|ξij |2+`] 6 b̄` for ` = 1, 2 and for all i = 1, . . . , n and j = 1, . . . , p.

(C) ‖ξij‖ψ1 6 b̄ for all i = 1, . . . , n and j = 1, . . . , p.

(D) E[max16j6p(|ξij |/b̄)q] 6 1 for all i = 1, . . . , n.

Condition (A) is a non-degeneracy assumption. Condition (B) is a mild moment growth condition. Without

loss of generality, we may take b̄ > 1. Conditions (C) and (D) impose sub-exponential and uniform polynomial

moment requirements on the observations, respectively. Define

$1,n =

(
log7(np)

s

)1/6

and $2,n =

(
n2/q log3(np)

γ2/qs

)1/3

.
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Theorem 2.1 (Main result I: bounds on the Kolmogorov distance between Tn and T ∗n under H0). Suppose

H0 is true and assume (A) and (B) hold. Let γ ∈ (0, e−1) and suppose that log(γ−1) 6 K log(pn) for some

constant K > 0.

(i) If (C) holds, then there exists a constant C > 0 only depending on b, b̄,K such that

ρ∗(Tn, T
∗
n) 6 C$1,n (2.11)

holds with probability at least 1− γ.

(ii) If (D) holds, then there exists a constant C > 0 only depending on b, b̄,K, q such that

ρ∗(Tn, T
∗
n) 6 C{$1,n +$2,n} (2.12)

holds with probability at least 1− γ.

Based on Theorem 2.1, we have the uniform size validity of the bootstrap CUSUM test.

Corollary 2.2 (Uniform size validity of Gaussian multiplier bootstrap for the CUSUM test). Suppose H0

is true and assume (A) and (B) hold. Let γ ∈ (0, e−1) and suppose that log(γ−1) 6 K log(pn) for some

constant K > 0.

(i) If (C) holds, then there exists a constant C > 0 only depending on b, b̄,K such that

sup
α∈(0,1)

|P0(Tn 6 qT∗n |Xn1 (α))− α| 6 C$1,n + γ. (2.13)

Consequently, if log7(np) = o(s), then P0(Tn 6 qT∗n |Xn1 (α))→ α uniformly in α ∈ (0, 1) as n→∞.

(ii) If (D) holds, then there exists a constant C > 0 only depending on b, b̄,K, q such that

sup
α∈(0,1)

|P0(Tn 6 qT∗n |Xn1 (α))− α| 6 C{$1,n +$2,n}+ γ. (2.14)

Consequently, if max{log7(np), n2/q log3+ε(np)} = o(s) for some ε > 0, then P0(Tn 6 qT∗n |Xn1 (α)) → α

uniformly in α ∈ (0, 1) as n→∞.

Our second main result is to analyze the power of the bootstrap CUSUM test. We are mainly interested

in characterizing the change point signal strength (quantified by the `∞ norm of δn) and the location tm such

that H0 and H1 can be asymptotically separated by our bootstrap CUSUM test. Without loss of generality,

we may assume that |δn|∞ 6 1.
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Theorem 2.3 (Main result II: power of Gaussian multiplier bootstrap for CUSUM test under H1).

Suppose H1 is true with a change point m ∈ [s, n − s] and assume (A) and (B) hold. Let ζ ∈ (0, 1/2) and

γ ∈ (0, e−1) such that log(γ−1) 6 K log(pn) for some constant K > 0.

(i) If (C) holds and

|δn|∞ > C1

√
log(ζ−1) log(np) + log(np/α)

ntm(1− tm)
(2.15)

for some large enough constant C1 := C1(b̄, b,K) > 0, then there exists a constant C2 := C2(b̄, b,K) > 0

such that

P1(Tn > qT∗n |Xn1 (1− α)) > 1− γ − C2$1,n − 2ζ. (2.16)

(ii) If (D) holds and |δn|∞ obeys (2.15) for some large enough constant C1 := C1(b̄, b,K, q) > 0, then there

exists a constant C2 := C2(b̄, b,K, q) > 0 such that

P1(Tn > qT∗n |Xn1 (1− α)) > 1− γ − C2{$1,n +$2,n} − 2ζ. (2.17)

Remark 4 (Rate-optimality on the change point detection for sparse alternatives). Under the i.i.d. Gaussian

errors ξi ∼ N(0, Idp) in the mean-shift model (2.1), the detection boundary for a change point in a Gaussian

sequence is characterized in [43]. Let a > 0 and suppose that a change point

δn = (a, . . . , a︸ ︷︷ ︸
k times

, 0, . . . , 0)>

occurs in the first k components at the location m in the sequence X1, . . . , Xn. Following [43], we consider

the scaling limit p = nc1 and k = p1−c2 for some c1 > 0 and c2 ∈ [0, 1). If c2 ∈ (1/2, 1), then the number

of components with a change point is highly sparse. In this case, the minimax separation condition for H0

and H1 is given by

a = rp

√
log(p)

ntm(1− tm)
.

Specifically, detection is impossible if lim supp→∞ rp <
√

2c2 − 1 and detection is possible if lim infp→∞ rp >√
2c2/(1− log 2). On the other hand, choosing αn = n−c for some constant c > 0 in Corollary 2.2 and

Theorem 2.3, we see that if

a > C∗

√
log(ζ−1) log(p)

ntm(1− tm)

for some large constant C∗ > 0, then our bootstrap CUSUM change point test achieves the minimax

separation rate in the high sparsity regime (with stronger side conditions to ensure the bootstrap validity).
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Hence, the signal strength requirement for detection in the proposed bootstrap test achieves the minimax

optimal rate under the sparse alternatives. On the other hand, it should be noted that, under the dense

alternatives c2 ∈ [0, 1/2], our bootstrap CUSUM test remains consistent in detecting the change point signal

in the sense that the sum of type I and type II errors converges to zero. However, in such case, the bootstrap

CUSUM test does not reach the detection boundary and the minimax separation rate [43].

Remark 5 (Monotonicity of power in the signal strength). Inspecting the proof of Theorem 2.3, it is seen

that the type II error of the bootstrap CUSUM test is bounded by a probability depending on the change

point signal strength |δn|∞ and location m (cf. equation (2.44)). Specifically,

Type II error 6 P1(T̃n > ∆̃− qT∗n |Xn1 (1− α)),

where ∆̃ =
√
ntm(1− tm)|δn|∞, T̃n = maxs6n6n−s |Zξn(s)|, and Zξn(s) are the CUSUM statistics computed

on the (unknown) ξn1 random vectors. Since the distribution of T̃n does not depend on δn and the conditional

quantile qT∗n |Xn1 (1 − α) is bounded by O(
√

log(np)) with a large probability under H1, the power of the

bootstrap CUSUM test is lower bounded by a quantity that is non-decreasing in |δn|∞. Simulation examples

in Section 2.4 confirm our theoretical observation. In addition, since tm(1− tm) is maximized at tm = 1/2,

a change point near the middle is easier to detect than it is near the boundary.

Remark 6 (Choice of boundary removal parameter). There is a trade-off for the choice of boundary removal

parameter: the larger s, the smaller of the error bounds and the more data points are removed from the

change point detection (so that the regime allowed by the bootstrap CUSUM test is smaller). In theory,

the lower bound of s is given in Corollary 2.2 for size validity of the bootstrap CUSUM test. Specifically, if

the data distribution has sub-exponential tail (i.e., Condition (C) holds), then we need s� log7(np) for the

error-in-size $1,n = o(1); if the data distribution has polynomial tail (i.e., Condition (D) holds) with q > 0,

then we need s � max{log7(np), n2/q log3+ε(np)} for $1,n + $2,n = o(1). This implies that we can choose

s = c1n
c2 for some small constants c1 > 0, 1 > c2 > 0 in either sub-exponential or polynomial case.

As a leading example, we consider a fixed normalized true change point location tm = m/n ∈ (0, 1).

Then we may choose s = c0n for some small constant c0 > 0 in order to include the change point in the

interval [s, n− s]. Under this framework, asymptotic size validity of the bootstrap CUSUM test is obtained

if p = O(en
c

) for some 1/7 > c > 0 under the sub-exponential moment condition on the observations.

Remark 7 (Comparisons with [65] under H1). [65] proposed bootstrap testing procedures for change point

under the alternative, which are different from the parametric bootstrap under H0 (cf. Remark 2). Specif-
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ically, the author considers several block versions of the multiplier and empirical bootstraps under H1 in

the time series setting. All of the tests under H1 in [65] require a minimum signal strength condition (cf.

Assumption 4.3 therein):

lim sup
n→∞

log n

Kb minj∈S δ2
nj

= 0, (2.18)

where S = {j ∈ {1, . . . , p} : δnj 6= 0} and Kb is the size of blocks. There are two major differences from

the bootstraps in [65]. First, our Gaussian multiplier bootstrap CUSUM test is asymptotically valid and

powerful for a change point under both H0 and H1. On the contrary, [65, Section 4] designed a series

estimators of tm to adapt to estimation of σ̂2
j , j = 1, . . . , p under H1, and the estimators must rely on the

assumption that each dimension has at most one change point. However, our approach without estimation of

tm can test against more generalized multiple change-point problem where power can still be guaranteed (cf.

Lemma 2.6). Second, detection by our bootstrap CUSUM test relies on a lower bound on the signal strength

quantified by |δn|∞, which is much weaker than (2.18). For example, it is possible that the minimum signal

strength minj∈S δ
2
nj decays to zero faster than (log n)/Kb, while our bootstrap CUSUM test remains valid

since it only requires |δn|∞ satisfies a mild lower bound in (2.15).

2.3.2 Rate of convergence of the change point location estimator

Our third main result is concerned with the rate of convergence of the change point location estimator tm̂θ ,

where m̂θ is defined through (2.9) and (2.8). We first consider the case of θ = 1/2 corresponding to the

covariance stationary CUSUM statistics.

Theorem 2.4 (Main result III: rate of convergence for change point location estimator: θ = 1/2). Suppose

that (B) holds and H1 is true. Suppose that log(γ−1) 6 K log(np) for some constant K > 0.

(i) If (C) holds, then there exists a constant C > 0 depending only on b̄, K such that

P1

(
|tm̂1/2

− tm| 6
C log2(np)√

ntm(1− tm)|δn|∞

)
> 1− γ. (2.19)

(ii) If (D) holds with q > 2, then there exists a constant C > 0 depending only on b̄, K, q such that

P1

(
|tm̂1/2

− tm| 6
Cn1/q(log(np) + γ−1/q)√

ntm(1− tm)|δn|∞

)
> 1− γ. (2.20)

Note that the non-degeneracy Condition (A) is not needed in estimating the change point location.

Consider a fixed tm ∈ (0, 1) as in our leading example. It is seen from Theorem 2.4 that tm̂1/2
is consistent

for estimating tm if the signal strength satisfying: i) |δ|∞ � n−1/2 log2(np) in the sub-exponential moment
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case; ii) |δ|∞ � n−1/2+1/q log(np) in the polynomial moment case. From Part (i) of Theorem 2.4, it should

also be noted that the change point location estimator tm̂1/2
does not attain the optimal rate of convergence.

In particular, consider the setup where tm ∈ (0, 1), p = 1, and |δn| = c is a constant signal. Then the rate of

convergence in (2.19) reads O(log2(n)/
√
n); that is, up to a logarithmic factor, the change point estimator

has the parametric rate of convergence of the order n−1/2. In such setup, however, it is known that the

best possible rate of convergence for estimating the change point location is of the order n−1 [55], which is

achieved by maximizing |Z0,n(s)| (i.e., the non-stationary CUSUM statistics). Therefore, it is interesting to

study the impact of dimensionality on the rate in the case of θ = 0 when the true change point tm ∈ (0, 1)

is fixed. This is the content of the following theorem. Denote δn = minj∈S |δnj |.

Theorem 2.5 (Main result IV: rate of convergence for change point location estimator: θ = 0). Suppose

that (B) holds and H1 is true with a change point m satisfying c1 6 tm 6 c2 for some constants c1, c2 ∈ (0, 1).

Suppose that log3(np) 6 Kn and log(γ−1) 6 K log(np) for some constant K > 0.

(i) If (C) holds, then there exists a constant C := C(b̄, K, c1, c2) > 0 such that

P1

(
|tm̂0

− tm| 6
C log4(np)

nδ2
n

)
> 1− γ. (2.21)

(ii) If (D) holds for some q > 2, then there exists a constant C := C(b̄, K, q, c1, c2) > 0 such that

P1

(
|tm̂0

− tm| 6
C log(np)

nδ2
n

·max

{
1,
n2/q log(np)

γ2/q

})
> 1− γ. (2.22)

Based on Theorem 2.5, we see that the dimension impacts the optimal rate of convergence for estimating

the change point location only on the logarithmic scale. Compared with Theorem 2.4, we see that faster

convergence of tm̂0
than that of tm̂1/2

is possible when tm ∈ (0, 1) is fixed and the dimension grows sub-

exponentially fast in the sample size. On the other hand, tm̂1/2
is more robust to estimate the change point

when its location is near the boundary, i.e., tm → 0 and tm → 1 are allowed to maintain the consistency in

Theorem 2.4; see our simulation result in Section 2.4 for numeric comparisons.

Remark 8 (Comparison with the sparse projection CUSUM method in [99]). [99] considered a different

sparse projection estimator, denoted as m̃, for change point location (even though their estimator is based

on the θ = 1/2 normalization). Then, [99, Theorem 1] for single change point in our notation reads: if

Xi ∼ N(µi, σ
2Ip) are independent and the change point signal δn satisfies ‖δn‖0 ≤ k and ‖δn‖2 ≥ ϑ such

that

σ

ϑτ

√
k log(p log n)

n
. 1, (2.23)
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where τ = min{tm, 1− tm}, then with probability tending to one, m̃ obeys

n−1|m̃−m| . σ2 log log n

nϑ2
. (2.24)

Here, ϑ/σ can be thought as a signal-to-noise ratio.

Let us compare m̃ in [99] with our estimators m̂1/2 and m̂0 in the highly sparse regime where k = 1,

ϑ = n−c1 , and m = nc2 for some c1, c2 ≥ 0. For simplicity, let σ = 1. For such configuration, tm̃ = m̃/n

attains the nearly minimax-optimal rate of convergence n−1+2c1 log log n if (2.23) holds, i.e., we need

√
log(p log n) . nc2−c1−1/2,

which necessarily requires that c2 > c1 + 1/2 as n → ∞. It means that the change point location cannot

be too close to the boundary m � nc1+1/2 in order to obtain the optimal rate for [99]. Thus, if the

change point is not close to the boundary, then the sparse projection estimator is nearly optimal at the rate

O(n−1+2c1) (where c1 can be arbitrarily small to zero), and for the boundary scenario, their estimator loses

such optimality.

In our Theorem 2.5, it is shown that tm̂0
achieves the nearly optimal rate (up to logarithmic factors) if

m = Cn for some constant C ∈ (0, 1). On the other hand, we showed in our Theorem 3.4 that our estimator

tm̂1/2
can deal with the “more boundary” case as long as

log2(np)� nc2/2−c1 .

In addition, there are other side differences between our assumptions and the ones in [99], where the latter

are more stringent on the data generation mechanism.

2.3.3 Rate of convergence of bootstrap-assisted binary segmentation

Under the multiple mean-shifts model (2.10), we consider the testing problem for H0 against the alternative

hypothesis with multiple change points

H
′

1 : δ(k)
n 6= 0 for some 1 = m0 < m1 < · · · < mν < mν+1 = n and ν > 1. (2.25)

We have the following Lemma 2.6 to control the power of our bootstrap CUSUM test based on T ∗n in (2.7)

in presence of multiple change points. This is the initial step of the bootstrap-assisted binary segmentation
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(Algorithm 1), and the power control is crucial for deriving the overall rate of convergence of recursively

estimating the multiple change points in Algorithm 1. Denote δ̄n = mink=1,...,ν |δ(k)
n |∞.

Lemma 2.6 (Power of Gaussian multiplier bootstrap for CUSUM test under H ′1). Suppose H
′

1 is true under

the multiple mean-shift model (2.10) with {mk}νk=1 ⊂ [s, n − s]. Assume (A), (B) and mink=0,...,ν |mk+1 −

mk| > Dν for some Dν > s. Let ζ ∈ (0, 1/2) and γ ∈ (0, e−1) such that log(γ−1) 6 K log(np) for some

constant K > 0.

(i) If (C) holds and

max
k=1,...,ν

D2
ν δ̄n√

n3tmk(1− tmk)
> C1

[√
log(ζ−1) log(np) + ν2 log(np/α)

]
(2.26)

for some large enough constant C1 := C1(b̄, b,K) > 0, then there exists a constant C2 := C2(b̄, b,K) > 0

such that (2.16) holds accordingly.

(ii) If (D) holds and |δn|∞ obeys (2.26) for some large enough constant C1 := C1(b̄, b,K, q) > 0, then there

exists a constant C2 := C2(b̄, b,K, q) > 0 such that (2.17) holds accordingly.

Remark 9 (Comments on signal strength under multiple change points alternative). The signal strength on

the LHS of (2.26) depends on the smallest mean shift δ̄n in `∞-norm and change point locations that are

closest to boundary, which is the most difficult situation for CUSUM statistic to detect mean change. If

ν = 1, then Dν = min{m,n−m} and

m(n−m)

n
6 Dν 6

2m(n−m)

n
.

Thus the LHS of (2.26) has the same order as n1/2(tm(1−tm))3/2|δn|∞, which is stronger than the requirement

of lower bound n1/2(tm(1− tm))1/2|δn|∞ in Theorem 2.3. This extra cost comes from handling the possible

mean shift cancellation in analyzing the general case of multiple change points. If the single change point

is bounded from boundaries (i.e., tm can be treated as a constant), then Lemma 2.6 gives the same lower

bound (2.15) as in Theorem 2.3.

Now we turn to the bootstrap-assisted binary segmentation algorithm BABS(α, b, e). We make the

following assumptions in addition to (A)-(D).

a) mink=0,...,ν |mk+1 −mk| > Dν , where Dν > nΘ for some Θ 6 1.

b) mink=1,...,ν minj∈Dk |δ
(k)
nj | > δn, where Dk = {1 6 j 6 p : δ

(k)
nj 6= 0} and δn > n−ω for some ω > 0.

c) Θ− ω
2 >

3
4 .
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d) n
3
2 Θ−1−ω > C(α)ν log2(np).

e) εn < s < Dν , where εn is defined in (2.27).

Assumptions a)-c) are standard signal separation and strength requirements in estimating the multiple

change point locations via binary segmentation, see e.g.,Theorem 1 in [45]. Assumption d) ensures that the

bootstrap CUSUM test is able to consistently detect the mean-shift signals (cf. Lemma 2.6). Assumption e)

is a minimal condition on the boundary removal parameter s, which is smaller than the separation distance

between any consecutive change points and larger than the rate of convergence εn for consistently estimating

all change point locations. Note that the signal strength requirement in estimation depends on minj∈Dk |δ
(k)
nj |

in assumption b), which is typically stronger than max16j6p |δ(k)
nj | used in the testing problem.

Theorem 2.7 (Main result V: rate of convergence of bootstrap-assisted binary segmentation). Let

ν̂ denote the number of change points and m̂1 < · · · < m̂ν̂ the change point locations estimated from

BABS(α, 1, n). Assume (A), (B) and a)-e) hold. Let γ ∈ (0, e−1) such that log(γ−1) 6 K log(Dνp) 6

K log(np) and ζ,$1,n are defined as in Theorem 2.3. Define

εn =


n2 log4(np)
D2
νδ

2
n

, if (C) holds

n2+6/q(log2(np)+γ−2/q)
D2
νδ

2
n

, if (D) holds
. (2.27)

(i) If (C) holds, then there exist a constant C0 = C0(b̄, b,K), C
′

0 = C
′

0(α, b̄,K) such that

P(Sn) > 1− 2γ − ν(γ + 2ζ + C0$1,n),

where

Sn =

{
ν̂ = ν and max

k=1,...,ν
|m̂k −mk| 6 C

′

0εn

}
.

(ii) If (D) holds, then there exist a constant C0 = C0(b̄, b,K, q), C
′

0 = C
′

0(α, b̄,K, q) such that

P(Sn) > 1− 2γ − ν{γ + 2ζ + C0($1,n +$2,n)}.

Remark 10 (Comparison with other binary segmentation type methods). In [37, 36], binary segmentation

was also used to extend their single change-point algorithms to the multiple change-point alternative. [37,

Theorem 1] discussed the asymptotic consistency of P(Sn) → 1 for SBS algorithm under two cases. With

proper tuning on their threshold parameter πn, they claimed εn = O(log2+c1(n)) for any c1 > 0 when

Θ = 1 for Dν = O(nΘ) and εn = O(n2−2Θ) when Θ ∈ (3/4, 1), while the rate of BABS for both cases is
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εn = O(n2−2Θ log4(np)), which is nearly the same as [37] up to a logarithmic factor. In [36], the author

proposed a binary segmentation via double CUSUM algorithm (DCBS). The DCBS statistic has two CUSUM

transforms in both time points with θ = 1/2 in (2.8) and ordered spatial variables (i.e., cross-sectional

features) in a different weighting ϕ. Consider the special case where θ = 1/2 and δ
(l)
n,1 = · · · = δ

(l)
n,k = δn 6=

0, l = 1, · · · , ν. Then [36, Theorem 3.3] shows that P(Sn)→ 1 for DCBS where εn = δ−2
n pk−2n5−4Θ log2(n)

when Θ ∈ (6/7, 1], while our BABS needs εn = δ−2
n n2−2Θ log4(np). Under sparse alternative where k <

p1/2n3/2−Θ log−2(np), BABS always has a better rate. However, we allow p to be as sub-exponentially large

in n, while [37, Assumption 4] required pn− logn → 0 and [36, Condition (A2)] fixed p as a polynomial order

of n.

Remark 11 (Extension to change point estimation in covariance matrices). Our BABS algorithm can be

tailored to other high-dimensional change point estimation problems beyond the mean vectors. For instance,

one can consider the estimation problem of multiple change points in covariance matrices for centered and

component-wise sub-Gaussian data Xi ∈ Rp such that ‖Xij‖ψ2
6 B. Since ‖Xij‖ψ2

= ‖X2
ij‖ψ1

, the triangle

inequality of the ψ1-norm implies that

‖XijXik‖ψ1
6 ‖X2

ij/2‖ψ1
+ ‖X2

ik/2‖ψ1
= ‖Xij‖ψ2

/2 + ‖Xik‖ψ2
/2.

Thus, if Xi has bounded sub-Gaussian entries, then the vectorized version of the empirical covariance

matrix ξi = vec(XiX
T
i ) ∈ Rp2 has all entries satisfying the bounded sub-exponential assumption (C) in

Section 2.3.1. So Theorem 2.7 (part (i)) implies that with a constant signal strength, P(Sn) > 1−O(ν$1,n)

for εn = O(D−2
ν n2 log4(np)).

In [96], the authors studied a similar covariance matrix change points estimation procedure for centered

and sub-Gaussian data points Xi ∈ Rp such that max16i6n ‖Xi‖ψ2
6 B, where ‖X‖ψ2

= supv∈Sp−1 ‖vTX‖ψ2

and Sp−1 is the unit sphere in Rp. [96] proposed a binary segmentation in operator norm (BSOP) by

recursively maximizing the operator norm of the matrix-valued CUSUM statistics (without the bootstrap

calibration). [96, Theorem 1] stated that P(Sn) > 1 − O(9pn3−cp) for εn = O(D−2
ν n5/2

√
p log(n)) and

p = O(n/ log(n)). Our BABS improves the BSOP in the following aspects. First, our sub-exponential tail

condition is weaker than [96] in view of max16j6p ‖Xij‖ψ2
≤ ‖Xi‖ψ2

. Second, we allow the dimension p to

be sub-exponentially large in the sample size n. This is an essential benefit by working with the `∞-norm

(rather than the operator norm).
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2.4 Simulation studies

In this section, we perform extensive simulation studies to investigate the size and power of the proposed

bootstrap change point test, as well as the estimation error of the change point location(s).

2.4.1 Setup

We generate i.i.d. ξi in the mean-shifted model (2.1) from three distributions.

1. Multivariate Gaussian distribution: ξi ∼ N(0, V ).

2. Multivariate elliptical t-distribution with degree of freedom ν: ξi ∼ tν(V ) with the probability

density function [79, Chapter 1]

f(x; ν, V ) =
Γ(ν + p)/2

Γ(ν/2)(νπ)p/2 det(V )1/2

(
1 +

x>V −1x

ν

)−(ν+p)/2

.

The covariance matrix of ξi is Σ = ν/(ν − 2)V . In our simulation, we use ν = 6.

3. Contaminated Gaussian: ξi ∼ ctm-Gaussian(ε, ν, V ) with the probability density function

f(x; ε, ν, V ) =
1− ε

(2π)p/2 det(V )1/2
exp

(
−x
>V −1x

2

)
+

ε

(2πν2)p/2 det(V )1/2
exp

(
−x
>V −1x

2ν2

)
.

The covariance matrix of ξi is Σ = [(1− ε) + εν2]V . In our simulation, we set ε = 0.2 and ν = 2.

We consider three cross-sectional dependence structures of V for each distribution.

(I) Independent: V = Idp, where Idp is the p× p identity matrix.

(II) Strongly dependent (compound symmetry): V = 0.8J + 0.2Idp, where J is the p × p matrix

containing all ones.

(III) Moderately dependent (autoregressive): Vij = 0.8|i−j|.

In all setups, 200 bootstrap samples are drawn for each simulation and all results are averaged on 1000

simulations.
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2.4.2 Simulation results for single change point model.

In this section, we report size validity and power of our bootstrap change point test as well as the error of

our CUSUM estimators for change point location.

Size of the bootstrap CUSUM test

We fix the sample size n = 500 and vary the dimension p = 10, 300, 600. For the bootstrap CUSUM test,

we set the boundary removal parameter s = 30, 40. For any significance level α ∈ (0, 1), we denote R̂(α) as

the rate of empirically rejected null hypothesis in 1000 simulations.

Under H0, we first compare our bootstrap CUSUM test with two benchmark methods in the following.

(i) The bootstrapped log-ratio of maximized likelihood test (denoted as logLik) corresponds to log(Λs)

in (2.3) when p < n and

log(Λ∗s) = Z∗n(s)T Σ̂−1Z∗n(s)/2,

where Σ̂ is the sample covariance matrix of Xn
1 and Z∗n(s) is the bootstrap CUSUM statistic (2.6).

The testing procedure is similar to our bootstrap CUSUM test: reject H0 if log(Λs) is greater than

the (1− α)-th quantile of bootstrapped log(Λ∗s).

(ii) The oracle test is based on Ȳn = |Yn|∞ , i.e., the Gaussian approximation of Tn, with known

covariance matrix. By our definition (2.32), Yn is a Gaussian copy of vec(Zn) = (Zn(s)>, . . . , Zn(n−

s)>)>, whose covariance is close to Cov(Z∗n|Xn
1 ). The oracle test rejects H0 if Tn is greater than the

(1− α)-th quantile of Ȳn.

Table 2.1 lists the uniform error-in-size supα∈(0,1) |R̂(α)− α| for our test and the two benchmarks. This

metric reflects the Kolmogorov distance between distributions of Tn and its bootstrapped analogue T ∗n : the

smaller uniform error-in-size, the closer ρ∗(Tn, T
∗
n). In Table 2.1, each column corresponds to a combination

of one distribution family and one cross-sectional dependence structures, and the rows compare the logLik

(when p < n), our proposed bootstrap method with s = 30, 40 and the corresponding benchmark Ȳn under

different settings of p = 10, 300, 600. There are several observations we can draw. First, our proposed test has

much smaller errors than logLik even when p = 10 and 300. Second, the errors of our tests are comparable

with those from corresponding Ȳn in all settings. It shows that our bootstrapped T ∗n is remarkably close

to Ȳn that is generated with given Σ. So our CUSUM test works well as a fully data-dependent approach

compared to benchmarks.

We can draw other conclusions for our bootstrapped CUSUM test by comparing results under different
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choices of boundary removal parameter, distribution family and cross-sectional dependence structure, re-

spectively. In addition to Table 2.1, Table 2.2 provides the empirical Type I error R̂(α) at significance level

α = 0.05. In general, the scenario that has small uniform error-in-size in Table 2.1 and close to 0.05 error

rates in Table 2.2 indicates a precise approximation in size. First, in most cases the errors of s = 40 in

Table 2.1 are smaller than that of s = 30. Besides, the empirical Type I errors R̂(0.05) are generally close to

the nominal size 0.05 for s = 40. These two tables explain that the greater the boundary removal parameter

s, the better the approximation under H0. Next, uniform errors-in-size is usually smaller for the Gaus-

sian distribution than t6 and ctm-Gaussian cases. This is due to one less error occurred in approximation

from non-Gaussian CUSUM statistics Zn(s) to Gaussian analogs Yn(s). Table 2.2 delivers similar message

that Gaussianity helps to control R̂(0.05). Finally, our method is robust to the cross-sectional dependence

structure. This is because our procedure manages to capture the coordinate-wise dependency without any

estimation steps. In many cases, stronger dependence (II>III>I) is more beneficial for reducing the approx-

imation errors. To sum up, size under H0 can be better controlled if s is large, data is Gaussian distributed

or strong cross-sectional dependence exists. As a visualization of the accuracy for size controlling, Figure 2.1

displays three example curves of R̂(α) for our proposed test where p = 600, s = 40. The rejection rate R̂(α)

follows closely along the diagonal line in dash (i.e. the line of R̂(α) = α).

n = 500
Gaussian t6 ctm-Gaussian

I II III I II III I II III

p = 10

logLik 0.150 0.151 0.159 0.122 0.134 0.124 0.136 0.134 0.124
s = 30 0.034 0.036 0.041 0.048 0.041 0.039 0.036 0.042 0.021
Ȳn 0.037 0.041 0.022 0.030 0.030 0.038 0.035 0.029 0.052
s = 40 0.042 0.034 0.037 0.043 0.037 0.033 0.041 0.042 0.043
Ȳn 0.028 0.041 0.030 0.028 0.053 0.044 0.023 0.033 0.035

p = 300

logLik 0.837 0.835 0.834 0.680 0.669 0.670 0.691 0.679 0.681
s = 30 0.054 0.051 0.050 0.085 0.036 0.049 0.115 0.025 0.065
Ȳn 0.024 0.046 0.039 0.057 0.064 0.066 0.044 0.067 0.036
s = 40 0.046 0.026 0.035 0.058 0.030 0.040 0.057 0.032 0.055
Ȳn 0.033 0.025 0.066 0.060 0.033 0.064 0.045 0.025 0.061

p = 600

s = 30 0.051 0.035 0.048 0.122 0.044 0.088 0.103 0.030 0.096
Ȳn 0.030 0.045 0.049 0.048 0.043 0.068 0.039 0.055 0.051
s = 40 0.060 0.055 0.046 0.083 0.038 0.087 0.079 0.026 0.057
Ȳn 0.041 0.041 0.042 0.041 0.025 0.049 0.034 0.038 0.077

Table 2.1: Uniform error-in-size supα∈[0,1] |R̂(α)− α| under H0 compared with benchmarks. Scenarios I-III

are V = I, V = 0.8J + 0.2I and Vij = 0.8|i−j|, respectively.

Next, we compare our method with the tests in [65] and [43] under the setting n = 500, p = 600, s = 40.

In [65], change points are allowed to occur at different locations in each coordinate. To avoid simulation

issue in estimating the long-run variance (which is necessary because [65] uses non-stationary CUSUM

statistics), we employ the true variance σ̂2
h = σ2

h in their test statistic [65, Equation (1.2)] and take the
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n = 500
Gaussian t6 ctm-Gaussian

I II III I II III I II III

p = 10
s = 30 0.051 0.052 0.051 0.044 0.056 0.034 0.043 0.056 0.052
s = 40 0.046 0.055 0.052 0.045 0.050 0.048 0.054 0.053 0.040

p = 300
s = 30 0.026 0.054 0.039 0.018 0.034 0.018 0.021 0.043 0.027
s = 40 0.045 0.043 0.044 0.024 0.046 0.036 0.026 0.056 0.034

p = 600
s = 30 0.026 0.060 0.027 0.010 0.034 0.020 0.010 0.053 0.019
s = 40 0.031 0.038 0.036 0.020 0.044 0.016 0.015 0.042 0.027

Table 2.2: R̂(0.05): empirical Type I error with nominal level 0.05 for our test.

suggested multiplier ξ2
l = 1 in ŝ2

h [65, Equation (4.5)] when calculating conditional long-run variance in

bootstrap. This modified stronger algorithm is denoted by their test statistic Bn. In observation of the fact

that long-run variances for all coordinates are the same in our simulation setting, we also enhanced it to

another competitor denoted as Bn-enhanced by removing both σ̂2
h and ŝ2

h. In [43], the original test without

boundary removing and an improved version with s = 40 are implemented (denoted as their test statistic ψ

and ψ-improved, respectively). We set the tuning parameter κ to be 6.6 as suggested by the authors. Similar

to Table 2.1 and 2.2, uniform error-in-size is shown in Table 2.3 and empirical Type I error at α = 0.05 is

shown in Table 2.4.

