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ABSTRACT

A critical step in many biological studies is the estimation of evolutionary trees (phylo-

genies) from genomic data. Of particular interest is the species tree, which illustrates how

a set of species evolved from a common ancestor. While species trees were previously esti-

mated from a few regions of the genome (genes), it is now widely recognized that biological

processes can cause the evolutionary histories of individual genes to differ from each other

and from the species tree. This heterogeneity across the genome is phylogenetic signal that

can be leveraged to estimate species evolution with greater accuracy. Hence, species tree

estimation is expected to be greatly aided by current large-scale sequencing efforts, includ-

ing the 5 000 Insect Genomes Project, the 10 000 Plant Genomes Project, the (∼60 000)

Vertebrate Genomes Project, and the Earth BioGenome Project, which aims to assemble

genomes (or at least genome-scale data) for 1.5 million eukaryotic species in the next ten

years. To analyze these forthcoming datasets, species tree estimation methods must scale to

thousands of species and tens of thousands of genes; however, many of the current leading

methods, which are heuristics for NP-hard optimization problems, can be prohibitively ex-

pensive on datasets of this size. In this dissertation, we argue that new methods are needed

to enable scalable and statistically rigorous species tree estimation pipelines; we then seek to

address this challenge through the introduction of three supertree-like methods: NJMerge,

TreeMerge, and FastMulRFS. For these methods, we present theoretical results (worst-case

running time analyses and proofs of statistical consistency) as well as empirical results on

simulated datasets (and a fungal dataset for FastMulRFS). Overall, these methods enable

statistically consistent species tree estimation pipelines that achieve comparable accuracy to

the dominant optimization-based approaches while dramatically reducing running time.
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CHAPTER 1: INTRODUCTION

An “unlimited thirst for genome sequencing” [1] is transforming research in many do-

mains. Evolutionary genomic biology is no exception, as demonstrated by the 5 000 Insect

Genomes Project [2, 3], the 10 000 Plant Genomes Project [4], the (∼60 000) Vertebrate

Genomes Project [5], and the Earth BioGenome Project [6], which aims to assemble genomes

(or at least genome-scale data) for 1.5 million eukaryotic species in the next ten years. These

ultra-large datasets will be leveraged to study how species evolve/adapt to their environ-

ments and how biodiversity is created/maintained. A crucial step in addressing these and

other biological questions is the estimation of evolutionary trees (phylogenies).

It is well established that genetic material (DNA) can change over time; for example, one

state (representing one of the four nucleotides: Adenine, Cytosine, Guanine, or Thymine)

may be substituted for another. DNA evolution is typically modeled as a stationary, re-

versible, and homogenous (SRH) Markov process, parameterized by a rooted tree with edge

lengths indicating the expected number of substitutions (per site). Of these standard mod-

els, the simplest, introduced by Jukes and Cantor [7], specifies that all 12 substitutions

(e.g., A → C, C → A, etc.) occur at equal rates and that all four states occur at the root

with equal probabilities. The Jukes-Cantor (JC) model is not very realistic, as transitions

(A ↔ G and C ↔ T ) are more likely than transversions (A ↔ C, A ↔ T , C ↔ G, and

G ↔ T ) [8]. The Kimura 2-parameter model [8] allows transitions to occur at different

rates than transversions, and the Generalized Time Reversible (GTR) model [9] allows all

six transitions/transversions to occur at different rates and all four states to occur at the

root with different probabilities.

Despite these differences, standard models of DNA evolution define the same generative

process: a character state (A, C, G, or T ) is drawn from the probability distribution of states

at the root and then evolves down the tree, undergoing substitutions. The data observed

at the leaves of the tree is referred to as a site or site pattern. Repeating this process

produces a character matrix, where each column is a site and each row is a leaf. Phylogeny

estimation is the reverse; for example, we might seek the model tree (topology and numerical

parameters) that maximizes the likelihood of an observed character matrix being generated

under a particular model of DNA evolution [10]. Maximum likelihood (ML) methods seek

model trees with unrooted topologies, as the likelihood of an SRH model tree is independent

of the root.

Prior to phylogeny estimation, a character matrix is assembled for a set of species. This

requires collecting DNA sequences (from genomes of individuals representing these species)
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that evolved from the same DNA sequence in the genome of a common ancestor. Although

the collected DNA sequences correspond to the same gene, because mutations (insertions

and deletions) can accumulate over time, they may not have the same length. Gap character

states (−) are added to the DNA sequences so that every two of nucleotides in the same

column are homologous, meaning they evolved from the same nucleotide in the genome of

a common ancestor. The resulting character matrix is referred to as a multiple sequence

alignment (MSA). MSAs, like phylogenies, are estimated from data, and this task has its

own computational and statistical challenges [11, 12].

Phylogenomics [13] combines phylogeny estimation with genome-scale data, meaning that

data from across the entire genome (maybe even the whole genome) is available for species of

interest. Genome-scale enables the assembly of multi-locus datasets, which contain sets (one

per gene) of unaligned DNA sequences (typically one per species). After an MSA is estimated

for each gene, phylogeny estimation can proceed in the usual fashion by combining the

resulting MSAs into one big matrix (referred to as the concatenated alignment) and seeking

the ML model tree under a standard model of DNA evolution. However, this practice may

be inappropriate, as biological processes can cause the evolutionary histories of individual

genes (gene trees) to differ from each other and from the evolutionary history of the species

(species tree) [14, 15, 16]. In other words, standard models of DNA evolution assume that

all sites evolve down a common tree topology, and this assumption can be violated when the

input MSA contains data from multiple genes.

The observation that gene trees can differ from each other and from the species tree

combined with the increasing availability of genome-scale data has driven method develop-

ment in recent years. We follow suit, focusing on species tree estimation in the presence of

incomplete lineage sorting and gene duplication and loss.

Incomplete lineage sorting (ILS) [16, 17, 18, 19] is a possible outcome of ancestry. A

gene is passed from one individual to another through reproduction, so we can trace the

inheritance of the gene backward in time; this population-level process is modeled by the

Multi-Species Coalescent (MSC) [18, 20, 21, 22]. Complete lineage sorting occurs when the

gene genealogy (gene tree) agrees with the species tree, and ILS occurs when these trees

do not agree. The latter is more likely whenever there is a rapid radiation (sequence of

speciation events close together in time). Many major groups are expected to be impacted

by ILS, including birds [23], land plants [24, 25], lizards [26], and placental mammals [27].

Hence, species tree estimation in the presence of ILS is receiving considerable attention

[28, 29, 30].

Gene duplication and loss (GDL) [14], as its name suggests, occurs when genes are du-

plicated in or lost from the genome; this can be modeled in a variety of ways, for example

2



the probabilistic model proposed by Arvestad et al. [31]. GDL as well as whole genome

duplication is common in fungi [32] and plants [25]; however, most methods for species

tree estimation assume that genes evolve without duplications or losses. Therefore, prior

to species tree estimation a subset of DNA sequences that evolved without duplications is

identified for each multi-copy gene (gene that appears multiple times in a genome due to

duplication events). This task (referred to as orthology detection [33, 34]) is still difficult to

do correctly [35, 36, 37], so multi-copy genes are often excluded from species tree estimation

(e.g., [24, 25]). Methods that can estimate species trees under models of GDL are of increas-

ing interest, as this would enable phylogenetic signal to be extracted from multi-copy genes

while avoiding the challenges of orthology detection.

We are concerned with whether methods are provably statistically consistent under mod-

els of evolution, where gene trees evolve within a species tree under a gene evolution model

(e.g., the MSC model or a GDL model), and then sites evolve down each of the gene trees

under a DNA evolution model (e.g., the GTR model). Informally, an estimation method is

statistically consistent under a model if the error in the estimated model parameters (for

our purposes just the unrooted species tree topology) goes to zero, as the amount of data

(random samples) generated under the model and given to the method as input goes to infin-

ity. This is equivalent to method reconstructing the correct unrooted species tree topology

with probability converging to one, as the amount of data goes to infinity. If we find some

condition for which this does not hold, we say that the method is statistically inconsistent;

furthermore, we say that the method is positively misleading if the method reconstructs the

incorrect unrooted species tree topology with probability converging to one as the amount

of data goes to infinity.

While statistical consistency is an important theoretical property, it only describes method

performance under ideal conditions; thus, we are also concerned with whether methods have

good performance in practice. The current standard is to benchmark methods for accuracy

as well as robustness to error, model misspecification, and other challenging conditions using

simulated datasets.

Finally, we are concerned with whether methods scale to datasets with large numbers of

genes and large numbers of species. There are three major classes of phylogeny estimation

methods: distance methods, optimization methods, and Bayesian methods. Distance meth-

ods (e.g., [38, 39, 40, 41]) are typically the fastest (quadratic storage and quadratic or cubic

running times, scaling with the number of species); however, optimization and Bayesian

methods are preferred by the phylogenomics community. We focus on optimization meth-

ods, which are not as computationally intensive as Bayesian methods (e.g., [42, 43]), but

nevertheless can be quite costly. Optimization methods are typically heuristics for NP-hard
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problems, so many (e.g., [44, 45, 46, 47]) use a combination of hill climbing and randomiza-

tion to search tree space (space of all possible phylogenetic trees, which grows exponentially

in the number of species) until some convergence criteria are met. These methods do not

have deterministic running times, so worst-case running time analysis cannot be provided.

However, such methods will be costly when a large numbers of candidate trees need to be

evaluated and/or when the objective function is computationally intensive to evaluate for

each candidate tree; both conditions can occur for large datasets. The use of dynamic pro-

gramming (DP) to solve an optimization problem exactly within a constrained search space

has emerged as a powerful technique [48], enabling phylogeny estimation methods that are

both statistically consistent and polynomial-time [49]. The worst-case running time of such

methods is typically a high degree polynomial (scaling with the number of species and the

number of genes), so even DP methods can be computationally intensive on large datasets.

In summary, the field of phylogenetics is characterized by computational challenges (e.g.,

NP-hard problems and compute-intensive objective functions), statistical challenges (e.g.,

model misspecification), and big data challenges (e.g., large, heterogeneous, and error-ridden

datasets). We explore all of these challenges and make the following contributions.

In Chapter 3, we benchmark five of the dominant species tree estimation methods on

simulated datasets with varying levels of ILS, phylogenetic signal per gene, and missing data.

For each method, we evaluate species tree accuracy as well as changes in accuracy due to

gene filtering (the removal of genes from a multi-locus dataset based on some predetermined

criteria, for example the percentage of missing data). Our results enable us to reconcile

conflicting findings from prior studies [50, 51, 52, 53, 54] and offer recommendations for

future studies.

We then turn our attention to scaling the best methods studied in Chapter 3 to larger

numbers of species, with the goal of maintaining theoretical performance (statistical con-

sistency) and empirical performance (accuracy). We achieve this through the introduction

of disjoint tree merger (DTM) methods: NJMerge (Chapter 4) and its improved version

TreeMerge (Chapter 5). Both NJMerge and TreeMerge are designed to operate within

a novel divide-and-conquer pipeline that (i) divides species into pairwise disjoint subsets,

(ii) estimates a tree on each subset, and then (iii) merges the subset trees using auxiliary in-

formation, for example the evolutionary distances estimated between (some but not all) pairs

of species. This approach has two advantages: first, it avoids supertree estimation (which is

typically formulated as an NP-hard optimization problem [55, 56]), and second, it enables

the final tree to obey the topological constraints implied by the subset trees (which should

be estimated using the best method possible). We prove that divide-and-conquer pipelines

using NJMerge and TreeMerge are statistically consistent under standard models of DNA
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evolution as well as the MSC model. Finally, we evaluate methods on datasets simulated

under the MSC model, finding that our divide-and-conquer pipelines dramatically reduce

the running time of the best species tree methods studied in Chapter 3 without sacrificing

accuracy.

While many methods have been proven to be statistically consistent under the MSC

model, very little is known about the statistical consistency of methods when genes can

be duplicated or lost. In a recent study, Legried et al. [57] observed that several meth-

ods, including MulRF [46, 47], achieved superior accuracy to ASTRAL-multi [58], which,

at the time of this study, was the only method proven to be statistically consistent under

a model of GDL. This finding motivates Chapter 6, in which we prove that the solution to

MulRF’s NP-hard optimization problem is a statistically consistent estimator of the species

tree under a generic model of GDL, provided that adversarial GDL is prohibited. MulRF

is not guaranteed to converge to an optimal solution and has a non-deterministic running

time, so we propose a new method, FastMulRFS that operates by performing a reduction

on the input data and then using DP to solve MulRF’s optimization problem exactly within

a constrained search space [59]. This technique enables us to prove that FastMulRFS is sta-

tistically consistent and runs in polynomial time. Finally, we evaluate methods on biological

datasets as well as datasets simulated under the DLCoal model, which allows both GDL and

ILS [60]. Our results show that FastMulRFS achieves comparable accuracy to MulRF while

being much faster and also compares favorably to the other methods tested (ASTRAL-multi

and DupTree [61]).

We hope these contributions are steps towards a larger goal of developing species tree

estimation methods that are both statistically rigorous and practical given the large-scale

genome sequencing projects currently underway. We conclude in Chapter 7 with a brief

summary and a discussion of open challenges and future work.
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CHAPTER 2: BACKGROUND

This chapter contains background material referenced throughout this dissertation. Sec-

tions 2.1–2.3 introduce phylogenies as graph-theoretic objects, providing the relevant notation

and terminology. Concepts from evolutionary genomic biology are presented in Sections 2.4,

and models of evolution are described in Sections 2.5.1–2.5.4. Gene tree estimation methods

and species tree estimation methods are discussed in Section 2.6 and 2.7, respectively. To

allow readers to skip this chapter, we have indexed acronyms and terminology. The first

time a key word appears in a chapter or in a section within Chapter 2 only, it is highlighted

in blue, indicating a link to the Appendix. The key word is italicized in addition to being

highlighted in blue when it is defined in the text.

2.1 PHYLOGENETIC TREES

A phylogenetic tree T is a triplet (t, S, φ), where t is a tree (connected acyclic graph), S

is a set of labels, and φ : L(t) → S assigns each leaf of t to a label in S. We require that

every label in S map to at least one leaf of T . A tree T is singly-labeled if φ is a bijection;

otherwise, T is multi-labeled. Phylogenetic trees are singly-labeled unless otherwise noted.

We do not always make an explicit distinction between a phylogenetic tree T and its graph

t; for example, we typically say that “T is a tree on label set S” or “T is a phylogenetic

tree,” denoting its leaf label set, leaf node set, vertex (node) set, and edge set as S(T ),

L(T ), V (T ), and E(T ), respectively. The edges that are incident with leaves are referred

to as terminal edges, and the remaining edges are referred to as internal edges. When a

phylogenetic tree parameterizes a model of evolution, its edges are assigned weights. The

phrase “tree topology” simply refers to a phylogenetic tree minus edge weights and any other

model parameters.

Phylogenetic trees can be either unrooted or rooted. In an unrooted phylogenetic tree, t

is undirected. Leaves are vertices with degree one, and all other vertices are internal nodes.

For simplicity, internal nodes are required to have degree three or greater, suppressing all

internal nodes with degree two. In a rooted phylogenetic tree, t is directed with edges

oriented towards the root: a special vertex with out-degree zero (all other vertices have out-

degree one). Leaves are vertices with in-degree zero, and all other vertices are internal nodes.

For simplicity, internal nodes are required to have in-degree two or greater, suppressing all

internal nodes with in-degree one.

Given a rooted tree, we can identify ancestor-descendant relationships. A vertex v is an
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ancestor of vertex u (and conversely u is a descendant of v) if there exists a directed path

from u to v. We say that v is a common ancestor of R ⊆ S if v is an ancestor of every

vertex in R; if, in addition, the path between the root and v is longer than the path between

the root and any other common ancestor of R, we say that v is the most recent common

ancestor (MRCA) of R.

An unrooted tree T can be transformed into a rooted tree by picking a node to be the

root and directing edges toward the root; this results in a root vertex with in-degree three

or greater. Consequently, it is more common to root T by picking an edge, sub-dividing

the edge with a new vertex (the root), and directing edges toward the root; this results in

a root vertex with in-degree two. A rooted tree can be transformed into an unrooted tree

by ignoring edge directions and the root label and then suppressing the node previously

designated as the root if it has degree two.

Several other operations are useful when working with phylogenetic trees. A contraction

operation corresponds to deleting an edge (u, v) but not its endpoints from T and then

identifying vertices u and v. We say that tree T ′ is a contraction of T if T ′ can be obtained

from T through a sequence of zero or more edge contractions. A refinement operation is

the reverse of an edge contraction, that is, T is a refinement of T ′ if and only if T ′ is a

contraction of T . A polytomy is any vertex with degree greater than three (and in-degree

greater than two if T is rooted). If at least one vertex in T is a polytomy, then we say that

T is unresolved; otherwise, we say that T is fully resolved, as no refinements are possible. A

restriction operation corresponds to deleting leaves assigned to labels in the set S \ R from

T and suppressing internal nodes with degree two (and in-degree one if T is rooted). In this

case, we say that T is restricted to R and denote the resulting tree T |R.

2.2 COMPARISONS BETWEEN TWO PHYLOGENETIC TREES

We now turn to the issue of comparing two unrooted phylogenetic trees. Compatibility is

an essential concept, originally described by Estabrook et al. [62], and we give the definition

from Section 3.2.1 in [12].

Definition 2.1 (Tree Compatibility). Let T and T ′ be unrooted phylogenetic trees on label

sets S and R ⊆ S, respectively. We say that T is compatible with T ′ if T ′ is a contraction of

T |R.

Definition 2.2 (Tree Agreement). Let T and T ′ be unrooted phylogenetic trees on label

sets S and R ⊆ S, respectively. We say that T ′ agrees with T if T ′ is isomorphic to T |R.

Otherwise, we say that T ′ disagrees with T .
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If two trees agree, they are compatible, because every tree is a contraction (or a refine-

ment) of itself. Compatibility can be determined for two unrooted trees in polynomial time

using bipartitions.

Definition 2.3 (Bipartition). Let T = (t, S, φ) be an unrooted phylogenetic tree. The

deletion of an edge e but not its endpoints from t produces two rooted subtrees tA and tB,

splitting S into two sets: A = {φ(l) : l ∈ L(tA)} and B = {φ(l) : l ∈ L(tB)}. Therefore,

we say that edge e induces bipartition π(e) = A|B. The set of bipartitions induced by T is

denoted Bip(T ) = {π(e) : e ∈ E(T )}. If |A| = 1 or |B| = 1, we say that A|B is a trivial

bipartition; otherwise, we say that A|B is a non-trivial bipartition.

There exists a bijection between Bip(T ) and E(T ) provided that T has no internal nodes

of degree two (as we require). It easily follows that T ′ is compatible with T if and only

if Bip(T ′) ⊆ Bip(T |R); see Section 3.2.1 in [12] for details. Therefore, we can extend the

concept of compatibility to bipartitions.

Definition 2.4 (Bipartition Compatibility). Let T be an unrooted phylogenetic tree on

label set S, and let π = A′|B′ be a bipartition on label set R ⊆ S. We say that bipartition

e is compatible with T if there exists a bipartition A|B ∈ Bip(T ) such that A′ ⊆ A and

B′ ⊆ B.

If two unrooted trees are not compatible, we may quantify the distance between them.

One of the most popular metrics is the Robinson-Foulds (RF) distance [63].

Definition 2.5 (Robinson-Foulds Distance). The RF distance between two unrooted phy-

logenetic trees T and T ′ on the same label set is the minimum number of contraction and

refinement operations required to transform T into a tree that is isomorphic to T ′ or vice

versa.

Theorem 2.1 (Robinson and Foulds [63]). The RF distance between two unrooted phylo-

genetic trees T and T ′ on the same label set is equivalent to the bipartition distance.

RF (T, T ′) = |Bip(T )4Bip(T ′)| (2.1)

= |Bip(T ) \Bip(T ′)|+ |Bip(T ′) \Bip(T )| (2.2)

In a fully resolved, unrooted tree T , there are 2|L(T )| − 3 edges, of which |L(T )| are

terminal edges and |L(T )| − 3 are internal edges. Two trees T and T ′ on the same label

set can only differ with respect to their internal edges, which induce non-trivial bipartitions;

therefore, 0 ≤ |Bip(T ) \Bip(T ′)| ≤ |L(T )| − 3. A similar statement can be made regarding
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|Bip(T ′) \Bip(T )|. It follows that the RF distance is a value between zero and 2|L(T )| − 6.

The RF distance is commonly used to quantify error in simulation studies, where data is

simulated under a model (parameterized by a phylogenetic tree T ∗ on S) and then a tree T

on S is estimated from the simulated data. When computing RF (T ∗, T ) via Equation 2.2,

the first term corresponds to the number of false negative (FN) edges (i.e., edges in the

true tree that do not exist in the estimated tree), and the second term corresponds to the

number of false positive (FP) edges (i.e., edges in the estimated tree that do not exist in

the true tree). This analysis assumes a bijection between Bip(T ) and E(T ), which is the

case provided that T has no internal nodes of degree two (as we require). In the context of

a simulation study, we typically report the normalized RF distance between the true and

estimated tree:
RF (T ∗, T )

2|L(T )| − 6
(2.3)

This quantity is referred to as the RF error rate. When T ∗ and T are not fully resolved, it

can be useful to report the normalized symmetric difference:

RF (T ∗, T )

|E(T ∗)|+ |E(T )| − 2L(T )
(2.4)

where the denominator represents the number of internal edges in T ∗ and T .

Comparing trees based on their RF distance has advantages and disadvantages; see [64,

65] for discussion. Alternatively, distances between two unrooted trees can be computed

using quartets in a fashion similar to Equation 2.1.

Definition 2.6 (Quartet). A quartet is an unrooted phylogenetic tree with four leaves. This

is the smallest unrooted tree (consider that there are zero non-trivial bipartitions for |S| = 3

but three non-trivial bipartition for |S| = 4). An unrooted tree T induces a set of quartets,

denoted Q(T ), obtained by restricting T to all possible subsets of four labels.

Other notable metrics for comparing two unrooted trees include the nearest neighbor in-

terchange distance [66, 67] and the matching distance [64]; also see [65] for more information

on comparisons between phylogenetic trees.

2.3 SUPERTREES

Suppose we have a set of phylogenetic trees from different phylogenomic studies, so these

trees are on different sets of species and were estimated from different genetic markers. Then,

we may wish to combine this phylogenetic information into a single tree on the larger set of
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species. A major ongoing project with this goal is the Open Tree of Life [68]; their efforts

(e.g., [69]) have included the development of new supertree methods [55], a class of methods

characterized by the following input/output:

• Input: Set T of phylogenetic trees

• Output: Tree T on label set S =
⋃
t∈T S(t)

Supertree methods have been widely adopted for estimating species trees under the MSC

model (although note that when all trees in T are on the same label set, this problem is

referred to as a consensus tree problem rather than a supertree problem). A less popular

but notable application of supertree methods is divide-and-conquer phylogeny estimation;

see Section 4.1 for further discussion.

Useful for understanding supertree methods is the concept of compatibility, which we

previously defined for two trees and now extend to a set T of trees.

Definition 2.7 (Compatibility Supertree). Let T be a set of unrooted phylogenetic trees.

We say that T is compatible if there exists an unrooted tree T on label set S =
⋃
t∈T S(t)

such that T is compatible with every tree in T . If T is minimally resolved, we say that T is

a compatibility supertree for T ; otherwise, we say that T is a refined compatibility supertree.

Determining whether a compatibility supertree exists for T is NP-complete for |T | > 2,

even when every tree in T is a quartet [70, 71]. While a compatibility supertree may not

exist for T , another possibility is to minimize total distance (or conversely to maximize

total support) between the output tree T and the input trees in T . Indeed, many of the

leading supertree methods are based on optimization, perhaps the most well-known of which

is Matrix Representation with Parsimony [72].

We now define three supertree optimization problems for unrooted phylogenetic trees.

The first problem is based on quartets.

Definition 2.8 (Maximum Quartet Support Supertree Problem). Let T be a set of phylo-

genetic trees. If a tree T ∗ on label set S =
⋃
t∈T S(t) is in the set

arg max
T

∑
t∈T

|Q(T ) ∩Q(t)| (2.5)

then we say that T ∗ is a maximum quartet support supertree (MQSS) for T .

The MQSS problem is NP-hard [73, 74], and well-known heuristics include Quartet Puz-

zling [75], Quartet Max Cut [76], and Quartet Fiduccia Mattheyses (QFM) [77]. When the
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search space for T is constrained by a set Σ of bipartitions on S (i.e., a solution T must also

satisfy Bip(T ) ⊆ Σ), the MQSS problem can be solved in polynomial time [49, 78]. We refer

to this problem as the bipartition-constrained MQSS problem.

The following supertree optimization problems are based on bipartitions.

Definition 2.9 (Maximum Bipartition Support Supertree Problem). Let T be a set of

phylogenetic trees. If a tree T ∗ on label set S =
⋃
t∈T S(t) is in the set

arg max
T

∑
t∈T

|Bip(T |S(t)) ∩Bip(t)| (2.6)

then we say that T ∗ is a maximum bipartition support supertree (MBSS) for T .

Definition 2.10 (Robonsin-Foulds Supertree Problem). Let T be a set of phylogenetic

trees. If a tree T ∗ on label set S =
⋃
t∈T S(t) is in the set

arg min
T

∑
t∈T

RF (T |S(t), t) = arg min
T

∑
t∈T

|Bip(T |S(t))4Bip(t)| (2.7)

then we say that T ∗ is a Robinson-Foulds supertree (RFS) for T .

The RFS problem is NP-hard [79], and MulRF [46, 47] is a well-known heuristic. When

T is required to be fully resolved, T is a solution to the RFS problem if and only if T is a

solution to the MBSS problem. This is easy to see because

RF (T |S(t), t) = |E(T |S(t))|+ |E(t)| − |Bip(T |S(t)) ∩Bip(t)| (2.8)

=
(
2|S(t)| − 3

)
+ |E(t)| − |Bip(T |S(t)) ∩Bip(t)| (2.9)

implies that a solution T maximizes the third term of Equation 2.9. The bipartition-

constrained version of the MBSS problem can be solved in polynomial time [59].

Although not discussed, there are many other (types of) supertree methods; see [55, 56,

80] for an entry into this literature.

2.4 SPECIES TREES AND GENE TREES

In Sections 2.1–2.3, we describe phylogenetic trees as graph-theoretic objects, and from

this perspective, there is no difference between a gene tree and a species tree. However, the

interpretation of these two types of trees is quite different.
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2.4.1 Gene Tree

A gene tree represents how a set of DNA sequences evolved from the same DNA sequence

through a branching process (note that each DNA sequence is a contiguous region of an

individual’s genome). Going forward in time, the DNA sequence at the root is passed down

as a single hereditary unit from individual to individual until it is inherited by the set of

individuals whose DNA sequences are labeling the leaves. This unit of heredity (referred to

as a gene) can range from a single nucleotide (A, C, G, or T ) to several thousand nucleotides.

Because mutations can occur as the gene is passed down, there can be different variants of

the same gene (referred to as alleles). The ancestry of two alleles can be traced backward

in time, and when these lineages trace back to the same ancestor becoming a single lineage,

we say that they have coalesced. In summary, each leaf in the gene tree represents an allele,

and each internal node represents a coalescent event.