Based on Table 2.3 and 2.4, we draw the following comparison results. First, the test ψ in [43] suffers

from size distortion except for the case of Gaussian distribution with identity covariance structure because

the ψ relies heavily on the assumption Xi ∼ N(0, σ2Idp). Second, boundary removal helps ψ to reduce the

uniform error-in-size, cf. the ψ-improved. Third, the test Bn in [65] and Bn-enhanced behave similarly and

they are comparable with ours. However, note that the two Bn tests receive stronger priori that coordinate-

wise (long-run) variances are all equal or assumed given, which is impractical. On the contrary, our proposed

method does not involve such estimators of variance. Lastly, in Table 2.4, the test Bn inflates Type-I error

than pre-specified 5% while ours behaves conversely.
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Figure 2.1: Selected setups for comparing R̂(α) with α. Here, n = 500, p = 600 and the boundary removal
is 40.
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n = 500, p = 600
Gaussian t6 ctm-Gaussian

I II III I II III I II III
Bn s = 40 0.073 0.026 0.049 0.101 0.019 0.087 0.083 0.017 0.068
Bn-enhanced s = 40 0.071 0.025 0.063 0.063 0.041 0.068 0.061 0.016 0.067
ψ s = 1 0.368 0.988 0.882 0.990 0.990 0.990 0.990 0.990 0.990
ψ-improved s = 40 0.186 0.959 0.646 0.990 0.990 0.990 0.990 0.987 0.990
Tn s = 40 0.060 0.055 0.046 0.083 0.038 0.087 0.079 0.026 0.057

Table 2.3: Uniform error-in-size supα∈[0,1] |R̂(α)− α| under H0 compared with [65] (Bn and Bn enhanced)
and [43] (ψ and ψ improved). Tn stands for our test and the values are copied from the last row of Table 2.1.

n = 500, p = 600
Gaussian t6 ctm-Gaussian

I II III I II III I II III
Bn s = 40 0.054 0.073 0.063 0.066 0.060 0.059 0.056 0.057 0.063
Bn-enhanced s = 40 0.057 0.065 0.061 0.038 0.052 0.054 0.061 0.059 0.058
ψ s = 1 0.110 0.998 0.923 1 1 1 1 1 1
ψ-improved s = 40 0.055 0.973 0.696 1 1 1 1 0.997 1
Tn s = 40 0.031 0.038 0.036 0.020 0.044 0.016 0.015 0.042 0.027

Table 2.4: R̂(0.05): empirical Type I error with nominal level 0.05 for [65] (Bn and Bn enhanced), [43] (ψ
and ψ improved), and ours. Tn stands for our test and the values are copied from the last row of Table 2.2.

Power of the bootstrap CUSUM test.

Under H1 : µ1 = · · · = µm 6= µm+1 = · · · = µn, we consider the single change point location m at

{50, 150, 250} (such that tm = m/n = 1/10, 3/10, 5/10 for n = 500). Denote k as the number of covariates

that have change points, i.e., δn,1 = · · · = δn,k 6= 0. Two types of the mean-shift signal are considered:

k = 1 for sparse signal and k = 50 for dense signal. Since the `∞-norm targets on sparse signal, we only

present the sparse alternative case of k = 1 in this section, and results of dense signal for [43] can be found

in Section 2.6. To analyze the power under H1, we fixed observation n = 500, p = 600, s = 40 and the

significance level α = 0.05.

We first compare the power performance of our bootstrap test with the benchmark oracle test (in Sec-

tion 2.4.2) and investigate the impact from change-point location and distribution. Figure 2.2 shows the

empirical power curves v.s. the signal strength |δn|∞ = |δn,1|. The left figure displays the impact from

change-point location where data follows the ctm-Gaussian distribution (III). We observe that the powers

monotonically increase along |δn|∞ and eventually reach 1 as |δn,1| gets large enough. Furthermore, change

points closer to boundaries are more difficult to detect at the same signal strength. In addition, note that the

power curves of our bootstrap test follows almost identically to the oracle test. The right plot of Figure 2.2

displays the power curves of our method under different distributions and cross-sectional covariance struc-

tures. Comparing the diamond-symboled curves, Gaussianity is helpful in terms of power. Similar to the size

results in Section 2.4.2, curves in solid line demonstrate that the stronger the cross-sectional dependence,
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the greater the power. Complete report of powers can be found in Table 2.9 in Section 2.6.
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Figure 2.2: Selected power curves in different setups. Left: our method compared with oracle Ȳn for various
tm. Right: investigated data structure effect where tm = 1/10 fixed. Here, n = 500, p = 600 and the
boundary removal is 40.
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Figure 2.3: Powers of [43], [65] for sparse alternative. Here, n = 500, p = 600.

Next, we compare our method with [65] and [43] that are replicated in Figure 2.3. Figure 2.3(a) shows

power trends of Bn [65] for t-distributed data under the sparse alternative when tm = 1/2 and tm = 1/10.

The test Bn performs better when change point locates at the center than boundary, which is a similar

phenomenon as shown in our algorithm. When comparing the solid curves in Figure 2.2-Right and the

dashed curves in Figure 2.3(a), we can find that boundary change (tm = 1/10) brings more challenge to Bn

than to our test because our powers increase faster than Bn under the same setup. We refer to Table 2.10 for

complete power reports of Bn in all scenarios under sparse H1. We would highlight that although Bn returns

slightly higher power than ours when tm = 1/2 (change point is at the center), Bn is computed with true
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long-run variance and Table 2.4 already indicates that it tend to over reject H0. Figure 2.3(b) displays power

trends of the ψ in [43] (s = 1) and ψ-improved (s = 40) for Gaussian distributed data when tm = 1/2. Both

ψ tests lose control in power when the independent covariance assumption is violated. Besides, unreported

results show invalid power curves in all other cases including t6 and ctm-Gaussian distributed data. It is

unsurprising since we have observed in Table 2.4 that the ψ test suffers from serious size distortion. We refer

to Table 2.11 in Section 2.6 for complete power reports of ψ in independent Gaussian scenarios under both

sparse and dense H1.

Performance of the location estimators.

Now we examine the performance of our location estimators tm̂1/2
and tm̂0

under sparse alternative where

tm = 1/10, 3/10, 5/10. The performance measure is the root-mean-square error (RMSE). Since distribution

influence (tail thickness and cross-sectional dependence) has already been thoroughly explored, this part will

focus on the comparison among tm̂1/2
, tm̂0

and other competing methods.

Figure 2.4 shows comparison between tm̂1/2
and tm̂0 across different change point location and signal size

|δn|∞. First, Figure 2.4(a) illustrates that locations of change points closer to boundary (i.e., tm = 1/10) are

harder to estimate as the RMSEs are uniformly larger than corresponding RMSEs for tm = 5/10. Second, it

agrees with Theorem 2.4 and 2.5 that RMSEs of tm̂0
are smaller than that of tm̂1/2

when change points are

in the middle. As mentioned in Section 2.2.2, Zθ,n(s) assigns less weights to the boundary points for smaller

values of θ. This is also empirically confirmed by Figure 2.4(b): tm̂1/2
is more in favor of boundary points

when |δn|∞ = 0, and tm̂0
slightly leans to the center when change (|δn|∞ = 0.842) is not in the middle of

sequence.
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Next, we compare our estimators with [99] and [37]. In [99], a projection based estimator named Inspect is

proposed. Theoretical analysis of this algorithm requires the data following Gaussian distribution. In [37], the

proposed SBS estimator is the maximizer of threshold `1-aggregated CUSUM statistics after thresholding.

This method is sensitive to threshold tuning parameters selected by bootstrap. Both [99] and [37] allow

multiple change points. For now, we first compare with their single change point versions (see R packages

InspectChangepoint and hdbinseg). We also include a truncated version of our location estimator m̂θ =

argmaxs6s<n−s|Zθ,n(s)|∞ (cf. Remark 3) for fair comparison. Recall k as the signal density (where δn,1 =

· · · = δn,k 6= 0). Both k = 1, 50 are considered for these two methods.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

RMSE of tm=3/10

Signal size

R
M

S
E

 (
no

 b
ou

nd
ar

y 
re

m
ov

al
)

●

●

●

●

●

●

● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

k=1   T−dist'n(II)
k=50 T−dist'n(II)
k=1   Gaussian(I)
k=50 Gaussian(I)
ours  T−dist'n(II)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

RMSE of ctm−Gaussian 
 with Cov=0.8^|i−j|

Signal size

R
M

S
E

 (
no

 b
ou

nd
ar

y 
re

m
ov

al
)

●
●

●

●

●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ●

●

●

k=1   tm=1/10
k=50 tm=1/10
k=1   tm=5/10
k=50 tm=5/10
ours  tm=1/10
ours  tm=5/10

(a) RMSEs of [99] (sparse & dense signal) and our non-truncated tm̂0
(sparse signal).

Distribution (left) and location (right) effects are investigated.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

RMSE of tm=1/10

Signal size

R
M

S
E

 (
w

ith
 b

ou
nd

ar
y 

re
m

ov
al

 4
0)

● ●

●

●

● ●
● ● ● ●

●

●

●

●

●
● ● ●

● ●

●

●

k=1   T−dist'n(I)
k=50 T−dist'n(I)
k=1   Gaussian(II)
k=50 Gaussian(II)
ours  T−dist'n(I)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

RMSE of tm=5/10
ctm−Gaussian with Cov=0.8^|i−j|

Signal size

R
M

S
E

 (
w

ith
 b

ou
nd

ar
y 

re
m

ov
al

 4
0)

●

●

●

●
● ● ● ● ● ●

49.6%

46.6%
55%

76.2%

91.6%
91.2%

86.4%

82.8%
77.8%

72.2%50.4%

62%

96.2%

100%100%
100%

100%
100%

100%
100%

●

RMSE k=1
RMSE k=50

Detection rate (%)

(b) RMSEs of [37] (sparse & dense signal) and our truncated tm̂1/2
(sparse signal). Distri-

bution (left) and location (right) effects are investigated. s = 40 for all cases.

Figure 2.5: Comparison of location estimators among [99], [37] and ours. Here, n = 500, p = 600.
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Figure 2.5 illustrates contrasts among the three algorithms. Figure 2.5(a) compares our non-truncated tm̂0

with [99] which has no boundary removal. On the left plot (where tm = 3/10 is fixed), the RMSEs of [99] are

large when signal is sparse or data is non-Gaussian distributed with cross-sectional dependent. However, our

tm̂0 can identify sparse signal under t6 distribution with high cross-sectional correlation and performs even

comparably to their estimator when there is dense signal. On the right plot (where distribution is fixed as

ctm-Gaussian with cross-sectional structure III), both approaches have large RMSEs when the change point

is close to boundary. But ours is uniformly better under the corresponding sparse alternative. Figure 2.5(b)

compares our truncated tm̂1/2
with [37] which also has boundary removal in their R package. We set s = 40

for both algorithms. Their method works well for the case of tm = 1/10 as shown in the left of Figure 2.5(b),

and distribution has less effect on [37] than on [99]. But when signal size is 1 and larger, our tm̂1/2
almost

dominates solid-symbol curves that are under the same distribution. In the right of Figure 2.5(b), however,

[37] returns non-monotone RMSEs when tm = 5/10, k = 1. Even when δ = 0, the discovery rate is as much

as 50%. This phenomenon means that large CUSUM values may lead to unreasonable threshold in their

method. In Section 2.6, non-monotone RMSE curves are reported in Figure 2.15 for the same case with

α = 0.01. Even under dense alternative, their searching process fail to discover a change when signal is

strong.

To summarize, numerical studies suggest that our estimators are more flexible and stable under various

distribution and cross-sectional dependency circumstances regardless of the location of change point. The

full RMSEs of our method with sparse signal and selected RMSEs of [99] and [37] are reported in Table 2.12,

2.13 and 2.14 in Section 2.6.

2.4.3 Multiple change points estimation by BABS

In the multiple change-point scenario, we first let the k-th component of δ
(k)
n to have the same mean shift,

i.e. δ
(1)
n,1 = δ

(2)
n,2 = · · · = δ

(ν)
n,ν = δ 6= 0. Since change point estimation can be viewed as a special case of

clustering, the accuracy can be measured by the adjusted Rand index (ARI) [86, 63]. We also reported

average ARI over all 500 runs.

Simulation of Algorithm 1

We use t6 distribution with dependence structure (III) as a representative. Let n = 1000, p = 1200, s =

40, α = 0.05, and the two change points (m1,m2) = (300, 600). Some observations can be drawn based

on Table 2.5 and Figure 2.6. When signal δ = 0.317 is small, Algorithm 1 cannot locate mean shift

accurately. However, as signal gets larger, both the number and the locations of change points can be
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detected consistently. Meanwhile, ARI is also increasing to 1, which stands for the perfect estimation. We

further add one more change where (m1,m2,m3) = (300, 600, 800). Compared with the previous setup,

Table 2.6 and Figure 2.7 shows that the estimation is slightly worse under the same signal size. This is

because the effective sample size is cut down after each binary segmentation. But our algorithm eventually

detect all change points consistently when δ = 2 is large enough.

δ 0 0.317 0.733 1.282 2.004
Estimated
number of

change
points

0 497 378 1 0 0
1 3 117 13 0 0
2 0 5 458 464 470
3 0 0 26 35 30
4 0 0 2 1 0

Sum 500 500 500 500 500
ARI 0.994 0.128 0.935 0.978 0.989

Table 2.5: Multiple change point setup with 2 change points (m1,m2) = (300, 600): counts of estimated ν̂
and ARI.
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Figure 2.6: Multiple change point setup with 2 change points (m1,m2,m3) = (300, 600, 800): counts of
estimated change points over 500 repeats at signal level δ = 0.317, 2.004.

Comparison with [99]

We also apply the setup in [99, Section 5.3]. Here, n = 2000, p = 200, (m1,m2,m3) = (500, 1000, 1500) and

data is Gaussian distributed with identity cross-sectional covariance. We consider the complete-overlap mean

structure, i.e., changes occur in the same k coordinates, and set (||δ(1)
n ||2, ||δ(2)

n ||2, ||δ(3)
n ||2) = (δ, 2δ, 3δ) for

signal strength δ ∈ {0.4, 0.6}. Table 2.7 and Figure 2.8 summarize estimation performance of our BABS and

the Inspect [99]. If k = 40, |δ(i)
n |∞ = i ·δ/

√
k is too small for our method to be recognizable. However, when

k = 1 such that δ
(i)
n , i = 1, 2, 3 is sparse (with `2-norm unchanged), then our algorithm shows superiority in

terms of both ν̂ and ARI. Again, our BABS algorithm has advantage when the `∞-norm of signal is bounded
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δ 0 0.317 0.733 1.282 2.004

Estimated
number of

change
points

0 491 360 0 0 0
1 9 133 5 0 0
2 0 7 141 0 0
3 0 0 328 455 474
4 0 0 25 40 25
5 0 0 1 5 1

Sum 500 500 500 500 500
ARI 0.982 0.106 0.871 0.973 0.989

Table 2.6: Multiple change point setup with 3 change points (m1,m2,m3) = (300, 600, 800): counts of
estimated ν̂ and ARI.
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Figure 2.7: Setup 2. Counts of estimated change points over 500 repeats at signal level δ = 0.317, 2.004.

below and likewise when data is non-Gaussian or there is cross-sectional dependence as shown in Section 2.4.2

and 2.4.2. For comparison with [37, 36, 65], we refer to [99, Section 5.3] for a comprehensive simulation

study.

2.4.4 Extension to time series: a block multiplier bootstrap

The Gaussian multiplier bootstrap CUSUM test statistic in (2.6) and (2.7) can be extended to a block

version where the temporal dependence can be handled. Since the CUSUM test statistic Zn(s) in (2.4)

can be re-written as a block sum, we propose a block version of the bootstrap CUSUM test (2.6) that can

accommodate time series data. Precisely, let M,B be positive integers such that n = MB. We divide the

sample X1, . . . , Xn into B blocks of size M . In particular, for b = 1, . . . , B, let Lb = {(b− 1)M + 1, . . . , bM}

be the b-th block. Then, for s = 1, . . . , n− 1, we can write Zn(s) in (2.4) as

Zn(s) =

√
n− s
ns

B∑
b=1

∑
i∈Lb

Xi1(i 6 s)−
√

s

n(n− s)

B∑
b=1

∑
i∈Lb

Xi1(i > s).
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Parameters
in

methods

k = 40 k = 1
δ = 0.4 δ = 0.6 δ = 0.4 δ = 0.6

BABS Inspect BABS Inspect BABS Inspect BABS Inspect

Estimated
number

of
change
points

0 0 0 0 0 0 0 0 0
1 16 0 0 0 0 0 0 0
2 329 426 194 182 14 466 0 172
3 121 71 206 295 399 30 438 305
4 28 3 83 17 78 4 56 19
5 6 0 16 6 7 0 6 4
6 0 0 1 0 2 0 0 0

Sum 500 500 500 500 500 500 500 500
ARI 0.591 0.711 0.683 0.854 0.941 0.704 0.975 0.883

Table 2.7: Comparison of multiple change points detectors.

For any α ∈ (0, 1), we reject H0 if the test statistic Tn = maxs6s6n−s |Zn(s)|∞ is larger than a critical value.

Since the distributions of Zn(s) under H0 and H1 for dependent error processes are different from the i.i.d.

errors, we need to accommodate the dependence in calibrating the distributions of the test statistic Tn. The

idea is to modify the Gaussian multiplier bootstrap Z∗n in (2.6) and the bootstrap CUSUM test statistic

T ∗n in (2.7) to their block versions. Specifically, to approximate the (finite sample) distribution of Tn, we

propose a block Gaussian multiplier bootstrap tailored to the CUSUM statistics setting. Let e1, . . . , eB be

i.i.d. standard Gaussian random variables. Define

Z]n(s) =

√
n− s
ns

B∑
b=1

ebV
−
b (s)−

√
s

n(n− s)

B∑
b=1

ebV
+
b (s),

where

V −b (s) =
∑
i∈Lb

(Xi − X̄−s )1(i 6 s) and V +
b (s) =

∑
i∈Lb

(Xi − X̄+
s )1(i > s).

Then the distribution of Tn is approximated by its bootstrap analog given by

T ]n = max
s6s6n−s

|Z]n(s)|∞.

For any α ∈ (0, 1), we reject H0 if Tn > qT ]n|Xn1
(1− α), where qT ]n|Xn1

(1− α) = inf{t ∈ R : P(T ]n 6 t|Xn
1 ) >

1− α} is the (1− α) conditional quantile of T ]n given Xn
1 . Note that if the block size M = 1 (i.e., B = n),

then Z]n(s) = Z∗n(s). Thus the bootstrap CUSUM test statistic for independent sequences is a special case

of the block CUSUM test statistic. Generally, larger M is needed for stronger temporal dependence, while

this would reduce the effective sample size.

We shall study the empirical performance of the block multiplier bootstrap CUSUM test for some de-

pendent process ξi. Theoretical supports for the block bootstrap CUSUM test are beyond the scope of this
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(a) Dense signal where k = 40. Left: Our BABS algorithm with α = 0.05, B = 200, s = 40;
Right: Inspect algorithm with default setting in their R package InspectChangepoint.
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(b) Same setting except k = 1. Left: BABS; Right: Inspect.

Figure 2.8: Histograms of estimated change point locations in complete-overlap structure. Parameters

n = 2000, p = 200, (m1,m2,m3) = (500, 1000, 1500), (||δ(1)
n ||2, ||δ(2)

n ||2, ||δ(3)
n ||2) = (0.6, 1.2, 1.8).

paper and they can be derived using the recent development of the Gaussian and bootstrap approximation

results for high-dimensional time series (see e.g., [110, 108]).

We consider the stationary vector autoregression of order 1 (denote as VAR(1)) error process:

ξi = Aξi−1 + ηi =

∞∑
k=0

Akηi−k,

where {ηi}i∈Z is a sequence of i.i.d. mean-zero random vectors in Rp and A is a p× p coefficient matrix. In

our simulation, we generate a random matrix A with i.i.d. N(0, 1) entries. To ensure the stationarity of ξi

process, A is normalized such that ‖A‖2 = 1/1.8 < 1. In this section, we fix n = 500, p = 600, s = 40, and

consider different block sizes M = 2, 5, 10, 15.

We first investigate the performance of the modified block Gaussian multiplier bootstrap CUSUM test.

Since distributional impact has already been evaluated in Section 2.4.2, the same setup in Figure 2.1 are
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selected as example to illustrate the impact of M . In Figure 2.9, the R̂(α) curves show similar (and slightly

less accurate) behavior as in temporally independent case. The approximation accuracy also depends on

the block size parameter M (which adjusts for the temporal dependence), in addition to cross-sectional

dependence.
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Figure 2.9: Selected plots in comparing bootstrap rejection R̂(α) v.s. level α for our block Gaussian multiplier
bootstrap test under H0. Here, n = 500, p = 600 and the boundary removal is 40.
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(a) Gaussian distributed ηi.
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(b) T6 distributed ηi.

Figure 2.10: Selected R̂(α) plots for block-wise bootstrap testing in [65] under H0. Here, n = 500, p = 600,
the boundary removal is 40, σ̂2

h = σ2
h and ξl = 1 is used in conditional long-run variance estimators ŝ2

h in
bootstrap. The legend is the same as in Figure 2.9.

In Figure 2.10, similar observation can be found for the block bootstrap algorithm in [65]. Since their

performance is sensitive to variance estimators, we substitute long-run variance estimator σ̂2
h by its theoretical

value σ2
h, h = 1, · · · , p, i.e. the h-th diagonal element of Σ(0)+

∑∞
l=1A

lΣ(0)+Σ(0)
∑∞
l=1(AT )l where Σ(0) =∑∞

l=0A
lΣ(AT )l is the lag-0 auto-covariance of {Xi}. And ξ2

l = 1 is used in ŝ2
h, the conditional variance

estimator in bootstrap. The size approximation is accurate under spatial independent scenarios V = Idp,

while larger block size M is suggested when V = 0.8J + 0.2Idp. Note that, we primarily compare the

performances of bootstrap testing instead of estimation of σ̂2
h that is an influential factor in practice.

We also examine our location estimators for the temporal dependence case, and compare with [99] and

[37]. Figure 2.11 provides RMSE curves of the three algorithms for ctm-Gaussian data with cross-sectional
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dependence (III). Similar conclusions can be drawn as in temporal independence case. The RMSEs of our

method, [99], and [37] are reported in Table 2.12, 2.13 and 2.14 in Section 2.6.
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(c) Estimators of [37] (sparse & dense
signal case with boundary removal
s = 40).

Figure 2.11: RMSEs v.s. signal size |δn|∞ for our algorithm (left), [99] (middle) and [37] (right). Here,
n = 500, p = 600 and data are from ctm-Gaussian distribution with covariance Vi,j = 0.8|i−j|.

2.5 Real data applications

2.5.1 Multiple change-point detection using Algorithm 1

The micro-array dataset aCGH from the ecp R package in [64] consists of p = 43 individuals with bladder

tumors. There are n = 2215 log-intensity-ratio fluorescent measurements of DNA segments that share almost

identical change points because the individuals have the same disease. We set B = 1000, α = 0.05, s = 60.

Our BABS algorithm finds 27 change points in the copy-number that are marked as red vertical dashed lines

in Figure 2.12, which displays the sequences of the first 10 patients. Compared to Inspect, which identifies

254 change points by using the default threshold, our discovery is more reasonable and stable under the

existence of outliers (e.g. the segment between 1724 and 1836 or the one between 1965 and 2044).

2.5.2 Time-series data using the block multiplier bootstrap test

We apply our block multiplier bootstrap test and location estimators to stock return data that is available on

https://finance.yahoo.com. The data set (read through the R package BatchGetSymbols) contains daily

closing prices of p = 440 stocks from the S&P500 index during the trading days between Augest 27th, 2007

to August 24th, 2009. Thus, there are n = 503 time points. The daily closing prices are transformed to log

scales due to their multiplicative nature. We set the boundary removal s = b0.05nc = 25, bootstrap repeats
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Figure 2.12: Real data study: aCGH data. Here, we set B = 1000, α = 0.05 and the boundary removal is
60.

B = 200 and the block sizes M = 1, 2, 5, 10. Table 2.8 shows the (conditional) quantiles of the bootstrapped

CUSUM test statistics for different block sizes. In particular, our CUSUM test statistic returns the value

Tn = 38.699, while the 99%-quantile of block bootstrapped CUSUM test statistic for M = 10 is only 8.861.

Therefore, the null hypothesis H0 is rejected. In addition, m̂1/2 = 265 indicates that the turning point was

September 12th, 2008, the last trading day before Lehman Brothers Holdings Inc. declared bankruptcy on

September 15th, 2008. Figure 2.13 plots the top 5 stocks with the largest change values on September 12th,

2008.

M = 1 M = 2 M = 5 M = 10
q0.90 2.350 3.380 5.219 6.981
q0.95 2.470 3.860 5.464 7.327
q0.99 2.782 4.580 5.746 8.861

Table 2.8: Quantiles of bootstrapped statistics.

A binary segmentation extension based on the block multiplier bootstrap test is considered as well.

We implement this extension with m̂1/2 and m̂0 separately. The detected change points are shown in

Figure 2.14(a) and 2.14(b), respectively. We set s = 25, B = 400, M = 5 and α = 0.05 for both scenarios.

Overall, the two estimators share common time points on detection when mean-shift signals are large enough.

There are seven overlapping change points identified by both algorithms, and the one with m̂1/2 additionally

locates June 12th, 2008 and July 21st, 2008 but misses October 17th, 2008 compared to m̂0. That is, in
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Figure 2.13: Selected stock trends.

the interval between April 21, 2008 and September 12th, 2008, m̂1/2 is sensitive to change points on the

boundary points (i.e., June 12th, 2008 and July 21st, 2008). However, m̂0 is sensitive to the middle change

point, namely October 17th, 2008, in the interval between September 12th, 2008 and November 26th, 2008.

This exactly reflects our observation in the Simulation section.

We would like to make two notes based on this example. First, the estimator m̂1/2 is compatible with our

test statistic Tn using stationary weight θ = 1/2, while m̂0 is also a reasonable choice since prices are likely

to be integrated. Therefore, we evaluate each of them in this stock-price data set. Second, neither of the

two algorithms identifies change point between January 13th, 2009 and June 11st, 2009, though there seems

to be fluctuations in means. One possible reason is that there exists non-synchronous change points (e.g.

around time index at 380), which are not estimable. But this is a common issue in multiple change-point

analysis and it is necessary to make some minimal separation or spacing assumptions (e.g. [45, 37, 36, 11]).

In practice, such problem is worthy of further elaboration.
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(a) Detected change points using m̂1/2 as location estima-
tor.
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(b) Detected change points using m̂0 as location estimator.

Figure 2.14: Finance data analyzed by extension of BABS using block CUSUM bootstrap test and two
different location estimators.
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2.6 Proofs and auxiliary numerical results

2.6.1 Proof of main results in Section 2.3

In this section, we prove the main theoretical results in Section 2.3. We first present a useful maximal

inequality for weighted partial sums of independent and centered random vectors.

Lemma 2.8 (Talagrand’s inequality for weighted partial sums of independent and centered random vectors).

Let X1, . . . , Xn be independent and centered random vectors in Rp and {ais}ni,s=1 be an n× n matrix of real

numbers. Define

Wn,sj =

n∑
i=1

aisXij , Zn = max
16s6n

max
16j6p

|Wn,sj |,

M = max
16s,i6n

max
16j6p

|aisXij |, σ2 = max
16s6n

max
16j6p

n∑
i=1

a2
isE(X2

ij).

(i) Let β ∈ (0, 1] and suppose that ‖Xij‖ψβ < ∞ for all i = 1, . . . , n and j = 1, . . . , p. Then, ∀η ∈ (0, 1],

there exists a constant C > 0 depending only on β and η such that we have for t > 0

P(Zn > (1 + η)E[Zn] + t) 6 exp

(
− t2

3σ2

)
+ 3 exp

{
−
(

t

C‖M‖ψβ

)β}
. (2.28)

(ii) Let s > 1 and suppose that E|Xij |s < ∞ for all i = 1, . . . , n and j = 1, . . . , p. Then, ∀η ∈ (0, 1], there

exists a constant C > 0 depending only on s and η such that we have for t > 0

P(Zn > (1 + η)E[Zn] + t) 6 exp

(
− t2

3σ2

)
+ C

E[Ms]

ts
. (2.29)

2.6.2 Proof of Theorem 2.1

Proof of Theorem 2.1. Suppose that H0 is true. We may assume log7(np) 6 s for otherwise (2.11) and (2.12)

trivially hold by choosing the constant C > 0 large enough therein. For s = 1, . . . , n− 1, let

ais =


√

n−s
ns if 1 6 i 6 s

−
√

s
n(n−s) if s+ 1 6 i 6 n

(2.30)

and as = (a1s, . . . , ans)
>. Denote X = (X1, . . . , Xn) as the p×n data matrix and A = (as, . . . ,an−s). Then

we can write

Zn(s) =

n∑
i=1

aisXi = Xas. (2.31)
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Since E[Zn(s)] = 0 under H0, without loss of generality, we may assume µi ≡ 0. Note that, for any

1 6 s 6 s′ 6 n− 1, we have

Cov(Zn(s), Zn(s′)) =

n∑
i=1

aisais′Σ = Σ

√
s(n− s′)
s′(n− s)

.

Step 1: Gaussian approximation for CUSUM statistic. Let

Zn = (Zn(s), . . . , Zn(n− s)) = X(as, . . . ,an−s) = XA

be the CUSUM transformation of X. Let vec(Zn) be the column stacked version of Zn, i.e. vec(Zn) =

(Zn(s)>, . . . , Zn(n− s)>)> is the [(n− 2s+ 1)p]× 1 vector associated with Zn. Then we can write

vec(Zn) = vec(XA) = (A> ⊗ Ip)vec(X),

where ⊗ is the Kronecker product of two matrices. Since E[vec(X)] = 0 and Cov(vec(X)) = Γ, where Γ is

the block diagonal matrix of size (pn)×(pn) with Σ being the diagonal sub-matrices, we have E[vec(Zn)] = 0

and Cov(vec(Zn)) = (A> ⊗ Ip)Γ(A⊗ Ip). Let

Yn ∼ N(0, (A> ⊗ Ip)Γ(A⊗ Ip)). (2.32)

be a joint mean-zero Gaussian random vector in R(n−2s+1)p with the same covariance matrix as vec(Zn).

Denote Ȳn = |Yn|∞. Since Cov(Zn(s)) = Σ for all s = 1, . . . , n− 1, it follows from (A) that Var(Znj(s)) > b

for all 1 6 j 6 p and s 6 s 6 n− s. Since 1 6 s 6 n/2, we have

n∑
i=1

|ais|3 =

√
n

s(n− s)
− 2

n

√
s(n− s)

n
6
√

n

s(n− s)
6

√
2

s
,

n∑
i=1

|ais|4 =
n

s(n− s)
− 3

n
6

n

s(n− s)
6

2

s
.

Set Bn = (2b̄2s−1n)1/2. By assumption (B), we have for ` = 1, 2,

n−1
n∑
i=1

|n1/2ais|2+`E|Xij |2+` 6 B`n.

Note that s1/2|ais| 6 1 for all s = s, . . . , n− s.
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Part (i). If (C) holds, then we have

E
[
exp

(
n1/2|ais||Xij |/Bn

)]
6 E

[
exp

(
s1/2|ais||Xij |/b̄

)]
6 2.

By [35, Proposition 2.1], there exists a constant C1 > 0 depending only on b and b̄ such that

ρ(Tn, Ȳn) 6 C(b)

(
B2
n log7(pn)

n

)1/6

6 C1$1,n. (2.33)

Part (ii). If (D) holds, then we have

E

{
max

16j6p
max

s6s6n−s
(|n1/2ais||Xij |/Bn)q

}
6

[
s1/2( max

s6s6n−s
|ais|)

]q
E

[
max

16j6p
(|Xij |/b̄)q

]
6 1

for all i = 1, . . . , n. By [35, Proposition 2.1], there exists a constant C1 > 0 depending only on b, b̄, q such

that

ρ(Tn, Ȳn) 6 C(b, q)

{(
B2
n log7(pn)

n

)1/6

+

(
B2
n log3(pn)

n1−2/q

)1/3
}

6 C1{$1,n +$2,n}. (2.34)

Step 2: Gaussian comparison for Ȳn and bootstrap CUSUM statistic T ∗n . Let

Ŝ−n,s =
1

s

s∑
i=1

(Xi − X̄−s )(Xi − X̄−s )>,

Ŝ+
n,s =

1

n− s

n∑
i=s+1

(Xi − X̄+
s )(Xi − X̄+

s )>,

(2.35)

be the sample covariance matrices based on the left and right observations at s, respectively. Then

Z∗n(s)|Xn
1 ∼ N

(
0,
n− s
n

Ŝ−n,s +
s

n
Ŝ+
n,s

)
.

Let

a∗is =


√

n−s
ns (Xi − X̄−s ) if 1 6 i 6 s

−
√

s
n(n−s) (Xi − X̄+

s ) if s+ 1 6 i 6 n

and A∗s = (a∗1s, . . . ,a
∗
ns). Let e = (e1, . . . , en)>. Then we can write

Z∗n(s) =

n∑
i=1

a∗isei = A∗se.
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Let

Z∗n =


Z∗n(s)

...

Z∗n(n− s)

 =


A∗se

...

A∗n−se

 =


A∗s
...

A∗n−s

 e := A∗e.

Since e ∼ N(0, Idn), it follows that Z∗n|Xn
1 ∼ N(0,A∗A∗

>
). Next, we compute an explicit expression for the

covariance matrix of Z∗n given Xn
1 . Some routine algebra show that for any s 6 s 6 s′ 6 n− s,

Cov(Z∗n(s), Z∗n(s′)|Xn
1 ) = Σ

√
s(n− s′)
s′(n− s)

+
R1

n

√
(n− s)(n− s′)

ss′
+
R2

n

√
s(n− s′)
s′(n− s)

+
R3

n

√
s(n− s′)
s′(n− s)

+
R4

n

√
ss′

(n− s)(n− s′)
− R5

n

√
s(n− s′)
s′(n− s)

,

where R1 =
∑s
i=1[(Xi−X̄−s )(Xi−X̄−s′ )>−Σ], R2 =

∑s
i=1[(Xi−X̄+

s )(Xi−X̄−s′ )>−Σ], R3 =
∑n
i=s′+1[(Xi−

X̄+
s )(Xi−X̄−s′ )>−Σ], R4 =

∑n
i=s′+1[(Xi−X̄+

s )(Xi−X̄+
s′ )
>−Σ], and R5 =

∑n
i=1[(Xi−X̄+

s )(Xi−X̄−s′ )>−Σ].