A gene, as defined above, is also referred to as a coalescent gene or c-gene [81]. It is worth

noting that the term gene can also refer to a contiguous region of the genome that codes a

protein (although we do not use this definition). In fact, gene trees are estimated from many

different types of genetic markers, including exons (coding regions of the genome), introns

(non-coding regions that lie in between exons), and ultraconserved elements (UCEs) [82, 83].

The distinction of genes as units of heredity is important, as genomes (belonging to

different individuals) can recombine through various biological mechanisms [84], including

sexual reproduction (the genomes of two individuals recombine to form the genome of their

offspring). Suppose that a contiguous coding region of a genome has two sections, one in-

herited from each parent. This region does not constitute a gene, based on our definition.

Indeed, our definition of a gene tree implies no recombination (note that the ancestry of

a DNA sequence impacted by recombination is represented by an ancestral recombination

graph [85]). Recombination can also occur in organisms that reproduce asexually; for ex-

ample, DNA can be exchanged between bacteria [86, 87, 88] or viruses [89]. The transfer of

genetic material from a donor to recipient is referred to as horizontal gene transfer (HGT),

whereas the transfer of genetic material from parent to offspring is referred to as vertical

gene transfer.

2.4.2 Species Tree

To form a gene tree, the ancestry of alleles is traced backward in time to a common

ancestor. The pool of potential ancestors for an allele is dictated by the species tree. The

branches of the species tree represent populations of individuals and thus a population
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of alleles over time. For organisms that reproduce sexually, branching events indicate a

population splitting into two or more populations that are (reproductively) isolated from

each other. Internal nodes in the species tree are referred to as speciation events, and

leaves, which represents a population of individuals, are referred to as species. The precise

definition of a species is complicated, and indeed, species delimitation (i.e., determining

whether different populations constitute different species) is an active subject of research

[90, 91, 92, 93]. We refer the interested reader to [94] for further discussion.

2.4.3 Gene Tree Discordance

Although gene trees evolve within a species tree, this does not imply that these trees will

be compatible. When gene trees differ from each other and from the species tree, we say that

there is gene tree discordance or gene tree heterogeneity. We focus on heterogeneity that

results from gene genealogical relationships or from gene duplication and loss; both of these

processes are modeled by species trees. It is worth noting that heterogeneity can also result

from biological processes, such as HGT, that are modeled by a species network [95, 96].

2.5 MODELS OF EVOLUTION

In this section, we describe several models where gene trees evolve within a species tree;

we also provide an overview of standard models of DNA evolution.

2.5.1 Multi-Species Coalescent Model

The evolution of gene trees (gene genealogies) within a species tree is modeled by the

Multi-Species Coalescent (MSC) [18, 20, 21, 22]. This model is parameterized by (T,Θ),

where T is a rooted species tree and Θ is a set of numerical values. The set Θ includes the

number of generations of each branch, the effective population size (EPS) on each branch

(which is constant across all generations on the branch), and the EPS above the root (which

is constant across all generations above the root). Note that the EPS is simply the number

of alleles in a population; for diploid organisms, this is twice the number of individuals in a

population, as each individual has two copies of each chromosome. The MSC model defines

a generative process where gene trees evolve independently and identically distributed (i.i.d.)

within the species tree. For each gene, an allele is sampled for each species at the leaves,

and then the lineage for each allele grows backward in time (generations) until all lineages

have coalesced, forming a rooted, fully resolved gene tree.
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We now describe this process for an MSC model species tree given by the Newick string

((A,B) : τ, C). This Newick string indicates a rooted tree on species set {A,B,C}, where

A and B are made siblings and then their least common ancestor (A,B) and C are made

siblings; there is one internal edge in this tree with length τ . Note that τ is in coalescent

units (number of generations divided by EPS). For more information on interpreting Newick

strings, see Sections 2.2.1 and 2.3.1 of [12].

For each of the three species, we select an allele (denoted a, b, c) at random, and then the

lineage for each allele grows backward in time. There is only one lineage on each branch of

the species tree terminal to the leaves, so it is not possible for any of the lineages to coalesce.

On the branch above the internal node joining A and B, lineages a and b enter the same

population and have the opportunity to coalesce.

Under the Coalescent model proposed by Kingman [97], coalescent events follow a Poisson

process, and the waiting time until the next coalescent event is a random variable drawn

from an exponential distribution with rate parameter

i(i− 1)

2Ne

(2.10)

where Ne is the EPS and i is the number of lineages and at the previous coalescent event.

At the next event, any pair of lineages can coalesce, with equal probability. This implies a

constant and sufficiently large population size, non-overlapping generations, random mating,

and no selection; see [98] for discussion.

Because the coalescent process is terminated at the end of the branch, possibly before

all lineages coalesce, each branch of the species tree is modeled under the censored coales-

cent [22]. The probability that i lineages coalesce into j lineages after t generations, each

with an effective population size Ne, is

gi,j(t, Ne) =
i∑

k=j

e−
k(k−1)t

2Ne
(2k − 1)(−1)k−j

j!(k − j)!(j + k − 1)

k−1∏
m=0

(j +m)(i−m)

i+m
(2.11)

where 1 ≤ j ≤ i [99, 100]. Using Equation 2.11, we can compute the probability that i

lineages enter and j lineages exit a branch of the species tree.

Returning to our example, the probability that lineages a and b coalesce on the branch

above the internal node joining A and B equals g2,1 = 1− e−τ . The probability that a and

b fail to coalesce equals g2,2 = e−τ . If a and b fail to coalesce on this branch, then all three

lineages enter the population above the root, at this point any pair of the three lineages

coalesce with equal probability. The number of generations above the root goes to infinity,
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so all lineages entering the root will coalesce into a single lineage. Based on this analysis, it

is easy to compute the probability of the three possible rooted, fully resolved gene trees on

{a, b, c} under the MSC model:

P (ab|T,Θ) = 1− 2

3
e−τ and P (ac|T,Θ) = P (bc|T,Θ) =

1

3
e−τ (2.12)

where ab indicates that a and b are siblings in the rooted gene tree (note that the leaves of

a gene tree are typically relabeled by species in the natural way).

Anomaly zone: The MSC model species tree defines a probability distribution on the

space of rooted gene trees. When the most probable rooted gene tree disagrees with the

rooted species tree, we say that the species tree is in the anomaly zone [101]. Similar

statements can be made about unrooted gene trees and unrooted species trees [102]. Notably,

there is no anomaly zone for unrooted trees on four species [100] or rooted trees on three

species [28, 101]; also see Equation 2.12.

Incomplete lineage sorting: Incomplete lineage sorting (ILS) occurs when a gene tree

differs from the species tree. As shown in Equation 2.11, ILS is more likely when the length

(coalescent units) of the internal branch is short. This makes sense as the lineages entering

the branch are less likely to coalesce into a single lineage when the EPS is very large and/or

when the number of generations is very small. The level of ILS can be quantified for datasets

simulated under the MSC model as the average normalized RF distance (Equation 2.1)

between the model species tree and the simulated gene trees; we refer to this value as the

average distance (AD).

2.5.2 Probabilistic Model of Gene Duplication and Loss

The probabilistic model proposed by Arvestad et al. [31] allows genes to be duplicated

and lost but ignores ILS. It is parameterized by (T,Θ), where T is a rooted, fully resolved

species tree and Θ is a set of numerical values. The set Θ includes the length of each

branch in generations and two additional parameters: the duplication rate λ and the loss

rate µ, both in the number of events per allele (in the population) per generation. The gene

duplication and loss (GDL) model defines a generative process where gene trees evolve i.i.d.

within the species tree. For each gene, an allele is placed at the root of the species tree, and

then the lineage for that allele grows forward in time (generations).

On each branch of the species tree, alleles have the opportunity to be duplicated or
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lost. A duplication causes the lineage for the affected allele to bifurcate; this bifurcation

represents a duplication event in the gene tree. In contrast, a loss event removes the affected

allele from the population. Under the Birth-Death model [103, 104], the waiting time until

the next event (either a duplication or a loss) is a random variable drawn from an exponential

distribution with rate parameter

i× (λ+ µ) (2.13)

where i is the number of alleles in the population at the last event. In the next event,

any of the i alleles can be impacted (either duplicated or lost) with equal probability. The

probability that the next event is a duplication or loss equals λ/(λ + µ) or µ/(λ + µ),

respectively.

When a lineage reaches an internal node in the species tree it bifurcates, so that it can

descend down both the left and right branches below the internal node; this bifurcation

represents a coalescent event in the gene tree. Because each coalescent event in the gene tree

corresponds to a speciation event in the species tree, ILS is prohibited under this model.

This process continues until all lineages reach the leaves of the species tree (these lineages

are labeled according to the leaves of the species tree) or have been lost (these lineages are

pruned from the gene tree). The result is a multi-labeled gene tree, typically referred to as

a multi-copy gene tree, MUL-tree, or gene family tree.

Paralogs and orthologs: We say that two alleles are paralogous if their MRCA represents

a duplication event; if their MRCA represents a speciation event, we say that the two alleles

are orthologous. A set of alleles is orthologous if every pair of alleles in the set are orthologous.

2.5.3 A Unified Model of Duplication, Loss and Coalescence (DLCoal)

The probabilistic GDL model proposed by Arvestad et al. [31] ignores population-level

effects, such as ILS. Rasmussen and Kellis [60] seek to address this in a unified model of

Duplication, Loss, and Coalescence (DLCoal).

Mutations in a population: When a mutation arises at a particular locus, alleles at

this locus have two variants: mutant or non-mutant. Initially, the allele frequency of the

mutant variant is 1/(2N), where N is the number of diploid individuals in the population

at the time of the mutation. Changes in allele frequency will occur as the mutant and non-

mutant variants are inherited by future generations via random sampling; this is referred to

as genetic drift.

Under the Wright-Fisher (WF) [98] model, genetic drift is governed by a forward-time
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Markov chain with a discrete state space representing the number of alleles with the mutant

variant in the population. Let i be the number of alleles with the mutant variant in the

current generation. Then, the number of alleles with the mutant variant in the next genera-

tion is a random variable drawn from a binomial distribution, where the number of trials is

2N and the probability of success is i/(2N). In other words, the next generation of alleles

is created by binomial sampling alleles in the current generation with replacement. If over

time, all alleles in a population correspond to the mutant variant, we say that the mutant

variant has fixed. As the number of generations goes to infinity, the probability that the

mutant variant fixes goes to i/(2N) [98]. Therefore, if mutations occur at a particular locus

with rate µ (number of events per allele in the population per generation), the probability

that the mutation occurs at a particular locus and then the mutant variant fixes is

µ2N × 1

2N
= µ (2.14)

as the number of generations goes to infinity. This implies no new mutations (which alter

allele frequency) at the locus, no recombination at the locus, a constant EPS (2N alleles in

each generation), non-overlapping generations, random mating, and no selection; see [98] for

discussion. Many of the assumptions made by WF model also are made by the Coalescent

model. In fact, these two models are related: the Coalescent model can be viewed as an

approximation to the WF model for large populations (so that there is at most one coalescent

event per generation [105]).

Duplication and loss in a population: Rasmussen and Kellis [60] consider duplications

and losses as mutations occurring in a population of diploid individuals. When an allele is

lost from the genome of an individual, the loss occurs at a particular locus. Therefore, the

population of alleles at this locus now have two variants: either the loss is “present,” or it is

“absent.” When an allele is duplicated in the genome of an individual, a copy of the allele

appears at a different locus. Therefore, the mother locus continues to have one variant, but

the daughter locus has two variants: either the duplication is “present,” or it is “absent.”

If the mother and daughter loci are unlinked, that is, they evolve independently, then the

two loci should be modeled separately with identical parameters (number of generations

and EPS) under the WF model (if going forward in time) or the Coalescent model (if going

backward in time).

For simplicity, suppose that the duplication-present variant fixes, and then we sample

two alleles at random from the population and trace their lineages backward in time.

• If two alleles are sampled from the daughter locus, their lineages are in a common
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population and may coalesce; in fact, they must coalesce before (more recently than)

the duplication event.

• If two alleles are sampled from the mother locus, their lineages are in a common

population and may coalesce.

• If one allele is sampled from the mother locus and one allele is sampled from the daugh-

ter locus, their lineages are in separate populations until the time of the duplication

event, at which point they enter a common population and may coalesce.

To deal with these different scenarios, Rasmussen and Kellis [60] suggest that gene trees

evolve within a locus tree. This is the basis for the Multi-Locus Coalescent (MLC) model

[60]. An MLC model locus tree is similar to an MSC model species tree, but internal

nodes correspond to either speciation events or duplication events. In the former case,

the descending branches are modeled by the censored coalescent; in the latter case, one

descending branch (the mother locus) is modeled by the censored coalescent and the other

descending branch (the daughter locus) is modeled by the bounded coalescent [60]. The

MLC model makes several assumptions, including that duplications and losses (either the

present or the absent variants) are fixed at the leaves of the locus tree. Rasmussen and Kellis

[60] use this assumption to justify a model (referred to as the DLCoal model) in which gene

trees evolve within a species tree in two separate phases.

The DLCoal model is parameterized by (T,Θ), where T is a rooted, fully resolved species

tree and Θ is a set of numerical values. The set Θ includes all numerical parameters for the

MSC model as well as a duplication rate and loss rate for the GDL model. In the first phase,

a locus tree evolves within the species tree under the GDL model proposed by Arvestad et al.

[31], after which the branches of the locus tree are relabeled based on branches of the species

tree in the natural way. In the second phase, a gene tree evolves within the locus tree under

the MLC model. This process results in a collection of paired locus trees and gene trees. The

locus trees differ from the species tree due to GDL only, a locus tree differs from its gene tree

due to ILS only, and the gene trees differ from the species tree due to both GDL and ILS.