Let

∆̂1 = max
s6s6n−s

∣∣∣∣∣1s
s∑
i=1

(XiX
>
i − Σ)

∣∣∣∣∣
∞

, ∆̂3 = max
s6s6n−s

|X̄−s |∞,

∆̂2 = max
s6s6n−s

∣∣∣∣∣ 1

n− s

n∑
i=s+1

(XiX
>
i − Σ)

∣∣∣∣∣
∞

, ∆̂4 = max
s6s6n−s

|X̄+
s |∞.

(2.36)

Then there exists a universal constant K1 > 0 such that

|Cov(Z∗n|Xn
1 )− Cov(Yn)|∞ 6 K1∆̂,

where

∆̂ = max{∆̂1, ∆̂2}+ max{∆̂2
3, ∆̂

2
4}. (2.37)

Let ∆̄ be a positive real number and E = {∆̂ 6 ∆̄}. By [27, Lemma C.1], there exists a constant C2 > 0

depending only on b such that on the event E, we have

ρ∗(Ȳn, Z̄
∗
n) 6 C2∆̄1/3 log2/3(np).

Part (i). If (C) holds, then we choose

∆̄ = C3s
−1/2 log3/2(np) (2.38)

for some large enough constant C3 := C3(b, b̄,K) > 0. By Lemma 2.9, we have P(E) > 1 − γ. Then there
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exists a constant C4 := C4(b, b̄,K) > 0 such that

ρ∗(Ȳn, Z̄
∗
n) 6 C4$1,n (2.39)

holds with probability at least 1− γ. Combining (2.33) and (2.39), we obtain (2.11).

Part (ii). If (D) holds, then we choose

∆̄ = C5{s−1/2 log1/2(np) + γ−2/qs−1n2/q log(np)} (2.40)

for some large enough constant C5 := C5(b, b̄,K, q) > 0. By Lemma 2.9, we have P(E) > 1− γ. Then there

exists a constant C6 := C6(b, b̄,K, q) > 0 such that

ρ∗(Ȳn, Z̄
∗
n) 6 C6{$1,n +$2,n}. (2.41)

holds with probability at least 1− γ. Combining (2.34) and (2.41), we obtain (2.12).

Lemma 2.9 (Bound on max16i64 ∆̂i). Suppose H0 is true and assume (A) and (B) hold. Let γ ∈ (0, e−1)

and suppose that log(γ−1) 6 K log(pn) for some constant K > 0. Let ∆̂i, i = 1, . . . , 4 be defined in (2.36).

(i) If (C) holds and log5(np) 6 s, then there exists a constant C > 0 depending only on b̄, K such that

P( max
16i64

∆̂i 6 Cs−1/2 log3/2(np)) > 1− γ.

(ii) If (D) holds with q > 4, then there exists a constant C > 0 depending only on b̄, K, q such that

P( max
16i64

∆̂i 6 C{s−1/2 log3/2(np) + γ−2/qs−1n2/q log(np)}) > 1− γ.

Proof of Corollary 2.2. Under H0, we write P = P0. Let Yn be a joint Gaussian random vector defined in

(2.32) and Ȳn = |Yn|∞. Let ρ	(α) = P({Tn 6 qT∗n |Xn1 (α)} 	 {Tn 6 qȲn(α)}) and A	B = (A \B)∪ (B \A)

be the symmetric difference of two events A and B. Note that

|P(Tn 6 qT∗n |Xn1 (α))− α| 6 |P(Tn 6 qT∗n |Xn1 (α))− P(Tn 6 qȲn(α))|+ ρ(Tn, Ȳn)

6 P({Tn 6 qT∗n |Xn1 (α)} 	 {Tn 6 qȲn(α)}) + ρ(Tn, Ȳn)

= ρ	(α) + ρ(Tn, Ȳn).

By [27, Lemma C.3], there exists a constant C > 0 only depending on b such that for any real number ∆̄ > 0,
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we have

ρ	(α) 6 2[ρ(Tn, Ȳn) + C∆̄1/3 log2/3(np) + P(∆̂ > ∆̄)],

where ∆̂ is defined in (2.37).

Part (i). Assume (C) and choose ∆̄ in (2.38). By Lemma 2.9, we have P(∆̂ > ∆̄) < γ/2. Combining

with (2.33), we get (2.13). Uniform convergence of P(Tn 6 qT∗n |Xn1 (α)) to α follows by choosing γ = n−1.

Part (ii). Assume (D) and choose ∆̄ in (2.40). By Lemma 2.9, we have P(∆̂ > ∆̄) < γ/2. Combining

with (2.34), we get (2.14). Uniform convergence of P(Tn 6 qT∗n |Xn1 (α)) to α follows by choosing γ =

[log(np)]−qε/2.

2.6.3 Proof of Theorem 2.3

Proof of Theorem 2.3. Under H1, without loss of generality, we may assume µ = 0. Then

ξi =

 Xi, if 1 6 i 6 m

Xi − δn, if m+ 1 6 i 6 n
. (2.42)

Observe that the CUSUM statistic (computed on X1, . . . , Xn) in (2.4) can be written as

Zn(s) = Zξn(s) + ∆s,

where

Zξn(s) =

√
s(n− s)

n

{
1

s

s∑
i=1

ξi −
1

n− s

n∑
i=s+1

ξi

}

and

∆s =


−
√

s
n(n−s) (n−m)δn, if 1 6 s 6 m

−
√

n−s
ns mδn, if m+ 1 6 s 6 n

(2.43)

is the mean shift. Note that |∆s|∞ reaches its maximum at s = m, i.e.,

max
s6s6n−s

|∆s|∞ = max
16s6n

|∆s|∞ = |∆m|∞ =

√
m(n−m)

n
|δn|∞ := ∆̃.

Let T̃n = maxs6s6n−s |Zξn(s)|∞. Then we have

Tn = max
s6s6n−s

|Zn(s)|∞ = max
s6s6n−s

|Zξn(s) + ∆s|∞ > ∆̃− T̃n,
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from which it follows that the type II error of our bootstrap test obeys

Type II error = P1(Tn 6 qT∗n |Xn1 (1− α)) 6 P1(T̃n > ∆̃− qT∗n |Xn1 (1− α)). (2.44)

Let βn ∈ (0, 1) and ∆̂ := ∆̂(Xn
1 ) = qT∗n |Xn1 (1 − α) + qT̃n(1 − βn). Clearly, ∆̂ is a random quantity that is

σ(X1, . . . , Xn)-measurable. Then,

P1(T̃n > ∆̃− qT∗n |Xn1 (1− α)) 6 P1(T̃n > ∆̂− qT∗n |Xn1 (1− α)) + P1(∆̂ > ∆̃)

6 βn + P1(∆̂ > ∆̃). (2.45)

Observe that the distribution of T̃n does not depend on δn. Hence, T̃n has the same distributions as Tn

under H0.

Part (i). Assume (C). Let Yn ∼ N(0, (A> ⊗ Ip)Γ(A⊗ Ip)) be a joint mean-zero Gaussian random vector

in R(n−2s+1)p, where A is defined in (2.30). Denote Ȳn = |Yn|∞. By the Gaussian approximation (2.33),

there exists a constant C1 := C1(b, b̄,K) > 0 such that

P(T̃n > t) 6 P(Ȳn > t) + C1$1,n

holds for all t ∈ R. By [92, Lemma 2.2.2], ‖Ȳn‖ψ2
6 C2 log1/2(np), where C2 > 0 is a constant depending

only on b̄. So we have ∀t > 0,

P(Ȳn > t) 6 2 exp[−(t/‖Ȳn‖ψ2
)2] 6 2 exp[−C−2

2 log−1(np)t2].

Choosing t = C3[log(ζ−1) log(np)]1/2 for some large enough constant C3 > 0, we get P(Ȳn > t) 6 2ζC
2
3/C

2
2 6

2ζ. Now, take βn = C1$1,n + 2ζ. Since qT̃n(1− βn) = inf{t ∈ R : P(T̃n > t) < βn}, we deduce that

qT̃n(1− βn) 6 C3[log(ζ−1) log(np)]1/2. (2.46)

Next, we deal with qT∗n |Xn1 (1 − α). Recall that Ŝ−n,s and Ŝ+
n,s are defined in (2.35). By the Bonferroni

inequality, we have

P1( max
s6s6n−s

|Z∗n(s)|∞ > t|Xn
1 ) 6 2np[1− Φ(t/ψ̄)],

where

ψ̄2 = max
s6s6n−s

max
16j6p

{
n− s
n

Ŝ−n,s,jj +
s

n
Ŝ+
n,s,jj

}
,
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and Ŝ−n,s,jj , Ŝ
+
n,s,jj are the (j, j)-th diagonal entry of Ŝ−n,s, Ŝ

+
n,s respectively. Then it follows that there exists

a universal constant K1 > 0 such that

qT∗n |Xn1 (1− α) 6 ψ̄Φ−1(1− α/(2np)).

Next, we bound the quantiles tn,α := Φ−1(1 − α/(2np)). Recall that n > 4, p > 3, and α ∈ (0, 1). Since

Φ−1(·) is a strictly increasing function, we have tn,α > Φ−1(23/24) > 1.73. By the standard Gaussian tail

bound 1− Φ(x) < φ(x)/x for all x > 0, we deduce that

α

2np
= 1− Φ(tn,α) <

φ(tn,α)

tn,α
< 0.25 exp

(
−
t2n,α

2

)
.

Therefore, tn,α <
√

2 log(np/(2α)) and

qT∗n |Xn1 (1− α) 6 K1ψ̄ log1/2(np/α) (2.47)

for some universal constant K1 > 0. Define

Ŝξ,−n,s =
1

s

s∑
i=1

(ξi − ξ̄−s )(ξi − ξ̄−s )>,

Ŝξ,+n,s =
1

n− s

n∑
i=s+1

(ξi − ξ̄+
s )(ξi − ξ̄+

s )>,

where ξ̄−s = s−1
∑s
i=1 ξi and ξ̄+

s = (n− s)−1
∑n
i=s+1 ξi. By Lemma 2.10, we have

ψ̄2 6 2 max
s6s6n−s

max
16j6p

{
n− s
n

Ŝξ,−n,s,jj +
s

n
Ŝξ,+n,s,jj

}
+ 4|δn|2∞.

Since

max
s6s6n−s

max
16j6p

n− s
n

Ŝξ,−n,s,jj 6 max
16j6p

Σjj + max
s6s6n−s

max
16j6p

∣∣∣∣∣1s
s∑
i=1

(ξ2
ij − Σjj)

∣∣∣∣∣+ max
s6s6n−s

max
16j6p

∣∣ξ̄−sj∣∣2 ,
it follows from Lemma 2.9 that there exists a constant C4 > 0 depending only on b̄, K such that

P

(
max

s6s6n−s
max

16j6p

∣∣∣∣∣
s∑
i=1

1

s
(ξ2
ij − Σjj)

∣∣∣∣∣ > C4s
−1/2 log3/2(np)

)
6 γ/4

and the same probability bound holds for maxs6s6n−s max16j6p |ξ̄−sj |2. Combining with (2.47), we deduce
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that there exists a constant C5 > 0 depending only on b̄, K such that

P1

(
qT∗n |Xn1 (1− α) > C5 max{|δn|∞, 1} log1/2(np/α)

)
6 γ.

Then (2.16) follows from the last inequality together with (2.15), (2.45), and (2.46).

Part (ii). Assume (D). By the Gaussian approximation (2.34), there exists a constant C1 := C1(b, b̄,K, q) >

0 such that

P(T̃n > t) 6 P(Ȳn > t) + C1{$1,n +$2,n}

holds for all t ∈ R. By the same argument as in Part (i), we have (2.47) and (2.46) hold with βn =

C1{$1,n +$2,n}+ 2ζ. By Lemma 2.9, there exists a constant C2 > 0 depending only on b̄, K, q such that

P

(
max

s6s6n−s
max

16j6p

∣∣∣∣∣
s∑
i=1

1

s
(ξ2
ij − Σjj)

∣∣∣∣∣ > C2{s−1/2 log1/2(np) + γ−2/qs−1n2/q log(np)}

)
6 γ/4

and the same probability bound holds for maxs6s6n−s max16j6p |ξ̄−sj |2. Then the rest of the proof follows

similar lines as in Part (i).

Lemma 2.10 (Bound on ψ̄). Assume that X1, . . . , Xn are independent random vectors that are generated

from the model (2.1). Then we have

ψ̄2 6 2 max
s6s6n−s

max
16j6p

{
n− s
n

Ŝξ,−n,s,jj +
s

n
Ŝξ,+n,s,jj

}
+ 4|δn|2∞. (2.48)

2.6.4 Proof of Theorem 2.4

Proof of Theorem 2.4. In this proof, we use K1,K2, . . . to denote universal constants. Note that E[Zn(s)] =

∆s, where ∆s is defined in (2.43). Therefore, |E[Zn(·)]|∞ reaches its maximum at m and we have

|E[Zn(m)]|∞ − |E[Zn(s)]|∞ =


√

m(n−m)
n

(
1−

√
s(n−m)
m(n−s)

)
|δn|∞, if 1 6 s 6 m√

m(n−m)
n

(
1−

√
m(n−s)
s(n−m)

)
|δn|∞, if m < s 6 n

.
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If 1 6 s 6 m, then

1−

√
s(n−m)

m(n− s)
=

(
√
m(n− s)−

√
s(n−m))(

√
m(n− s) +

√
s(n−m))√

m(n− s)(
√
m(n− s) +

√
s(n−m))

=
n(m− s)

m(n− s) +
√
m(n−m)s(n− s)

>
n(m− s)

mn+ n
2

√
m(n−m)

>
m− s√

m(
√
m+

√
n−m)

.

So we get

√
m(n−m)

n

(
1−

√
s(n−m)

m(n− s)

)
|δn|∞ >

√
m(n−m)

n

m− s√
m(
√
m+

√
n−m)

|δn|∞

=
√
n

√
1− tm√

tm +
√

1− tm
(tm − ts)|δn|∞.

Likewise, if m < s 6 n, then

1−

√
m(n− s)
s(n−m)

>
s−m√

n−m(
√
m+

√
n−m)

and √
m(n−m)

n

(
1−

√
m(n− s)
s(n−m)

)
|δn|∞ >

√
n

√
tm√

tm +
√

1− tm
(ts − tm)|δn|∞.

Hence, for any 1 6 s 6 n, we have

|E[Zn(m)]|∞ − |E[Zn(s)]|∞ >
√
n

√
tm ∧

√
1− tm√

tm +
√

1− tm
|tm − ts||δn|∞. (2.49)

By the triangle inequality,

|Zn(s)|∞ − |Zn(m)|∞ 6 |Zn(s)− E[Zn(s)]|∞ + |E[Zn(s)]|∞

+|Zn(m)− E[Zn(m)]|∞ − |E[Zn(m)]|∞

6 2 max
16s6n

|Zn(s)− EZn(s)|∞ + |E[Zn(s)]|∞ − |E[Zn(m)]|∞.

Combining the last inequality with (2.49) and using
√
tm +

√
1− tm 6

√
2, we get

√
n

2
(
√
tm ∧

√
1− tm)|tm − ts||δn|∞ 6 2 max

16s6n
|Zn(s)− E[Zn(s)]|∞ + |Zn(m)|∞ − |Zn(s)|∞.
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Replacing s by m̂1/2 and noticing that |Zn(m)|∞ 6 |Zn(m̂1/2)|∞, we obtain that

|tm − tm̂1/2
| 62
√

2 max16s6n |Zn(s)− E[Zn(s)]|∞√
n(
√
tm ∧

√
1− tm)|δn|∞

6
2
√

2 max16s6n |Zn(s)− E[Zn(s)]|∞√
ntm(1− tm)|δn|∞

, (2.50)

where the last step follows from the inequality t(1 − t) 6 t ∧ (1 − t) 6 2t(1 − t) for all t ∈ [0, 1]. Next,

we bound max16s6n |Zn(s) − E[Zn(s)]|∞. Recall that Zn(s) − E[Zn(s)] =
∑n
i=1 ais(Xi − µi), where ais is

defined in (2.30).

Part (i). Assume (C). By [1, Theorem 4], we have ∀t > 0,

P( max
16s6n

|Zn(s)− E[Zn(s)]|∞ > 2E[ max
16s6n

|Zn(s)− E[Zn(s)]|∞] + t)

6 exp

(
− t2

3τ2

)
+ 3 exp

(
− t

K1‖M‖ψ1

)
, (2.51)

where

τ2 = max
16s6n

max
16j6p

n∑
i=1

a2
isE(Xij − µij)2,

M = max
16i,s6n

max
16j6p

|ais(Xij − µij)|.

Since
∑n
i=1 a

2
is = 1, we have τ2 6 b̄. Since max16i,s6n |ais| 6 1, by [92, Lemma 2.2.2], we have ‖M‖2 6

2‖M‖ψ1 6 2b̄ log(np). By [35, Lemma E.1], we have

E[ max
16s6n

|Zn(s)− E[Zn(s)]|∞] 6 K2{τ log1/2(np) + ‖M‖2 log(np)}. (2.52)

Choosing t = K3b̄ log(np) log(γ−1) in (2.51) for some large enough universal constant K3 > 0, we deduce

that there exists a constant C := C(b̄, K) > 0 such that

P( max
16s6n

|Zn(s)− E[Zn(s)]|∞ > C log2(np)) 6 2γ.

Combining the last inequality with (2.50), we obtain (2.19).
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Part (ii). Assume (D) with q > 2. By [2, Theorem 2], we have ∀t > 0,

P( max
16s6n

|Zn(s)− E[Zn(s)]|∞ > 2E[ max
16s6n

|Zn(s)− E[Zn(s)]|∞] + t)

6 exp

(
− t2

3τ2

)
+ C(q)

E[Mq]

tq
, (2.53)

where τ2 and M have the same definitions as in Part (i). By [92, Lemma 2.2.2], we have ‖M‖2 6 ‖M‖q 6

n1/q b̄. Note that τ2 6 b̄ and E[max16s6n |Zn(s)− E[Zn(s)]|∞] obeys the bound in (2.52). Hence, choosing

t = C(q){b̄1/2 log(γ−1) + n1/q b̄1/qγ−1/q} in (2.53), we get

P

(
max

16s6n
|Zn(s)− E[Zn(s)]|∞ > C(q)n1/q(log(np) + γ−1/q)

)
6 2 log−q(np).

Combining the last inequality with (2.50), we obtain (2.20).

2.6.5 Proof of Theorem 2.5

Proof of Theorem 2.5. Without loss of generality, we may assume δnj 6 0 for all 1 6 j 6 p. In addition, we

may assume that

δn �
log2(np)

n1/2
(2.54)

in Part (i), and

δn �
log1/2(np)

n1/2
∨ log(np)

γ1/qn1/2−1/q
(2.55)

in Part (ii), because otherwise (2.21) and (2.22) trivially hold by choosing the constant C > 0 large enough.

Denote h(tm) = tm ∧ (1− tm). To simplify the notation, we write

Z̃n(s) := Z0,n(s) =

s∑
i=1

Xi −
s

n

n∑
i=1

Xi =

√
s(n− s)

n
Zn(s),

where Zn(s) is defined in (2.4), and m̃ = m̂0. Let j∗ be an index in {1, . . . , p} such that max16j6p Z̃nj(m) =

Z̃nj∗(m). It is clear that j∗ is a random variable depending onm. By Lemma 2.11, Z̃nj∗(m) = max16j6p |Z̃nj(m)| >
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0 holds with probability greater than 1− γ/36. For r > 1, observe that

{|tm̃ − tm| > r/n}

⊂{m̃−m > r}∪ {m̃−m < −(r − 1)}

⊂{ max
s6m+r

|Z̃n(s)|∞ < |Z̃n(m̃)|∞}∪ { max
s6m−(r−1)

|Z̃n(s)|∞ = |Z̃n(m̃)|∞}

⊂{ max
s>m+r

|Z̃n(s)|∞ > |Z̃n(m)|∞}∪ { max
s6m−(r−1)

|Z̃n(s)|∞ > |Z̃n(m)|∞}.

Thus we have P(|tm̃ − tm| > r/n) 6 I + II, where

I =P

(
max
s>m+r

|Z̃n(s)|∞ > |Z̃n(m)|∞
)

6 P

(
max
s>m+r

|Z̃n(s)|∞ > Z̃nj∗(m)

)
,

II =P

(
max

s6m−(r−1)
|Z̃n(s)|∞ > |Z̃n(m)|∞

)
6 P

(
max

s6m−(r−1)
|Z̃n(s)|∞ > Z̃nj∗(m)

)
.

Because of the symmetry, we only deal with I since II obeys the same bound. Let

r =

 C(b̄, K, c1, c2) log4(np)
δ2n

in Part (i)

C(b̄, K, q, c1, c2) log(np)
δ2n

max
{

1, n
2/q log(np)
γ2/q

}
in Part (ii)

and G be the event where maxs>m+r |Z̃n(s)|∞ is attained at the coordinates of j ∈ S, i.e.,

G =

{
max
s>m+r

max
16j6p

∣∣∣Z̃nj(s)∣∣∣ = max
s>m+r

max
j∈S

∣∣∣Z̃nj(s)∣∣∣} . (2.56)

By Lemma 2.11, P(G) > 1−γ/18. From now on, our analysis will be restricted to events G and Z̃nj∗(m) > 0,

where the union event holds for probability greater than 1− γ/12. Note that |x| > y > 0 implies that either

x− y > 0 or x+ y 6 0. Then we have

I 6P

(
max
s>m+r

max
j∈S
|Z̃n(s)|∞ > Z̃nj∗(m)

)
+ γ/12

6P
(
∪s>m+r∪j∈S

{
Z̃nj(s)− Z̃nj∗(m) > 0

})
+ P

(
∪s>m+r∪j∈S

{
Z̃nj(s) + Z̃nj∗(m) 6 0

})
+ γ/12

6P

(
max
s>m+r

[
max
j∈S

Z̃nj(s)−max
j∈S

Z̃nj(m)

]
> 0

)
+ P

(
min
s>m+r

[
min
j∈S

Z̃nj(s) + max
j∈S

Z̃nj(m)

]
6 0

)
+ γ/12

:=III + IV + γ/12.
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Since maxi ai −maxi bi 6 maxi(ai − bi) and mini ai −mini bi > mini(ai − bi) hold for any sequences {ai}

and {bi}, we have

III 6P

(
max
s>m+r

max
j∈S

[
Z̃nj(s)− Z̃nj(m)

]
> 0

)
,

IV 6P

(
min
s>m+r

min
j∈S

[
Z̃nj(s) + Z̃nj(m)

]
6 0

)
.

For each s > m+ r and j = 1, . . . , p, since Z̃nj(s)− Z̃nj(m) > 0 if and only if

Z̃nj(s)− E[Z̃nj(s)]− Z̃nj(m) + E[Z̃nj(m)]

> E[Z̃nj(m)]− E[Z̃nj(s)] = −s−m
n

mδnj .

Since ξi = Xi − E(Xi) and δnj 6 0 for all 1 6 j 6 p, we have

{
Z̃nj(s)− Z̃nj(m) > 0

}
⊂

{∣∣∣∣∣
s∑

i=m+1

ξij −
s−m
n

n∑
i=1

ξij

∣∣∣∣∣ > (s−m)h(tm)|δnj |

}

⊂

{∣∣∣∣∣
s∑

i=m+1

ξij

∣∣∣∣∣ > 1

2
(s−m)h(tm)|δnj |

}
∪
{

1

n

∣∣∣∣∣
n∑
i=1

ξij

∣∣∣∣∣ > 1

2
h(tm)|δnj |

}
.

Then we have III 6 V + V I, where

V =P

(
max
s>m+r

max
j∈S

∣∣∣∣∣ 1

s−m

s∑
i=m+1

ξij

∣∣∣∣∣ > h(tm)

2
δn

)

6P

 max
r6s′6n−m

max
j∈S

∣∣∣∣∣∣ 1

s′

s′∑
i=1

ξij

∣∣∣∣∣∣ > h(tm)

2
δn

 , (2.57)

V I =P

(
max
j∈S

∣∣∣∣∣ 1n
n∑
i=1

ξij

∣∣∣∣∣ > h(tm)

2
δn

)
. (2.58)

Here the second inequality for bounding V is due to ξ1, . . . , ξn are i.i.d. Similarly, for each s > m + r and

j = 1, . . . , p, −Z̃nj(s)− Z̃nj(m) > 0 if and only if

−Z̃nj(s) + E[Z̃nj(s)]− Z̃nj(m) + E[Z̃nj(m)]

> E[Z̃nj(m)] + E[Z̃nj(s)] = −2n− s−m
n

mδnj .
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Then we have

{
−Z̃nj(s)− Z̃nj(m) > 0

}
⊂

{∣∣∣∣∣ 1n
n∑
i=1

ξij

∣∣∣∣∣ > h(tm)

2
|δnj |

}
∪
{

1

2n− s−m

∣∣∣∣∣
n∑

i=m+1

ξij +

n∑
i=s+1

ξij

∣∣∣∣∣ > h(tm)

2
|δnj |

}
.

Since (2n− s−m)−1 6 (n−m)−1, we have

{
1

2n− s−m

∣∣∣∣∣
n∑

i=m+1

ξij +

n∑
i=s+1

ξij

∣∣∣∣∣ > h(tm)

2
|δnj |

}

⊂

{
1

n−m

∣∣∣∣∣
n∑

i=m+1

ξij

∣∣∣∣∣ > h(tm)

4
|δnj |

}
∪
{

1

n−m

∣∣∣∣∣
n∑

i=s+1

ξij

∣∣∣∣∣ > h(tm)

4
|δnj |

}
.

Then we obtain that

IV = P

(
max
s>m+r

max
j∈S

[
−Z̃nj(s)− Z̃nj(m)

]
> 0

)
6 V I + 2V II,

where

V II = P

(
max
s>m

max
j∈S

∣∣∣∣∣ 1n
n∑

i=s+1

ξij

∣∣∣∣∣ > h(tm)

8
δn

)
. (2.59)

So now we have I 6 V + 2V I + 2V II + γ/12.

Part (i). Suppose (C) holds. To bound V, applying Lemma 2.8, we have for any u > 0

P

 max
r6s′6n−m

max
16j6p

∣∣∣∣∣∣
s′∑
i=1

1

s′
ξij

∣∣∣∣∣∣ > 2E

 max
r6s′6n−m

max
16j6p

∣∣∣∣∣∣
s′∑
i=1

1

s′
ξij

∣∣∣∣∣∣
+ u


6 exp

(
− u2

3τ2
1

)
+ 3 exp

(
− u

K1‖M1‖ψ1

)
,

where

τ2
1 = max

r6s′6n−m
max

16j6p

s′∑
i=1

1

s′2
E(ξ2

ij) and M1 = max
16i6n

max
r6s′6n−m

max
16j6p

1

s′
|ξij |.

Note that τ2
1 6 r−1b̄ and

‖M1‖2 6 K2‖M1‖ψ1
= K2

∥∥∥∥ max
16i6n

max
16j6p

max
r6s′6n−m

(s′
−1

)|ξij |
∥∥∥∥
ψ1

6 K2r
−1 log(np) max

16i6n
max

16j6p
‖ξij‖ψ1

6 K2b̄r
−1 log(np).
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Using Lemma E.1 in [35], we have

E

 max
r6s′6n−m

max
16j6p

∣∣∣∣∣∣
s′∑
i=1

1

s′
ξij

∣∣∣∣∣∣
 6K3

{√
log(np)τ1 + log(np)‖M1‖2

}
6C1(b̄)

{
r−1/2 log1/2(np) + r−1 log2(np)

}
6C1(b̄)r−1/2 log2(np).

Therefore, we have

P

 max
r6s′6n−m

max
16j6p

∣∣∣∣∣∣
s′∑
i=1

1

s′
ξij

∣∣∣∣∣∣ > 2C1(b̄)r−1/2 log2(np) + u


6 exp

(
−ru

2

3b̄

)
+ 3 exp

(
− ru

K3b̄ log(np)

)
.

Let u∗ = C∗(b̄, K)r−1/2 log2(np). Then it follows from the assumption log(1/γ) 6 K log(np) that

V 6 P

 max
r6s′6n−m

max
16j6p

∣∣∣∣∣∣ 1

s′

s′∑
i=1

ξij

∣∣∣∣∣∣ > u∗

 6 γ/12.

Similarly, to bound VI, by Lemma 2.8, we have for any u > 0

P

(
max

16j6p

∣∣∣∣∣ 1n
n∑
i=1

ξij

∣∣∣∣∣ > 2E

[
max

16j6p

∣∣∣∣∣ 1n
n∑
i=1

ξij

∣∣∣∣∣
]

+ u

)

6 exp

(
− u2

3τ2
2

)
+ 3 exp

(
− u

K1‖M2‖ψ1

)
,

where

τ2
2 = max

16j6p

n∑
i=1

1

n2
E(ξ2

ij) 6 b̄n−1 and M2 = max
16i6n

max
16j6p

1

n
|ξij |.

Note that ‖M2‖2 6
√

2‖M2‖ψ1
6 K4b̄n

−1 log(np). Since log3(np) 6 Kn, we have

E

[
max

16j6p

∣∣∣∣∣ 1n
n∑
i=1

ξij

∣∣∣∣∣
]
6C2(b̄)

{
n−1/2 log1/2(np) + n−1 log2(np)

}
6C2(b̄, K)n−1/2 log1/2(np).
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Let u� = C�(b̄, K)n−1/2 log1/2(np). Then it yields that

V I 6 P

(
max

16j6p

∣∣∣∣∣ 1n
n∑
i=1

ξij

∣∣∣∣∣ > u�

)
6 γ/12.

For VII, notice that

P

(
max

n−1>s>m
max

16j6p

∣∣∣∣∣ 1n
n∑

i=s+1

ξij

∣∣∣∣∣ > 2E

[
max

n−1>s>m
max

16j6p

∣∣∣∣∣ 1n
n∑

i=s+1

ξij

∣∣∣∣∣
]

+ u

)

6 exp

(
− u2

3τ2
3

)
+ 3 exp

(
− u

K1‖M3‖ψ1

)
,

where

τ2
3 = max

n−1>s>m
max

16j6p

n∑
i=s+1

1

n2
E(ξ2

ij) 6 b̄n−2(n−m) 6 b̄n−1,

M3 = max
n−1>s>m

max
16i6n

max
16j6p

| 1
n
ξij | = M2,

E

[
max

n−1>s>m
max

16j6p

∣∣∣∣∣ 1n
n∑

i=s+1

ξij

∣∣∣∣∣
]
6 C3(b̄)

{
n−1/2 log1/2(np) + n−1 log2(np)

}
.

Then it follows that

V II 6 P

(
max

n−1>s>m
max

16j6p

∣∣∣∣∣ 1n
n∑

i=s+1

ξij

∣∣∣∣∣ > u�

)
6 γ/12.

Now combining these estimates into (2.57), (2.58), and (2.59), we conclude that I 6 γ/2 holds under the

assumption (2.54) and choosing a large enough constant C(b̄, K, c1, c2) > 0 in the definition of r. Same

bound holds for II and (2.21) follows.

Part (ii). Suppose (D) holds. To bound V, applying Lemma 2.8, we have

P

 max
r6s′6n−m

max
16j6p

∣∣∣∣∣∣
s′∑
i=1

1

s′
ξij

∣∣∣∣∣∣ > 2E

 max
r6s′6n−m

max
16j6p

∣∣∣∣∣∣
s′∑
i=1

1

s′
ξij

∣∣∣∣∣∣
+ u


6 exp

(
− u2

3τ2
1

)
+ C(q)

E[Mq
1 ]

uq

holds for all u > 0. Note that τ2
1 6 r−1b̄, and for q > 2 we have ‖M1‖2 6 ‖M1‖q with

‖M1‖qq = E

[
max

16i6n
max

16j6p
(max
s′>r

1

s′
)|ξij |q

]
6 r−q

n∑
i=1

E

[
max

16j6p
|ξij |q

]
6 b̄qr−qn.
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Thus,

E

 max
r6s′6n−m

max
16j6p

∣∣∣∣∣∣
s′∑
i=1

1

s′
ξij

∣∣∣∣∣∣
 6K5

{√
log(np)τ1 + log(np)‖M1‖2

}
6C4(b̄, q)

{
r−1/2 log1/2(np) + r−1n1/q log(np)

}
.

Let

u∗ = C∗(b̄, K, q)r−1/2 log1/2(np) max{1, γ−1/qn1/q log1/2(np)}.

Then, we have

V 6 P

 max
r6s′6n−m

max
16j6p

∣∣∣∣∣∣
s′∑
i=1

1

s′
ξij

∣∣∣∣∣∣ > u∗

 6 γ/12.