Therefore, the level of ILS in simulated datasets can be quantified by averaging normalized

RF distance (Equation 2.1) between every locus tree and its corresponding gene tree, both

with leaves labeled by alleles rather than species (so that the two trees are singly-labeled).

2.5.4 Models of DNA Evolution

In Sections 2.5.1–2.5.3, we discuss models where gene trees evolve within a species tree;

however, mutations (e.g., insertions, deletions, and substitutions) can accumulate in genes
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over time. In fact, mutations are essential for reconstructing gene trees from DNA sequences.

DNA evolution is typically modeled as a Markov process with state spaceA = {A,C,G, T}
and parameters (T,Θ), where T is a rooted gene tree and Θ is a set of numerical values. The

set Θ includes the probability distribution ~π of states at the root as well as parameters for

computing the probability transition matrix P on each branch. The probability transition

matrix is P where Pi,j(e) is the probability that state i transitions to state j on branch t.

In this section, the term transition refers to a substitution event changing state i into state

j, where i, j ∈ A such that i 6= j (note that this differs from the meaning of the term in

Chapter 1).

Such models define a generative process where sites evolve down the gene tree. For each

site, a random character state i ∈ A is drawn from ~π and is placed at the root of the gene tree.

This can be achieved by using ~π to partition the interval [0, 1] into four sub-intervals (each

representing a different state) and then generating a random number between zero and one;

the interval in which the random number lands determines the state at the root [106]. This

process is repeated at each child of the root except that the character state is drawn from the

probability distribution given by the ith row of P (e), which is the probability distribution

for a chain in state i transitioning on branch e. Continuing in this fashion, character states

are generated at each node in a preorder traversal, producing a site pattern.

No Common Mechanism model: Under the No Common Mechanism (NCM) model of

Tuffley and Steel [107], each site and edge is allowed to have its own transition probability

matrix. This model parameterized by (T,Θ), where T is a rooted phylogenetic tree and Θ

is a set of numerical parameters. The set Θ includes the probability distribution of states

at the root

~π =
[
1/4 1/4 1/4 1/4

]
(2.15)

and the probability transition matrix for each branch and site

Pi,j(e, s) =

1− p(e, s) if i = j

p(e, s)/3 if i 6= j
(2.16)

where 0 ≤ p(e, s) ≤ 3/4 denotes the probability that a substitution occurs on branch e for

site s. Note that sites are not identically distributed under the NCM model!

Stationary, Reversible, and Homogenous Markov models: Stationary, reversible,

and homogenous (SRH) Markov models are parameterized by (T,Θ), where T is a rooted

gene tree and Θ is a set of numerical values. The set Θ includes branch lengths (expected
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number of substitutions per site), the probability distribution ~π of states at the root, and

the relative instantaneous transition rate matrix Q (e.g., QA,C = 1/4 and QA,T = 1/2 means

that A transitions to T at twice the rate that A transitions to C). The probability transition

matrix for each branch is

P (t) = exp(Qt) (2.17)

where exp denotes the matrix exponential of Qt and t denotes the length of the branch

(expected number of substitutions per site). Lastly, unlike the NCM model, sites evolve

i.i.d. down the gene tree.

We now summarize the constraints on Q and ~π under the the Generalized Time Reversible

(GTR) model [9], which as its name suggests is the most general of the SRH Markov models,

referring the interested reader to Section 1.5 of [108] for a more thorough discussion. First,

as ~π is a probability distribution, ∑
i∈A

πi = 1 and πi ≥ 0 (2.18)

for all i ∈ A. Second, as Q is an instantaneous transition rate matrix, its off-diagonal entries

are required to be non-negative and its rows are required to sum to one; this gives the

constraint:

−Qi,i =
∑

j,∈A,i 6=j

Qi,j (2.19)

Third, for a Markov process to be homogenous, Q must not depend on time. Fourth, for a

Markov process to be stationary, ~π (the probability distribution of states at the root) also

must be the probability distribution of states after time t; this property holds when

πiQi,i =
∑

j∈A,j 6=i

πjQj,i (2.20)

because the probability that a chain “exits” state i (left term) equals the probability that

a chain “enters” state i (right term). Lastly, for a Markov process to be time reversible,

the probability that state i transitions to state j must equal the probability that state j

transitions to state i; this property holds when

πiQi,j = πjQj,i (2.21)

for all i, j ∈ A such that i 6= j.
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By Equations 2.19–2.21, Q must have the form

Q =


∗ a · πC b · πG c · πT

a · πA ∗ d · πG e · πT
b · πA d · πC ∗ f · πT
c · πA e · πC f · πG ∗

 (2.22)

where the diagonal entries are given by Equation 2.19. Recall that the entries of Q define

relative instantaneous transition rates and the branch lengths define the expected number of

substitutions per site (rather than time). This can be achieved by setting f = 1 and scaling

Q so that the mean mutation rate (expected number of substitutions per unit time per site)

µ =
∑
i∈A

πi
∑

j∈A,i 6=j

Qi,j = −
∑
i∈A

πiQi,i (2.23)

equals one [108].

Other SRH models, including the Jukes-Cantor (JC) model [7], place additional restric-

tions on Q and/or ~π and therefore are sub-models of the GTR model. SRH models are

sub-models of the General Markov (GM) model [109], which does not require stationarity.

Rate heterogeneity across sites: Under SRH Markov models, all sites evolve at the

same rate; however, these models can be extended to allow rate heterogeneity across sites

simply by scaling the branch lengths of the SRH model tree for each site. For example, a

constant c is drawn from a distribution, each branch in the model tree is multiplied by c, and

then a single site evolves down the re-scaled GTR model tree; this process is repeated for

each site. The most popular of the rate heterogeneity models is the GTR+GAMMA model

[110, 111], where the scaling factor c is drawn from a continuous gamma distribution with

shape parameter α and scale parameter β = α, so small and large values of α correspond to

high and low variation in the rates across sites, respectively. The GTR+CAT model [110] is

a discretized version of the GTR+GAMMA model; specifically, the gamma distribution is

discretized into a fixed number of categories, and sites must evolve within a rate in one of

these categories.

Molecular clock: When the evolutionary distance (expected number of substitutions per

site) between the root and each leaf is the same for all leaves, we say that the SRH model gene

tree obeys the strict molecular clock [112]. By modifying branch lengths, we can generate

sequences under SRH models that violate or relax the molecular clock assumption. Under

one of the relaxed molecular clock models proposed by Drummond et al. [113], each branch
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length is modified by a random variable drawn from a log-normal distribution. Alternatively,

branches could be modified to allow for systematic differences, for example the evolutionary

rate can vary across different species as “smaller-bodied species of vertebrates with faster

metabolic rates have higher substitution rates than larger-bodied species” [114].

2.6 GENE TREE ESTIMATION

This section contains material previously published in “Large-scale Species Tree Estima-

tion” [115], which was joint work with T. Warnow.

We now provide a brief overview of methods for estimating gene trees under SRH Markov

models of DNA evolution. Such methods take an MSA with n rows (DNA sequences) and L

columns (sites) as input and return an unrooted tree with leaves bijectively labeled by the

input DNA sequences (rows in the input MSA).

2.6.1 Maximum likelihood Methods

A popular approach is to search for the model tree (topology and numerical parameters)

that maximizes the likelihood of observing the input data under a particular model of evo-

lution [10]. Maximum likelihood (ML) is statistically consistent under the GTR model even

when the MSA has gaps, which are treated as missing data [116] (although this assumes the

MSA is error-free). However, finding the ML tree is an NP-hard optimization problem [117],

so methods use heuristics to search tree space, computing the log-likelihood of each candi-

date tree. One of the most popular methods, RAxML [45] uses pthreads, vector extensions

(SSE3, AVX and AVX2), and other techniques to reduce the amount of time required to

compute tree log-likelihood. While such optimizations are critical (especially when there are

many unique site patterns in the MSA), they do not impact the number of candidate trees

evaluated during the tree search. The number of candidate trees evaluated before the search

converges (to a local optimum) is unbounded; therefore, we cannot provide a worst case

running time analysis. Several other heuristics for ML tree estimation have been developed,

including IQTree [118], FastTree-2 [119], and PhyML [120].

2.6.2 Distance Methods

We now extend the terminology for phylogenetic trees to dissimilarity matrices (sym-
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metric matrices with zeros on the diagonal and non-negative values on the off-diagonal). A

phylogenetic distance matrix D is a triplet (d, S, θ), where d is a dissimilarity matrix, S is a

set of labels, and θ : {1, 2, . . . , |S|} → S assigns each row of d to a label in S. We require

that every label in S map to at least one row of D. A phylogenetic distance matrix D is

singly-labeled if θ is a bijection; otherwise, D is multi-labeled. Phylogenetic distance matrices

are singly-labeled unless otherwise noted. We do not always make an explicit distinction

between a phylogenetic distance matrix D and its dissimilarity matrix d; for example, we

typically say that “D is a dissimilarity matrix on label set S” or “D is a phylogenetic distance

matrix,” denoting the entry at the ith row and the jth column as D[i, j]. Lastly, we let S(D)

denote the label set of D and D|R denote the dissimilarity matrix created by restricting D

to the rows/columns with indices in the set {θ(i) ∈ R : i ∈ {1, 2, . . . , |S|}.
Distance methods operate by estimating the evolutionary distance between every pair of

sequences in an MSA and then, from the resulting phylogenetic distance matrix D, building

a tree with leaves labeled by the set S(D), for example by using the well-known Neighbor

Joining (NJ) method [121]. Recall that an SRH model tree T has branch lengths indicating

the expected number of substitutions on that edge, so the evolutionary distance between

sequences i and j equals the path distance between leaves i and j in T .

Definition 2.11 (Additive and Nearly Additive). Let T be a tree on label set S, and let

D = (d, S, θ) be a phylogenetic distance matrix. We say that D is additive for T if every

entry D[i, j] is the sum of the edge weights on the path between the leaf labeled θ(i) and

the leaf labeled θ(j) in T . We say that D is nearly additive for T if every entry D[i, j] differs

from the path distance between leaf labeled θ(i) and leaf labeled θ(j) in T by less than half

of the shortest internal edge in T .

Theorem 2.2 (Atteson [122]). NJ, when applied to a phylogenetic distance matrix that is

nearly additive for T , returns T .

Evolutionary distances can be estimated by computing the fraction of sites that differ

between the two aligned sequences; however, this does not account for multiple substitutions

at a site. Therefore, this value is typically corrected under a model of DNA sequence evolu-

tion, for example the JC model. The JC-corrected distance between two aligned sequences

converges to the true evolutionary distance [12], as the amount of data generated under

the JC model goes to infinity. Therefore, as the amount of data generated under the JC

model goes to infinity, D converges to a tree that is additive for the JC model tree, and by

Theorem 2.2, NJ returns the JC model tree with probability converging to one. It follows

that this approach is statistically consistent under the JC model. A similar result holds for

using log-det distances to estimate gene trees under the GM model [123].
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When evolutionary distances are estimated from finite amounts of data, D may not be

additive, and furthermore D may not satisfy the triangle inequality: D[i, j] ≤ D[i, k]+D[k, j]

for all i, j, k ∈ {1, 2, . . . , n}. The latter implies that D is a dissimilarity matrix rather than

a distance matrix. Nevertheless, D is commonly referred to as a (phylogenetic) distance

matrix.

The distance methods described above run in polynomial time, for example it takes

O(n2L) time to compute JC-corrected distances (or log-det distances) and O(n3) time to

run NJ. Distance methods are typically faster than ML methods, and both types of method

are statistically consistent under SRH models of evolution; this begs the question, why

are ML methods more popular that distance methods? This is because sequences do not

have infinite length, so differences in method performance can be observed in practice; see

Chapter 4 for further discussion.

2.6.3 Long Branch Attraction

It is worth thinking about conditions under which methods may fail to recover the correct

tree. An important example used in many theoretical and empirical studies is the Felsenstein

Zone tree [124], a quartet A,B|C,D with a short edge separating A,B from C,D, short edges

incident to A and C, and long edges incident to B and D. Recall that edge lengths indicate

the expected number of substitutions per site, so this tree violates the strict molecular clock.

A single site may undergo multiple substitutions on a long branch, so B and D may be in the

same state (even a state which differs from their common ancestor) by chance. When B and

D are joined as siblings in the estimated tree, we say that long branch attraction has occurred.

Maximum parsimony (which seeks a tree that minimizes the number of substitutions required

to explain the input character data) is positively misleading in the Felsenstein Zone [124].

Although ML and distance methods are statistically consistent, this only describes their

performance given infinite sites; indeed, they can fail to recover the correct tree when the

number of sites is bounded [125]. Long branch attraction can be prevented by adding more

species to the dataset, so that the long branches are broken into several shorter branches;

this approach, referred to as taxon sampling, was proposed by Hendy and Penny [126]; see

[127] for a review.

2.6.4 Non-parametric Bootstrapping

An important step in phylogenetic and phylogenomic studies is to assign some degree of

confidence to each branch in an estimated tree. Non-parametric bootstrapping, which was
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introduced by Felsenstein [128], continues to be one of most popular approaches; also see [129,

130]. At the high level, sites in an MSA are sampled with replacement, a tree is estimated

on each bootstrapped MSA, and then confidence in a particular branch (bipartition) is

indicated by the percentage of bootstrapped trees that induce the same bipartition. An

incorrect branch can have high bootstrap support when there is systematic bias (e.g., due to

long branch attraction) or model misspecification. Nevertheless, low bootstrap support values

(below 50%) are generally considered to be unreliable, whereas high bootstrap support values

(above 95%) are generally considered to be reliable [12, 131].

2.7 SPECIES TREE ESTIMATION

This section contains material previously published in “To include or not to include:

The Impact of Gene Filtering on Species Tree Estimation Methods” [132] and “Large-scale

Species Tree Estimation” [115], both of which were joint work with T. Warnow.

To conclude this chapter, we describe the dominant methods for estimating species trees

in the presence of ILS, focusing on worst-case running time as well as statistical consistency

under the MSC model (note that we refer to methods that are statistically consistent under

the MSC model as coalescent methods, although this term does not have an agreed upon

meaning). These methods are executed as part of species tree estimation pipelines that

begin with the assembly of a multi-locus dataset, containing n orthologous DNA sequences

(typically one per species) for each of the m genes. An MSA is estimated for each gene, and

the resulting MSAs are given as input to the approaches discussed below. Therefore, we

are interested in whether methods are statistically consistent under the MSC+GTR model,

where gene trees evolve within a species tree under the MSC model, and then sites evolve

down each of the gene trees under the GTR model (note that there can be differences in

assumptions between methods regarding the strict molecular clock, the rate heterogeneity

across sites, etc.).

2.7.1 Concatenation Analysis using Maximum Likelihood

In the traditional approach to species tree estimation, MSAs are combined into a single

matrix, and then an ML method is used to estimate a tree from the concatenated alignment

under a model of DNA sequence evolution. This approach, referred as an unpartitioned

concatenation analysis with maximum likelihood (CA-ML), assumes that all sites in the con-

catenated alignment evolve down the model trees with the same topology (recall that branch
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lengths can be rescaled for each site under the GTR+GAMMA model). This assumption is

violated in the presence of ILS. Simulations under the MSC model have shown that CA-ML

can have poor accuracy in the presence of ILS [133], leading to the conjecture, later proven

by Roch and Steel [134], that CA-ML can be statistically inconsistent under the MSC model.

In fact, Roch and Steel [134] show that CA-ML is positively misleading for a rooted species

tree with six leaves in the anomaly zone. There is no anomaly zone for unrooted species

trees with four leaves [100], and recently, Wascher and Kubatko [135] showed that CA-ML is

statistically consistent under the MSC+GTR model (with some assumptions) for unrooted

species trees with four leaves. Notably, the proof assumes that each gene is represented by

a single site in the concatenated alignment; see [135] for details. While the conditions under

which CA-ML can be relied upon to provide accurate species trees are not fully understood,

it continues to be a dominant approach to species tree estimation.

Concatenation analysis using ExaML: It is worth noting that ML methods can run

out of memory on large datasets. ExaML [136], a distributed-memory version of RAxML,

partitions and distributes the concatenated alignment across multiple processors (note that

the partitioning must be across sites). Therefore, communication (i.e., the sending/receiving

of messages between different processes) is required to compute tree log-likelihood for the

entire alignment. For example, if the alignment was distributed across p processors, then

log(p) communication steps would be required to compute the log-likelihood for the entire

alignment using a standard global reduction; these log(p) steps are effectively serialized work.

Furthermore, the amount of time required for communication is significant compared to other

operations, which is why avoiding communication [137], overlapping communication and

computation [138], and modeling communication [139, 140, 141] are topics of interest for high

performance computing applications. Unless tree space can be navigated effectively, many

rounds of communication will be required before a search converges (to a local optimum),

so while ExaML is a significant advance in large-scale ML tree estimation, there are open

challenges.

2.7.2 Bayesian Co-Estimation Methods

Bayesian co-estimation of the species tree and gene trees is considered to be one of the

most promising approaches for species tree estimation in the presence of ILS. Examples of co-

estimation methods include BEST [142, 143], *BEAST [42], and StarBeast2 [43]. Although

simulation studies have demonstrated that these methods can offer substantial improve-

ments in accuracy over other methods [29, 144, 145], one of the most popular co-estimation
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methods, *BEAST, does not converge in practical amounts of time on datasets with much

greater than 25 species and 100 genes [146, 147, 148]. StarBeast2 is an improved version of

*BEAST that may scale to somewhat larger datasets.

2.7.3 Gene Tree Summary Methods

A more scalable approach to species tree estimation operates by estimating a gene tree

from each MSA and then combining the resulting gene trees into a species tree. The second

step is performed using a gene tree summary method, for example STAR [149], STEM [150],

MP-EST [44], NJst [38], iGLASS [151], ASTRAL [49, 152], and ASTRID [39]. We now

describe how the dominant summary methods operate and their worst-case running time.

All of these methods take unrooted m gene trees, each on n species, as input, unless otherwise

noted.

NJst: NJst [38] estimates a species tree from the average gene tree internode distance

(AGID) matrix D, where D[i, j] is the number of internal nodes on the path between leaves

i and j, averaged across all gene trees. Technically, the average is taken over the subset of

gene trees that contain both i and j, so D[i, j] is undefined when none of the gene trees

contain both i and j. If there are no undefined entries in D, a tree is built using NJ. This

approach runs in O(n2(m + n)) time and is statistically consistent under the MSC model.

The former result is easy to see as the AGID matrix can be computed in O(mn2) time and

NJ runs in O(n3) time. The latter result follows from a proof by Allman et al. [153] showing

that the AGID matrix converges to a matrix that is nearly additive for the species tree under

the MSC model.

ASTRID: ASTRID [39] operates in a similar fashion to NJst but runs FastME [154]

instead of NJ. FastME seeks a tree under the balanced minimum evolution (BME) criterion

and runs in O(n2 log n) time; therefore, the running time of ASTRID is O(n2(m + log n)).

It is not completely clear when NJ or BME is more accurate than the other, although prior

studies suggest that BME has a slight advantage over NJ in terms of topological accuracy

[39, 155, 156]. FastME cannot run when the dissimilarity matrix has undefined entries; in

this case, ASTRID runs BioNJ* [157], a modification of NJ for matrices with missing entries.

ASTRAL: ASTRAL [49] estimates a species tree by solving the bipartition-constrained

MQSS problem. The solution to this optimization problem is a statistically consistent es-

timate of the MSC species tree, as there is no anomaly zone for unrooted quartets and as
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every bipartition in the species tree has a non-zero probability of being induced by one of the

gene trees [49]. The latest version of ASTRAL, ASTRAL-III [158], runs in O(nm|Σ|1.726)
time [158, 159], where Σ is the set of bipartitions used to constrain the space of possible

solutions. Importantly, Σ contains (at least) all bipartitions induced by the input gene trees,

so when the input gene trees are binary and identical to each other, then |Σ| = n − 3. On

the other hand, when the input gene trees are fully resolved and disagree with each other,

then |Σ| will be much larger. It is possible for each of the gene trees to differ on each of their

internal edges, so |Σ| = O(nm). Because gene trees can differ from the species tree due to

biological processes as well as gene tree estimation error (GTEE), the set Σ will typically

be large for many (perhaps most) multi-locus datasets.

MP-EST: Recall that an MSC model species tree defines a probability distribution on

gene trees; for example, the probability distribution defined by an MSC model tree with

n = 3 species is given by Equation 2.11. This allows us to compute the likelihood that an

MSC model species tree on n = 3 species generated a collection of rooted gene trees (as

the frequency of each gene tree topology is an estimate of its probability). This concept

can be extended to n > 3 species by restricting each of the rooted gene trees to a subset

of three species, storing the frequency of each gene tree topology as a vector, and repeating

this process for all subsets of three species; this preprocessing step requires O(n3m) time.

The resulting frequency vectors can be used to evaluate the likelihood of a candidate species

tree restricted to any subset of three species. By combining the likelihood values computed

for all subsets of three species into a single score, we can evaluate the pseudo-likelihood

of a candidate species tree. MP-EST [44] seeks a model species tree that maximizes this

pseudo-likehood function. This search is initiated from a random starting tree, so several

independent searches from different random starting trees should be run. Lastly, note that

MP-EST requires rooted gene trees as input unlike the other methods discussed in this

section.

Theoretical and empirical performance of summary methods: NJst, ASTRID,

ASTRAL, MP-EST, and many other summary methods are statistically consistent under

the MSC model and have excellent accuracy when given a sufficient number of highly accurate

gene trees [38, 39, 44, 49, 152]. Comparisons of summary methods and CA-ML on simulated

datasets have suggested that summary methods are more accurate than CA-ML when ILS is

sufficiently high and conversely that CA-ML is more accurate than summary methods when

ILS is sufficiently low [144, 145, 160, 161, 162, 163, 164].

The current proofs of statistical consistency for many (if not all) summary methods as-
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sume error-free gene trees [165]. This is equivalent to assuming that gene trees are estimated

in a statistically consistent fashion, which in turn makes the assumption that the number of

sites per gene goes to infinity. Recently, Roch et al. [125] showed that summary methods

can be positively misleading when the number of sites per gene is bounded (for unrooted

species trees that generate gene trees in the Felsenstein Zone). This is problematic as re-

combination-free regions of the genome are expected to be quite short for gene trees with

deep coalescent events [81]. Indeed, many simulations have shown that GTEE reduces the

accuracy of summary methods [52, 145, 152, 160, 161, 166, 167, 168, 169], suggesting that

summary methods may be inappropriate when gene trees cannot be estimated with high

accuracy. This raises potential concerns, since low bootstrap support values have been re-

ported for gene trees estimated in several phylogenomic studies [23, 24]. Indeed, our analyses

show mean bootstrap support values below 30% for several published multi-locus datasets

(Table 3.1), which is suggestive of high GTEE.

Missing data is another common challenge to species tree estimation, as many (or perhaps

even most) genes will have some degree of missing data (i.e., missing species) if full genomes

are to be utilized; see [170, 171, 172] for an entry into this literature. Nute et al. [173]

recently showed that ASTRAL and MP-EST are statistically consistent under a model of

random missing data, and later Rhodes et al. [174] showed that NJst and ASTRID can

be statistically inconsistent under this same model. While relatively little is known about

the statistical consistency of summary methods under models of missing data, simulations

have shown that accuracy can degrade when genes are missing species, especially when the

number of genes is limited [39, 172, 175] or when missing data are biased [172].

2.7.4 Site-based Methods

Site-based methods, such as SNAPP [176], SVDquartets [177, 178], and METAL [40]

estimate species trees from the concatenated alignment. These methods are characterized

by being statistically consistent under the MSC model (plus some model of DNA evolution)

when given only one site per gene. Therefore, they are expected to be more accurate than

gene tree summary methods when genes have few parsimony-informative sites (sites with at

least two character states appearing at least twice) and thus high GTEE.

SVDquartets: SVDquartets [177, 178], for example, estimates an unrooted species trees

on n = 4 leaves from site patterns using a technique based on the singular value decom-

position (SVD). This approach was recently proven to be statistically consistent under the

MSC+GTR model (with some assumptions) for the special case when there is exactly one
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site per gene [135]. Although one site pattern could be selected uniformly at random from

each MSA in a multi-locus dataset, Wascher and Kubatko [135] also provided theoretical

justification for running SVDquartets on the concatenated alignment.

For datasets with n > 4, SVDquartets operates by restricting the concatenated alignment

to subsets of four species and then estimates the species tree using its SVD-based technique,

which scales linearly with the number of sites in the concatenated alignment. This produces

a set of quartets, which can be assembled into a tree on n species using heuristics for the

NP-hard MQSS problem; for example, SVDquartets, as implemented in PAUP* [179], uses

the QFM algorithm. Although quartets can be computed in an embarrassingly parallel

fashion, the computation of O(n4) quartets is still burdensome when n is large. Currently,

the SVDquartets pipeline, as implemented in PAUP*, can be run on datasets with large n

by randomly sampling a subset of the possible quartets. While this approach has advantages

in terms of running time, the accuracy of trees computed using a set of sparsely sampled

quartets may be reduced compared to using the full set of quartets [180].

Relatively little is known about the empirical performance (accuracy) of SVDquartets.

A recent simulation study by Chou et al. [163] found that summary methods (ASTRAL-

II and NJst) were more accurate than SVDquartets for long genes and conversely that

SVDquartets was more accurate than the summary methods under some conditions with very

short genes, likely due to increased GTEE. Notably, SVDquartets was not more accurate

than CA-ML under the conditions characterized by very short genes [163]. Because the

relative performance of methods can depend greatly on the simulation protocol and model

conditions explored, further studies are needed to evaluate the accuracy and running time

of SVDquartets.

METAL and related methods: METAL [40] and related methods (e.g., [41]) are dis-

tance methods that have been proven to be statistically consistent under the conditions

described above. For example, Allman et al. [41] showed this approach using log-det dis-

tances is statistically consistent under the MSC+GTR model with some assumptions.
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CHAPTER 3: SPECIES TREE ESTIMATION IN THE PRESENCE OF
INCOMPLETE LINEAGE SORTING

This chapter contains material previously published in “To include or not to include: The

Impact of Gene Filtering on Species Tree Estimation Methods” [132], which was joint work

with T. Warnow. All supplementary materials referenced in this chapter are freely available

on Dryad: doi.org/10.5061/dryad.km24v. Note that plots and tables appear at the end of this

chapter in Sections 3.6 and 3.7, respectively.

3.1 INTRODUCTION

Of the dominant approaches for estimating species trees in the presence of incomplete

lineage sorting (ILS), gene tree summary methods are growing in popularity, as many are

provably statistically consistent under the Multi-Species Coalescent (MSC) model as well

as computationally efficient compared to concatenation analysis with maximum likelihood

(CA-ML). However, gene tree estimation error (GTEE) and missing data can negatively

impact summary methods, and some researchers have concerns about their validity under

biologically realistic conditions [81, 181]. As a result, gene filtering based on missing data or

proxies for GTEE is an increasingly explored aspect of experimental design. Filtering data,

both sites and genes, has a long history in phylogenetics; see [50, 171, 182] for an entry into

this literature. Many of these prior studies (e.g., [182, 183, 184, 185, 186, 187, 188, 189, 190])

have focused on CA-ML and/or datasets simulated without gene tree heterogeneity, so their

results are not directly applicable to understanding the effect of gene filtering on coalescent

methods.