To bound VI, note that

P

(
max

16j6p

∣∣∣∣∣ 1n
n∑
i=1

ξij

∣∣∣∣∣ > 2E

[
max

16j6p

∣∣∣∣∣ 1n
n∑
i=1

ξij

∣∣∣∣∣
]

+ t

)
6 exp

(
− t2

3τ2
2

)
+ C(q)

E[Mq
2 ]

tq
,

where τ2
2 and M2 are defined the same as in in Part (i). Since τ2

2 6 n−1b̄ and

‖M2‖qq =
1

nq
E

[
max

16i6n
max

16j6p
|ξij |q

]
6

1

nq

n∑
i=1

E

[
max

16j6p
|ξij |q

]
6 b̄qn1−q,

E

[
max

16j6p

∣∣∣∣∣ 1n
n∑
i=1

ξij

∣∣∣∣∣
]
6 K6

{√
log(np)τ2 + log(np)‖M2‖2

}
6 C5(b̄, q)

{
n−1/2 log1/2(np) + n1/q−1 log(np)

}
.

As log(γ−1) 6 K log(np), we can take

u� = C�(b̄, K, q)n−1/2 log1/2(np) max{1, γ−1/qn1/q−1/2 log1/2(np)}

so that

V I 6 P

(
max

16j6p

∣∣∣∣∣
n∑
i=1

ξij

∣∣∣∣∣ > u�

)
6 γ/12.
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For VII, notice that

P

(
max
s>m

max
16j6p

∣∣∣∣∣ 1n
n∑

i=s+1

ξij

∣∣∣∣∣ > 2E

[
max
s>m

max
16j6p

∣∣∣∣∣ 1n
n∑

i=s+1

ξij

∣∣∣∣∣
]

+ t

)

6 exp

(
− t2

3τ2
3

)
+ C(q)

E[Mq
3 ]

tq
,

where τ2
3 6 b̄n−1 and M3 are defined the same as in Part (i). Then we have

V II 6 P

(
max
s>m

max
16j6p

∣∣∣∣∣ 1n
n∑

i=s+1

ξij

∣∣∣∣∣ > t�

)
6 γ/12.

Hence, I 6 γ/2 under the assumption (2.55), and choosing a large enough constant C(b̄, K, q, c1, c2) > 0 in

the definition of r. By a similar argument, II obeys the same bound as I.

Lemma 2.11. Suppose that (B) holds and H1 is true with a change point m satisfying c1 6 tm 6 c2 for

some constants c1, c2 ∈ (0, 1). Suppose that log3(np) 6 Kn and log(γ−1) 6 K log(np) for some constant

K > 0. Let G be defined in (2.56). Then P(G) > 1− γ/18,

(i) if (C) and (2.54) hold, where r = C(b̄, K, c1, c2)δ−2
n log4(np); or

(ii) if (D) and (2.55) hold, where r = C(b̄, K, q, c1, c2)δ−2
n log(np) max{1, γ−2/qn2/q log(np)}.

In addition, if δnj 6 0 for all 1 6 j 6 p, then P
(

max16j6p

∣∣∣Z̃nj(m)
∣∣∣ = Z̃nj∗(m)

)
> 1 − γ/36 in both (i)

and (ii), where j∗ ∈ {1, . . . , p} is defined as Z̃nj∗(m) = max16j6p Z̃nj(m).

2.6.6 Proof of Theorem 2.7

Proof of Theorem 2.7. Part (i) Assuming (C). Suppose there are undetected change-points in [b, e] which

satisfies

mk0 6 b < mk0+1 < · · · < mk0+q < e 6 mk0+q+1

for 0 6 k0 6 ν − q. Let λ1 = λ2 = b̄ log2(np),

An =

{
|(e− b+ 1)−1/2

e∑
i=b

ξi|∞ < K2λ2,∀1 6 b 6 e 6 n

}

and

Bn =

{
max

16b6s6e6n
|Zn,b,e(s)− EZn,b,e(s)|∞ < K1λ1

}
.

By Lemma 2.12, P(An ∩ Bn) > 1 − 2γ. In the following, we will only consider the case of An ∩ Bn where

the random component of {Xi}ni=1, namely the behavior of {ξi}ni=1, is well characterized.
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Let m̂b,e = argmaxb6s6e|Zn,b,e(s)|∞ be the location where the maximum CUSUM statistic within interval

[b, e] is reached and let h = argmaxj=1,...,p|Zn,b,e(m̂b,e)|j be its dimension. According to Algorithm 1, if m̂b,e

is large enough to pass the bootstrap test and it is close to one of {mk0+1, . . . ,mk0+q}, then one change point

is consistently identified. The remaining proof follows the structure of proof in [45, Theorem 1] to complete

this claim with modifications on the key steps: i) m̂b,e ∈ Sn; ii) Power of bootstrap test is guaranteed such

that P(Sn) is bounded below. Note that, the main differences between the proof of [45, Theorem 1] and our

argument are in the following aspects. First, [45] considers one-dimensional observations while we extend

it to p-dimensional case. The set An and Bn are adapted to sub-exponential random vectors. Second, [45,

Lemma A.5] provides stopping conditions when the following (2.60) and (2.61) fail, that is the search stops

if (i) no change point in [b, e] or (ii) the only 1 or 2 change points left in [b, e] are within the distance of s

from b or e (therefore they should be classified as the same change point as b or e). But under our context,

testing procedure substitutes subjective pick of threshold so that we do not need to control the magnitude

of |Zn,b,e(s)|∞.

Apply [45, Theorem 1], we can make the following statements on set Bn ∩ An. When

b < mk0+r − C3Dν < mk0+r + C3Dν < e for some 1 6 r 6 q (2.60)

and

max {min{mk0+1 − b, b−mk0},min{mk0+q+1 − e, e−mk0+q}} 6 C4εn (2.61)

hold for some constants C3, C4, by Lemma A.3 in [45],

|m̂b,e −mk0+r| 6 C5ε
′
n = C5λ

2
2n

2D−2
ν (δ

(p0+r)
h )−2

i.e. m̂b,e falls within the distance of C5b̄
2εn of a previously undetected change point mk0+r.

Note that h ∈ Dk0+r, i.e. δ
(k0+r)
h 6= 0. Otherwise, if the hth-dimension has a mean-shift within the

working interval [b, e], then it contradicts with |Zn,b,e(s)|∞ = |Zn,b,e(m̂b,e)|h. If there is no mean-shift in the

hth-dimension within [b, e], then |Zn,b,e(m̂b,e)|h 6 C6(α, b̄)λ1. But by Lemma 2.13,

max
b+s6s6e−s

|EZn,b,e(s)|∞ > max
l=k0,...,k0+q+1

CD2
ν δ̄n√

(e− b)(ml − b)(e−ml)

>
CD2

νδn√
nDν(n−Dν)

> C7(b̄)D3/2
ν n−1δn
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The second line is due to Dν > εn & b−mk0 > mk0+1 −mk0 > Dν by (2.61) and Assumption a), b), e). It

leads to contradiction. When δ
(p0+r)
h = 0 but δ

(p0+r+1)
h 6= 0, we just need to record r + 1 as r.

Next, according to Lemma 2.6, in order to have Type-II error (of performed test in current interval [b, e])

is less than γ + 2ζ +C2$1,(e−b), we only need to show |∆̃|∞ = |EZn,b,e(s)|∞ > Cν log1/2((e− b)p) for some

s ∈ [b + s, e − s], C1 = C1(b, b̄,K) and C2 = C2(b, b̄,K). Here, $1,(e−b) = (log7((e − b)p)/s)1/6 with s

determined by n, not (e− b). Then by Assumption d),

max
b+s6s6e−s

|EZn,b,e(s)|∞ > C7D
3/2
ν n−1δn > C7C

2n
3
2 Θ−1−ω > C8(α, b̄)ν log1/2((e− b)p),

which indicates the change point is significant to pass the bootstrap test with probability no less than

1− γ − 2ζ − C ′0$1,n where $1,n > $1,(e−b) by Assumption e).

As a consequence, the procedure then moves on to operate on the intervals [b, m̂b,e] and [m̂b,e, e] where

both (2.60) and (2.61) still hold. Therefore, all change points will be detected one by one until the conditions

in Lemma A.5 in [45] are met. Assumption c) is implicitly called in [45, Theorem 1].

Part (ii) Assuming (D). Let λ1 = λ2 = C(q)b̄n3/q(log(np) + γ−1/q). Similarly, Lemma 2.12 shows

P(An ∩ Bn) > 1 − 2γ. According to the proof of Theorem 2.3, Type-II error is less than γ + 2ζ +

C
′

0($1,(e−b) + $2,(e−b)) when |∆̃|∞ = |EZn,b,e(s)|∞ > C log((e − b)p) for some s ∈ [b + s, e − s]. Using

the same arguments, we conclude that for each step in binary segmentation the bootstrap test is passed with

probability no less than 1 − γ − 2ζ − C ′0($1,n + $2,n) and estimated location m̂b,e falls within distance of

Cεn = C(b̄, q)n2+6/qD−2
ν (δn)−2(log2(np) + γ−2/q) until the stopping conditions are met.

Lemma 2.12. P(An) > 1− γ and P(Bn) > 1− γ for γ defined the same as Theorem 2.7.

Proof of Lemma 2.6. The structure of this proof is similar to the one for Theorem 2.3. Without less of

generality we may assume µ = 0. For ξi = Xi − µi where µi = E[Xi] has the form of

µmk+1 = · · · = µmk+1
=

k∑
l=0

δ(l),

the CUSUM statistic computed on X1, . . . , Xn can be decomposed as Zn(s) = Zξn(s) + ∆s, where Zξn(s) =√
s(n−s)
n

{
1
s

∑s
i=1 ξi −

1
n−s

∑n
i=s+1 ξi

}
is defined the same as in the proof of Theorem 2.3 but ∆s = EZn(s)

is extended to multiple change point model as in (2.69). Again, by Lemma 2.13, |∆s|∞ reaches its maximum

at one of the change points, i.e.,

max
s6s6n−s

|∆s|∞ = max
k=1,...,ν

|∆mk |∞ & max
l=1,...,ν

CD2
ν δ̄n√

nml(n−ml)
=: ∆̃. (2.62)
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The Type II error obeys the same bound in arguments of (2.44) and (2.45).

Part (i). Assume (C). Take βn = C1$1,n + 2ζ, qT̃n(1 − βn) holds for the same bound in (2.46) . Note

that qT∗n |Xn1 (1− α) is bounded the same as in (2.47), but ψ changes to

ψ̄2 6 2 max
s6s6n−s

max
16j6p

{
n− s
n

Ŝξ,−n,s,jj +
s

n
Ŝξ,+n,s,jj

}
+ 4ν2δ̄2

n. (2.63)

The sketch of proof for (2.63) is shown in Part (iii). Therefore, based on the same probability bounds of

maxs6s6n−s max16j6p

∣∣ 1
s

∑s
i=1(ξ2

ij − Σjj)
∣∣ and maxs6s6n−s max16j6p

∣∣ξ̄−sj∣∣2, we deduce that

P
(
qT∗n |Xn1 (1− α) > C5 max{νδ̄n, 1} log1/2(np/α)

)
6 γ.

Therefore, (2.16) follows.

Part (ii). Assume (D). Arguments are exactly the same as Part (ii) in Theorem 2.3.

Part (iii). The result of (2.63) comes from the proof of Lemma 2.10 with a modification to multiple

mean-shifts model (2.10). Recall that X̄−s = s−1
∑s
i=1Xi, X̄

+
s = (n − s)−1

∑n
i=s+1Xi, and ξ̄−s , ξ̄

+
s , µ̄

−
s , µ̄

+
s

are similarly defined by replacing Xn
1 with ξn1 and µn1 , respectively. Then, elementary calculations yield

X̄−s = ξ̄−s + µ̄−s and X̄+
s = ξ̄+

s + µ̄+
s , where

µ̄−s =
1

s

k∑
l=0

(s−ml)δ
(l) and µ̄+

s =

k∑
l=0

δ(l) +
1

n− s

ν∑
l=k+1

(n−ml)δ
(l) for mk < s 6 mk+1.

Note that



1√
s

∑s
i=1 ei(Xi − X̄−s ) =

1√
s

s∑
i=1

ei(ξi − ξ̄−s )︸ ︷︷ ︸
:=A

+ 1√
s

∑s
i=1 ei(µi − µ̄−s )

1√
n−s

∑n
i=s+1 ei(Xi − X̄+

s ) =
1√
n− s

n∑
i=s+1

ei(ξi − ξ̄+
s )︸ ︷︷ ︸

:=B

+ 1√
n−s

∑n
i=s+1 ei(µi − µ̄+

s )

,

where 
∑s
i=1(µij − µ̄−sj)2 =

∑s
i=1 µ

2
ij − s(µ̄

−
sj)

2 6
∑s
i=1 µ

2
ij 6 sν2δ̄2

n∑n
i=s+1(µij − µ̄+

sj)
2 =

∑n
i=s+1 µ

2
ij − (n− s)(µ̄+

sj)
2 6

∑n
i=s+1 µ

2
ij 6 (n− s)ν2δ̄2

n
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as |µs|∞ = |
∑k
l=0 δ

(l)|∞ 6 νδ̄n for s = mk + 1, . . . ,mk+1. Similarly, we have

ψ̄2 = max
s6s6n−s

max
16j6p

{n− s
n

Cove
(
Aj +

1√
s

s∑
i=1

ei(µij − µ̄−sj)
)

+
s

n
Cove

(
Bj +

1√
n− s

n∑
i=s+1

ei(µij − µ̄+
sj)
)}

6 2 max
s6s6n−s

max
16j6p

{n− s
n

Cove(Aj) +
s

n
Cove(Bj)

}
+2 max

s6s6n−s
max

16j6p

[
1

s

s∑
i=1

(µij − µ̄−sj)
2 +

1

n− s

n∑
i=s+1

(µij − µ̄+
sj)

2

]
.

Then (2.63) is immediate.

Lemma 2.13. argmaxs=1,...,n−1|EZn(s)|∞ ⊂ {mk, k = 1, . . . , ν}. Consequently, we automatically have

argmaxs=b,...,e|EZn,b,e(s)|∞ ⊂ {mk, k = 1, . . . , ν} ∩ [b, e]. Moreover, there exist some constant C such that

max
l=1,...,ν

|∆ml |∞ > max
l=1,...,ν

CD2
ν δ̄n√

nml(n−ml)
> max
l=1,...,ν

Cn−5/2
√
ml(n−ml)D

2
ν δ̄n.

2.6.7 Proof of auxiliary lemmas

This section contains auxiliary lemmas for Section 2.6.

Proof of Lemma 2.8. For i = 1, . . . , n, let

Yi =


a1iXi1 . . . a1iXip

...
. . .

...

aniXi1 . . . aniXip

 .

Then Y1, . . . , Yn is a sequence of independent mean-zero random matrices in Rn×p. Note that Wn =
∑n
i=1 Yi

and Zn = |Wn|∞. Then (2.28) is an immediate consequence of Lemma E.3 in [35].

Proof of Lemma 2.9. Part (i). Assume (C). Write

∆̂1 = max
s6s6n−s

max
16j,k6p

∣∣∣∣∣
n∑
i=1

bis(XijXik − σjk)

∣∣∣∣∣ ,
where

bis =

 s−1, if 1 6 i 6 s

0, if s+ 1 6 i 6 n
.
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By Part (i) of Lemma 2.8, there exists a universal constant K1 > 0 such that for all t > 0,

P(∆̂1 > 2E[∆̂1] + t) 6 exp

(
− t2

3τ2

)
+ 3 exp

−( t

K1‖M‖ψ1/2

)1/2
 ,

where

τ2 = max
s6s6n−s

max
16j,k6p

n∑
i=1

b2isE(XijXik − σjk)2,

M = max
s6s6n−s

max
16j,k6p

max
16i6s

|s−1(XijXik − σjk)|.

Note that

‖M‖2 6 K2‖M‖ψ1/2
6
K2

s
‖ max

16i6n
max

16j,k6p
|XijXik|‖ψ1/2

6
K2

s
‖ max

16i6n
max

16j6p
X2
ij‖ψ1/2

=
K2

s
‖ max

16i6n
max

16j6p
|Xij |‖ψ1

6
K2

s
b̄2 log2(np).

By the Cauchy-Schwarz inequality and assumption (B), we have

τ2 6 max
s6s6n−s

max
16j,k6p

s∑
i=1

1

s2
E(XijXik)2 6 b̄2s−1.

By [35, Lemma E.1], there exists a universal constant K3 > 0 such that

E[∆̂1] 6 K3

{
τ log1/2(np2) + ‖M‖2 log(np2)

}
6 K3

{
b̄ log1/2(np)s−1/2 + b̄2 log3(np)s−1

}
.

Therefore, we get

P
(

∆̂1 > 2K3

{
b̄ log1/2(np)s−1/2 + b̄2 log3(np)s−1

}
+ t
)

6 exp

(
− t

2s

3b̄2

)
+ 3 exp

(
− t1/2s1/2

K4b̄ log(np)

)
.

Choose t = C1s
−1/2 log1/2(np) for some large enough constant C1 := C1(b̄, K) > 1. Using log(γ−1) 6

K log(np) and log5(np) 6 s, we obtain that

P
(

∆̂1 > Cs−1/2 log3/2(np)
)
6 γ/4. (2.64)
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Since X1, . . . , Xn are i.i.d. under H0, ∆̂1 and ∆̂2 share the same distribution and therefore ∆̂2 also obeys

the bound (2.64). ∆̂3 and ∆̂4 can be dealt similarly. Indeed, by Lemma 2.8, there exists a universal constant

K5 > 0 such that for all t > 0,

P(∆̂3 > 2E[ max
s6s6n−s

|
n∑
i=1

bisXi|∞ ] + t) 6 exp

(
− t2

3τ̃2

)
+ 3 exp

(
− t

K5‖M̃‖ψ1

)
,

where τ̃2 = maxs6s6n−s,16j6p
∑n
i=1 b

2
isEX

2
ij and M̃ = max16i6n,s6s6n−s,16j6p |bisXij |. By (B), τ̃2 6 b̄s−1.

By (C) and [92, Lemma 2.2.2], there exists a universal constant K6 > 0 such that ‖M̃‖ψ1 6 K6b̄ log(np)s−1.

By [35, Lemma E.1], there exists a universal constant K7 > 0 such that

E[ max
s6s6n−s

|
n∑
i=1

bsiXi|∞ ] 6 K7

{
τ̃ log1/2(np) + ‖M̃‖2 log(np)

}
6 K7

{
b̄ log1/2(np)s−1/2 + b̄ log2(np)s−1

}
.

So it follows that

P
(

∆̂3 > 2K7

{
b̄ log1/2(np)s−1/2 + b̄ log2(np)s−1

}
+ t
)

6 exp

(
− t

2s

3b̄

)
+ 3 exp

(
− ts

K8b̄ log(np)

)
.

Using t = Cs−1/2 log1/2(np) log(γ−1), we get

P
(

∆̂3 > Cs−1/2 log3/2(np)
)
6 γ/4.

Part (ii). Assume (D). By Part (ii) of Lemma 2.8, there exists a constant C1 := C1(q) > 0 such that for

all t > 0,

P(∆̂1 > 2E[∆̂1] + t) 6 exp

(
− t2

3τ2

)
+ C1

E[Mq/2]

tq/2
,

where τ2 and M have the same definition as in Part (i). As in Part (i), τ2 6 b̄2s−1. Note that

E[Mq/2] 6 C2(q)s−q/2{E[ max
16i6n

max
16j6p

|Xij |q] + max
16j,k6p

|σjk|q/2} 6 C2(q)b̄qns−q/2.

and

E[∆̂1] 6 K1{τ log1/2(np2) + ‖M‖q/2 log(np2)}

6 K1{b̄s−1/2 log1/2(np) + C2(q)2/q b̄2n2/q log(np)s−1}.
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Therefore, there exists a constant C3(q) > 0 such that

P
(

∆̂1 > 2K1

{
b̄s−1/2 log1/2(np) + C2(q)2/q b̄2n2/q log(np)s−1

}
+ t
)

6 exp

(
− t

2s

3b̄2

)
+ C3(q)

nb̄q

tq/2sq/2
.

Now, choosing t = C4{s−1/2 log1/2(np) + γ−2/qs−1n2/q} for some large enough constant C4 := C4(b̄, K, q) >

1. Using log(γ−1) 6 K log(np) and log3(np) 6 n, we obtain that

P
(

∆̂1 > C5{s−1/2 log3/2(np) + γ−2/qs−1n2/q log(np)}
)
6 γ/4. (2.65)

Other terms ∆̂i, i = 2, 3, 4 can be similarly handled and details are omitted.

Proof of Lemma 2.10. Recall that X̄−s = s−1
∑s
i=1Xi, X̄

+
s = (n− s)−1

∑n
i=s+1Xi, and ξ̄−s , ξ̄

+
s are similarly

defined by replacing Xn
1 with ξn1 . Then, elementary calculations yield

X̄−s =

 ξ̄−s , if 1 6 s 6 m− 1

ξ̄−s + s−m
s δn, if m 6 s 6 n− 1

and

X̄+
s =

 ξ̄+
s + n−m

n−s δn, if 1 6 s 6 m− 1

ξ̄+
s + δn, if m 6 s 6 n− 1

.

Let

Zξ,∗n (s) =

√
n− s
n

s−1/2
s∑
i=1

ei(ξi − ξ̄−s )︸ ︷︷ ︸
:=A

−
√
s

n
(n− s)−1/2

n∑
i=s+1

ei(ξi − ξ̄+
s )︸ ︷︷ ︸

:=B

be the bootstrap CUSUM statistic computed on the transformed data ξn1 . For m+ 1 6 s 6 n− 1, we define

bis = −(s −m)/s if 1 6 i 6 m, bis = m/s if m + 1 6 i 6 s, and bis = 0 otherwise. For 1 6 s 6 m − 1,

we define b′is = −(n −m)/(n − s) if s + 1 6 i 6 m, b′is = (m − s)/(n − s) if m + 1 6 i 6 n, and b′is = 0

otherwise. Then routine algebra show that

1√
s

s∑
i=1

ei(Xi − X̄−s ) =

 A, if 1 6 s 6 m

A+ δn√
s

∑s
i=1 bisei, if m+ 1 6 s 6 n
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and

1√
n− s

n∑
i=s+1

ei(Xi − X̄−s ) =

 B + δn√
n−s

∑n
i=s+1 b

′
isei, if 1 6 s 6 m− 1

B, if m 6 s 6 n
.

Denote Cove(·) as the covariance operator taken w.r.t. the random variables e1, . . . , en By the Cauchy-

Schwarz inequality, we have

ψ̄2 = max
s6s6n−s

max
16j6p

{n− s
n

Cove(Aj +
δnj√
s

s∑
i=1

bisei1(m+16s6n−1))

+
s

n
Cove(Bj +

δnj√
n− s

n∑
i=s+1

b′isei1(16s6m−1))
}

6 2 max
s6s6n−s

max
16j6p

{n− s
n

Cove(Aj) +
s

n
Cove(Bj)

}
+2|δn|2∞ max

s6s6n−s

[
1

s

s∑
i=1

b2is1(m+16s6n−1)

]

+2|δn|2∞ max
s6s6n−s

[
1

n− s

n∑
i=s+1

b′
2
is1(16s6m−1)

]
.

Note that

s∑
i=1

b2is =
m(s−m)

s
6 s for m+ 1 6 s 6 n− 1,

n∑
i=s+1

b′
2
is =

(n−m)(m− s)
n− s

6 n− s for 1 6 s 6 m− 1.

Then (2.48) is immediate.

Proof of Lemma 2.11. Part (i). If (C) holds, First, note that we can write Z̃n(s) =
∑n
i=1 visXi, where

vis =


n−s
n if 1 6 i 6 s

− s
n if s+ 1 6 i 6 n

.

Since ξi = Xi − E(Xi), we have Z̃n(s)− E[Z̃n(s)] =
∑n
i=1 visξi. By Lemma 2.8, we have

P

(
max
s>m+r

max
16j6p

∣∣∣∣∣
n∑
i=1

visξij

∣∣∣∣∣ > 2E

[
max
s>m+r

max
16j6p

∣∣∣∣∣
n∑
i=1

visξij

∣∣∣∣∣
]

+ t

)

6 exp

(
− t2

3τ2

)
+ 3 exp

(
− t

K1‖M‖ψ1

)
,
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where

τ2 = max
s>m+r

max
16j6p

n∑
i=1

v2
isE(ξ2

ij) and M = max
16i6n

max
s>m+r

max
16j6p

|visξij |.

Note that

τ2 6 b̄ max
s>m+r

n∑
i=1

v2
is =

b̄

n
max
s>m+r

(n− s)s 6 b̄n

4
,

‖M‖2 =

∥∥∥∥ max
16i6n

max
16j6p

( max
s>m+r

|vis|)|ξij |
∥∥∥∥

2

6 K2

∥∥∥∥ max
16i6n

max
16j6p

( max
s>m+r

|vis|)|ξij |
∥∥∥∥
ψ1

6 K2 log(np) max
16i6n

max
16j6p

( max
s>m+r

|vis|) ‖ξij‖ψ1
6 K2b̄ log(np).

Using Lemma E.2 in [35] and log3(np) 6 Kn, we have

E

[
max
s>m+r

max
16j6p

∣∣∣∣∣
n∑
i=1

visξi

∣∣∣∣∣
]
6K3

{√
log(np)τ + log(np)‖M‖2

}
6K3

{√
b̄n log(np) + b̄ log2(np)

}
6C1(b̄, K)

√
n log(np).

Thus we get

P

(
max
s>m+r

max
16j6p

∣∣∣∣∣
n∑
i=1

visξi

∣∣∣∣∣ > C1(b̄, K)
√
n log(np) + t

)

6 exp

(
− 4t2

3b̄n

)
+ 3 exp

(
− t

K4b̄ log(np)

)
.

Choosing t = C2(b̄, K)
√
n log(γ−1) and using log(γ−1) 6 K log(np), we have

P

(
max
s>m+r

max
16j6p

∣∣∣Z̃nj(s)− E[Z̃nj(s)]
∣∣∣ > t†

)
6 γ/36,

where t† = C3(b̄, K)
√
n log(np). Note that for any two sequences {ai} and {bi}, we have by the elementary

inequality |maxi |ai| −maxi |bi|| 6 maxi ||ai| − |bi|| 6 maxi |ai − bi| that

P

(∣∣∣∣ max
s>m+r

max
j∈S

∣∣∣Z̃nj(s)∣∣∣− max
s>m+r

max
j∈S

∣∣∣EZ̃nj(s)∣∣∣∣∣∣∣ > t†
)

6 γ/24,

P

(
max
s>m+r

max
j∈Sc

∣∣∣Z̃nj(s)∣∣∣ > t†
)

6 γ/36.
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Since

max
s>m+r

max
j∈S

∣∣∣EZ̃nj(s)∣∣∣ = max
s>m+r

max
j∈S

∣∣∣∣ (n− s)mn
δnj

∣∣∣∣ = ntm(1− tm − tr)|δn|∞,

it follows that

|δn|∞ >
C4 log1/2(np)

n1/2

for some large enough constant C4 = C4(b̄, K, c1, c2) > 0 implies that

P(Gc) 6P
(

max
s>m+r

max
j∈S

∣∣∣Z̃nj(s)∣∣∣− max
s>m+r

max
j∈Sc

∣∣∣Z̃nj(s)∣∣∣ 6 0

)
6P

(
max
s>m+r

max
j∈S

∣∣∣Z̃nj(s)∣∣∣ 6 max
s>m+r

max
j∈S

∣∣∣EZ̃nj(s)∣∣∣− t†)
+ P

(
− max
s>m+r

max
j∈Sc

∣∣∣Z̃nj(s)∣∣∣ 6 −t†)
6γ/36 + γ/36 = γ/18.

In addition, following the same arguments,

P

(
max

16j6p

∣∣∣Z̃nj(m)− E[Z̃nj(m)]
∣∣∣ > t†

)
6 γ/36.

If δnj 6 0,∀1 6 j 6 p, then E[Z̃nj(m)] = ntm(1− tm)|δnj | > 0, and

min
16j6p

Z̃nj(m) > −t†, max
16j6p

Z̃nj(m) > ntm(1− tm)|δn|∞ − t† > t†

with probability greater than 1−γ/36 when C4 > 2C3. In other words,
∣∣∣max16j6p Z̃nj(m)

∣∣∣ > ∣∣∣min16j6p Z̃nj(m)
∣∣∣,

which implies max16j6p

∣∣∣Z̃nj(m)
∣∣∣ = max16j6p Z̃nj(m) = Z̃nj∗(m) > 0. Therefore,

P

(
max

16j6p

∣∣∣Z̃nj(m)
∣∣∣ = Z̃nj∗(m)

)
> 1− γ/36.

Part (ii). If (D) holds, By Lemma 2.8, we have

P

(
max
s>m+r

max
16j6p

∣∣∣∣∣
n∑
i=1

visξi

∣∣∣∣∣ > 2E

[
max
s>m+r

max
16j6p

∣∣∣∣∣
n∑
i=1

visξi

∣∣∣∣∣
]

+ t

)

6 exp

(
− t2

3τ2

)
+K5

E [Mq]

tq
,
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where τ2 and M have the same definition as in Part (i). Since τ2 6 nb̄/4, we have

‖M‖qq = E

(
max

16i6n
max

16j6p
( max
s>m+r

|vis|q)|ξij |q
)

6
n∑
i=1

E

(
max

16j6p
|ξij |q

)
6 nb̄q,

which implies that ‖M‖2 6 ‖M‖q = n1/q b̄ for q > 2. Using Lemma E.2 in [35] and log3(np) 6 Kn, we have

E

[
max
s>m+r

max
16j6p

∣∣∣∣∣
n∑
i=1

visξi

∣∣∣∣∣
]
6K4

{√
b̄n log(np) + b̄n1/q log(np)

}
.

Thus we get

P

(
max
s>m+r

max
16j6p

∣∣∣∣∣
n∑
i=1

visξi

∣∣∣∣∣ > C5(b̄, K)
{√

n log(np) + n1/q log(np)
}

+ t

)

6 exp

(
− 4t2

3b̄n

)
+K5

nb̄q

tq
.

Choosing t = C6(b̄, K, q){
√
n log(γ−1) + γ−1/qn1/q} and using log(γ−1) 6 K log(np), we have

P

(
max
s>m+r

max
16j6p

∣∣∣Z̃nj(s)− E[Z̃nj(s)]
∣∣∣ > t†

)
6 γ/36,

where t† = C7(b̄, K, q){
√
n log(np) + γ−1/qn1/q log(np)}. If

|δn|∞ >
C8 log1/2(np)

n1/2
max

{
1, γ−1/qn1/q−1/2 log1/2(np)

}
,

for some large enough constant C8 = C8(b̄, K, q, c1, c2) > 0, then it follows from the same argument as in

Part (i) that P(Gc) 6 γ/18. In addition, P
(

max16j6p

∣∣∣Z̃nj(m)
∣∣∣ = Z̃nj∗(m)

)
> 1− γ/36.

Proof of Lemma 2.12. Part (i). Assume (C). Consider An first. Apply our Lemma [A.1] to ai,s1,s2 =

1√
s2−s1+1

1{s16i6s2} (i.e. s = (s1, s2) ∈ N2) and Xij = ξij , we have for ∀t > 0

P( max
16s16s26n

|
n∑
i=1

ai,s1,s2ξi|∞ > 2E[ max
16s16s26n

|
n∑
i=1

ai,s1,s2ξi|∞] + t)

6 exp

(
− t2

3τ2

)
+ 3 exp

(
− t

K1‖M‖ψ1

)
, (2.66)
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where

τ2 = max
16s16s26n

max
16j6p

n∑
i=1

a2
i,s1,s2Eξ

2
ij ,

M = max
16i6n

max
16s16s26n

max
16j6p

|ai,s1,s2ξij |.

Since τ2 6 b̄, and by [92, Lemma 2.2.2], we have ‖M‖2 6 2‖M‖ψ1
6 Cb̄ log(n3p) 6 C ′b̄ log(np). By [35,

Lemma E.1], we have

E[ max
16s16s26n

|
n∑
i=1

ai,s1,s2ξi|∞] 6 K2{τ log1/2(np) + ‖M‖2 log(np)}. (2.67)

Choosing t = K3b̄ log(np) log(γ−1) in (2.66) for some large enough universal constant K3 > 0, we deduce

that there exists a constant C := C(b̄, K) > 0 such that

P( max
16s16s26n

|ai,s1,s2
s∑
i=1

ξi|∞ > Kb̄ log2(np)) 6 γ.

So P(An) > 1− γ.

For Bn, replacing ai,s by ai,s1,s2 = 1√
s2−s1+1

1{s16i6s2} in our [45] and [46], we have

P( max
16s16s6s26n

|Zn(s)− E[Zn(s)]|∞ > Kb̄ log2(np)) 6 γ.

for log(γ−1) 6 K log(np). Then, P(Bn) > 1− γ.

Part (ii). Assume (D). Assume (D) with q > 2. Similarly, apply Lemma [A.1] to ai,s1,s2 and Xij = ξij ,

we have for ∀t > 0

P( max
16s16s26n

|
n∑
i=1

ai,s1,s2ξi|∞ > 2E[ max
16s16s26n

|
n∑
i=1

ai,s1,s2ξi|∞] + t)

6 exp

(
− t2

3τ2

)
+ C(q)

E[Mq]

tq
, (2.68)

where τ2 and M have the same definitions as in Part (i). By [92, Lemma 2.2.2], we have ‖M‖2 6 ‖M‖q 6

n3/q b̄. Note that τ2 6 b̄ and E[max16s6n |Zn(s)− E[Zn(s)]|∞] obeys the bound in (2.67). Hence, choosing

t = C(q){b̄1/2 log(γ−1) + b̄n3/qγ−1/q} in (2.68), we get

P

(
max

16s6n
|Zn(s)− E[Zn(s)]|∞ > C(q)b̄n3/q(log(np) + γ−1/q)

)
6 2 log−q(np).
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Proof of Lemma 2.13. Denote the CUSUM mean computed on Xn
1 as

∆s = EZn(s) = −
ν∑
k=1

[√
s

n(n− s)
(n−mk) δ(k) 1{s6mk} +

√
(n− s)
ns

mk δ
(k) 1{s>mk}

]
.