Some recent studies examine this issue on biological datasets (e.g., [50, 51, 52, 53, 54, 169,

171, 191, 192, 193]). Because accuracy cannot be evaluated on biological datasets, different

proxies for accuracy were reported, including

• the mean bootstrap support of the estimated species tree,

• the bootstrap support of well-established clades in the estimated species tree,

• the similarity of species trees estimated from the same dataset using different methods,

and

• the “stability” of the estimated species tree (comparing the species trees estimated

using the same method but given subsets of the genes).
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These studies came to contradictory conclusions: some found filtering to be beneficial, while

others found filtering to be detrimental. Simulation studies have shown that species tree

estimation methods can produce highly supported false positive (FP) branches under some

model conditions; see [133] for an example with CA-ML when ILS is high and [162] for an

example with summary methods when GTEE is high. Therefore, high bootstrap support or

similarity to another estimated species trees may not be reliable indicators of species tree

accuracy.

To the best of our knowledge, only three prior simulation studies [191, 192, 194] have

directly or indirectly examined the impact of gene filtering on coalescent methods. First,

Lanier et al. [194] added genes with lower variation when using STEM on datasets with

eight species. Second, Liu et al. [191] added genes with lower bootstrap support values

when using MP-EST on datasets with six species. Third, Huang and Knowles [192] filtered

genes with missing data when using the shallowest divergence method (a coalescent method

that takes site patterns as input) [19] on datasets with eight species. While none of these

studies found filtering to be beneficial, many new coalescent methods are now in active use,

and the effect of gene filtering likely depends on the method itself as well as on the model

condition (e.g., number of species, number of genes, level of ILS, amount of phylogenetic

signal across individual genes, etc.) [149]. Hence, a thorough evaluation of gene filtering is

needed, especially to examine its effect on some of the current leading species tree estimation

methods.

We present the results of a simulation study examining the impact of ISL, phylogenetic

signal (across individual genes), missing data, and gene filtering strategies on five species

tree estimation methods: ASTRAL-II, ASTRID, MP-EST, SVDquartets, and CA-ML using

RAxML. In this study, summary methods (ASTRAL-II, ASTRID, and MP-EST) were more

accurate than CA-ML, provided that ILS was sufficiently high and GTEE was sufficiently

low. When GTEE was sufficiently high, SVDquartets was more accurate than the summary

methods, but otherwise it was one of the least accurate. CA-ML was competitive with (and

often outperformed) the other methods under many conditions, including when ILS and

GTEE were both extremely high. In general, the relative performance of methods was un-

affected by gene filtering based on either GTEE or missing data. SVDquartets and CA-ML

did not benefit from either type of filtering, and filtering based on missing data generally

reduced accuracy. Filtering genes based on GTEE improved the accuracy of summary meth-

ods when the level of ILS was sufficiently low but otherwise reduced accuracy. Exceptions

to this trend occurred when the level of GTEE was extremely high, in which case filtering

based on GTEE improved summary methods. Importantly, these exceptions were for model

conditions with only a few replicates: two replicates with low/moderate ILS, five replicates
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with high ILS, and 17 replicates with very high ILS.

3.2 PERFORMANCE STUDY

Our study evaluated three summary methods (ASTRAL-II, ASTRID, and MP-EST), one

site-based method (SVDquartets), and CA-ML (using RAxML) on a collection of datasets

originally simulated by Mirarab et al. [152]. We modified these simulated datasets to produce

a range of model conditions from relatively easy (e.g., low/moderate ILS, moderate GTEE,

and no missing data) to very challenging (e.g., high ILS, high GTEE, and missing data). To

explore the impact of gene filtering, genes were removed from datasets prior to species tree

estimation based on either GTEE or missing data. Methods were evaluated based on the

species tree estimation error, as measured by the RF error rate (Equation 2.3). All software

commands are provided in the Supplementary Materials.

3.2.1 Simulated Datasets

In this section, we provide a brief overview of the simulation protocol used by Mirarab

et al. [152] and describe our modifications to their datasets.

Species trees and gene trees: Mirarab et al. [152] used SimPhy [195] to simulate a

collection of 200-species, 1 000-gene datasets under the MSC model with six different model

conditions: three levels of ILS with either deep or recent speciation. Because MP-EST is

computationally intensive on datasets with 50 species [152, 196], we restricted datasets to

26 species (outgroup species and 25 randomly selected species) and used only 20 (out of the

original 50) replicates.

After restricting datasets to 26 species, we computed several statistics that reflect the

level of ILS: average distance (AD) between the model species tree and the gene trees,

the number of model species trees in the anomaly zone (based an empirical estimate), and

the number of distinct gene tree topologies. The mean AD (± standard deviation) across

replicate datasets was 12±2% for the “low/moderate” ILS condition, 41±6% for the “high”

ILS condition, and 75 ± 1% for the “very high” ILS condition. Under the low/moderate

ILS condition, 20% of the replicate datasets with recent speciation and 60% of the replicate

datasets with deep speciation were in the anomaly zone; the number of distinct gene tree

topologies was also high: there were 344–442 different topologies (out of 1 000) for replicates

with recent speciation events and 509–824 different topologies (out of 1 000) for replicates

with deep speciation events. Hence, while AD was only 12%, gene tree heterogeneity in
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this “low/moderate” ILS condition was still substantial; this condition is representative of

species trees with a mixture of short and long edges (in coalescent units), perhaps with a

small rapid radiation creating the anomaly zone. In the other model conditions (high and

extremely high ILS), 100% of the replicates were in the anomaly zone, and each replicate

had 999 or 1 000 distinct gene tree topologies. These high and extremely high levels of ILS

are representative of a single clade that has undergone a rapid radiation, so nearly every

edge is short. In summary, all model conditions explored have a high incidence of species

trees in the anomaly zone but differ with respect to the fraction of branches in the species

tree that are short enough for coalescence to be likely.

DNA (gene) sequence data: Mirarab et al. [152] used INDELible [197] to simulate

DNA sequence data under the GTR+GAMMA model with variable lengths (300–1500 sites)

from each model gene tree (with branch lengths deviating from a strict molecular clock). We

modified the gene multiple sequence alignments (MSAs) to have shorter lengths (truncating

them to the first 100 sites) to produce conditions with fewer parsimony-informative sites

and thus higher GTEE. Such conditions may be characteristic of datasets where genes are

shortened to avoid recombination (e.g., [198]) or where gene trees have low bootstrap support

(e.g., [23, 24, 51, 54]).

Missing data: We modified the gene MSAs (by deleting sequences) to produce conditions

with missing data biased towards a random subset of genes. The final datasets had 250 genes

missing between 13–19 sequences (i.e., 50–73%), 250 genes missing between 7–12 sequences

(i.e., 27–46%), 250 genes missing between three to six sequences (i.e., 12–23%), 150 genes

missing two sequences (i.e., 8%), 50 genes missing one sequence (i.e., 4%), and 50 genes

missing zero sequences (Supplementary Table S2). The total amount of missing data was

approximately 30% for all datasets. Note that our protocol for producing datasets with

missing data was based on an empirical dataset published by Hosner et al. [51], which shows

that the percentage of missing data varies across genes but is uncorrelated with evolutionary

rate (Supplementary Table S1 and Supplementary Figure S1).

Estimated gene trees: We estimated maximum likelihood (ML) gene trees under the

GTR+GAMMA model using RAxML version 8.2.8 with a single tree search. For each repli-

cate dataset, mean GTEE was computed as the normalized Robinson-Foulds (RF) distance

between a true gene tree and its respective estimated gene tree, averaged across all 1 000

genes. Replicates were partitioned based on their mean GTEE as follows. Replicates with

the full length sequences (300–1500 sites) were partitioned into low/moderate GTEE (i.e.,
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mean GTEE between 0–20%) and moderate/high GTEE (i.e., mean GTEE between 20–

50%). The mean GTEE averaged (± standard deviation) across all replicates with the full

length sequences was 16 ± 2% and 35 ± 8% for low/moderate and moderate/high GTEE,

respectively (Supplementary Tables S3–S4). Replicates with the truncated sequences (100

sites) had higher GTEE and were partitioned into very high GTEE (i.e., mean GTEE within

50–80%) and extremely high GTEE (i.e., mean GTEE within 80–100%). The mean GTEE

averaged (± standard deviation) across datasets with truncated sequences was 69± 8% and

86±5% for very high and extremely high GTEE, respectively (Supplementary Tables S5–S6).

3.2.2 Gene Filtering Experiments

We evaluated the impact of gene filtering by removing 0%, 25%, 50%, 75%, 90%, and

95% of the genes, producing a collection of datasets that varied in the number of genes

retained for species tree estimation. To filter genes by GTEE, gene trees were sorted from

lowest to highest GTEE, and then the top 0%, 25%, 50%, 75%, 90%, and 95% of genes were

removed prior to species tree estimation. To filter genes by missing data, gene trees were

sorted based on the amount of missing data (i.e., the fraction of species deleted from the

gene sequence alignment), and then genes missing greater than or equal to 50%, 25%, 10%,

5%, or 1% of the species were removed prior to species tree estimation. These thresholds for

GTEE and missing data resulted in the same number of genes being removed, making the

two filtering experiments comparable.

3.2.3 Species Tree Estimation

We evaluated five species tree estimation methods: three summary methods (ASTRAL-

II version 4.10.5, ASTRID version 1.1, and MP-EST version 1.5), a site-based method

(SVDquartets as implemented in PAUP* version 4a150), and CA-ML (using RAxML version

8.2.8 under the GTR+GAMMA). Of these methods, only ASTRAL-II returns species trees

with branch lengths annotated by statistical support; its technique for computing support

values has been shown to be a better predictor of topological accuracy than multi-locus boot-

strapping (MLBS) [199]. ASTRAL-II and ASTRID were given unrooted ML gene trees as

input. MP-EST was given ML gene trees rooted at the outgroup species (when available) or

at the midpoint of the longest leaf-to-leaf path. The best pseudo-likelihood scoring species

tree was taken from ten independent runs of MP-EST.
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3.3 RESULTS

We now present the results of four experiments. The first and second evaluate the

impact of ILS and phylogenetic signal (across individual genes) on five species tree estimation

methods with and without missing data, respectively. The third and fourth evaluate the

impact of gene filtering based on GTEE and missing data, respectively.

3.3.1 Impact of Incomplete Lineage Sorting and Phylogenetic Signal

For all methods, mean species tree error increased as ILS and/or phylogenetic signal in-

creased, but the relative performance between methods depended on both ILS and phylogen-

tic signal (Figure 3.1). Phylogenetic signal is reported as mean GTEE, so low phylogenetic

signal (per gene) corresponds to high mean GTEE and high phylogenetic signal (per gene)

corresponds to low mean GTEE.

For low/moderate ILS (12% AD), CA-ML was the most accurate method for all levels

of GTEE (Figure 3.1a). When mean GTEE was less than 50%, all five methods had good

accuracy (mean species tree error below 7%). When mean GTEE was between 80–85%,

the differences between methods were noteworthy; the mean species tree error was 5% for

CA-ML, ranged for summary methods (from 16% for ASTRAL-II to 19% for MP-EST), and

was 20% for SVDquartets. Notably, this model condition had only five replicates.

For high ILS (41% AD), the relative performance between methods changed dramatically

with GTEE (Figure 3.1b). The three summary methods outperformed SVDquartets and

CA-ML when GTEE was low to moderate (i.e., mean GTEE < 50%), but SVDquartets

and CA-ML outperformed all summary methods when GTEE was extremely high. CA-

ML produced more accurate species trees than SVDquartets except for the highest GTEE

condition (a model condition with only four replicates), where both methods had similar

accuracy.

For very high ILS (75% AD), results were similar but more pronounced than those ob-

served for the high ILS condition (Figure 3.1c). For lower levels of GTEE, CA-ML and

SVDquartets were distinctly worse than the summary methods but still provided reasonable

accuracy. All methods decreased in accuracy as the level of GTEE increased, but the ac-

curacy of SVDquartets and CA-ML decreased more gradually than all summary methods.

When mean GTEE was at least 90% (a model condition with only four replicates), the differ-

ences between methods were dramatic: the mean species tree error for all summary methods

was greater than 90%, while the mean species tree error for CA-ML and SVDquartets was

much lower at 30% and 37%, respectively.
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In summary, both ILS and GTEE had strong effects on the absolute and relative per-

formance of methods. All summary methods typically outperformed or else matched the

accuracy of CA-ML when GTEE was sufficiently low, but they were less accurate when

GTEE was high. Although SVDquartets was dramatically more accurate than all summary

methods under the most difficult conditions (with very high GTEE and very high ILS),

SVDquartets was nearly always outperformed by CA-ML. Finally, CA-ML outperformed

summary methods for low/moderate ILS and for higher levels of GTEE.

3.3.2 Impact of Missing Data

Missing data nearly always reduced the accuracy of methods (Figure 3.2); however, the

reduction in accuracy tended to be fairly small (below 5%). Methods differed somewhat in

their response to missing data. ASTRAL-II and ASTRID were quite robust to missing data,

with mean species tree error never increasing by more than 6% (and most increases in error

were much smaller). MP-EST, SVDquartets, and CA-ML were less robust to missing data,

especially for challenging conditions with very high levels of ILS or GTEE. Interestingly, the

accuracy of some summary methods improved on some datasets with incomplete genes, for

example when the level of ILS was very high and the mean GTEE was greater than 85%, a

model condition with only nine replicates (Figure 3.2c). Finally, missing data did not impact

the relative performance of methods (Supplementary Figure S4).

3.3.3 Impact of Gene Filtering based on Gene Tree Estimation Error

As expected, filtering based on GTEE reduced mean GTEE for the retained genes com-

pared to the original set (Supplementary Figure S8). For example, when GTEE was moder-

ate/high, removing 75% of genes reduced mean GTEE from 35–40% to ∼20% (Supplemen-

tary Figure S8a, 8c, and 8e). Despite substantial reductions in mean GTEE, the accuracy

of summary methods tended to decrease with filtering except when ILS was low/moderate

(Figure 3.3).