In particular, for mk < s 6 mk+1 of k = 0, . . . , ν,

∆s = −
√
s(n− s)

n

(
m0δ

(0) + · · ·+mkδ
(k)

s
+

(n−mk+1)δ(k+1) + · · ·+ (n−mν+1)δ(ν+1)

n− s

)
. (2.69)

Let ∆(s) be defined as the same expression of (2.69) but on the whole real numbers s ∈ (1, n).

Step 1: Suppose time of changes ν = 2 and data is univariate p = 1.

f(s) :=
d

ds
∆(s) =



− 1

2

√
n

s(n− s)3

(
(n−m1)δ(1) + (n−m2)δ(2)

)
, s < m1

1

2

√
n

s(n− s)

(
m1

s
δ(1) − n−m2

n− s
δ(2)

)
,m1 < s < m2

1

2

√
n

s(n− s)3

(
m1δ

(1) +m2δ
(2)
)
, s > m2

(2.70)

(i) Suppose sign(δ(1)) = sign(δ(2)) 6= 0, then the sign of the first derivative of ∆(s) is summarized as the

table below, where s0 satisfies s0/(n− s0) = (m1δ
(1))/((n−m2)δ(2)) when |δ(1)|/|δ(2)| ∈ (n−m2

n−m1
, m2

m1
).

sign(f(s)) s < m1 m1 < s < m2 m2 < s

|δ(1)|
|δ(2)|

(0, n−m2

n−m1
) −sign(δ(1)) sign(δ(1))

(n−m2

n−m1
, m2

m1
) −sign(δ(1))

m1 < s < s0 s0 < s < m2
sign(δ(1))

sign(δ(1)) −sign(δ(1))

(m2

m1
,+∞) −sign(δ(1)) sign(δ(1))

Observing that ∆(s) is continuous and always with sign of −sign(δ(1)). The maximum of |∆(s)| locates

at either m1 or m2.

(ii) Suppose sign(δ(1)) = −sign(δ(2)) 6= 0, then based on the summarized sign(f(s)) in the table below

and the fact that ∆(s) is continuous and always with sign −sign(δ(1)), we claim the maximum of |∆(s)|

locates at either s = m1 or s = m2.
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sign(f(s)) s < m1 m1 < s < m2 m2 < s

|δ(1)|
|δ(2)|

(0, n−m2

n−m1
) sign(δ(1)) −sign(δ(1))

(n−m2

n−m1
, m2

m1
) −sign(δ(1)) sign(δ(1)) −sign(δ(1))

(m2

m1
,+∞) −sign(δ(1)) sign(δ(1))

Step 2: Generalization to multiple change points ν > 2 and multiple dimension p > 1. Based on arguments

in Step 1, for any s ∈ (mk,mk+1) of k = 1, . . . , ν − 1, the maximum of Zn(s) happens at boundaries of

intervals, i.e. {m1, . . . ,mν}. Notice that when s ∈ (mk,mk+1) for k = 0, ν, it reduces to the case of single

change point where Zn(s) reaches its maximum at m1 or mν . In addition,

argmax
s=1,...,n−1

|∆s|∞ ⊂ ∪
j=1,...,p

argmax
s
|∆j(s)| ⊂ {mk, k = 1, . . . , ν}

Therefore, argmaxs=1,...,n−1|∆s|∞ ⊂ {mk, k = 1, . . . , ν} for ν > 1 and p > 1.

Step 3: Characterization of signal size maxk=1,...,ν |∆mk |∞. Suppose p = 1. Let ν > 2 otherwise it re-

duces to single change point case which obeys the lower bound in Lemma (see (2.43) in the proof of Theorem

2.3). Denote L =
∑l
k=1mkδ

(k), R =
∑ν
k=l+1(n−mk)δ(k) for some 1 6 l 6 ν. Then by (2.69),



∆ml = − 1√
n

[√
n−ml

ml
L+

√
ml

n−ml
R

]
︸ ︷︷ ︸

:=A

∆ml+1
= − 1√

n

[√
n−ml+1

ml+1
L+

√
ml+1

n−ml+1
R

]
︸ ︷︷ ︸

:=B

.

Since A and B cannot be 0 at the same time, we will show that (i) when L and R have the same sign, |A|

itself is large and (ii) when L and R have the opposite sign, |A−B| is still large even if signal cancellation

exists. Therefore, max{O(|A|), O(|B|)}) = O(|A − B|) can be bounded below in either case, and so does

maxl=1,...,ν |∆ml |.

First, suppose L and R have the opposite sign. WLOG, let L > 0.

|A−B| =
(√

n−ml

ml
−
√
n−ml+1

ml+1

)
|L|+

(√
ml

n−ml
−
√

ml+1

n−ml+1

)
|R|

=
n(ml+1 −ml)/

√
ml+1ml√

ml+1(n−ml)
√
ml1(n−ml+1)

|L|+
n(ml+1 −ml)/

√
(n−ml+1)(n−ml)√

ml+1(n−ml)
√
ml1(n−ml+1)

|R|

>
ml+1 −ml

2ml+1

n√
ml(n−ml)

|L|+ ml+1 −ml

2(n−ml)

n√
ml+1(n−ml+1)

|R|
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Denote δ = mink=1,...,ν |δ(k)|. Claim that we can find an l such that max{|L|, |R|} > C1Dvδ for some

constant C1. Otherwise, we just need to move l to l + 1 such that L and R change ml+1δ
(l+1) > Dνδ and

(n −ml+1)δ(l+1) > Dνδ, respectively, in opposite direction so that they still have opposite signs. (Move l

to l − 1 if l is the last change point.) Note that max{ml+1−ml
2ml+1

, ml+1−ml
2(n−ml) } > Dν

n . Consequently, we have

|A−B| > C1
D2
νδ√

ml(n−ml)
. Next, suppose L and R have the same sign. We still have max{|L|, |R|} > C2Dvδ

for some constant C2. Otherwise, we move l to l + 1 and it reduces to the case above. Then, |A| >

C2(
√

n−ml
ml
∧
√

ml
n−ml )Dvδ > C2

D2
νδ√

ml(n−ml)
. Therefore, when p = 1, there exists some constant C such that

maxl=1,...,ν |∆ml | > maxl=1,...,ν
CD2

νδ√
nml(n−ml)

.

For the case of multiple dimension p > 1, recall δ̄n = mink=1,...,ν |δ(k)
n |∞. Since for the dimension

h = argmaxj=1,...,p|δ
(l+1)
n,j |, when l moves to l + 1 the terms, Lh and Rh changes in opposite direction with

distances at least Dv|δ(l+1)
h | > Dv δ̄n. Then, max{|L|∞, |R|∞} > C3Dv δ̄n still holds. So based on similar

argument, we can conclude that

max
l=1,...,ν

|∆ml |∞ > max
l=1,...,ν

CD2
ν δ̄n√

nml(n−ml)
.

2.6.8 Additional simulation results
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Figure 2.15: Same setting as in 2.5(b) except α = 0.01.
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Our method Gaussian t6 ctm-Gaussian
|δ|∞ = δ1 I II III I II III I II III

tm = 5/10
0 0.031 0.038 0.036 0.020 0.044 0.016 0.015 0.042 0.027

0.13 0.035 0.043 0.034 0.020 0.044 0.022 0.014 0.047 0.027
0.28 0.098 0.295 0.128 0.042 0.137 0.038 0.026 0.126 0.050
0.44 0.662 0.884 0.677 0.296 0.559 0.279 0.235 0.567 0.280
0.63 0.989 1 0.993 0.831 0.939 0.851 0.797 0.958 0.843
0.84 1 1 1 0.990 1 0.997 0.997 1 0.996

tm = 3/10
0 0.042 0.056 0.034 0.024 0.044 0.023 0.020 0.049 0.018

0.13 0.043 0.060 0.034 0.022 0.047 0.027 0.021 0.047 0.018
0.28 0.087 0.209 0.082 0.03 0.109 0.034 0.033 0.093 0.029
0.44 0.502 0.756 0.513 0.181 0.477 0.192 0.186 0.431 0.187
0.63 0.966 0.996 0.972 0.652 0.919 0.711 0.675 0.890 0.690
0.84 1 1 1 0.981 0.997 0.979 0.977 0.999 0.987
1.08 1 1 1 1 1 0.999 0.999 1 1

tm = 1/10
0 0.039 0.046 0.037 0.023 0.052 0.032 0.018 0.058 0.017

0.13 0.036 0.045 0.035 0.025 0.053 0.033 0.025 0.052 0.016
0.28 0.047 0.070 0.0400 0.024 0.057 0.035 0.025 0.053 0.020
0.44 0.094 0.253 0.091 0.036 0.121 0.049 0.031 0.108 0.032
0.63 0.370 0.645 0.432 0.119 0.344 0.147 0.123 0.310 0.109
0.84 0.861 0.948 0.861 0.426 0.75 0.503 0.418 0.707 0.406
1.08 0.998 1 0.997 0.870 0.967 0.860 0.826 0.953 0.847
1.35 1 1 1 0.991 0.998 0.989 0.988 0.998 0.992

Table 2.9: Power report of our method for sparse alternative where α = 0.05, tm = 5/10, 3/10, 1/10. Here,
n = 500, p = 600 and the boundary removal is 40.
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Bn Gaussian t6 ctm-Gaussian
|δ|∞ = δ1 I II III I II III I II III

tm = 5/10
0 0.053 0.062 0.043 0.070 0.049 0.050 0.061 0.053 0.060

0.13 0.063 0.077 0.055 0.068 0.049 0.051 0.058 0.058 0.071
0.28 0.219 0.418 0.210 0.147 0.219 0.110 0.111 0.210 0.109
0.44 0.821 0.946 0.809 0.502 0.750 0.504 0.433 0.706 0.429
0.84 1 1 1 1 1 1 0.998 1 1

tm = 3/10
0 0.061 0.052 0.053 0.056 0.053 0.061 0.067 0.056 0.056

0.13 0.053 0.064 0.063 0.061 0.055 0.061 0.072 0.059 0.063
0.28 0.110 0.232 0.110 0.081 0.132 0.073 0.076 0.121 0.080
0.44 0.553 0.828 0.561 0.263 0.537 0.257 0.245 0.469 0.257
0.84 1 1 1 0.996 1 0.996 0.987 1 0.988

tm = 1/10
0 0.054 0.073 0.063 0.066 0.060 0.059 0.056 0.057 0.063

0.13 0.062 0.069 0.062 0.070 0.061 0.055 0.049 0.058 0.069
0.44 0.058 0.084 0.061 0.073 0.068 0.065 0.050 0.054 0.071
0.84 0.189 0.520 0.243 0.111 0.246 0.101 0.079 0.229 0.098
1.08 0.684 0.925 0.730 0.264 0.615 0.302 0.210 0.556 0.252
1.35 0.986 1 0.985 0.703 0.940 0.724 0.620 0.903 0.670
1.66 1 1 1 0.99 1 0.986 0.962 0.997 0.968

Table 2.10: Power report of Bn in [65] for sparse alternative where α = 0.05, tm = 5/10, 3/10, 1/10. Here,
n = 500, p = 600 and the boundary removal is 40.

ψ s = 1 s = 40
|δ|∞ tm = 5/10 tm = 3/10 tm = 1/10 tm = 5/10 tm = 3/10 tm = 1/10

sparse H1: Gaussian (I)
0 0.107 0.101 0.116 0.074 0.059 0.701

0.13 0.107 0.105 0.119 0.075 0.062 0.705
0.28 0.126 0.115 0.125 0.096 0.075 0.710
0.44 0.177 0.154 0.136 0.130 0.106 0.720
0.63 0.312 0.248 0.157 0.265 0.215 0.735
0.84 0.625 0.483 0.195 0.604 0.478 0.764
1.08 0.943 0.839 0.307 0.941 0.850 0.800
1.35 1 0.997 0.534 1 0.997 0.843
1.66 1 1 0.846 1 1 0.923

2 1 1 0.992 1 1 0.990
dense H1: Gaussian (I)

0 0.110 0.116 0.120 0.055 0.067 0.074
0.13 0.755 0.608 0.233 0.735 0.573 0.169
0.28 1 1 0.977 1 1 0.973

Table 2.11: Power report of ψ in [43] for both sparse and dense Gaussian alternative where α = 0.05,
tm = 5/10, 3/10, 1/10 and spatial dependence structure (I). Here, n = 500, p = 600.
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Temporal Independent Dependent
Gaussian (I) t6 (II) ctm-Gaussian (III) TS: ctm-Gaussian (III)

|δ|∞ = δ1 θ = 0 θ = 1/2 θ = 0 θ = 1/2 θ = 0 θ = 1/2 θ = 0 θ = 1/2
s = 1, tm = 5/10

0 0.116 0.382 0.167 0.407 0.124 0.431 0.124 0.429
0.13 0.115 0.380 0.164 0.405 0.124 0.430 0.124 0.429
0.28 0.101 0.346 0.118 0.354 0.115 0.422 0.116 0.423
0.44 0.054 0.175 0.067 0.229 0.082 0.350 0.088 0.362
0.63 0.026 0.033 0.037 0.099 0.039 0.178 0.044 0.207
0.84 0.015 0.015 0.020 0.035 0.020 0.054 0.024 0.060
1.35 0.005 0.005 0.008 0.009 0.008 0.010 0.011 0.011
2.00 0.003 0.002 0.004 0.004 0.004 0.004 0.004 0.004

s = 1, tm = 1/10
0 0.416 0.545 0.436 0.552 0.423 0.575 0.416 0.573

0.13 0.416 0.544 0.435 0.550 0.423 0.575 0.416 0.572
0.28 0.416 0.539 0.433 0.539 0.422 0.573 0.416 0.571
0.44 0.413 0.498 0.414 0.488 0.421 0.567 0.414 0.562
0.63 0.394 0.353 0.349 0.350 0.415 0.525 0.410 0.525
0.84 0.318 0.133 0.262 0.187 0.387 0.417 0.388 0.433
1.35 0.081 0.006 0.116 0.032 0.178 0.065 0.193 0.112
2.00 0.039 0.002 0.058 0.005 0.060 0.004 0.062 0.005

s = 40, tm = 5/10
0 0.119 0.280 0.168 0.296 0.124 0.290 0.123 0.286

0.13 0.118 0.279 0.162 0.292 0.124 0.290 0.122 0.285
0.28 0.103 0.245 0.116 0.237 0.115 0.276 0.114 0.272
0.44 0.055 0.126 0.068 0.132 0.077 0.204 0.088 0.215
0.63 0.022 0.033 0.037 0.066 0.035 0.082 0.044 0.090
0.84 0.013 0.017 0.020 0.026 0.019 0.028 0.024 0.034
1.35 0.005 0.006 0.008 0.009 0.008 0.009 0.009 0.010
2.00 0.002 0.002 0.003 0.004 0.004 0.004 0.005 0.004

s = 40, tm = 1/10
0 0.422 0.484 0.434 0.503 0.426 0.505 0.412 0.490

0.13 0.422 0.483 0.433 0.502 0.425 0.505 0.412 0.490
0.28 0.422 0.476 0.430 0.489 0.425 0.503 0.412 0.487
0.44 0.418 0.431 0.409 0.400 0.424 0.483 0.411 0.473
0.63 0.396 0.306 0.355 0.257 0.415 0.407 0.405 0.425
0.84 0.326 0.125 0.268 0.115 0.383 0.270 0.386 0.284
1.35 0.072 0.005 0.116 0.010 0.175 0.030 0.190 0.042
2.00 0.039 0.003 0.057 0.004 0.062 0.005 0.066 0.005

Table 2.12: RMSE of our estimators m̂0 and m̂1/2. Both truncated and non-truncated versions are imple-
mented under tm = 5/10 and tm = 1/10.
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Temporal Independent Dependent
Gaussian (I) t6 (II) ctm-Gaussian (III) TS: ctm-Gaussian (III)

|δ|∞ k = 1 k = 50 k = 1 k = 50 k = 1 k = 50 k = 1 k = 50
tm = 5/10

0 0.166 0.166 0.364 0.364 0.206 0.206 0.190 0.190
0.13 0.164 0.079 0.363 0.340 0.206 0.167 0.189 0.150
0.28 0.139 0.005 0.354 0.251 0.195 0.061 0.182 0.061
0.44 0.080 0.001 0.315 0.132 0.167 0.018 0.159 0.018
0.63 0.034 0.000 0.262 0.061 0.120 0.007 0.123 0.007
0.84 0.018 0.000 0.211 0.027 0.073 0.004 0.076 0.004
1.35 0.006 0.000 0.132 0.008 0.015 0.001 0.021 0.001
2.00 0.003 0.000 0.075 0.003 0.005 0.001 0.006 0.001

tm = 1/10
0 0.425 0.425 0.555 0.555 0.446 0.446 0.447 0.447

0.13 0.424 0.394 0.555 0.544 0.445 0.434 0.446 0.436
0.28 0.420 0.211 0.555 0.504 0.443 0.374 0.444 0.384
0.44 0.405 0.004 0.548 0.424 0.439 0.224 0.442 0.250
0.63 0.351 0.001 0.527 0.309 0.428 0.055 0.434 0.061
0.84 0.255 0.000 0.487 0.197 0.407 0.006 0.418 0.006
1.35 0.031 0.000 0.390 0.047 0.289 0.002 0.334 0.002
2.00 0.003 0.000 0.293 0.006 0.116 0.001 0.146 0.001

Table 2.13: RMSE of estimator in [99].

Temporal Independent Dependent
Gaussian (I) t6 (II) ctm-Gaussian (III) TS: ctm-Gaussian (III)

|δ|∞ k = 1 k = 50 k = 1 k = 50 k = 1 k = 50 k = 1 k = 50
tm = 5/10

0 0.207 0.221 0.246 0.240 0.249 0.243 0.243 0.229
0.13 0.201 0.113 0.246 0.205 0.244 0.210 0.237 0.208
0.28 0.187 0.011 0.172 0.134 0.224 0.086 0.234 0.098
0.44 0.131 0.004 0.107 0.072 0.174 0.017 0.185 0.024
0.63 0.116 0.003 0.072 0.036 0.137 0.008 0.137 0.009
0.84 0.119 0.002 0.061 0.028 0.130 0.006 0.123 0.006
1.35 0.126 0.001 0.066 0.023 0.153 0.003 0.135 0.003

2 0.140 0.001 0.069 0.032 0.152 0.001 0.161 0.001
tm = 1/10

0 0.379 0.381 0.433 0.431 0.440 0.430 0.430 0.419
0.13 0.392 0.316 0.444 0.400 0.436 0.374 0.409 0.416
0.28 0.365 0.099 0.426 0.321 0.415 0.326 0.414 0.314
0.44 0.355 0.005 0.360 0.194 0.405 0.126 0.394 0.159
0.63 0.267 0.002 0.202 0.106 0.348 0.026 0.363 0.017
0.84 0.164 0.001 0.092 0.043 0.272 0.005 0.278 0.005
1.35 0.056 0.000 0.034 0.028 0.105 0.002 0.105 0.002

2 0.040 0.000 0.036 0.023 0.078 0.001 0.061 0.001

Table 2.14: RMSE of estimator in [37].
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Chapter 3

Robust bootstrap change point test
for high-dimensional location
parameter

3.1 Introduction

Change point detection problems are commonly seen in many statistical and scientific areas including func-

tional data analysis [7, 4], time series inspection [8, 62, 105], panel data study [36, 88, 61, 10], with applica-

tions to fields of biomedical engineering [5, 111], genomics [100], financial revenue returns [6, 37, 10] among

many others. Statistical testing and estimation of change points have long history and extensive literature

[41, 8, 59, 6, 11, 72, 71]. This paper studies the problem of change point detection for high-dimensional

distributions (i.e., p � n) from a location family with shift parameter. Let Xi ∼ Fi, i = 1, . . . , n be a

sequence of independent random vectors taking values in Rp. Our goal is to test whether or not there is a

location shift in the distribution functions Fi. Precisely, let F = {Fθ(x) = F (x− θ) : θ ∈ Rp} be a location

family indexed by the shift parameter θ, where F = F0 is the standard distribution in F (F0 is arbitrary).

We consider the following hypothesis testing problem:

H0 : Xi
i.i.d.∼ F versus H1 : X1, . . . , Xm

i.i.d.∼ F and Xm+1, . . . , Xn
i.i.d.∼ Fθ,

for some (unknown) m ∈ {1, . . . , n− 1} and θ 6= 0.

The greatest advantage of this model is the flexibility of F whose mean parameter can be non-existing.

Before highlighting the robustness from it, we shall first illustrate below the intuition of constructing a test

statistic for separating H0 and H1. For brevity, we denote G = Fθ (i.e., G(x) = F (x− θ)) for a fixed θ, and

Yj = Xm+j , j = 1, . . . , n−m. With this notation, we have X1, . . . , Xm that are independent and identically

distributed (i.i.d.) with distribution F and Y1, . . . , Yn−m that are i.i.d. with distribution G such that the

change point detection problem boils down to the two-sample testing problem for the shift parameter θ with

an unknown change point location m. Since m is unknown, we may take all possible ordered pairs in the

whole sample Xi, i = 1, . . . , n, such that the within-sample noise (i.e., in each X and Y samples, separately)

cancels out and the between-sample signal is properly preserved under H1. Note that our change point
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hypothesis on the location family F is the same as the location-shift model:

Xi = θ 1(i > m) + ξi, i = 1, . . . , n, where ξi
i.i.d.∼ F are random vectors in Rp . (3.1)

Viewing θ as the mean-shift, a natural choice for detecting the existence of a change point shift is to consider

the noise cancellations in the empirical mean differences:

Un =
∑

16i<j6n

(Xi −Xj). (3.2)

Under H0, we have E[Un] = 0 so that there is no mean-shift signal contained in Un and the sampling

behavior of Un is purely determined by the random noises ξ1, . . . , ξn. On the other hand, if H1 is true, then

E[Un] = −m(n−m)θ. Thus if the mean difference θ between the two samples is large enough to dominate

the random behavior of Un (due to noise {ξi}ni=1) under H0, then the statistic would be able to distinguish

H0 and H1.

In practice, a main concern for using Un in (3.2) is its robustness. Specifically, the (empirical) mean

functional is not robust in the sense that its influence function is unbounded. Further, in the high-dimensional

setting, robustness is a challenging issue since information contained in the data is rather limited. To address

this problem, we view the shift signal θ as a more general location parameter in the distribution family F

without referring to the means. This simple observation brings a major advantage that change point detection

can be made possible even in cases where the means are undefined (such as the Cauchy distribution). To

achieve the robustness purpose in a nonparametric setting, we consider a general nonlinear form of (3.2) in

the U -statistics framework. Let h : Rp × Rp → Rd be an anti-symmetric kernel, i.e., h(x, y) = −h(y, x) for

all x, y ∈ Rp. We propose the statistic

Tn = Tn(Xn
1 ) = n1/2

(
n

2

)−1 ∑
16i<j6n

h(Xi, Xj) (3.3)

to test for H0 against H1. Clearly, Tn is a (scaled) U -statistic of order two. The anti-symmetry of the kernel

h plays a key role in testing for the change point in terms of noise cancellations. To see this, under H0 we

have E[h(X1, X2)] = 0 and E[Tn] = 0. Observe that

Tn =
2

n1/2(n− 1)

 ∑
16i<j6m

h(Xi, Xj) +

m∑
i=1

n−m∑
j=1

h(Xi, Yj) +
∑

16i<j6n−m

h(Yi, Yj)

 .

Thus if H1 is true, then E[Tn] ≈ 2n−3/2m(n − m)θh, where θh = E[h(X1, Y1)] is the change point signal
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through the kernel h. If θh has a suitable lower bound, then we expect that Tn can separate H0 and H1. For

instance, consider the sign kernel h(x, y) = sign(x − y), where sign(x) is the component-wise sign operator

of x ∈ Rp (i.e., for j = 1, . . . , p, signj(x) = sign(xj) = −1, 0, 1 if xj < 0, xj = 0, xj > 0, respectively). Then,

θh,j = E[sign(X1,j − Y1,j)] = 1− 2P(X1,j 6 Y1,j) = 1− 2P(∆j 6 θj),

where ∆j = ξ1,j − ξm+1,j is a random variable with symmetric distribution. In particular, if F is the

distribution in Rp with independent components such that each component admits a continuous probability

density function φj , j = 1, . . . , p, then under local alternatives (i.e., θ ≈ 0) we have θh,j ≈ −2 φ∗j (0) θj ,

where φ∗j is the convolution of the densities of ξ1,j and −ξm+1,j . Hence, θh and θ have the same magnitude,

implying that signal distortion under the sign kernel is only up to a multiplicative constant.

The mean difference statistic Un in (3.2) is a special case of Tn with the linear kernel h(x1, x2) = x1−x2

and d = p. The sign kernel h(x, y) = sign(x − y) considered above is another important anti-symmetric

and bounded kernel, which is useful if the means are not robust or undefined. Specifically, for the sign

kernel, component-wise median of Tn corresponds to the Hodges-Lehmann estimator for the component-

wise population median of the location difference before and after the change point [58]. In the univariate

case p = d = 1, it is known that the Hodges-Lehmann estimator is a highly robust version of sample mean

difference (with the linear kernel) against heavy-tailed distributions, and it has a much higher asymptotic

relative efficiency 3/π ≈ 95% (with respect to the mean) than the sample median at normality [93]. In

addition, when the change point location m is known, Tn is also equivalent to the classical nonparametric

Mann-Whitney U test statistic (see e.g., Chapter 12 in [91]).

Since Tn is a d-dimensional random vector, we need to aggregate its components to make a decision

rule for hypothesis testing. We construct the critical regions based on the Kolmogorov-Smirnov (i.e., the

`∞-norm) type aggregation of Tn, namely our change point test statistic is

Tn := |Tn|∞ = max
16k6d

|Tnk|. (3.4)

Then H0 is rejected if Tn is larger than a critical value such as the (1 − α) quantile of Tn. In Section 3.2,

we will introduce a (Gaussian) multiplier bootstrap to calibrate the distribution of Tn, and we will establish

its non-asymptotic validity in the high-dimensional setting in Section 3.3.

We point out that our test statistic has comparable computational and statistical properties to the widely

used cumulative sum (CUSUM) procedures in literature. For a classical treatment of the CUSUM (and other

change point) statistics, we refer to [38] as a monograph on the change point analysis. The CUSUM statistics
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are defined as a sequence of (dependent) random vectors in Rp of the form

Zn(s) =

(
s(n− s)

n

)1/2
(

1

s

s∑
i=1

Xi −
1

n− s

n∑
i=s+1

Xi

)
, s = 1, . . . , n− 1. (3.5)

It is obvious that the CUSUM statistics have a sequential nature in that the left and right sample averages are

examined along all possible change point locations, which is necessary to estimate the location m. However,

if the goal is only testing for the existence of a change point, this (local) sequential comparison strategy is

not as efficient as a global test (3.3), both computationally and statistically. Consider d = p, which is the

case for the sign and linear kernels. For a general nonlinear kernel, computational cost is O(n2p) for Tn (and

also for Tn). If the kernel is linear (i.e., h(x, y) = x−y), then the computational cost can be further reduced

to O(np) for Tn effortlessly. Thus we call Tn is the global one-pass Mann-Whitney type test statistic. In

contrast, the computational cost for {Zn(s)}n−1
s=1 is O(n2p) which can reduces to O(np) [66] via dynamic

programming. Statistically, it has been shown in [106, 65] that a boundary removal procedure is needed for

the (bootstrapped) CUSUM change point test to achieve the size validity since the distributions of Zn(s)

are difficult to approximate at the boundary points. On the contrary, the test statistic Tn proposed in

this paper does not remove any boundary points because we are able to approximate the distribution of Tn

based on majority of the data points in the sample X1, . . . , Xn. Thus it is expected that Tn achieves faster

rate of convergence in the error-in-size for the bootstrap calibration. See Remark 13 ahead for a detailed

comparison.

3.1.1 Literature review and our contribution

Single change point inference has been extensively studied in literature such as [38, 51, 60] for univariate or

fixed multivariate setting. Owing to increasing ability to handle large dimensional data, the focus migrates

to a more challenging stage in high dimension that allows p→∞ faster than n. Therefore, signal aggregation

across dimension becomes influential in the designing of statistics and algorithm. For instance, [65, 106, 99]

dealt with sparse change (i.e. mean structure changes in a sparse subset of coordinates), while [10, 61, 43]

considered `2-type aggregation for dense change. To take both cases into account, [43] proposed a scan

test statistic aiming to sparser change coupled with their linear statistic in inference, and [36] adopted

additional weighted CUSUM-type factor along coordinate to make the double-cusum statistic more adaptive

in detection. The detection rate are also investigated in terms of sparsity and signal magnitude as well as

change point location [43, 74, 103]. We show that our result achieves optimal minimax rate, c.f. Remark 15.

For multiple change point detection which is more challenging and essential in real application, we will
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discuss a backward detection (BD) algorithm without introducing external statistics.

Among the change point literature, mean change are widely explored using CUSUM statistics [65, 106,

36, 37], least-square type statistics [10, 14], U-statistics [98] and some other kernel based methods [82, 26, 3].

In practice where error terms are heavy-tailed, Gaussianity assumption is beyond salvation and becomes

too restrictive. This concern especially highlights the potential of robust nonparametric methodology (such

as nonlinear projection) to avoid direct measure on mean or higher moments. Note that, the U-statistic

approach including our method in this paper is conducting “global” characterization (either one-sample or

two-sample) via kernels to have change point signals peak. Such kernel concept is different from kernel

density estimator or kernel distance measure for individual observations. Specifically, [82] proposed CUSUM

variant statistic based on kernel transferred data points; [26] smoothed left and right mean function using

kernel density estimation; [3] applied kernel least-squares criterion to quantify segmentation candidate and

estimate change point locations. Compared to aforementioned papers, our U-statistic approach starts from

a pure testing point-of-view that does not rely on any tuning of bandwidth or threshold.

The rest of this chapter proceeds as follows. The bootstrap calibration for the distribution of Tn is

described in Section 3.2. Main results for size validity and power properties of the bootstrap test are

derived in Section 3.3. Extension to multiple change point scenario are elaborated in Section 3.4. We report

simulation study results in Section 3.5 and real data examples in Section 3.6. All proofs with auxiliary

lemmas are given in Section 3.7.

3.1.2 Notation

For q > 0 and a generic vector x = (x1, . . . , xp)
T ∈ Rp, we denote |x|q = (

∑p
i=1 |xi|q)1/q for the `q-norm of

x and we write |x| = |x|2. For a random variable X, denote ‖X‖q = (E|X|q)1/q. For β > 0, let ψβ(x) =

exp(xβ)− 1 be a function defined on [0,∞) and Lψβ be the collection of all real-valued random variables X

such that E[ψβ(|X|/C)] <∞ for some C > 0. For X ∈ Lψβ , define ‖X‖ψβ = inf{C > 0 : E[ψβ(|X|/C)] 6 1}.

Then, for β ∈ [1,∞), ‖ · ‖ψβ is an Orlicz norm and (Lψβ , ‖ · ‖ψβ ) is a Banach space [70]. For β ∈ (0, 1),

‖ · ‖ψβ is a quasi-norm, i.e., there exists a constant C(β) > 0 such that ‖X +Y ‖ψβ 6 C(β)(‖X‖ψβ + ‖Y ‖ψβ )

holds for all X,Y ∈ Lψβ [1]. Let ρ(X,Y ) = supt∈R |P(X 6 t) − P(Y 6 t)| be the Kolmogorov distance

between two random variables X and Y . We shall use C1, C2, . . . and K1,K2, . . . to denote positive and

finite constants that may have different values. The symbol & (or �,.) denotes greater than (or equal to,

smaller than) some rates with constants omitted and ∨ (or ∧) means the maximum (or minimum) of terms.

Throughout the chapter, we assume d > 2 to simplify some statements and all inference works for d = 1.
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3.2 Bootstrap calibration

To approximate the distribution of Tn, we propose the following bootstrap procedure. Let e1, . . . , en be i.i.d.

N(0, 1) random variables that are independent of Xn
1 . Define the bootstrapped U -statistic and test statistic

as

T ]n = n1/2

(
n

2

)−1 n∑
i=1


n∑

j=i+1

h(Xi, Xj)

 ei and T
]

n := |T ]n|∞ = max
16k6d

|T ]nk|. (3.6)

We reject H0 if Tn > q
T
]
n|Xn1

(1− α), where

q
T
]
n|Xn1

(1− α) = inf
{
t ∈ R : P(T

]

n 6 t | Xn
1 ) > 1− α

}

is the (1−α) quantile of the conditional distribution of T
]

n given Xn
1 . Before presenting the rigorous validity

of our bootstrap test procedure in terms of the size and power in Section 3.3, we shall explain the reason

why it can (asymptotically) separate H0 against H1.

First, suppose H0 is true, i.e., X1, . . . , Xn are i.i.d. with distribution F . Let g(x) = E[h(x,X1)] and

f(x1, x2) = h(x1, x2)− g(x1) + g(x2). Due to the anti-symmetry of h, we have f(x1, x2) = −f(x2, x1). Then

the Hoeffding decomposition of Tn is

Tn = n−1/2
n∑
i=1

2(n− 2i+ 1)

n− 1
g(Xi)︸ ︷︷ ︸

Ln

+n1/2

(
n

2

)−1 ∑
16i<j6n

f(Xi, Xj)︸ ︷︷ ︸
Rn

. (3.7)

Since f is degenerate, the linear part Ln is expected to be a leading term of Tn, and the distribution of Ln

(denote as L(Ln)) can be approximated by its Gaussian analog via matching the first and second moments

[35, 27]. Since E[Ln] = 0 and

Cov(Ln) =
4(n+ 1)

3(n− 1)
Γ ≈ 4

3
Γ with Γ = Cov(g(X1)),

we expect that L(Ln) ≈ L(Z), where Z ∼ N(0, 4Γ/3), for a large sample size n. Once the Gaussian

approximation result for Tn by Z is established, the rest of the work is to compare the distribution of Z and

the conditional distribution of T ]n given Xn
1 , both of which are mean-zero Gaussians. Since Cov(T ]n | Xn

1 ) =

4
n(n−1)2

∑n
i=1

∑n
j=i+1

∑n
k=i+1 h(Xi, Xj)h(Xi, Xk)T , standard concentration inequalities for (one-sample) U -

statistics in [27] yield that Cov(T ]n | Xn
1 ) ≈ 4Γ/3. Thus we expect that L(T ]n | Xn

1 ) ≈ L(Z) ≈ L(Tn), from

which the size validity of the bootstrapped change point test based on T
]

n follows.

Next, suppose H1 is true, i.e., X1, . . . , Xm are i.i.d. with distribution F and Y1, . . . , Yn−m are i.i.d. with
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distribution G such that G(x) = F (x − θ) and Yi = Xi+m, i = 1, . . . , n −m. To study the power property,

the main idea is to consider the two-sample Hoeffding decomposition of Tn that is similar to (3.7). Suppose

h(x+ c, y + c) = h(x, y) is shift-invariant in terms of location parameter. Let θh = E[h(X1, Y1)],

Gh(x) = E[h(x, Y1)]− θh = g(x− θ)− θh, Fh(y) = E[h(X1, y)]− θh = −g(y)− θh,

such that E[Gh(X1)] = E[Fh(Y1)] = 0. Define

f̆(x, y) = h(x, y)−Gh(x)− Fh(y)− θh,

which is degenerate such that E[f̆(X1, Y1)] = E[f̆(X1, y)] = E[f̆(x, Y1)] = 0. Under H1, we may split the

U -statistic sum as

∑
16i<j6n

h(Xi, Xj) =
∑

16i<j6m
m+16i<j6n

h(Xi, Xj) +
∑

16i6m
16j6n−m

h(Xi, Yj),

where the first sum on the r.h.s. of the above equation has mean zero (again, due to the anti-symmetry of h).

Thus to study the power of Tn (and its bootstrapped version T
]

n), it suffices to analyze the second sum on

the r.h.s. of the last display above, which is a two-sample U -statistic Vn that admits the following Hoeffding

decomposition:

Vn =

m∑
i=1

n−m∑
j=1

h(Xi, Yj) = m(n−m)θh + (n−m)

m∑
i=1

Gh(Xi) +m

n−m∑
j=1

Fh(Yj) +

m∑
i=1

n−m∑
j=1

f̆(Xi, Yj). (3.8)

Since the last three sums on the r.h.s. of (3.8) have mean zero, the power of the proposed test is determined

by the magnitude of θh and the sampling distributions of other terms involving no θh. For the latter, all of

those distributions can be well estimated and controlled as in H0 since they do not contain the change point

signal. Thus if |θh|∞ obeys a minimal signal size requirement, then the power of T
]

n would tend to one.

Remark 12. It is interesting to note that our bootstrapped U -statistic T ]n in (3.6) is closely related to

the jackknife multiplier bootstrap (JMB) proposed in [27] for high-dimensional U -statistics and in [28] for

infinite-dimensional U -processes with symmetric kernels. In both settings, the (unobserved) Hájek projection

process g(·) is estimated by the jackknife procedure and a multiplier bootstrap is applied to the jackknife

estimated process. In our change point detection context, since the kernel is anti-symmetric, averaging the

empirical Hájek process by jackknife would simply be an estimate of zero. Thus we may only use half (e.g.,

a triangular array index subset i < j) of the JMB to estimate g(·). In view of this connection, we call our
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bootstrap method is a JMB tailored to change point detection.

3.3 Theoretical properties

Let X,X ′ ∈ Rp be i.i.d. random vectors with distribution F . Recall that g(x) = E[h(x,X)] and f(x1, x2) =

h(x1, x2) − g(x1) + g(x2) in the Hoeffding decomposition (3.7). Then E[g(X)] = 0 and E[f(x1, X
′)] =

E[f(X,x2)] = 0 for all x1, x2 ∈ Rp (i.e., f is degenerate). Denote Γ = Cov(g(X)) = E[g(X)T g(X)]. In

this section, we will characterize theoretical properties through d (the dimension of h) and θh (the expected

mean change of h(X,X + θ)) rather than p (the original dimension of data) or θ (the original location shift

parameter) since the whole procedure is constructed on top of h(X,X ′).

3.3.1 Size validity

We first establish the validity of the bootstrap approximation to the distribution of Tn under H0. Let b > 0

be a constant and Dn > 1 which is allowed to increase with n. We make the following assumptions.

(A1) Egj(X)2 > b2 for all j = 1, . . . , d.

(A2) E|hj(X,X ′)|2+k 6 Dk
n for all j = 1, . . . , d and k = 1, 2.

(A3) ‖hj(X,X ′)‖ψ1 6 Dn for all j = 1, . . . , d.

Condition (A1) is a non-degeneracy requirement for the kernel h. Without (A1), bootstrap may approximate

constant observation through a random process so that our method is not valid. Condition (A2) and (A3)

impose mild moment conditions on the kernel h coupled with the distribution F . In our high-dimensional

setting, we allow both p and d to increase with n.

Theorem 3.1 (Size validity of bootstrap test under H0). Suppose H0 is true and (A1)-(A3) hold. Let

γ ∈ (0, e−1) such that log(1/γ) 6 K log(nd) for some constant K > 0. Then there exists a constant

C := C(b,K) depending only on b and K such that

ρ(Tn, T
]

n | Xn
1 ) := sup

t∈R

∣∣∣P(Tn 6 t)− P(T
]

n 6 t | Xn
1 )
∣∣∣ 6 C$n (3.9)

holds with probability at least 1− γ, where

$n =

{
D2
n log7(nd)

n

}1/6

. (3.10)
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Consequently, we have

sup
α∈(0,1)

∣∣∣P(Tn 6 q
T
]
n|Xn1

(α))− α
∣∣∣ 6 C$n + γ. (3.11)

In particular, if log d=o(n1/7), then P(Tn6qT ]n|Xn1
(α))→α uniformly in α∈(0,1) as n→∞.

Theorem 3.1 constructs non-asymptotic bootstrap validity in theory and guarantees that the α-th quantile

of bootstrapped statistic T
]

n|Xn
1 is always close to the α-th quantile of test statistic Tn. Moreover, the error

bound is uniform over α ∈ (0, 1). The technique extend the Gaussian approximation theory for U-statistics

in [27], which focus on symmetric kernels.

Remark 13 (Comparisons with the CUSUM-based statistics). [65] and [106] propose CUSUM-based boot-

strap tests that require the removal of boundary points for detecting change points in high-dimensional mean

vectors. Specifically, for the CUSUM statistics in (2.4) considered in [106], the test statistic is of the form

Sn = maxs6s6n−s |Zn(s)|∞ for some boundary removal parameter s ∈ [1, n/2]. Accordingly, the Gaussian

multiplier bootstrap version of Zn(s) is defined as:

Z]n(s) =

(
n− s
ns

)1/2 s∑
i=1

ei(Xi −X
−
s )−

(
s

n(n− s)

)1/2 n∑
i=s+1

ei(Xi −X
+

s ),

where X
−
s = s−1

∑s
i=1Xi and X

+

s = (n−s)−1
∑n
i=s+1Xi are the left and right sample averages at s, respec-

tively. Z]n(s) sequentially inspects the two-sample distributions before and after all possible change point

locations in the interval [s, n− s]. Then for the special case of linear kernel h(x, y) = x− y and distribution

F satisfying the conditions (A1), (A2), and (A3), the rate of convergence for S
]

n := maxs6s6n−s |Z]n(s)|∞

shown in [106] obeys

ρ(Sn, S
]

n | Xn
1 ) 6 C

{
D2
n log7(nd)

s

}1/6

with probability at least 1− γ. Comparing the last display with the rate of convergence for ρ(Tn, T
]

n | Xn
1 )

in (3.9) and (3.10), we see that the JMB method proposed here has better statistical properties than

the Gaussian multiplier bootstrap T
]

n without removing any boundary points in computing Tn and T
]

n.

Consequently this will reduce the error-in-size (3.11) for our bootstrap calibration T
]

n. Empirical evidence

for our algorithm with smaller error-in-size can be found in Section 3.5. The main reason for the improved

rate is due to the fact that we can approximate the distribution of Tn based on the majority of the data

points in the entire sample X1, . . . , Xn. In addition, the proposed change point detector Tn and its JMB

calibration T
]

n can be viewed as a nonlinear and one-pass version of the CUSUM statistics.
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3.3.2 Power analysis

Next, we analyze the power of proposed testing underH1 in terms of the change point signal θh = E[h(X,X ′+

θ)] and its location m. In our U -statistic framework, the test implicitly depends on θ through θh, which the

signal strength characterization will relate to. As we have discussed earlier, the signal magnitudes between

θ and θh can be preserved for the robust sign kernel. Under H1, we assume the following conditions.

(B1) h is shift-invariant : h(x+ c, y + c) = h(x, y).

(B2) E|hj(X,X ′ + θ)− E[hj(X,X
′ + θ)]|2+` 6 D`

n for all j = 1, · · · , d and ` = 1, 2.

(B3) ||hj(X,X ′ + θ)− E[hj(X,X
′ + θ)]||ψ1 6 Dn for all j = 1, · · · , d.

Condition (B1) is a natural requirement since the within-sample noise cancellation by h should be invariant

under data translation in the location-shift model (3.1). Condition (B2) and (B3) are in parallel with

Condition (A2) and (A3) in the sense that they quantify the moment and tail behaviors of the centered

version of the kernel h (w.r.t. the distribution F ). In particular, Condition (B2) and (B3) separate the

location-shift signal from the mean-zero noise, and if θ = 0, then Condition (B2) and (B3) reduce Condition

(A2) and (A3). Our next theorem characterizes the minimal signal strength for detecting the change point

under the alternative hypothesis H1.

Theorem 3.2 (Power of bootstrap test under H1). Suppose H1 is true and (B1)-(B3) hold in addition to

(A1)-(A3). Let ζ ∈ (0, e−1) such that log(1/ζ) 6 K log(nd) for some constant K > 0. Suppose m∧(n−m) >

K ′ log5/2(nd) for some large enough K ′ > 0. If

m(n−m)|θh|∞ > K0Dnn
3/2 log1/2(nd/α) + C1(b)n3/2 log1/2(ζ−1) log1/2(d), (3.12)

for some constants K0 and C1(b), then P(Tn > q
T
]
n|Xn1

(1− α)) > 1− ζ − C2(b)$n.

Theorem 3.2 provides lower bound of signal strength that is related to change point location m, size level

α as well as sample size n and kernel dimension d. Markedly, our theory derive the tail probability control

on the maximum of two-sample order-two U-statistics.

Remark 14 (Interpretation of Theorem 3.2). Note the first term on r.h.s. of (3.12) reflects the Type I error

of the bootstrap test (coming from α and $n in Theorem 3.1), while the second term reflects the connection

to the Type II error under H1 through ζ. If the location shift happens in the middle, i.e., m � n, then

m(n−m) � n2. In this case, the signal strength has to obey |θh|∞ & Dnn
−1/2 log1/2(nd/α), which matches

the power result for the bootstrap test based on the CUSUM statistics in [106] (cf. Theorem 3.3 therein).
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If the location shift occurs at the boundary, for instance m ∧ (n−m) � nβ for β < 1/2, then the signal has

to be |θh|∞ & n1/2−β which diverges to infinity. Thus under our framework detection is possible for local

alternative when the change point location satisfies m ∧ (n−m) & Dnn
1/2 log1/2(nd).

Remark 15 (Rate optimality for sparse alternative). In [74, Theorem 1], the authors derive the minimax

rate of detection boundary for single change point case where F is p-dimensional Gaussian distribution with

independent entries. Suppose the location shift only occurs in the first k components with the same size of

ρ > 0, i.e.

θ = (ρ, . . . , ρ︸ ︷︷ ︸
k times

, 0, . . . , 0)>.

For sparse regime when s = |θ|0 <
√
p log log(8n), let |θh|22 ≈ |θ|22 = kρ2 under local alternative, then their

minimax result reads as

kρ2(m ∧ n−m) &

(
k log{ep log log(8n)

k2
} ∨ log log(8n)

)
,

which indicates ρ & (m ∧ n−m)−1/2 up to a logarithm factor. Note that m(n−m) � n(m ∧ n−m) since

(m ∨ n−m) is between [n/2, n], so our (3.12) in Theorem 3.2 provides the lower bound

ρ & C(Dn, b, α)(m ∧ n−m)−1n1/2 log1/2(nd).

If (m∧n−m) is bounded away from boundaries, i.e. m � n−m � n, then our result is minimax optimal.

3.4 Extension to multiple change points scenario

3.4.1 Direct extension to multiple change points testing

Recall Xi ∼ Fi, i = 1, . . . , n as a sequence of independent random vectors taking values in Rp. Generally,

suppose there are ν change points m0 = 0 < m1 < · · · < mν < mν+1 = n such that

Fmk+1(x) = · · · = Fmk+1
(x) = F (x− θ(k)) and Fmk 6= Fmk+1

for k = 0, . . . , ν.

Without loss of generality, we can assume θ(0) = 0. Consider the alternative hypothesis with multiple change

points

H
′

1 : θ(k) 6= θ(k+1) for some mk, k = 0, . . . , ν and ν > 1. (3.13)
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Denote Xi = ξi + θ(k) and due to shift-invariant property (B1) we have

δ(k,k′) = Eh(Xi, Xj) = Eh(ξi, ξj + (θ(k′) − θ(k))) for mk < i 6 mk+1,mk′ < j 6 mk′+1.

Let si = mi+1 −mi be the size of data segment that corresponds to the i-th location shift. Then,

E

 ∑
16i<j6n

h(Xi, Xj)

 =
∑

06k<k′6ν

sksk′δ
(k,k′) =: ∆̃, (3.14)

where the standardized signal strength is |E[Tn]|∞ = n1/2
(
n
2

)−1|∆̃|∞. Under the multiple alternative, if

signal cancellation does not exist, i.e. |∆̃|∞ is away from 0, then we can directly extend the theory as below.

Lemma 3.3 (Power of bootstrap test under H
′

1). Suppose H
′

1 is true and (B1)-(B3) hold in addition to

(A1)-(A3). Let ζ ∈ (0, e−1) such that log(1/ζ) 6 K log(ν2nd) for some constant K > 0. Suppose ν is a

constant. If

|∆̃|∞ > K0ν
2Dnn

3/2 log1/2(nd/α) + C1(b)n3/2 log1/2(ζ−1) log1/2(d) + φ, (3.15)

where

φ = K ′0

{
n3/4 log3/4(nd/α) max

k<k′
(sksk′)

1/4|δ(k,k′)|∞ + n1/2 log1/2(nd/α)
∑
k<k′

(sksk′)
1/2|δ(k,k′)|∞

}
,

then P(Tn > q
T
]
n|Xn1

(1− α)) > 1− ζ − C2(b)$n for some constants K0,K
′
0 and C1(b), C2(b).

Remark 16 (Explanation on φ and connection to single change point case). Compared to (3.12) in Theo-

rem 3.2, there is an additional content φ in (3.15). It comes from controlling Cov(T ]n | Xn
1 ) under the alter-

native hypothesis. Consider the special case of single change point where ν = 1 in (3.13), we may assume

m = s0 < s1 = n−m. Then φ � (m1/4n log3/4(nd)+m1/2n log1/2(nd))|δ(0,1)|∞ . m(n−m)|δ(0,1)|∞ = |∆̃|∞

for m & log5/2(nd), i.e., φ is dominated by the l.h.s. of (3.15). Then our result under H
′

1 reads the same as

(3.12).

The l.h.s. of (3.15) is the overall signal strength which does not directly depend on minimum sep-

aration of change points m = min06k6ν sk or signal strength like δ̄ = max06k<k′6ν |δ(k,k′)|∞ or δ̄
′

=

min06k<ν |δ(k,k+1)|∞ that is usually assumed under CUSUM-based approach [36, 37, 106]. Taking (3.5) for

instance, our framework does not screen out any statistic by visiting each location i = 1, . . . , n− 1. There-

fore, we allow the product of sksk′δ
(k,k′) dominates the overall change ∆̃ even if sk or δ(k,k′) is fairly small.

However, it is inconvenient that signal cancellation in (3.14) cannot be characterized by m or δ̄. Another
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drawback is that ∆̃ = 0 can happen even if m � O(n) and δ̄ is large. This issue will be discussed in the next

section. Before that, we discuss two special cases derived from Lemma 3.3 based on m and δ̄ to make the

lemma more informative and instructional. Besides, we can avoid |δ(k,k′)|∞ being on both sides of (3.15).

1. Suppose δ̄ is upper bounded, for example h is the bounded sign kernel. We have sk < n, which

leads to max06k<k′6ν(sksk′)
1/4 6 n1/2 and

∑
k<k′(sksk′)

1/2 6 ν2n. Since n & log7(nd), so φ .

ν2n3/2 log1/2(nd)δ̄, which is nearly the same rate as the first part on r.h.s. of (3.15). Therefore, φ can

be dropped.

2. Suppose {|δ(k,k′)|∞ : 0 6 k < k′ 6 ν} are at the same magnitude and |∆̃|∞ is dominated by

sksk′ |δ(k,k′)|∞ & m2δ̄ for some pair of (k, k′). Then a sufficient condition to control Type II er-

ror is to have m2δ̄ greater than the upper bound of φ, namely n3/2 log1/2(nd)δ̄. So we only need

m & n3/4 log1/4(nd). This is weaker than the condition in [36, (B1)] which requires m & n6/7. One

example of such assumption is the setup in [65] that each dimension has at most one change.

In summary, we have the following corollary.

Corollary 3.4. Suppose the conditions in Lemma 3.3 are satisfied.

(i) If δ̄ = max06k<k′6ν |δ(k,k′)|∞ is bounded, then P(Tn > q
T
]
n|Xn1

(1− α)) > 1− ζ − C2(b)$n when

|∆̃|∞ = |
∑
k<k′

sksk′δ
(k,k′)|∞ > K0ν

2Dnn
3/2 log1/2(nd/α) + C1(b)n3/2 log1/2(ζ−1) log1/2(d).

(ii) If all |δ(k,k′)|∞ are at the same rate and |∆̃|∞ > K1m
2δ̄, then φ in (3.15) can be dropped when

m = min
06k6ν

sk > K2n
3/4 log1/4(nd/α).

Consequently, if signals are almost evenly spread (i.e. m � n) and |δ(k,k′)|∞ is upper bounded, then P(Tn >

q
T
]
n|Xn1

(1− α)) > 1− ζ − C2(b)$n when

|
∑
k<k′

δ(k,k′)|∞ > K0ν
2Dnn

−1/2 log1/2(nd/α) + C1(b)n−1/2 log1/2(ζ−1) log1/2(d).

In Remark 14, we have shown that local alternative H1 is detectable when m & n1/2 log1/2(nd/α).

Corollary 3.4 (ii) has a stronger requirement due to extra cost from handling the possible cancellation in

analyzing the general case of multiple change points. If there is only one change point, then the interpretation

of rates in Lemma 3.3 can be found in Remark 16. A real application for our global test lies in the special

case of monotone signals that have order structures θ1 6 · · · 6 θν [78].
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3.4.2 Modification to block testing

The direct extension of testing H0 against H
′

1 depends on |∆̃|∞, which can be 0 even if each |δ(k,k′)|∞ are

fairly large. The global test will not help under severe signal cancellation. One solution is to localize the

test such that the problem can convert to single change point scenario.

Consider to perform a block testing in the following way. Divide the sample into B blocks of size M ( n =

BM for brevity) where M 6 2m. Then each block contains at most 1 change point. We can apply the original

test to the (stacked) block-vector data Z1, . . . , ZM ∈ RBp, where Zi = vec(Xi, XM+i, · · · , X(B−1)M+i). Let

hZ : RBp × RBp → RBd be the block version extension of h:

hZ(Zi, Zj) = (h(Xi, Xj)
>, · · · , h(X(B−1)M+i, X(B−1)M+j)

>)>.

Note that there is no signal cancellation issue. Modified theory of power will depend on signal strength as

below.

Corollary 3.5. Denote mZ
k = (mk mod M). Suppose the conditions in Lemma 3.3 hold. If

max
06k6ν

mZ
k (M −mZ

k )|δ(k,k′)|∞ > K0ν
2DnM

3/2 log1/2(nd/α) + C(b)M3/2 log1/2(ζ−1) log1/2(d),

then P(Tn > q
T
]
n|Xn1

(1− α)) > 1− ζ − C2(b)$n for some constants K0 and C1(b), C2(b).

Note that the rate now depends on M rather than n (except for logarithm factors). The block test

sacrifices sample size to gain the single change-point structure. In practice, the block parameter M (or

equivalently B) need to be selected carefully since power depends on the relevant locations of {mZ
k }νk=0.

One solution is to use M = 2n1/2 log1/2(nd) that is discussed in Remark 14 or M = 2n3/4 log1/4(nd) that is

from Corollary 3.4 (ii).

3.4.3 Discussion on binary segmentation in change points estimation

To deal with multiple change points, binary segmentation (BS) is conceptually straightforward [36, 37, 106].

The main idea is to recursively estimate change points by screening sub-segments before and after each

estimated location. However, such process starts from a “global” detection that may miss change points under

unfavorable configuration of signal cancellation. To improve BS, [45] proposed wild binary segmentation

(WBS) that randomly draw intervals to localize searching for change points. Recently, it has been widely

adopted [99, 98] owing to its flexibility and computational efficiency. However, we will not be able to apply

BS or WBS based approaches because there is no estimator in our framework so far.
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A reasonable solution is to incorporate an external estimator. For example, consider the U-statistics

T (s) =
∑s
i=1

∑n
j=s+1 h(Xi, Xj), s = 1, . . . , n − 1 where h is the anti-symmetric kernel used in (3.3). It can

be shown that for each segment mk 6 s− 1 < s 6 mk+1

ET (s)− ET (s− 1) =

n∑
j=mk+1+1

Eh(Xs, Xj)−
mk∑
i=1

Eh(Xi, Xs) = const.

In other word, within each segment (mk,mk+1], ETl(s) is monotone (l = 1, . . . , p). So max16s6n−1 |ET (s)|∞

is always attained at one change point. Therefore, the estimator

m̂ = argmax16s6n−1|T (s)|∞

can play a role in BS type approach. Similar ideas are discussed in [84, 49, 48, 18] as applications using

U-statistics for estimation of change points. Though it is fascinating to investigate the consistency of a

BS algorithm that combines estimation using m̂ and our bootstrapping test using Tn, the focus and main

contribution of this paper is to perform a test without visiting each point. So we leave this algorithm as an

open question for future analysis.

3.4.4 Backward detection approach for change points estimation

As shown in aforementioned forward-searching solutions, the drawbacks of BS include cancellation of signals

and requirement of change point estimators. Instead of repeatedly splitting intervals after each detection of

change point, we can reversely merge consecutive segments in a backward detection way [80, Section 3.2.2].

Then, our test can work as a stopping rule.

Precisely, denote the initial partition of data segments as b
(0)
0 = 0 < b

(0)
1 < b

(0)
2 < · · · < b

(0)
ν0−1 < n = b

(0)
ν0

and the corresponding data blocks as B(0) = {B(0)
1 , B

(0)
2 , · · · , B(0)

ν0 }, where B
(0)
i = {X

b
(0)
i−1+1

, . . . , X
b
(0)
i
}. For

each pair of consecutive blocks {B(0)
i , B

(0)
i+1}, i = 1, . . . , νk − 1, we can compute a Dissimilarity Index based

on Tn using truncated data sequence, i.e.

DIi = |Tn(B
(0)
i ∪B

(0)
i+1)|∞ = max

16k6d

∣∣∣∣∣∣∣(b(0)
i+1 − b

(0)
i−1)1/2

(
b
(0)
i+1 − b

(0)
i−1

2

)−1 ∑
b
(0)
i−1+16i<j6b(0)i+1

hk(Xi, Xj)

∣∣∣∣∣∣∣ . (3.16)

Since each component of Tn is the standardized Hodges-Lehmann type estimator of location shift in each

dimension, large DIi indicates strong dissimilarity between B
(0)
i and B

(0)
i+1. Therefore, we can pick the pair

of data blocks with the smallest DI and perform our bootstrapped test to decide whether to merge them. If
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the test fails to reject the null hypothesis of no change point, we merge the two blocks into one. Otherwise,

we move to test the next pair of data blocks with the second smallest DI. The process will continue until

no blocks can be merged. The Backward Detection (BD) algorithm is summarized in Algorithm 2.

Algorithm 2 Backward Detection: BD(B(k))

1: Start from data blocks as B(k) = {B(k)
1 , B

(k)
2 , · · · , B(k)

νk }
2: Compute the Dissimilarity Index DIi = Tn(B

(k)
i , B

(k)
i+1) as in (3.16) for i = 1, . . . , νk − 1

3: Let i∗ = argminDIi.

4: if our bootstrap test rejects the null for the segment [b
(k)
i∗−1, b

(k)
i∗+1] then

5: Repeat the test for i∗ referring to the next smallest DIi until all pairs are examined
6: else
7: Update B

(k+1)
i = B

(k)
i for i < i∗

8: Merge B
(k)
i∗ , B

(k)
i∗+1 into one block B

(k+1)
i∗ = B

(k)
i∗ ∪B

(k)
i∗+1

9: Set B
(k+1)
i = B

(k)
i+1 for i > i∗

10: Perform BD(B(k+1))
11: end if
12: return Estimated blocks B and corresponding segmentation m̂1, . . . , m̂ν̂

Compared to forward detection, BD is able to detect short sequence. Hence, the Backward Detection

algorithm will be more powerful compared to the direct extension or the block testing at the beginning

of this section. There is no worry on signal cancellation issue. Besides, it can identify change points

without introducing new estimators or statistics. However, there is a risk of Type I error inflation since BD

recursively performs testing procedure. Let b
(0)
i = iM, i = 1, . . . , bn/Mc, where bn/Mc is the largest integer

not exceeding n/M . Then small M can cause over rejection, while large M may affect estimation accuracy

and bring signal cancellation issue back. We should tune the initial partition size M carefully. To the best

of our knowledge, there is no theoretical result on the consistency of backward detection in change point

estimation. For testing purpose, we can take M as discussed in Section 3.4.2. Empirical performance are

investigated in simulation and real data application.

3.5 Simulation study

In this section, we first report simulation results of our method in size approximation and power performance

under single change point model. Independent random vectors are generated according to the location-shift

model (3.1). Comparison with other methods follows. In the end, we evaluate the global test of direct

extension and the Backward Detection of estimation for multiple change points.
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3.5.1 Simulation setup

We generate i.i.d. ξi from the following distributions.

1. Multivariate Gaussian distribution: ξi ∼ N(0, V ).

2. Multivariate elliptical t-distribution with degree of freedom ν (ν > 2): ξi ∼ tν(V ) with the

probability density function [79, Chapter 1]

f(x; ν, V ) =
Γ(ν + p)/2

Γ(ν/2)(νπ)p/2 det(V )1/2

(
1 +

x>V −1x

ν

)−(ν+p)/2

.

The covariance matrix of ξi is Σ = ν
ν−2V . In our simulation, we use ν = 6.

3. Contaminated Gaussian (i.e., Gaussian mixture model): ξi ∼ ctm-G(ε, ν, V ) = (1 − ε)N(0, V ) +

εN(0, ν2V ) with the probability density function

f(x; ε, ν, V ) =
1− ε

(2π)p/2 det(V )1/2
exp

(
−x
>V −1x

2

)
+

ε

(2πν2)p/2 det(V )1/2
exp

(
−x
>V −1x

2ν2

)
.

The covariance matrix of ξi is Σ = [(1− ε) + εν2]V . We set ε = 0.2 and ν = 2.

4. Scale transformation of Cauchy distribution: ξi = V 1/2ηi, where ηi = (ηi1, . . . , ηip)
T and ηij are

i.i.d. standard (univariate) Cauchy distribution.

For each distribution, we consider three spatial dependence structures of V .

(I) Independent: V = Idp, where Idp is the p× p identity matrix.

(II) Strongly dependent: V = 0.8J + 0.2Idp, where J is the p× p matrix of all ones.

(III)Moderately dependent: Vij = 0.8|i−j|, i, j = 1, . . . , p.

In all setups, B = 200 bootstrap samples are drawn for each testing procedure and all results are averaged

on 500 simulations. We fix the sample size n = 500 and dimension p = 600 for single change point

scenario and focus on the performance of two kernels: the linear kernel h(x, y) = x− y and the sign kernel

h(x, y) = sign(x− y).

3.5.2 Size approximation

Let R̂(α) be the proportion of empirically rejected null hypothesis at significance level α ∈ (0, 1). There

are several observations we can draw from Table 3.1, which shows the empirical uniform error-in-size,

supα∈(0,1) |R̂(α)−α|. First, the dependence structure of V does not influence the errors remarkably. Second,
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for Gaussian, t6 and contaminated Gaussian (ctm-G) distributions, the two kernels have very similar errors

in size. For the Cauchy distribution which is only applicable for the sign kernel, error-in-size is comparable

with the other three distribution settings. Therefore, we conclude that under H0, the sign kernel gains

robustness without losing much accuracy. Three example curves are displayed additional in Figure 3.1 to

help visualizing the size approximation.

supα∈(0,1) |R̂(α)− α| linear kernel sign kernel
Gaussian t6 ctm-G Gaussian t6 ctm-G Cauchy

I V = Idp 0.034 0.086 0.040 0.026 0.066 0.032 0.028
II V = 0.8J + 0.2Idp 0.054 0.020 0.058 0.064 0.040 0.050 0.060
III Vij = 0.8|i−j| 0.026 0.048 0.040 0.040 0.036 0.060 0.058

Table 3.1: Uniform error-in-size under H0.
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Figure 3.1: Selected setups for comparing R̂(α) along with α. See headlines for corresponding distribution
and kernel.

We also compare our test with the linear kernel to the CUSUM counterpart in [106, BABS] under the same

setting with the boundary removal parameter as s = 40. Table 3.2 displays corresponding simulation results.

By comparing it to Table 3.1, we observe that the CUSUM approach suffers from greater size distortion as

it has larger uniform errors in general. When we focus on the maximum error within the interval α ∈ (0, 0.1]

(that are common choices in real applications), our linear kernel based algorithm still outperforms. In

addition, our test demands no more computational costs and it enjoys flexibility of no tuning parameter.

supα∈(0,1) |R̂(α)− α| supα∈(0,0.1] |R̂(α)− α|
CUSUM approach CUSUM approach linear kernel

Gaussian t6 ctm-G Gaussian t6 ctm-G Gaussian t6 ctm-G
I 0.072 0.122 0.096 0.040 0.036 0.064 0.012 0.010 0.020
II 0.066 0.044 0.048 0.026 0.014 0.024 0.008 0.014 0.012
III 0.074 0.092 0.066 0.022 0.038 0.048 0.020 0.018 0.012

Table 3.2: Error-in-size supα |R̂(α)− α| for α ∈ (0, 1) and α ∈ (0, 0.1].
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3.5.3 Power of the bootstrap test

Under H1, the signal vector is chosen as θ = (θ1, 0, . . . , 0)T such that θ1 = |θ|∞. We vary the change point

location m = 50, 150, 250. Figure 3.2 displays the power curves for different kernels, change point location m

and dependence structure V . The left panel investigates kernel and location impact. Change point at center

m = n/2 = 250 (solid curves) is easier to detect than that of m = n/10 = 50 at boundary (dashed curves)

whichever kernel is selected. For standard Gaussian distribution, the linear kernel has greater power than

the sign kernel when the change occurs at boundary point m = 50, but the relation reverse when m = 250.

The middle panel uses linear kernel as an example to illustrate the observation that the dependence structure

V does not significantly influence the power, though our `∞-type test statistic has advantage in the strong

dependence case. The right panel displays the power of the sign kernel for Cauchy distributed data to

highlight its robustness to location parameter θ and the impact from change point position m. Regarding

the exact power values, please refer to Table 3.9 (linear kernel) and 3.10 (sign kernel) in Section 3.7.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Signal size

P
ow

er

● ●

●

●

●
● ● ● ● ●

● ● ● ●
●

●

●

●

●

●

●

●

sign kernel (m =250)
linear kernel (m =250)
sign kernel (m =50)
linear kernel (m =50)

Gaussian distribution 
 V = I

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Signal size

P
ow

er

● ●

●

●

●

● ● ● ● ●

●

Cov structure: V=I
Cov structure: V=II
Cov structure: V=III

T−6 distribution 
 h(x,y) = x−y, m=250

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Signal size

P
ow

er

● ● ●
●

●

●

●

●

●

●

●
●

●

●

● ● ● ● ● ●

● ●

●

●
● ● ● ● ● ●

●

●

●

location m = 50
location m = 150
location m = 250

Cauchy distribution 
 h(x,y) = sign(x−y), V = I

Figure 3.2: Selected setups for comparing power curves. See headlines and legends for corresponding distri-
bution, kernel, covariance structures and change point location m.