For low/moderate ILS (12% AD) and moderate to very high GTEE, filtering improved

the accuracy of summary methods, provided that the number of retained genes was not

too small (Figure 3.3a and 3.3b). Specifically, removing 75% of the genes based on GTEE

reduced mean species tree error by ∼2–3% for the three summary methods. Importantly,

CA-ML was the most accurate species tree method for this condition.

For higher ILS conditions, filtering was at best neutral and typically increased species tree

error (Figure 3.3c, 3.3d, 3.3e, and 3.3f). Exceptions occurred when GTEE was extremely high
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(mean GTEE >85%), in which case filtering improved the accuracy of summary methods

for all ILS levels (Table 3.2 and Supplementary Tables S10–S11). Notably, the number of

replicates with extremely high GTEE was limited: two replicates with low/moderate ILS,

five replicates with high ILS, and 17 replicates with very high ILS.

Finally, filtering had minimal impact on ASTRAL-II’s local branch support but typi-

cally decreased the mean support of the true branches recovered by ASTRAL-II and thus

increased the number of true branches with support less than 75% (Supplementary Figures

S6–S7). It is also worth noting that, as expected, CA-ML and SVDquartets both decreased

in accuracy when the sequence alignments corresponding to genes with high GTEE were

removed (Supplementary Figure S5 and Supplementary Tables S12–S13).

3.3.4 Impact of Gene Filtering based on Missing Data

Filtering genes based on missing data typically reduced the accuracy of all methods, but

the amount depended on ILS and GTEE as well as the on number of genes retained after

filtering (Figure 3.4, Supplementary Tables S14–S18). For all methods under all conditions

examined, removing 50% of genes (retaining 500 of the 1 000 genes) had a negligible impact on

accuracy; however, as more genes were deleted, the mean species tree error increased. In the

most extreme case, 95% of the genes (i.e., all genes with missing data) were removed, so that

only 50 of the original 1 000 genes were retained. For the easiest condition (i.e., low/moderate

ILS and moderate GTEE), filtering 95% of the genes increased mean species tree error by

approximately 5% (Figure 3.4a); thus, the impact of filtering was slightly negative. For the

most challenging condition (i.e., very high ILS and very high GTEE), filtering 95% of the

genes increased mean species tree error by ∼25% for all methods (Figure 3.4f); thus, the

impact of filtering was very negative. Finally, filtering decreased the mean branch support of

the true branches recovered by ASTRAL-II, resulting in a greater number of true branches

with support less than 75% (Supplementary Figures S9–S10).

3.4 DISCUSSION

The datasets used in our study covered a broad range of model conditions, and as nearly

all replicates were in the anomaly zone, species tree estimation with coalescent methods

was relevant. However, our study was constrained to five methods and to datasets with 26

species and 1 000 genes (unless gene filtering was performed), and trends may not generalize

to other methods or to other datasets with much smaller or much larger numbers of species

and/or genes.
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3.4.1 Impact of Incomplete Lineage Sorting and Phylogenetic Signal

In our study, both ILS and GTEE impacted the relative accuracy of species tree esti-

mation methods. CA-ML had the best accuracy of all methods under the low/moderate

ILS condition, even though many of the replicates were in the anomaly zone. Interestingly,

CA-ML was more accurate than coalescent methods for some conditions with very high ILS,

specifically when mean GTEE was greater than 85% (a model condition with only nine repli-

cates). However, except when GTEE was sufficiently high, differences in accuracy between

CA-ML and the summary methods were usually small. Summary methods were typically

more accurate than CA-ML when the level of ILS was not too low and GTEE was not too

high (mean < 50%). Thus, summary methods performed close to best (and sometimes best)

under many conditions but always provided that GTEE was not too high.

Our observed trends with respect to the relative accuracy of ASTRAL-II, ASTRID,

MP-EST, and CA-ML are similar to those from prior simulation studies [39, 49, 161, 162,

163, 164, 200], and they are also consistent with earlier simulation studies evaluating other

coalescent methods [38, 144, 145, 160, 201]. The improvement of CA-ML over summary

methods has been noted before for high levels of ILS (e.g., [152]) but not (to our knowledge)

for conditions with very high ILS (75% AD), as was observed in our study. Finally, the good

performance of ASTRID in our study is consistent with prior simulation studies evaluating

ASTRID and/or NJst [39, 201].

In our study, SVDquartets was not among the best methods. CA-ML was at least as

accurate and usually more accurate that SVDquartets, even when the level of ILS was very

high, a condition for which SVDquartets would be expected to have an advantage. Our

observed trends agree with that of a prior simulation study [163] by Chou et al. evaluat-

ing SVDquartets in comparison to other species tree estimation methods; they also found

that SVDquartets was less accurate than CA-ML and was typically less accurate than the

summary methods examined.

3.4.2 Impact of Missing Data

In our study, missing data slightly reduced the accuracy of methods, a trend that has also

been noted in prior studies [39, 172, 175]. Although missing data, in a few cases, improved

the accuracy of summary methods, this trend may be explained by decreased GTEE. For the

nine datasets with very high ILS (75% AD) and extremely high GTEE (>85%), on average

missing data improved the accuracy of 835/950 gene trees; the average reduction in error was

3.6%. One would expect many of these gene trees to have short branches (because species
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trees with very high ILS have very short branches), so the random deletion of species may

have increased the length of some branches, making them easier to estimate.

3.4.3 Impact of Gene Filtering based on Gene Tree Estimation Error

In our study, filtering based on GTEE typically improved the accuracy of summary

methods on datasets with low/moderate ILS and typically reduced accuracy of summary

methods for datasets with higher levels of ILS. Note that regardless of the ILS level, mean

GTEE of the retained genes after filtering was substantially reduced compared to the original

set (before filtering). Hence, even when filtering improved the overall quality of the input

gene trees, this did not always offset the negative impact of reducing the total amount of

genes via filtering.

Differences due to ILS level could be explained as follows. When ILS is sufficiently

low, a few highly accurate gene trees are sufficient to estimate the true species tree (e.g.,

one perfectly estimated gene tree is identical to the species tree in the no-ILS condition).

However, a large sample of gene trees is necessary to accurately estimate the species tree

under higher levels of ILS. Hence, filtering genes will be detrimental unless a sufficiently large

number of genes is retained after filtering, and this number of genes will vary with the level

of ILS. This explanation is consistent with a recent mathematical result showing that the

number of true gene trees required for ASTRAL to recover the true species tree with high

probability grows in proportion to the shortest branch in the true species tree [202] (and

recall that ILS is more likely when branches in the species tree are short). Based on this

explanation, one would expect gene filtering to have a particularly negative effect under high

ILS conditions. Even so, when the level of ILS was high or very high and when the level of

GTEE was extremely high (mean > 80%), filtering based on GTEE could improve summary

methods. This model condition had very few replicate datasets (only five replicates with

high ILS and 17 replicates with very high ILS), so further investigation is warranted.

Filtering based on GTEE affected CA-ML and SVDquartets quite differently; filtering

decreased the accuracy of CA-ML and SVDquartets, even when GTEE was very high. Equiv-

alently, CA-ML and SVDquartets benefited from the additional genes, even when the added

genes had very low signal. In bypassing gene tree estimation, CA-ML and SVDquartets

were more robust to variation in the quality of each gene and improved with additional data

regardless of the amount of phylogenetic signal per gene.

To the best of our knowledge, only two prior simulation studies [191, 194] have examined

how filtering genes based on GTEE or proxies of GTEE affects coalescent methods. Liu et

al. [191] performed a simulation on 6-species model trees with high ILS (50% AD, L. Liu,
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personal communication with T. Warnow) in which there were two types of genes: “strong

genes” (which had 1 000 sites) and “weak genes” (which had 100 sites). ML trees estimated

on the weak genes had mean bootstrap support less than 40%, while ML trees estimated on

the strong genes had mean bootstrap support greater than 80%, suggesting that there was

low GTEE for the strong genes and moderate/high GTEE for the weak genes. Species trees

were inferred from estimated gene trees using MP-EST. They [191] observed that adding 60

weak genes (in increments of 10) to a set of 30 strong genes increased the fraction of replicates

in which the true species tree was recovered from 33% to 50%; however, the improvement

was not monotonic (i.e., as weak genes were added, the accuracy of MP-EST sometimes

decreased). Based on the ILS level and the number of genes, we would expect that accuracy

would improve by including weak genes, so the results in [191] are consistent with our study.

Lanier et al. [194] performed a simulation study on 8-species model trees with two levels of

ILS. Although they [194] found that adding up to 50 low-variation genes to a single variable

gene had little impact on STEM; however, each gene was represented by a strict majority

consensus (SMC) tree (all bipartitions in the SMC tree are induced by greater than 50% of

the trees sampled during the MCMC analysis) from MrBayes [203] that may not have been

fully resolved due to insufficient phylogenetic signal. Our study used fully resolved ML gene

trees, and so it is difficult to compare our results to those of Lanier et al. [194].

3.4.4 Impact of Gene Filtering based on Missing Data

In our study, filtering based on missing data did not decrease mean species tree error

of any method under any model condition. Low amounts of filtering generally did not

impact method accuracy, but large amounts of filtering resulted in increased species tree

error for all methods. Unlike filtering based on GTEE, filtering based on missing data did

not substantially lower the average GTEE in the retained genes for most model conditions.

To the best of our knowledge, only one prior simulation study [192] has explicitly ex-

amined how gene filtering based on missing data affects coalescent methods. Huang and

Knowles [192] simulated 8-species datasets using a protocol where gene trees differ from the

species tree due to ILS and where the pattern of missing data was similar to those generated

by RADtag protocols [204]. This simulation design resulted in a correlation between the

genes with missing data and the genes with higher rates of evolution (and thus phylogenetic

signal). Huang and Knowles [192] found that filtering genes based on missing data reduced

the accuracy of the shallowest divergence method. Gene filtering (which reduces the total

number of genes) can be especially detrimental if it also reduces the average phylogenetic

signal per gene, so this finding is consistent with our study.
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3.4.5 Data Quality versus Data Quantity

Filtering reduces the amount of data available, which should in turn reduce species tree

accuracy. However, sometimes filtering based on GTEE improved species tree estimation

using summary methods. An examination of the conditions when filtering improved the

accuracy of the summary methods shows that the average gene tree accuracy also improved

substantially without removing too many genes. Hence, although there was a reduction in

data quantity (number of genes), there was an increase in data quality (accuracy of gene

trees). Similarly, when filtering reduced accuracy, either the gene tree quality did not improve

by filtering (e.g., when filtering is based on missing data) or the gene tree quality improved

but not by enough to offset the reduction in quantity. In other words, the impact of filtering

is fundamentally a question of data quality versus data quantity.

3.4.6 Branch Support

In our study, gene filtering impacted the branch support values (computed by ASTRAL-

II); however, these results are somewhat difficult to interpret as the branches recovered in

the estimated species trees were also impacted by gene filtering. Even though gene filtering

did impact the support of true and false positive branches in the estimated species trees,

branch support was still useful for distinguishing between true and false positives (Figure

S6, S7, S9, and S10).

3.4.7 Prior Empirical Studies

Several recent studies evaluated the impact of filtering on coalescent methods using em-

pirical datasets. Four studies evaluated filtering based on missing data [50, 51, 53, 171], and

six studies evaluated filtering based on proxies for GTEE or related criteria [50, 51, 52, 53,

54, 193]. These studies differ in many ways, including the dataset type, the filtering criteria,

the species tree estimation methods used, and the evaluation of species tree quality; however,

all these studies used MLBS to estimate branch support for the species trees computed using

summary methods.

Two empirical studies [50, 51] observed that deleting genes based on the degree of missing

data typically did not improve the quality of estimated species trees, and sometimes even

reduced quality, as measured by the appearance of unlikely clades. The other two studies

[53, 171] observed that deleting genes with missing data could either increase or decrease

the branch support of likely clades, depending on the threshold that was used to filter genes
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based on missing data. The best filtering threshold differed between the studies, indicating

that the optimal filtering threshold based on missing data may depend on the species tree

estimation method and the data set properties in ways that are difficult to ascertain. Given

the lack of evidence that filtering in this way improves accuracy [50, 51], filtering genes

with missing data seems to be undesirable. An interesting counterpart is the observation by

Hosner et al. [51] that filtering genes that have fragmentary sequences (a different kind of

missing data situation that they refer to as “type-II” missing data) can improve accuracy.

The explanation is likely that type-II missing data increased GTEE, which in turn impacted

the summary methods.

Five empirical studies have examined how species trees computed using summary meth-

ods are impacted by gene filtering based on proxies for GTEE; three of these studies

[51, 52, 53] recommended filtering and two of these studies [50, 54] did not recommend

filtering. The sixth study [193] explored a related filtering strategy that identified and re-

moved outlier genes (i.e., genes whose gene trees are topologically very distant from other

gene trees) but they did not evaluate this type of filtering as a way to improve species tree

estimation. The five studies that used proxies for GTEE to evaluate species tree quality

did so in similar ways (using the amount of similarity to a CA-ML tree, the appearance of

unlikely clades, or the branch support of the estimated species tree), and yet these studies

came to different conclusions.

It is worth examining in some detail the study that showed the largest favorable im-

pact of filtering [52] as the authors provided convincing evidence that filtering reduced the

appearance of unlikely clades in trees computed by MP-EST. Meiklejohn et al. [52] noted

that many of the gene trees in their dataset (especially ones with few parsimony-informative

sites) had highly supported GTEE. Their evidence for this assertion is that these gene trees

had strong support for clades that conflicted with a well-established clade in the species tree

and that this well-established clade was separated from the rest of the species by a long

branch. Since ILS is unlikely to occur on long branches, this means that most true gene

trees would be expected to display this well-established clade. Meiklejohn et al. [52] noted

that removing genes with few parsimony-informative sites simultaneously removed many of

the genes that supported unlikely clades in the species tree.