3.5.4 Comparison with other methods

We compare our U-statistic approach to other competing algorithms in change point literature. The linear

and sign kernels of our approach are used. All of the four competitors, namely [106, BABS], [65, Jirak],

[37, SBS] and [99, Inspect], are based on CUSUM statistics. Among them, BABS and Jirak are `∞-type

bootstrap test for single change point using different weights on (s(n−s)/s) in (3.5), the latter of which needs

cross-sectional variance estimation on each dimension and it is sensitive to mean shift near the center of data

sequence. The last two competitors target on multiple change point estimation where SBS is thresholdded

`1-type estimator and Inspect is projection based. We adopt their single change point version function in

R packages and convert them to tests using their default threshold computing functions. In our simulation,
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α = 0.05,m = 150 are fixed and we set boundary removal as 40 for BABS, Jirak and SBS.

Table 3.3 compares the power of different tests when the signal θ1 is growing. It is clear that SBS and

Inspect are not suitable in our setting since the location shift parameter is extremely sparse. When the

data generating mechanism is not standard multivariate Gaussian (i.e. not Gaussian-I in the table), these

two algorithms trigger excessive false alarms when θ = 0 and do not return monotone powers as θ increase.

The other two competitors BABS and Jirak behave similarly and return slightly higher powers than ours in

general. Note that these two approaches need to pick boundary removal parameter, which can harm powers

if it is too large to include true m in the working interval. The contrasts between linear and sign kernel

have been discussed in the previous part. Therefore, Table 3.3 indicates that our method, which enjoys

tuning-free and intermediate-estimation-free properties, is competent in empirical studies.

For fair comparison, we do not use Cauchy distribution since all methods except for our sign kernel one

will fail when there is no well-defined mean parameter in the heavy tailed distribution. Unreported results

show that SBS and Inspect perform better when the mean change is denser. We also remark that the Double

Cusum Binary Segmentation [36, DCBS] cannot detect any change point under our setting when |θ|∞ 6 2

because the setup is an extremely sparse case, so the table does not include it.

|θ|∞
Gaussian-I Gaussian-II

linear sign BABS Jirak SBS Inspect linear sign BABS Jirak SBS Inspect

0 0.030 0.049 0.042 0.061 0.764 0.020 0.042 0.037 0.056 0.052 0.092 0.833
0.28 0.088 0.070 0.087 0.110 0.836 0.021 0.216 0.154 0.209 0.232 0.264 0.724
0.44 0.414 0.342 0.502 0.553 0.928 0.006 0.738 0.619 0.756 0.828 0.744 0.458
0.63 0.890 0.830 0.966 0.967 0.976 0.001 0.996 0.982 0.996 0.999 0.926 0.287
0.84 0.998 0.992 1 1 0.966 0.003 1 1 1 1 0.906 0.205
1.08 1 1 1 1 0.972 0.093 1 1 1 1 0.898 0.183
1.35 1 1 1 1 0.954 0.789 1 1 1 1 0.858 0.287
1.66 1 1 1 1 0.938 0.999 1 1 1 1 0.838 0.997
2.00 1 1 1 1 0.936 1 1 1 1 1 0.834 1

|θ|∞
ctm-Gaussian-I t6-II

linear sign BABS Jirak SBS Inspect linear sign BABS Jirak SBS Inspect

0 0.030 0.051 0.020 0.067 0.592 1 0.060 0.068 0.044 0.053 0.060 0.975
0.28 0.036 0.073 0.033 0.076 0.630 1 0.124 0.148 0.109 0.132 0.108 0.942
0.44 0.150 0.189 0.186 0.245 0.752 1 0.418 0.451 0.477 0.537 0.418 0.791
0.63 0.524 0.593 0.675 0.750 0.904 1 0.878 0.912 0.919 0.936 0.856 0.629
0.84 0.940 0.941 0.977 0.987 0.954 1 0.998 1 0.997 1 0.928 0.507
1.08 1 1 0.999 1 0.946 1 1 1 1 1 0.898 0.453
1.35 1 1 1 1 0.938 1 1 1 1 1 0.878 0.609
1.66 1 1 1 1 0.918 1 1 1 1 1 0.846 1
2.00 1 1 1 1 0.902 1 1 1 1 1 0.864 1

Table 3.3: Powers for our method using linear and sign kernels, [106, BABS], [65, Jirak], [37, SBS] and [99,
Inspect].

102



3.5.5 Multiple change-point detection

In the multiple change-point scenario, we first let the k-th component of θ(k) to have the same location shift,

i.e. θ
(1)
1 = θ

(2)
2 = · · · = θ

(ν)
n,ν = δ 6= 0. Since change point estimation can be viewed as a special case of

clustering, the accuracy can be measured by the adjusted Rand index (ARI) [86, 63]. We also report average

ARI over all 500 runs. The bootstrap resampling is 200.

To start with, we consider the direct application of our test using Gaussian distribution and linear kernel

as a representative. Let n = 1000, p = 1200, α = 0.05, and the two change points (m1,m2) = (300, 600).

The powers are shown in Table 3.4. Our test works well as there is no signal cancellation.

δ 0 0.317 0.733 1.282 2.004

Spacial dependent structure
I 0.052 0.278 1 1 1
II 0.064 0.510 1 1 1
III 0.070 0.222 0.996 1 1

Table 3.4: Powers under multiple change point scenario using linear kernel. Here, (m1,m2) = (300, 600).

Next, we apply the Backward Detection algorithm to estimate change points. We set the initial data

blocks as segments of every M = 100 data points and take the Gaussian distribution with moderate depen-

dence structure (III) for instance. The estimated change points are summarized in Table 3.5 (counts and

ARIs) and Figure 3.3 (estimates). When signal δ = 0.317 is small, BD fails to reject H0 in about half of the

time (276 out of 500) and it cannot locate the shifts accurately (small ARIs). However, as signal gets larger,

both the number and the locations of change points can be detected consistently (under proper setup of

initial data blocks). Meanwhile, ARIs are also increasing to 1, which stands for the perfect estimation. We

further add one more change where (m1,m2,m3) = (300, 600, 800). The corresponding results in Table 3.5

and Figure 3.3 are similar to that of two change point case.

(m1,m2) = (300, 600) (m1,m2,m3) = (300, 600, 800)
δ 0 0.317 0.733 1.282 2.004 0 0.317 0.733 1.282 2.004

Estimated
number

of
change
points

0 497 276 0 0 0 494 270 0 0 0
1 3 209 0 0 0 6 217 0 0 0
2 0 15 484 492 483 0 13 32 0 0
3 0 0 16 7 17 0 0 455 474 483
4 0 0 0 1 0 0 0 13 25 17
5 0 0 0 0 0 0 0 0 1 0

Sum 500 500 500 500 500 500 500 500 500 500
ARI 0.994 0.195 0.933 0.998 0.996 0.988 0.152 0.920 0.995 0.997

Table 3.5: Estimation of multiple change points for M = 100. Here, the data is Gaussian distributed with
dependence structure (III) and linear kernel is used.

Then, we also use the sign kernel to detect location shift for Cauchy distribution with dependence
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Figure 3.3: Multiple change point setup using linear kernel at signal level δ = 0.822, 10.023. Upper: 2 change
points (m1,m2) = (300, 600). Lower: 3 change points (m1,m2,m3) = (300, 600, 800).

structure (III). Analogously, initial data blocks are segments of every M = 100 data points in sequence.

The cases of 2 change points (m1,m2) = (300, 600) and 3 change points (m1,m2,m3) = (300, 600, 800) are

implemented and the results are shown in Table 3.6 and Figure 3.4. Similar conclusion can be drawn except

that stronger signal strength is required as Cauchy distribution has extremely heavy tails.

(m1,m2) = (300, 600) (m1,m2,m3) = (300, 600, 800)
δ 0 0.822 2.320 5.050 10.023 0 0.822 2.320 5.050 10.023

Estimated
number

of
change
points

0 465 44 0 0 0 460 36 0 0 0
1 6 257 0 0 0 11 221 0 0 0
2 6 173 365 470 470 4 172 0 0 0
3 6 9 18 12 10 3 50 401 470 477
4 5 11 21 15 12 8 9 19 11 8
5 6 1 59 1 1 5 6 66 1 0
6 6 5 46 2 7 9 6 14 18 15

Sum 500 500 500 500 500 500 500 500 500 500
ARI 0.930 0.557 0.888 0.986 0.983 0.920 0.495 0.951 0.986 0.989

Table 3.6: Estimation of multiple change points for M = 100. Here, the data is Cauchy distributed with
dependence structure (III) and sign kernel is used.

Last, we set M = 1 and repeat the experiment using linear kernel and Gaussian distribution with

dependence structure (III). The results are summarized in Table 3.7 and Figure 3.5. Compared to Table 3.5

and Figure 3.4 which correspond to the same setting but M = 100, we can easily observe over rejection

issue since more change points are concluded than the truth for both cases. However, when signal is large

(δ = 2.004), estimated change points still concentrate around the true mi’s. In practice, a threshold m can
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Figure 3.4: Multiple change point setup using sign kernel at signal level δ = 0.822, 10.023. Upper: 2 change
points (m1,m2) = (300, 600). Lower: 3 change points (m1,m2,m3) = (300, 600, 800).

be introduced to force merging two blocks if the cardinality of their union is small.

(m1,m2) = (300, 600) (m1,m2,m3) = (300, 600, 800)
δ 0 0.317 0.733 1.282 2.004 0 0.317 0.733 1.282 2.004

Estimated
number

of
change
points

0 475 205 0 0 0 477 195 0 0 0
1 21 230 3 0 0 20 224 0 0 0
2 3 59 367 343 344 3 77 51 0 0
3 1 5 114 135 133 0 4 324 289 293
4 0 1 16 22 23 0 0 111 167 172
5 0 0 0 0 0 0 0 13 38 32
6 0 0 0 0 0 0 0 1 6 2
8 0 0 0 0 0 0 0 0 0 1

Sum 500 500 500 500 500 500 500 500 500 500
ARI 0.950 0.186 0.634 0.785 0.858 0.954 0.160 0.582 0.747 0.834

Table 3.7: Estimation of multiple change points for M = 1. Here, the data is Gaussian distributed with
dependence structure (III) and linear kernel is used.

3.6 Real Data Applications

3.6.1 Single change point: Enron email dataset

Enron Corporation used to be one of the leading American energy companies. In an accounting scandal,

Enron share prices decreased from around $80 during the summer of 2000 to pennies at the end of 2001.

The bankruptcy was filed on 12/02/2001 and it became the largest bankruptcy reorganization in American
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Figure 3.5: Multiple change point setup using M = 1 and linear kernel at signal level δ = 0.317, 2.004.
Upper: 2 change points (m1,m2) = (300, 600). Lower: 3 change points (m1,m2,m3) = (300, 600, 800).

history at that time. The Enron email dataset that contains more than 500,000 messages from about 150

users (mostly senior management) was publicly available during the investigation by the Federal Energy

Regulatory Commission in 2002 1 .

We study the collection of messages sent in 2000-2001. To test for the existence of an abrupt changes in

email discussions, our analysis is based on the number of emails sent from each user. In order to exclude the

yearly trend and temporal dependence, we apply our method to Xij which is the difference of emails sent

from user j on the i-th day for the two years. The leap day (02/29/2000) and the users who were inactive

during 2000 or 2001 are removed such that the final data matrix (Xij)i=1,...,n;j=1,...,p is of dimension n = 365

and p = 101. We set bootstrap repetition number B = 2000. For the linear kernel, our test statistic has

the value Tn = 561.49 and the 95% quantile of bootstrapped statistic is 117.17. For the sign kernel, our

test statistic has the value Tn = 8.95 and the 95% quantile of bootstrapped statistic is 1.44. Both tests

reject the null hypothesis of no abrupt change. As an illustration of the test results, the aggregated trend

of Yi =
∑101
j=1Xij in Figure 3.6 indicates the presence of extensive email communication from the second

1 The raw data is organized in folders (http://www.cs.cmu.edu/~enron/) and its tabular format version is available at
https://data.world/brianray/enron-email-dataset. The timeline of major events can be found at http://www.agsm.edu.

au/bobm/teaching/BE/Enron/timeline.html.
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half of 2000 to the first half of 2001. Our test confirms that there was abnormal email activity in these two

years.
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Figure 3.6: Trend of Yi =
∑101
j=1Xij for Enron email dataset.

3.6.2 Multiple change point: Micro-array dataset

The array comparative genomic hybridization data, ACGH [64, R package ecp], consists of p = 43 patients

with bladder tumor. We consider to detect change points among their DNA copy number profiles each of

which contains n = 2215 log-intensity-ratio fluorescent measurements. We apply the BD algorithm using

linear kernel and set bootstrap repeats 1000, significance level α = 0.01 and initial data block size M = 2.

The measurements for the first 10 individuals are shown in Figure 3.7. Our BD algorithm finds 32 change

points that are marked in red vertical dashed lines. This number is in a reasonable level as indicated in [99]

where the authors only reported 30 most significant ones while their default Inspect algorithm found 254

change points. The ARI between ours and the bootstrap-assisted binary segmentation [106, BABS] which

identifies 27 change points is 0.779. As shown in Table 3.8, the two methods have overlapped detection that

are close loci numbers such as (73, 74), (342, 344), (521, 528), . . . , (2143, 2142).

BABS 73, 185, 263, 342, 428, 521, 581, 657, 741, 801, 871, 960, 1051, 1141, 1216, 1276,
1367, 1427, 1503, 1563, 1664, 1724, 1836, 1905, 1965, 2044, 2143.

BD 74, 136, 174, 248, 280, 344, 448, 528, 544, 624, 658, 744, 810, 876, 932, 1022,
1050, 1140, 1220, 1282, 1366, 1418, 1500, 1560, 1642, 1726, 1850, 1908, 1964,
2022, 2084, 2142.

Table 3.8: Identified change point locations (loci numbers on genome) in ACGH dataset.
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Figure 3.7: Real data study: aCGH data. Here, we use B = 1000, α = 0.01 and the linear kernel.

3.7 Proofs and additional numerical results

3.7.1 Proof of main results

Throughout the whole proofs, we assume d > 2, n > 3 and n > log7(nd) otherwise the rates will automatically

hold. The Ki > 0, i = 1, 2, . . . and C > 0 are large constants that may vary part by part.

Proof of Theorem 3.1. Suppose H0 is true. Without loss of generality, we may assume $n 6 1.

Step 1. Gaussian approximation to Tn.

Denote Γ = Cov(g(X1)). Since the kernel h is anti-symmetric, we have E[g(X1)] = 0. Thus E[Ln] = 0

and

Cov(Ln) = n

(
n

2

)−2 n∑
i=1

(n+ 1− 2i)2 Cov(g(Xi)) =
4(n+ 1)

3(n− 1)
Γ.

By Jensen’s inequality, we have E|gj(Xi)|2+k 6 Dk
n for k = 1, 2, and ‖gj(Xi)‖ψ1

6 Dn. Then it follows

1

n

n∑
i=1

(
2

n− 1

)2+k

|n− 2i+ 1|2+kE|gj(Xi)|2+k . Dk
n,

∥∥∥∥2(n− 2i+ 1)

n− 1
gj(Xi)

∥∥∥∥
ψ1

. Dn.

In addition, note that 1
n

∑n
i=1 4

(
n−2i+1
n−1

)2

Γjj = n+1
n−1 ·

4
3Γjj > 4

3b > 0. By Proposition 2.1 in [35] (applied

to the max-hyperrectangles), we have

ρ(Ln, Zn) 6

{
D2
n log7(nd)

n

}1/6

= $n,

where Zn = max16j6d Znj and Zn ∼ N(0, 4(n+1)
3(n−1)Γ). Let Z ∼ N(0, 4Γ/3). By the Gaussian comparison
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inequality (cf. Lemma C.5 in [29]), we have

ρ(Zn, Z) .

(
4

3n
|Γ|∞ log2 d

)1/3

.

Since Γjj 6 1 + E|gj(X1)|3 6 1 +Dn 6 2Dn, it follows from the Cauchy-Schwarz inequality that

ρ(Zn, Z) .

(
Dn log2 d

n

)1/3

. $n.

Then by triangle inequality, we have

ρ(Ln, Z) 6 ρ(Ln, Zn) + ρ(Zn, Z) . $n. (3.17)

Applying Corollary 5.6 in [28] with k = 2, we have

E

(
max

16j6d
|Rnj |

)
. Dnn

−1/2 log d. (3.18)

Then for any t ∈ R and a > 0, we have

P
(
Tn 6 t

)
6 P

(
Ln 6 t+ a−1E[|Rn|∞]

)
+ P

(
|Rn|∞ > a−1E[|Rn|∞]

)
6(i) P

(
Ln 6 t+ a−1E[|Rn|∞]

)
+ a

6(ii) P
(
Z 6 t+ a−1E[|Rn|∞]

)
+ C$n + a

6(iii) P
(
Z 6 t

)
+ Ca−1E[|Rn|∞]log1/2 d+ C$n + a

6(iv) P
(
Z 6 t

)
+ CDna

−1n−1/2 log3/2 d+ C$n + a,

where step (i) follows from Markov’s inequality, step (ii) from the Gaussian approximation error bound

(3.17) for the linear part, step (iii) from Nazarov’s inequality (cf. Lemma A.1 in [35]), and step (iv) from

the maximal inequality (3.18) for the degenerate term. Likewise, we can deduce the reverse inequality

P
(
Tn 6 t

)
> P

(
Z 6 t

)
− CDna

−1n−1/2 log3/2 d− C$n − a.

Choosing a = n−1/4D
1/2
n log3/4 d, we get ρ(Tn, Z) 6 C$n.

Step 2. Bootstrap approximation to Tn. Recall the definition of T ]n in (3.6), T ]n|Xn
1 ∼ N(0, 4Γ̂n) where

Γ̂n =
1

n(n− 1)2

n∑
i=1

n∑
j=i+1

n∑
k=i+1

h(Xi, Xj)h(Xi, Xk)T . (3.19)

By Lemma 3.6, P

(
|Γ̂n − Γ/3|∞ > K3

{
D2
n log(nd)
n

}1/2
)

6 γ. Therefore, [27, Lemma C.1] confirms that with

probability greater than 1− γ

ρ(Z, T
]

n|Xn
1 ) .

[
|4Γ̂n − 4Γ/3|∞ log2(nd)

]1/3
�
{
D2
n log5(nd)

n

}1/6

. $n.

In conclusion, ρ(Tn, T
]

n|Xn
1 ) 6 ρ(Tn, Z) + ρ(Z, T

]

n | Xn
1 ) 6 C(b,K)$n.
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Proof of Theorem 3.2. Denote

Tn = Tn(Xn
1 ) = n1/2

(
n

2

)−1 ∑
16i<j6n

h(Xi, Xj) and T ξn = Tn(ξn1 ) = n1/2

(
n

2

)−1 ∑
16i<j6n

h(ξi, ξj).

Define

∆̃ = n−1/2

(
n

2

)
{Tn(Xn

1 )− Tn(ξn1 )} =
∑

16i<j6n

h(Xi, Xj)− h(ξi, ξj).

Note that, T
ξ

n = |Tn(ξn1 )|∞ > 2n−1/2(n− 1)−1|∆̃|∞ − Tn. It follows that

Type II error = P
(
Tn 6 q

T
]
n|Xn1

(1− α) | H1

)
6 P

(
T
ξ

n > 2n−1/2(n− 1)−1|∆̃|∞ − qT ]n|Xn1 (1− α) | H1

)
6 P

(
T
ξ

n > q
T
ξ
n
(1− βn) | H1

)
+ P

(
q
T
]
n|Xn1

(1− α) + q
T
ξ
n
(1− βn) > 2n−1/2(n− 1)−1|∆̃|∞ | H1

)
6 βn + P

(
q
T
]
n|Xn1

(1− α) + q
T
ξ
n
(1− βn) > 2n−3/2|∆̃|∞ | H1

)
.

Let γ = ζ/8. Now denote

∆1 = γ−1Dn log(d){m(n−m)}1/2,

∆2 = Dn{m(n−m)}1/2{m ∧ (n−m)}1/2 log1/2(nd),

∆3 = Dnn
3/2 log1/2(nd/α),

∆4 = n3/2 log1/2(γ−1) log1/2(d).

We will quantify |∆̃|∞, q
T
]
n
(1 − α) and q

T
ξ
n
(1 − βn) to conclude that the Type II error is bounded when

|θh|∞ satisfies (3.12).

(1) Quantify |∆̃|∞. Without loss of generality, we may assume n1 = m 6 n−m = n2. Recall (3.8) where

Vn = Vn(Xn
1 ). Denote Vn(ξn1 ) in similar way. By shift-invariant assumption and the two-sample projection
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in Section 3.2,

∆̃ = Vn(Xn
1 )− Vn(ξn1 ) =

n1∑
i=1

n2∑
j=1

h(Xi, Yj)− h(Xi, Yj − θ)

=

n1∑
i=1

n2∑
j=1

g(Yj − θ)− g(Yj) + f̆(Xi, Yj)− f̆(Xi, Yj − θ)

= n1n2θh + n1

n2∑
j=1

{−g(Yj)− θh}+ n1

n2∑
j=1

g(Yj − θ) +

n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)−
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj − θ).

By Lemma 3.10, with probability smaller than γ,

n1|
n2∑
j=1

[−g(Yj)− θh]|∞ > K1Dnn1n
1/2
2 log1/2(nd) = K1∆2.

Similarly, n1|
∑n2

j=1 g(Yj − θ)|∞ > K2∆2 with probability smaller than γ. By Lemma 3.11,

E
∣∣ n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)
∣∣
∞ 6 K3∆1γ.

From Markov inequality, P
(
|
∑n1

i=1

∑n2

j=1 f̆(Xi, Yj)|∞ > K3∆1

)
6 γ.

Similarly, |
∑n1

i=1

∑n2

j=1 f̆(Xi, Yj − θ)|∞ > K4∆1 with probability smaller than γ. Therefore,

|∆̃|∞ > n1n2|θh|∞ − |n1

n2∑
j=1

[−g(Yj)− θh]|∞ − |n1

n2∑
j=1

g(Yj − θ)|∞

− |
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)|∞ − |
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj − θ)|∞

> n1n2|θh|∞ − (K1 +K2)∆2 − (K3 +K4)∆1

with probability no smaller than 1− 4γ.

(2) Bound q
T
]
n
(1 − α). Recall T ]n|Xn

1 ∼ Nd(0, 4Γ̂n), where Γ̂n is defined in (3.19). By the Bonfer-

roni inequality, P
(
T
]

n > t|Xn
1

)
6 2d

[
1− Φ(t/2ψ)

]
, where ψ

2
= max16l6d Γ̂n,ll. By the Cauchy-Schwarz

inequality, for each l = 1, . . . , d,

∑
i<j,k

hl(Xi, Xj)hl(Xi, Xk)


2

6

∑
i<j,k

h2
l (Xi, Xj)


∑
i<j,k

h2
l (Xi, Xk)

 =

∑
i<j,k

h2
l (Xi, Xj)


2

,
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which implies

Γ̂n,ll 6 n−1(n− 1)−2
n∑
i=1

∑
i<j

(n− i)h2
l (Xi, Xj) 6 (n− 1)−2

n∑
i=1

∑
i<j

h2
l (Xi, Xj).

By Condition [A2] and [B2], Eh2
l (Xi, Xj) 6 E|hl(Xi, Xj)−Ehl(Xi, Xj)|2+|Ehl(Xi, Xj)|2 6 Dn+|θh|2∞ 1(1 6

i 6 m < j 6 n) for any 1 6 l 6 d and 1 6 i < j 6 n. From Lemma 3.7, it shows that with probability

grater than 1− γ,

ψ
2
6 (n− 1)−2

{
t� + max

16l6d

n∑
i=1

∑
i<j

Eh2
l (Xi, Xj)

}
. D2

n + |θh|2∞ n−2{n1n2 + n
1/2
1 n2 log1/2(nd) + n2 log3(nd) log(γ−1)}︸ ︷︷ ︸

δn

.

Therefore, ψ 6 K5

[
Dn + |θh|∞δ1/2

n

]
. In addition, for Φ−1(1 − α/(2d)) = tα > 0 (as d > 1), Gaussian tail

bound (Chernoff method) shows tα 6 [2 log(2d/α)]
1/2

. Then, with probability greater than 1− γ,

q
T
]
n
(1− α) 6 2ψΦ−1(1− α/(2d)) 6 K6n

−3/2
(

∆3 + |θh|∞
{
n3 log(2d/α)δn

}1/2
)
.

Since n2 > n/2 and n1 & log5/2(nd), the rate of
{
n3 log(2d/α)δn

}1/2
. n1n2 leads to q

T
]
n|Xn1

(1 − α) 6

K6n
−3/2(∆3 +n1n2|θh|∞). For bounded kernel h, a simpler bound of ψ 6 K5Dn directly lead to q

T
]
n|Xn1

(1−

α) 6 K6n
−3/2∆3 without assuming n1 & log5/2(nd).

(3) Bound q
T
ξ
n
(1 − βn). Note that T

ξ

n has the same distribution as Tn|H0. By the approximation in

Theorem 3.1 Step1, we have ρ(T
ξ

n, Z) 6 C1$n holds for Z ∼ Nd(0, 4Γ/3) with probability grater than

1 − γ. Since ||Z||ψ2
6 C2(b) log1/2(d) by [92, Lemma 2.2.2] and P(Z > t) 6 2 exp

{
−( t
||Z||ψ2

)2
}

6

2 exp
{
−C2(b)−2 log−1(d)t2

}
. Choosing t = C3(b) log1/2(γ−1) log1/2(d) for large enough C3(b), we have

P(Z > t) 6 2γ. Hence, P(T
ξ

n > t) 6 P(Z > t) +C1$n. Let βn = 2γ +C1$n. Then with probability grater

than 1− γ,

q
T
ξ
n
(1− βn) 6 C3(b) log1/2(γ−1) log1/2(d) = C3(b)n−3/2∆4.

Combining Step (1)-(3), when m(n−m)|θh|∞ > 2(K3 +K4)∆1 + 2(K1 +K2)∆2 +K6∆3 + C3(b)∆4,

|∆̃|∞ >
1

2
n3/2

{
q
T
]
n
(1− α) + q

T
ξ
n
(1− βn)

}

with probability no smaller than 1− 6γ. That is, the Type II error is less than 6γ+βn = 8γ+C1$n, where

we set ζ = 8γ. As (∆1∨∆2) . ∆3, the conclusion of Theorem 3.2 immediately follows for some large enough
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K > 2
∑6
i=1Ki.

Proof of Lemma 3.3. Let

∆̃ =
∑

16i<j6n

h(Xi, Xj)− h(ξi, ξj) =
∑
k<k′

∆̃(k,k′),

where

∆̃(k,k′) =
∑

mk<i6mk+1

mk′<j6mk′+1

h(Xi, Xj)− h(ξi, ξj).

Similar to the proof of Theorem 3.2, we shall quantify |∆̃|∞, q
T
]
n
(1 − α) and q

T
ξ
n
(1 − βn) to conclude that

the Type II error is bounded when |δ|∞ satisfies (3.15).

(1) Quantify |∆̃|∞.

∆̃(k,k′) = sksk′δ
(k,k′) + sk

∑
mk′<j6mk′+1

{−g(Xj − θ(k))− δ(k,k′)}+ sk
∑

mk′<j6mk′+1

g(Xj − (θ(k′) − θ(k)))

+
∑

mk<i6mk+1

mk′<j6mk′+1

f̆(Xi, Xj)−
∑

mk<i6mk+1

mk′<j6mk′+1

f̆(Xi, Xj − θ(k)).

Applying the results in Step (1) to
∑
k<k′ ∆̃

(k,k′), we have each of the following inequalities satisfied with

probability greater than 1− γ:

|
∑
k<k′

sk
∑

mk′<j6mk′+1

{−g(Xj − θ(k))− δ(k,k′)}|∞

6
∑
k<k′

K1Dn(sksk′)
1/2n1/2 log1/2(nd) 6 K1ν

2Dnn
3/2 log1/2(nd);

|
∑
k<k′

sk
∑

mk′<j6mk′+1

g(Xj − (θ(k′) − θ(k)))|∞

6
∑
k<k′

K2Dn(sksk′)
1/2n1/2 log1/2(nd) 6 K2ν

2Dnn
3/2 log1/2(nd);

|
∑
k<k′

∑
mk<i6mk+1

mk′<j6mk′+1

f̆(Xi, Xj)|∞ + |
∑
k<k′

∑
mk<i6mk+1

mk′<j6mk′+1

f̆(Xi, Xj − θ(k))|∞

6
∑
k<k′

K3γ
−1Dn(sksk′)

1/2 log d 6 K3ν
2Dnn

3/2 log1/2(nd).
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Combining all pairs of (k, k′) for 0 6 k < k′ 6 ν, it follows

|∆̃|∞ = |
∑
k<k′

∆̃(k,k′)|∞ > |
∑
k<k′

sksk′δ
(k,k′)|∞ − (K1 +K2 +K3)ν2Dnn

3/2 log1/2(nd)

with probability greater than 1− 3γ.

(2) Bound q
T
]
n
(1 − α). Under H

′

1, T ]n|Xn
1 ∼ Nd(0, 4Γ̂n), where Γ̂n is defined the same as in (3.19). To

control the magnitude of |
∑

16i<j6n h
2
l (Xi, Xj)|, note that

∑
16i<j6n

=
∑

mk<i6mk+1

mk′<j6mk′+1

06k<k′6ν

+
∑

mk<i<j6mk+1

06k6ν

.

So we can modify Lemma 3.7 from the following two cases. For the case of Ck,k′ = {mk < i 6 mk+1 6

mk′ < j 6 mk′+1} where i, j are in different segments, Eh2
l (Xi, Xj) 6 Dn + |δ(k,k′)

l |2, based on modified

Lemma 3.7 we have

P

max
16l6d

|
∑
Ck,k′

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)| > max
k<k′

K4(D2
n + |δ(k,k′)|2∞)(sksk′)

1/2n1/2 log1/2(nd)

 6 γ.

For the case of Ck = {mk < i < j 6 mk+1} where i, j are in the same segments, |Ehl(Xi, Xj)|2 6 Dn and

P

(
max

16l6d
|
∑
Ck

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)| > K5D
2
nn

3/2 log1/2(nd)

)
6 γ.

Take t� = D2
nn

3/2 log1/2(nd) + maxk<k′(sksk′)
1/2|δ(k,k′)|2∞n1/2 log1/2(nd). Then, adding all Ck and Ck,k′

together,

ψ
2

= max
16l6d

Γ̂n,ll 6 (n− 1)−2K6

{
t� + max

16l6d

n∑
i=1

∑
i<j

Eh2
l (Xi, Xj)

}
6 K6

{
D2
n + n−3/2 log1/2(nd) max

k<k′
(sksk′)

1/2|δ(k,k′)|2∞ + n−2
∑
k<k′

sksk′ |δ(k,k′)|2∞

}

holds with probability greater than 1 − (ν + 1)(ν + 2)γ/2. Therefore, q
T
]
n
(1 − α) 6 K7ψtα, where tα =

Φ−1(1− α/(2d)) 6 2 log1/2(nd/α) and

ψ 6 K6

{
Dn + n−3/4 log1/4(nd) max

k<k′
(sksk′)

1/4|δ(k,k′)|∞ + n−1
∑
k<k′

(sksk′)
1/2|δ(k,k′)|∞

}
.

114



(3) Bound q
T
ξ
n
(1− βn). Since T

ξ

n does not depend on H
′

1, it obeys the same bound

q
T
ξ
n
(1− βn) 6 C(b) log1/2(γ−1) log1/2(d) = C(b) log1/2(γ−1) log1/2(d)

with probability grater than 1− γ for βn = 2γ + C1$n.

Combining Step (1)-(3), when

|
∑
k<k′

sksk′δ
(k,k′)|∞ > K0ν

2Dnn
3/2 log1/2(nd/α) + C(b)n3/2 log1/2(γ−1) log1/2(d)

+K ′0 log1/2(nd/α)

{
n3/4 log1/4(nd) max

k<k′
(sksk′)

1/4|δ(k,k′)|∞ + n1/2
∑
k<k′

(sksk′)
1/2|δ(k,k′)|∞

}
,

the Type II error will be smaller than βn + {4 + (ν + 1)(ν + 2)/2}γ for βn = 2γ + C1$n. Substitute γ by

{4 + (ν + 1)(ν + 2)/2}−1ζ, we reach the conclusion of theorem.

3.7.2 Proof of lemmas in theorems

Lemma 3.6 (Bounding |Γ̂n − Γ/3|∞ under H0.). Suppose all the conditions in Theorem 3.1 hold. Let

Γ = Cov(g(X1)) and Γ̂n be defined as in (3.19). Then with probability greater than 1− γ,

|Γ̂n − Γ/3|∞ 6 K0

(
D2
n log(nd)

n

)1/2

.

Proof of Lemma 3.6. Note Γ = Cov(g(X)) = Cov(E[h(X,X1)|X]) = E[h(X1, X2)h(X1, X3)T ] and let Γ2 =

E[h(X1, X2)h(X1, X2)T ]. Then

EΓ̂n =
1

n(n− 1)2

n∑
i=1

(n− i)(n− i− 1)Γ +
1

n(n− 1)2

n∑
i=1

(n− i)Γ2

=
n− 2

3(n− 1)
Γ +

1

2(n− 1)
Γ2.

Note that, the summation in Γ̂n can split into two parts

n∑
i=1

∑
j,k>i

=

n∑
i=1

∑
j 6=k>i

+

n∑
i=1

∑
j=k>i

.

In the following Step 1 and 2, we will deal with Γ̂n1 = 1
n(n−1)2

∑n
i=1

∑
j 6=k>i h(Xi, Xj)h(Xi, Xk)T and

Γ̂n2 = 1
n(n−1)2

∑n
i=1

∑
j=k>i h(Xi, Xj)h(Xi, Xk)T respectively, where Γ̂n = Γ̂n1 + Γ̂n2. Then conclusion will

be made in Step 3.
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Step 1: Term Γ̂n1 = 1
n(n−1)2

∑n
i=1

∑
j 6=k>i h(Xi, Xj)h(Xi, Xk)T . DefineH(x1, x2, x3) to be h(x1, x2)h(x1, x3)T .

To symmetrize H, let H ′(Xi, Xj , Xk) =
∑
π3
H̃(Xπ3(i), Xπ3(j), Xπ3(k)), where

H̃(Xi, Xj , Xk) =

 H(Xi, Xj , Xk), if i < j 6= k,

0, otherwise
,

and π3 is a permutation of {i, j, k}. Then,

Γ̂n1 =
1

n(n− 1)2

∑
i<j 6=k

H(Xi, Xj , Xk) =
1

n(n− 1)2

∑
i 6=j 6=k

H̃(Xi, Xj , Xk)

=
1

6n(n− 1)2

∑
i 6=j 6=k

H ′(Xi, Xj , Xk)

is a U-statistics of order 3 and EΓ̂n1 = n−2
3(n−1)Γ. Let

Wn =
(n− 3)!

n!

∑
i 6=j 6=k

H ′(Xi, Xj , Xk) =
6(n− 1)

n− 2
Γ̂n1.

Apply Lemma E.1 in [27] to H ′ for α = 1/2, η = 1 and δ = 1/2,

P
(n

3
|Wn − EWn|∞ > 2EZ1 + t

)
6 exp

(
− t2

3ζ
2

n

)
+ 3 exp

−( t

K1||M ||ψ1/2

)1/2
 , (3.20)

where

EWn = EH ′(X1, X2, X3) = 2Γ,

Z1 = max
16m1,m26d

∣∣∣∣∣∣
[n3 ]−1∑
i=0

[
H ′m1,m2

(X3i+3
3i+1 )− EH ′m1,m2

]∣∣∣∣∣∣ ,
ζ

2

n = max
16m1,m26d

[n2 ]−1∑
i=0

EH
′2
m1,m2

(X3i+3
3i+1 ),

M = max
16m1,m26d

max
06i6[n3 ]−1

∣∣H ′m1,m2
(X3i+3

3i+1 )
∣∣ .

and H ′m1,m2
(x1, x2, x3) = H ′m1,m2

(x1, x2, x3)1{maxm1,m2
|H′m1,m2

(x1,x2,X3)|6τ} for τ = 8EM . By Cauchy-

Schwarz and Condition (A2),

EH
′2
m1,m2

(X3i+3
3i+1 ) 6 2EH2

m1,m2
(X3i+3

3i+1 ) 6
(
Eh4

m1(X3i+1, X3i+2)
)1/2 (

Eh4
m2(X3i+1, X3i+3)

)1/2
6 D2

n.
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So ζn 6 n1/2Dn. From (i) [92, Lemma 2.2.2], (ii) the fact of ||X2||ψ1/2
= ||X||2ψ1

and (iii) Condition (A3),

we obtain

||M ||ψ1/2
= || max

16m1,m26d
max

06i6n
3−1

hm1
(X3i+1, X3i+2)hm2

(X3i+1, X3i+3)||ψ1/2

6(i) K2 log2(nd) max
16m1,m26d

max
06i6n

3−1
||hm1

(X3i+1, X3i+2)hm2
(X3i+1, X3i+3)||ψ1/2

6 K ′2 log2(nd) max
16m16d

max
06i6n

3−1
||h2

m1
(X3i+1, X3i+2)||ψ1/2

=(ii) K
′
2 log2(nd) max

16m16d
max

06i6n
3−1
||hm1

(X3i+1, X3i+2)||2ψ1

6(iii) K
′
2 log2(nd)D2

n.

By [34, Lemma 8],

EZ1 6 K3

{√
log d ζn + log d ||M ||ψ1/2

}
6 K4[n log(nd)D2

n]1/2.

Therefore, (3.20) leads to

P
(
|Γ̂n1 − EΓ̂n1|∞ >4K4n

−1/2Dn log1/2(nd) + t
)

6 exp

(
− nt2

3D2
n

)
+ 3 exp

[
−

√
nt

K1K2
1/2 log(nd)Dn

]
.

Recall K log(nd) > log(1/γ) > 1 and n & D2
n log7(nd). Choose

t∗ = K5

√
D2
n log(nd)

n

for some large enough K5 > 0. Then,

P
(
|Γ̂n1 − EΓ̂n1|∞ > t∗

)
6 γ

K2
5

3K + 3γ

K
1/2
5

KK1K
1/2
2 6 γ/2.

Step 2: Term Γ̂n2 = 1
n(n−1)2

∑n
i=1

∑
j=k>i h(Xi, Xj)h(Xi, Xk)T . LetH(x1, x2) be defined as h(x1, x2)h(x1, x2)T .

Denote W ′n = (n−2)!
n!

∑
i 6=j H(Xi, Xj) = 2(n− 1)Γ̂n2. By Lemma E.1 in [27],

P
(n

2
|W ′n − EW ′n|∞ > 2EZ ′1 + t

)
6 exp

(
− t2

3ζ ′
2

n

)
+ 3 exp

−( t

K6||M ′||ψ1/2

)1/2
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where

EW ′n = E[H(X1, X2)] = Γ2,

Z ′1 = max
16m1,m26d

∣∣∣∣∣∣
[n2 ]−1∑
i=0

[
Hm1,m2

(X2i+2
2i+1 )− EHm1,m2

]∣∣∣∣∣∣ ,
ζ ′

2

n = max
16m1,m26d

[n2 ]−1∑
i=0

EH2
m1,m2

(X2i+2
2i+1 ),

M ′ = max
16m1,m26d

max
06i6[n2 ]−1

∣∣Hm1,m2
(X2i+2

2i+1 )
∣∣ .

and Hm1,m2
(x1, x2) = Hm1,m2

(x1, x2)1{maxm1,m2
|Hm1,m2

(x1,x2)|6τ} for τ = 8EM ′. Similarly,

EH2
m1,m2

(X2i+2
2i+1 ) 6

(
Eh4

m1(X2i+2
2i+1 )

)1/2 (
Eh4

m2(X2i+2
2i+1 )

)1/2
6 D2

n.

So ζ ′n 6 n1/2Dn. In addition,

||M ′||ψ1/2
= || max

16m1,m26d
max

06i6n
2−1

hm1(X2i+2
2i+1 )hm2(X2i+2

2i+1 )||ψ1/2

6 K7 log2(nd) max
16m16d

max
06i6n

2−1
||hm1

(X2i+1, X2i+2)||2ψ1

6 K7 log2(nd)D2
n.

Then by [34, Lemma 8], we have EZ ′1 6 K8[n log(nd)D2
n]1/2. Similar to Step 1, taking t′∗ = K9

√
D2
n log(nd)
n

for some large enough K9 > 0, we end up with

P (|W ′n − EW ′n|∞ > t′∗) 6 γ/2,

i.e. P
(
|Γ̂n2 − Γ2|∞ > (n− 1)−1 · t′∗

)
6 γ/2.

Step 3: Approximating Γ̂n to Γ/3. By Cauchy-Schwarz inequality and Condition (A2),

|Γ|∞ = max
16m1,m26d

|Ehm1(X1, X2)Ehm2(X1, X3)|

6 max
16m16d

|Eh2
m1(X1, X2)| 6 max

16m16d
|Eh4

m1(X1, X2)|1/2 6 Dn,

|Γ2|∞ = max
16m1,m26d

|Ehm1(X1, X2)Ehm2(X1, X2)|

6 max
16m16d

|Eh2
m1(X1, X2)| 6 Dn.
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Notice that

|Γ̂n − Γ/3|∞ 6 |Γ̂n − EΓ̂n|∞ + |EΓ̂n − Γ/3|∞,

where

|EΓ̂n − Γ/3|∞ 6
1

3(n− 1)
|Γ|∞ +

1

2(n− 1)
|Γ2|∞ 6 n−1Dn 6 K10

√
D2
n log(nd)

n
.

Combine Step 1 and 2 and take t0 = K0

√
D2
n log(nd)
n for some K0 > K10 +K9 +K5 large enough, we have

P
(
|Γ̂n − Γ/3|∞ > t0

)
6 γ.

Lemma 3.7 (Bounding max16l6d |
∑n
i=1

∑
i<j h

2
l (Xi, Xj)−Eh2

l (Xi, Xj)| under H1.). Suppose all the con-

ditions in Theorem 3.1 and Theorem 3.2 hold. Let γ ∈ (0, e−1) such that log(γ−1) 6 K log(nd) and suppose

n1 = m 6 n −m = n2. Then the following holds with probability greater than 1 − γ for some large enough

constant K�

max
16l6d

|
n∑
i=1

∑
i<j

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)| 6 K�t�,

where t� = D2
nn

3
2 log

1
2 (nd) + |θh|2∞[n

1
2
1 n2 log

1
2 (nd) + n2 log3(nd) log(γ−1)].

Proof of Lemma 3.7. Note that the summation breaks down to

n∑
i=1

∑
i<j

=

m∑
i=1

m∑
j=i+1

+

m∑
i=1

n∑
j=m+1

+

n∑
i=m+1

n∑
j=i+1

,

and h2
l (x, y) = h2

l (y, x). Apply [27, Lemma E.1] to Γ̂1 = 1
n1(n1−1)

∑
16i<j6n1

h(Xi, Xj)h(Xi, Xj)
T , calcula-

tion (similar to Lemma 3.6 Step2) shows

P
(
|Γ̂1 − EΓ̂1|∞ > K1[Dnn

−1/2
1 log1/2(d)+D2

nn
−1
1 log3 (n1d)] + t

)
6 exp

(
−n1t

2

3D2
n

)
+ 3 exp

[
−
( √

n1t

K2Dn log(n1d)

)]
.

Take t1 = K3[Dnn
−1/2
1 log1/2(nd) ∨D2

nn
−1
1 log3(nd) log(γ−1)]. It follows that

n1t1
2

D2
n

& D2
n log(nd) & log(γ−1) and

√
n1t1

Dn log(n1d)
&

(
log3(nd) log(γ−1)

log2(n1d)

)1/2

& log(γ−1).

So P
(
|Γ̂1 − EΓ̂1|∞ > t1

)
6 γ/3 for some large enough K3. Therefore, the diagonal part obeys the same
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bound such that the first term
∑m
i=1

∑m
j=i+1 h

2
l (Xi, Xj) has a tail bound

P

(m
2

)−1

max
16l6d

|
m∑
i=1

m∑
j=i+1

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)|∞ > t1

 6 γ/3.

Next, apply the two-sample tail bound Lemma 3.9 to the middle term. Thus,

P

 1

m(n−m)
max

16l6d
|
m∑
i=1

n∑
j=m+1

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)|∞ > t2

 6 γ/3

holds for t2 = K4B
2
n[n1

−1/2 log1/2(nd) ∨ n1
−1 log3(nd) log(1/γ)], where Bn = Dn + |θh|∞. At last, apply

[27, Lemma E.1] to Γ̂2 = 1
n2(n2−1)

∑
16i<j6n2

h(Yi, Yj)h(Yi, Yj)
T for the third term, we have

P
(
|Γ̂2 − EΓ̂2|∞ > K5(D2

nn
−1
2 log(n2d))1/2 + t

)
6 exp

(
−n2t

2

3D2
n

)
+ 3 exp

[
−
( √

n2t

K6Dn log(n2d)

)]
.

Since n2 = n−m > n/2 and n & D2
n log7(nd), it suffices to take t3 = K7Dnn

−1/2 log1/2(nd) such that

n2t3
2

D2
n

& log(nd) and

√
n2t3

Dn log(n2d)
& D−1/2

n n1/4 log−3/4(nd) & log(γ−1).

Then, the third term has a tail bound

P

(n−m
2

)−1

max
16l6d

|
n∑

i=m+1

n∑
j=i+1

h2
l (Xi, Xj)− Eh2

l (Xi, Xj)|∞ > t3

 6 γ/3.

Since there exists a large enough constant K� such that

(n2
1t1) ∨ (n1n2t2) ∨ (n2

2t3)

6K�
{
D2
nn

3
2 log

1
2 (nd) + |θh|2∞[n

1
2
1 n2 log

1
2 (nd) + n2 log3(nd) log(γ−1)]

}
=: t�,

we conclude P
(

max16l6d |
∑n
i=1

∑
i<j h

2
l (Xi, Xj)− Eh2

l (Xi, Xj)| > 3t�
)
6 γ.
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3.7.3 Lemma for tail probability of the maximum of two-sample U-statistics

Let Xn1
1 and Y n2

1 be two random samples taking values in a measurable space (S,S). Suppose Xi ∼ F are

independent with Yj ∼ G. Let h : S2 → Rd be a measurable function and

Tn =
1

n1n2

n1∑
i=1

n2∑
j=1

h(Xi, Yj)

be the two-sample U-statistics. WLOG, we may first assume n1 6 n2. Consider a permutation πn2
on Y n2

1

and the sum of first n1 pairs
∑n1

i=1 h(Xi, Yπn2
(i))

X1 · · · Xn1

↓ ↓

Yπn2
(1) · · · Yπn2

(n1) Yπn2
(n1+1) · · · Yπn2

(n2)

The symmetry leads to
∑
πn2

∑n1

i=1 h(Xi, Yπn2 (i)) = (n2 − 1)!
∑n1

i=1

∑n2

j=1 h(Xi, Yj), i.e.

1

n2!

∑
πn2

n1∑
i=1

h(Xi, Yπn2
(i)) =

1

n2

n1∑
i=1

n2∑
j=1

h(Xi, Yj).

This representation reduce the bounds on Z = n1|Tn − θh|∞ to those of |V |∞ = |
∑n1

i=1 h(Xi, Yi) − θh|∞,

where θh = Eh(X1, Y1). Define

h(x, y) = h(x, y)1{ max
16k6d

|hk(x, y)| 6 τ}, τ > 0

Z1 = max
16k6d

∣∣∣∣∣
n1∑
i=1

hk(Xi, Yi)− Eh̄k

∣∣∣∣∣
M = max

16k6d
max

16i6n1

|hk(Xi, Yi)|

ζ
2

n1
= max

16k6d

n1∑
i=1

Eh2
k(Xi, Yi)

By similar argument of Lemma E.1 in [27], we have the following result.

Lemma 3.8 (Sub-exponential inequality for the maxima of centered two-sample U-statistics). Let X1, · · ·Xn1

and Y1, · · ·Yn2 be two independent sets of iid random vectors from F and G, respectively. Suppose n1 6 n2

and ||hk(X1, Y1)||ψα < ∞ for α ∈ (0, 1] and all k = 1, · · · , d. Let τ = 8E[M ], then for any 0 < η 6 1 and
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δ > 0, there exists a constant C(α, η, δ) > 0 such that

P(Z > (1 + η)EZ1 + t) 6 exp

(
− t2

2(1 + δ)ζ
2

n1

)
+ 3 exp

[
−
(

t

C(α, η, δ)||M ||ψα

)α]
(3.21)

holds for all t > 0.

Proof of Lemma 3.8. See Lemma E.1 in [27].

By Lemma 3.8, we can have the following result.

Lemma 3.9 (Tail bound of the maxima of two-sample U-statistics in second order). Let X1, · · ·Xn1
and

Y1, · · ·Yn2 be two independent sets of iid random vectors from F and G, respectively. Let n = min{n1, n2},

n = max{n1, n2} and ζ ∈ (0, 1) be a constant s.t. log(ζ−1) 6 K log(nd). Suppose ||hk(X1, Y1)−Ehk(X1, Y1)||ψ1
6

Dn and E|hk(X1, Y1)− Ehk(X1, Y1)|2+` 6 D`
n for all k = 1, · · · , d and ` = 1, 2. Denote Bn = Dn + |θh|∞,

where θh = Eh(X1, Y1). Then,

P( max
16k6d

| 1

n1n2

n1∑
i=1

n2∑
j=1

h2
k(Xi, Yj)− Eh2

k(Xi, Yj)| > t∗) 6 ζ (3.22)

holds for t∗ = K0B
2
n{n−1/2 log1/2(nd) + n−1 log3(nd) log(1/ζ)}.

Proof of Lemma 3.9. Without loss of generality, we may assume Dn > 1. Let Hk(x, y) = h2
k(x, y), k =

1, . . . , d, and define Z, Z1, M and ζ
2

n1
for H accordingly. Apply Lemma 3.8 to H(x, y) and follow the fact

||M ||2 . ||M ||ψ1/2
= ||
√
M ||2ψ1

, we have

P(Z > 2EZ1 + t) 6 exp

(
− t2

3ζ̄2
n1

)
+ 3 exp

[
−

( √
t

K1||
√
M ||ψ1

)]
.

Note that ||hk(X1, Y1)||ψ1
6 ||hk(X1, Y1)− Ehk(X1, Y1)||ψ1

+ ||Ehk(X1, Y1)||ψ1
6 Dn + ||θh,k||ψ1

= Bn and

Eh4
k(X1, Y1) . E|hk(X1, Y1)− θh,k|4 + |θh,k|4 6 D2

n + |θh|4∞ . B4
n. By Lemma 2.2.2 in [92],

||
√
M ||2ψ1

= || max
16k6d

max
16i6n1

|hk(Xi, Yi)|||2ψ1
6 K3(log(n1d) max

k,i
||hk(Xi, Yi)||ψ1)2 = K3 log2(n1d)B2

n.

Since ζ
2

n1
= max16k6d

∑n1

i=1Eh
4
k(Xi, Yi) 6 n1B

4
n, by Lemma 8 in [34] and Jensen inequality,

EZ1 6 K4[log1/2(d)ζn1
+ log(d)||M ||2] 6 K5(B2

nn
1/2
1 log1/2(n1d) +B2

n log3(n1d)).
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Therefore,

P

 max
16k6d

| 1

n1n2

n1∑
i=1

n2∑
j=1

h2
k(Xi, Yj)− Eh2

k| > K5B
2
n[n
−1/2
1 log1/2(d) + n−1

1 log3(n1d)] + t


6 exp

(
−n1t

2

3B4
n

)
+ 3 exp

[
−
( √

n1t

K1K3Bn log(n1d)

)]

Recall n = n1 and n = n2.

(i) If n > K6 log5(nd) log2(1/ζ), then take t∗1 = KB2
nn
−1/2 log1/2(nd) such that

n1t
∗
1

2

B4
n

= log(nd) & log(1/ζ) and

√
n1t∗1

Bn log(n1d)
> n1/4 log−3/4(nd) & log(1/ζ).

(ii) If n 6 K6 log5(nd) log2(1/ζ), then take t∗2 = KB2
nn
−1 log3(nd) log(1/ζ) such that

n1t
∗
2

2

B4
n

> n−1 log6(nd) log2(1/ζ) & log(1/ζ) and

√
n1t∗2

Bn log(n1d)
= log1/2(nd) log1/2(1/ζ) & log(1/ζ).

Observing B2
n[n
−1/2
1 log1/2(d) + n−1

1 log3(n1d)] . t∗1 + t∗2 =: t∗. Hence,

P( max
16k6d

| 1

n1n2

n1∑
i=1

n2∑
j=1

h2
k(Xi, Yj)− Eh2

k| > t∗) 6 ζ.

3.7.4 Lemma for two-sample Hoeffding decomposition

Lemma 3.10 (Tail bound of the maxima of the first order projection). Let X1, . . . , Xn be i.i.d. random

vectors from F and Y is independently draw from G. Suppose θh = Eh(X1, Y ), ||hk(X1, Y )− θhk||ψ1
6 Dn

and E|hk(X1, Y ) − θhk|2+` 6 D`
n for all k = 1, . . . , d and ` = 1, 2. Let ζ ∈ (0, 1) be a constant s.t.

log(ζ−1) 6 K log(nd). Define the projection Gh(x) = Eh(x, Y )− θh. Then,

P

(
|
n∑
i=1

Gh(Xi)|∞ > KDn{n1/2 log1/2(nd) ∨ log2(nd)}

)
6 ζ.

Therefore when n & log3(nd),

P

(
|
n∑
i=1

Gh(Xi)|∞ > KDnn
1/2 log1/2(nd)

)
6 ζ.

Proof of Lemma 3.10. Let Z = max16k6d |
∑n
i=1[Ghk(Xi)]|, σ2 = max16k6d

∑n
i=1E[Ghk(Xi)]

2 and M =
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max16i6n max16k6d |Ghk(Xi)|. By [1, Theorem 4],

P (Z > 2EZ + t) 6 exp (− t2

3σ2
) + 3 exp (− t

K1||M ||ψ1

).

By Jensen inequality, E|Ghk(Xi)|2 = E|E[hk(Xi, Y )−θhk|Xi]|2 6 E|hk(Xi, Y )−θhk|2 6 Dn and ||Ghk(Xi)||ψ1
6

||hk(Xi, Y )− θhk||ψ1
6 Dn. So σ2 6 nDn. By [1, Lemma 2.2.2] and [34, Lemma 8],

||M ||ψ1
6 K2 log(nd) max

i,k
||Ghk(Xi)||ψ1

6 K2Dn log(nd) and

EZ 6 K3{σ
√

log d+ ||M ||ψ1 log d} 6 K4{
√
n log(d)Dn + log(nd) log(d)Dn}.

Take t∗ = K5Dn{n1/2 log1/2(nd) ∨ log2(nd)}, simple calculation shows P(Z > t∗) 6 ζ.

Lemma 3.11 (Maximal inequality for canonical two-sample U-statistics). Let X1, . . . , Xn1
and Y1, . . . , Yn2

be two independent sets of iid random vectors from F and G, respectively. Let θh = Eh(X1, Y1), n1 6 n2

and d > 2. Suppose ||hm(X1, Y1) − θh,m||ψ1
6 Dn and E|hm(X1, Y1) − θh,m|2+` 6 D`

n for all m = 1, . . . , d

and ` = 1, 2. We have

E|
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)|∞

6KDn log(d)
{

log(d) log(n2d) + (n1n2)1/2 + [n2 log(d) log2(n2d)]1/2 + [n1n
2
2 log(d)]1/4

}
.

Proof of Lemma 3.11. The structure of this proof is similar to the one-sample version in [27, Thm 5.1]. By

constructing randomization from iid Rademacher random variables (i.e. P(εi = ±1) = 1
2 for all εi and ε′j ,

i = 1, . . . , n1, j = 1, . . . , n2 ), [39, Thm 3.5.3] shows

E|
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)|∞ 6 K1E|
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)εiε
′
j |∞

Fix an m = 1, . . . , d. Let Λm be a (n1 + n2)-by-(n1 + n2) matrix with zero diagonal blocks, where Λmij =

f̆m(Xi, Yj−n1
) if 1 6 i 6 n1, n1 + 1 6 j 6 n1 +n2 and Λmij = 0, otherwise. Apply Hanson-Wright inequality

[89, Thm 1] conditioning on Xn1
1 and Y n2

1 ,

P
(
εTΛmε|Xn1

1 Y n2
1

)
6 2 exp[−K2 min{ t2

|Λm|2F
,

t

||Λm||2
}],

where εT = (ε1, . . . , εn1 , ε
′
1, . . . , ε

′
n2

) and t > 0. Denote V1 = max16m6d |Λm|F and V2 = max16m6d ||Λm||2.
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Let

t∗ = max{V1

√
log d

K2
, V2

log d

K2
},

such that

E[ max
16m6d

|εTΛmε||Xn1
1 , Y n2

1 ] =

∫ ∞
0

P

(
max

16m6d
|εTΛmε| > t|Xn1

1 , Y n2
1

)
dt

6 t∗ + 2d

∫ ∞
t∗

max{exp (−K2t
2

V 2
1

), exp (−K2t

V2
)}.

Apply the tail bound of standard Gaussian random variables 1 − Φ(x) 6 φ(x)/x for x > 0, and note that

d > 2, we have

2d

∫ ∞
t∗

exp (−K2t
2

V 2
1

)dt 6
V1√
2K2

∫ ∞
√

2 log d

exp (−s
2

2
)ds 6

V1√
K2 log d

6 K2V1.

Similarly,

2d

∫ ∞
t∗

exp (−K2t

V2
)dt 6 2V2/K2.

By Jensen’s inequality and the fact V2 6 V1, we have

E|
n1∑
i=1

n2∑
j=1

f̆(Xi, Yj)εiε
′
j |∞ 6 K1E[t∗ +K2V1 + 2V2/K2] 6 K3(log d)EV1

6 K3(log d)(E max
16m6d

|Λm|2F )1/2. (3.23)

Our last task is to bound I
def
= Emax16m6d |Λm|2F = E[max16m6d

∑n1

i=1

∑n2

j=1 f̆
2
m(Xi, Yj)]. Consider Ho-

effding decomposition of f̆2
m,

f̆m0 (x1, y1) = f̆2
m(x1, y1)− f̆m1 (x1)− f̆m2 (y1)− Ef̆2

m,

where f̆m1 (x1) = Ef̆2
m(x1, Y )− Ef̆2

m and f̆m2 (y1) = Ef̆2
m(X, y1)− Ef̆2

m for X ∼ F |= Y ∼ G are two random

vectors independent from Xn1
1 , Y n2

1 , and all x1, y1 from the measurable space of F and G, respectively. Then,

E[ max
16m6d

n1∑
i=1

n2∑
j=1

f̆2
m(Xi, Yj)] = E[ max

16m6d

n1∑
i=1

n2∑
j=1

f̆m0 (Xi, Yj) + f̆m1 (Xi) + f̆m2 (Yj) + Ef̆2
m]

6 E[|
n1∑
i=1

n2∑
j=1

f̆m0 (Xi, Yj)|∞] + n2E[|
n1∑
i=1

f̆m1 (Xi)|∞] + n1E[|
n2∑
j=1

f̆m2 (Yj)|∞] + n1n2 max
16m6d

Ef̆2
m. (3.24)
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Note that, conditioning on Xn1
1 , Hoeffding inequality shows for t > 0

P

(
|
n1∑
i=1

f̆m1 (Xi)εi| > t|Xn1
1

)
6 2 exp (− t2

2
∑n1

i=1 f̆
m
1 (Xi)2

).

Denote M = maxi,j,m |f̆m(Xi, Yj)|. Following arguments in beginning and the symmetrization inequality

[92, Lemma 2.3.1], we have

E|
n1∑
i=1

f̆1(Xi)|∞ 6
√

log d E

√√√√max
m

n1∑
i=1

f̆m1 (Xi)2 6 K4

√
log d

√
n1 max

m
Ef̆4

m + log d||M ||44, (3.25)

E|
n2∑
j=1

f̆2(Yj)|∞ 6
√

log d E

√√√√max
m

n2∑
j=1

f̆m2 (Yj)2 6 K5

√
log d

√
n2 max

m
Ef̆4

m + log d||M ||44, (3.26)

E|
n1∑
i=1

n2∑
j=1

f̆0(Xi, Yj)|∞ 6 log d E

√√√√max
m

n1∑
i=1

n2∑
j=1

f̆m0 (Xi, Yj)2 6 K6 log d
√
I||M ||2. (3.27)

The last step of (3.25) comes from [27, Equation (58)]. The (3.26) follows the same procedure. And the first

step of (3.27) is dealt the same way as (3.23) with

E

√√√√max
m

n1∑
i=1

n2∑
j=1

f̆m0 (Xi, Yj)2 6 2
[
E

√
max
m

∑
i,j

f̆4
m(Xi, Yj) + E

√
max
m

∑
i,j

(E[f̆2
m(Xi, Y ′j )|Xn1

1 ])2

+E

√
max
m

∑
i,j

(E[f̆2
m(X ′i, Yj)|Y

n2
1 ])2 + E

√
max
m

∑
i,j

(Ef̆2
m(Xi, Yj))2

]
6K6

√
I
√
EM2.

Since ||hm(X1, Y1) − θh,m||ψ1
6 Dn and E|hm(X1, Y1) − θh,m|2+` 6 D`

n, we know maxmEf̆
4
m 6 D2

n and

||M ||4 . ||M ||ψ1
6 K7Dn log(n1n2d) 6 2K7Dn log(n2d). Besides, we have Dq = maxm[E|f̆m(X,Y )|q]1/q .

Dn. Plug (3.25)-(3.27) in (3.24) and the solution of quadratic inequality for I gives

I 6 K8

{
||M ||22 log2 d+ n1n2D2 + n2

√
log d

√
n1D4 + log d||M ||44

+n1

√
log d

√
n2D4 + log d||M ||44

}
.

Therefore, the square-root of I is less than the square-root of each term on RHS. Plug the result in 3.23. A

simplified result is obtained in the statement of Lemma 3.11.
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3.7.5 Additional tables

Gaussian t6 ctm-Gaussian
|θ|∞ I II III I II III I II III

tm = 5/10
0 0.042 0.050 0.032 0.058 0.060 0.040 0.052 0.050 0.048

0.28 0.100 0.178 0.082 0.082 0.134 0.072 0.066 0.102 0.070
0.44 0.436 0.628 0.390 0.186 0.420 0.212 0.154 0.356 0.200
0.63 0.886 0.970 0.896 0.610 0.828 0.590 0.554 0.810 0.578
0.84 0.996 1 0.996 0.926 0.988 0.912 0.918 0.990 0.910

tm = 3/10
0 0.030 0.042 0.066 0.038 0.060 0.026 0.030 0.072 0.060

0.28 0.088 0.216 0.108 0.068 0.124 0.036 0.036 0.156 0.082
0.44 0.414 0.738 0.384 0.222 0.418 0.178 0.150 0.440 0.200
0.63 0.890 0.996 0.908 0.594 0.878 0.634 0.524 0.846 0.570
0.84 0.998 1 0.998 0.930 0.998 0.960 0.940 0.996 0.940

tm = 1/10
0 0.054 0.060 0.050 0.064 0.058 0.060 0.054 0.054 0.064

0.63 0.082 0.210 0.086 0.078 0.126 0.082 0.058 0.118 0.086
0.84 0.190 0.472 0.224 0.144 0.278 0.120 0.116 0.240 0.120
1.08 0.446 0.768 0.446 0.268 0.492 0.252 0.208 0.470 0.230
1.35 0.756 0.966 0.770 0.486 0.762 0.516 0.444 0.760 0.462
2.00 0.998 1.000 0.998 0.954 0.996 0.960 0.962 0.994 0.956

Table 3.9: Powers report of our method using linear kernel. Here, n = 500, p = 600, α = 0.05 and change
point locations are tm = m/n = 5/10, 3/10, 1/10.

Gaussian t6 ctm-Gaussian Cauchy
|θ|∞ I II III I II III I II III |θ|∞ I II III

tm = 5/10
0 0.056 0.043 0.048 0.066 0.062 0.066 0.067 0.032 0.055 0 0.054 0.062 0.039

0.28 0.136 0.289 0.147 0.110 0.229 0.099 0.105 0.204 0.083 0.71 0.403 0.651 0.432
0.44 0.566 0.870 0.624 0.452 0.738 0.479 0.364 0.674 0.397 1.23 0.971 1 0.981
0.63 0.977 1 0.971 0.915 0.996 0.913 0.854 0.980 0.872 1.91 1 1 1
0.84 1 1 1 0.998 1 1 0.988 1 0.998 2.79 1 1 1

tm = 3/10
0 0.049 0.037 0.047 0.039 0.068 0.056 0.051 0.049 0.055 0 0.055 0.035 0.065

0.28 0.070 0.154 0.068 0.058 0.148 0.078 0.073 0.104 0.083 0.71 0.257 0.386 0.280
0.44 0.342 0.619 0.342 0.218 0.451 0.230 0.189 0.427 0.240 1.23 0.829 0.969 0.876
0.63 0.830 0.982 0.848 0.663 0.912 0.706 0.593 0.872 0.628 1.91 1 1 1
0.84 0.992 1 0.996 0.975 1 0.973 0.941 0.994 0.945 2.79 1 1 1

tm = 1/10
0 0.042 0.046 0.065 0.053 0.046 0.046 0.050 0.048 0.050 0 0.057 0.059 0.080

0.63 0.078 0.139 0.082 0.063 0.107 0.078 0.060 0.110 0.075 1.91 0.216 0.394 0.243
0.84 0.147 0.309 0.155 0.097 0.231 0.132 0.104 0.218 0.110 2.79 0.410 0.680 0.433
1.08 0.305 0.580 0.336 0.214 0.458 0.248 0.183 0.423 0.222 3.95 0.627 0.873 0.647
1.35 0.523 0.796 0.588 0.405 0.706 0.439 0.367 0.660 0.351 5.47 0.806 0.931 0.806
2.00 0.891 0.992 0.931 0.794 0.964 0.834 0.815 0.950 0.828 10.02 0.937 0.980 0.933

Table 3.10: Powers report of our method using sign kernel. Here, n = 500, p = 600, α = 0.05 and change
point locations are tm = m/n = 5/10, 3/10, 1/10.
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[47] Evarist Giné and Richard Nickl. Mathematical Foundations of Infinite-Dimensional Statistical Models.
Cambridge University Press, 2016.

[48] Edit Gombay. U-statistics for change under alternatives. Journal of Multivariate Analysis, 78(1):139–
158, 2001.
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[51] Edit Gombay and Lajos Horváth. Rates of convergence for u-statistic processes and their bootstrapped
versions. Journal of Statistical Planning and Inference, 102(2):247–272, 2002.

[52] Edit Gombay and Shuangquan Liu. A nonparametric test for change in randomly censored data. The
Canadian Journal of Statistics/La Revue Canadienne de Statistique, pages 113–121, 2000.

[53] Peter Hall. On convergence rates of suprema. Probability Theory and Related Fields, 89:447–455, 1991.
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detection à la gombay and horváth. Journal of Multivariate Analysis, 115:16–32, 2013.
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