Chen et al. [50] make an interesting point about gene selection strategies that is relevant

to the question of gene filtering. They argue that node-specific strategies [184] should be

used to select genes, rather than “nonspecific” strategies that select genes based on overall

phylogenetic signal and/or assessment of gene tree accuracy. They showed that the selection

of genes to help resolve specific phylogenetic questions (e.g., Is Amborella the sister of land

plants?) is more likely to result in an answer with high support than selecting genes based
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on generic signal. For example, Chen et al. [50] wrote, “In some extreme cases, these

nonspecific datasets can correctly resolve some difficult nodes but result in high support for

erroneous relationships for other nodes.” They concluded that “One possible explanation for

this phenomenon is that each gene has a different resolving power on different time scales

and on different evolutionary scenarios... Nonspecific datasets may produce a well-resolved

relationship for an ancient divergence event but do not have enough phylogenetic signal to

recover accurate phylogeny for a recent radiation or vice versa.” The observations by Chen

et al. [50] are very similar to earlier observations made by Townsend and Leuenberger [205],

who noted that “characters that are highly informative early in history rapidly become

sources of phylogenetic noise due to multiple hits for deeper divergences.” Both of these

studies support the hypothesis that species tree estimation is likely to benefit from selecting

a mixture of genes aiming to resolve different parts of the tree, rather than selecting genes

on the basis of overall high signal.

Even though the empirical studies did not come to any clear agreement regarding the

impact of filtering, several conclusions can be drawn. First, not all methods responded iden-

tically, so improvements resulting from filtering for one method do not imply that other

methods (even of the same type) will respond in the same way. Second, when there was

improvement, it was often because the genes that were deleted had high GTEE, with po-

tentially the biggest improvement occurring when the GTEE was highly supported. Third,

interpreting increased similarity to a CA-ML tree as an improvement in accuracy is a bit

tricky, as it depends on the accuracy of CA-ML. However, our study showed that CA-ML was

frequently the most accurate of the species trees estimation methods, even under conditions

with localized regions of high ILS (i.e., the species trees have a mixture of long and short

branches so that the overall the AD value was not too high). We also showed that filtering

genes based on GTEE reduced species tree error when the level of ILS was low/moderate or

when the level of GTEE was extremely high. These two conditions seem likely to be true of

many empirical studies, and high GTEE, in particular, seems to be a problem for modern

multi-locus datasets (Table 3.1).

3.5 CONCLUSIONS

Perhaps the most significant outcome of our study is the observation that GTEE (result-

ing from low phylogenetic signal per gene) has a substantial negative impact on summary

methods. This impact can be so great that summary methods may not be appropriate for

analyzing exons and other types of multi-locus datasets where genes have very few parsimony-

informative sites. We recommend that prior to data collection researchers consider whether
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the expected level of ILS is high enough that a summary method would be beneficial and

then select markers based on this assessment.

Post-data collection, we recommend that methods be chosen based on the empirical

properties of the dataset, considering data quality (per gene) and data quantity (number

of genes). Given a large collection of genes, many of which have only a few parsimony-

informative sites, we may prefer CA-ML over summary methods, as CA-ML is likely to be

at least as accurate as the summary methods, especially if the level of ILS is low/moderate.

Given a large collection of genes, many of which appear to produce high quality gene trees,

we may prefer summary methods over CA-ML, as summary methods are likely to be at least

accurate as CA-ML and more accurate if the level of ILS is high. The conditions for which

SVDquartets may be more accurate than summary methods and/or CA-ML require further

exploration.

Our study demonstrates that method selection as well as the usefulness of gene filtering

for summary methods depends on ILS and GTEE, emphasizing the need to accurately predict

ILS and GTEE for empirical datasets. One way to estimate ILS is to examine the species

tree for rapid radiations, but this may depend on having a very good estimate of the species

tree, which is not always available. Another way is to examine the heterogeneity of estimated

gene trees; however, it can be difficult to distinguish between heterogeneity due to GTEE

and heterogeneity due to ILS. Hence, estimating ILS generally also depends on our ability

to evaluate error in estimated gene trees.

Closely related is the problem of estimating the probability that a branch (in an esti-

mated gene tree) is correct [206]. Non-parametric bootstrapping, one of the most popular

techniques, can be reliable when performed correctly and when the estimation method is

statistically consistent [129, 130, 207, 208]. Other mathematical and statistical approaches

have also been developed [185, 207, 209, 210, 211], and they may provide better indicators

of GTEE than non-parametric bootstrapping approach.

Empirical arguments also can be made regarding GTEE. For example, Meiklejohn et al.

[52] argued for GTEE in their dataset, because a large number of the estimated gene trees had

strongly supported branches that conflicted with an established clade in the species tree that

was separated by a long branch from the remainder of the tree. Evidence for GTEE also can

be provided by demonstrating model misspecification, showing that the gene tree topology

is not stable, or identifying (outlier) gene trees that are topologically very distant from the

other gene trees. Simmons et al. [193] found the latter approach useful for identifying other

types of errors in multi-locus datasets that produce poor quality gene trees.

Many multi-locus data sets are based on exons and other highly conserved markers for

which individual genes may have low numbers of parsimony-informative sites and thus high
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GTEE. As the current coalescent methods do not exceed the accuracy of CA-ML on such

datasets, many key evolutionary questions remain unanswered. The development of coales-

cent methods that can provide high accuracy under such conditions is an important direction

for future research.

Consideration should also be given to the computational cost of methods. The concate-

nation analyses in the Avian Phylogenomics Project [23], which ran ExaML on 48 species

and ∼14 000 genes, took more than 250 CPU years and one TB of memory (A. Stamatakis,

personal communication with T. Warnow). In contrast, MP-EST took only five CPU years

to analyze the same dataset, and most of that time was spent estimating ML gene trees with

non-parametric bootstrapping. SVDquartets and other site-based methods also are efficient

for large numbers of genes and improved versions of these methods may scale to very large

numbers of species.

Fortunately, species tree estimation is a fast moving field with many new theoretical

results established and methods created in just the last few years (e.g., [202, 212, 213,

214, 215, 216, 217, 218, 219]). With the increased attention that species tree estimation is

receiving, we are optimistic that, over the next few years, new methods may be developed

that will provide even better accuracy and scalability to large datasets.

46



3.6 PLOTS

This section contains the four plots presented in Section 3.3 Results.
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Figure 3.1: Impact of GTEE. The impact of GTEE and ILS on species tree error (RF
error rate) is shown for methods: ASTRAL-II (blue), ASTRID (orange), MP-EST (green),
SVDquartets (red), and CA-ML using RAxML (purple). Subplots a, b, and c show three
levels of increasing ILS. The mean GTEE range and the number of replicates (N) for that
model condition are given on the x-axis. Means and medians are denoted by the gray dot
and bar, respectively. Box plots are defined by quartiles, e.g., boxes extend from the first
to the third quartiles. Greater levels of ILS and/or GTEE increased species tree error rates
for all methods, and the relative performance of methods depended on both ILS and GTEE.
Under low to moderate ILS, CA-ML tended to have better accuracy than the coalescent
methods. Under higher levels of ILS, summary methods were typically more accurate than
CA-ML and SVDquartets except for conditions with high GTEE.
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Figure 3.2: Impact of missing data. Differences in species tree error between datasets
with no missing data and datasets with approximately 30% missing data are shown for five
methods: ASTRAL-II (blue), ASTRID (orange), MP-EST (green), SVDquartets (red), and
CA-ML using RAxML (purple). Positive values indicate increases in error, whereas negative
values indicate reductions in error. Subplots a, b, and c show three levels of increasing ILS.
The mean GTEE range and the number of replicates (N) for that model condition are given
on the x-axis. Means and medians are denoted by the gray dot and bar, respectively. Box
plots are defined by quartiles, e.g., boxes extend from the first to the third quartiles.
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Figure 3.3: Impact of filtering based on GTEE. The impact of filtering genes based on
GTEE on species tree error (RF error rate) is shown for three summary methods: ASTRAL-
II (solid blue), ASTRID (solid orange), and MP-EST (solid green). Genes were filtered
by removing the top 25%, 50%, 75%, 90%, and 95% of genes with the highest GTEE.
SVDquartets (dashed red) and unpartitioned concatenation analysis CA-ML using RAxML
(dashed purple), are shown without filtering. Lines indicate the mean across all replicates,
and filled regions indicate the standard error. Rows show three levels of ILS, and columns
show two levels of GTEE. When ILS was sufficiently low, gene filtering (up to 75% of genes)
increased the accuracy of gene tree summary methods (a-b). When ILS was high to very
high, gene filtering had little impact on the accuracy of summary methods or else reduced
summary method accuracy (d-f).
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Figure 3.4: Impact of filtering based on missing data. The impact of filtering genes
by missing data on species tree error (RF error rate) is shown for five methods: ASTRAL-II
(blue), ASTRID (orange), MP-EST (green), SVDquartets (red), and CA-ML using RAxML
(purple). Genes were filtered by removing the top 25%, 50%, 75%, 90%, and 95% of genes
with the highest fractions of missing data; this resulted in removing genes missing at least
50%, 25%, 10%, 5%, and 1% of species. Lines indicate the mean across all replicates, and
filled regions indicate the standard error. Rows show three levels of increasing ILS, and
columns show two levels of GTEE. Gene filtering based on missing data was at best neutral
but often reduced the accuracy of methods.
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CHAPTER 4: DIVIDE-AND-CONQUER PIPELINES WITH NJMERGE

This chapter contains material previously published in “Statistically consistent divide-

and-conquer pipelines for phylogeny estimation using NJMerge” [220], which was joint work

with T. Warnow. NJMerge is freely available on Github: github.com/ekmolloy/njmerge.

Datasets and software commands necessary to reproduce this study are freely available on

the Illinois Data Bank: doi.org/10.13012/B2IDB-1424746 V1 and doi.org/10.13012/B2IDB-

0569467 V2. All supplementary tables and figures referenced in this chapter are freely avail-

able at Algorithms for Molecular Biology online: doi.org/10.1186/s13015-019-0151-x. Note

that plots and tables appear at the end of this chapter in Sections 4.7 and 4.8, respec-

tively.

4.1 INTRODUCTION

In Chapter 3, we presented the results of benchmarking species tree estimation methods,

including ASTRAL, SVDquartets, and CA-ML using RAxML, on datasets with 26 species

and 1 000 genes. All three of these methods can be computationally intensive on large

datasets with thousands of species and thousands of genes (Section 2.7), and in this chapter,

we address how to scale these methods to larger datasets using divide-and-conquer.

Divide-and-conquer approaches have been developed in the context of phylogeny estima-

tion, for example the family of disk covering methods [221, 222, 223, 224]. Such methods

operate by (i) dividing the species set into overlapping subsets, (ii) estimating trees on the

subsets, and then (iii) using a supertree method to combine the subset trees into a tree on the

entire species set. While supertree methods can provide good accuracy (i.e., retain much of

the accuracy in the subset trees) under some conditions, many of the most accurate supertree

methods are heuristics for NP-hard optimization problems (Section 2.3); these methods can

be computationally intensive on large datasets. Note there are other major challenges to

building supertrees, for example when there are large terraces of equally optimal solutions

[225]; see also [80].

A supertree meta-method, SuperFine [226], was developed to address the issue of scala-

bility and was later incorporated into step (iii) of a divide-and-conquer pipeline, DACTAL

[227]. To the best of our knowledge, only one study [196] has explored using DACTAL

for species tree estimation. Specifically, Bayzid et al. [196] used DACTAL to speed-up

MP-EST on multi-locus datasets with at most 37 species and showed that this approach is

statistically consistent under the Multi-Species Coalescent (MSC) model [196]. Their code
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was not publicly available at the time of our study (Md. S. Bayzid, personal communica-

tion with T. Warnow). As recently reviewed by Warnow [56], divide-and-conquer continues

to be challenging, and yet Bininda-Emonds and many others [55, 228] have argued that

divide-and-conquer is a promising and necessary approach for estimating the Tree of Life.

We propose a new divide-and-conquer approach for scaling phylogeny estimation meth-

ods to larger datasets that operates by (i) dividing the species set into pairwise disjoint

subsets, (ii) estimating a tree on each of subset, and then (iii) merging the subset trees into

a phylogeny on the full species set. Note that the term merge refers to building a (refined)

compatibility supertree (Definition 2.7). While a (refined) compatibility supertree is guar-

anteed to exist when the subset trees are on pairwise disjoint species sets, the subset tree

topologies contain no information about how to perform this merger (Figure 4.1). Indeed,

disjoint tree mergers (DTMs) require a set A of auxiliary data, so DTM methods can be

viewed as constrained phylogeny estimation: estimate a phylogeny T from data given in A
subject to the topological constraints implied by the input set T of subset trees. This does

not require the trees in T to be edge separable for T , meaning that every tree in T can

be obtained from T through a sequence of zero or more edge deletions or conversely that

T can be obtained by connecting the trees in T by edges (Figure 4.1). For example, the

caterpillar tree on {A,B,C,D, . . . , H} obtained by making a path with the leaves hanging

off it in alphabetical order is a compatibility supertree for T = {AC|EG, BD|FH}, and

yet the trees in T are not edge separable for the caterpillar tree.

Ti

A

B

C

D

Tj
E

F

G

H

Tk

I

J

K

L
...and others...

Ti ,j ,kA

B C D E F G H I J K

L

T ′i ,j ,kA

E I B F J C G K D H

L

Figure 4.1: Compatibility Supertree Example. Two compatibility supertree for T =
{Ti, Tj, Tk} are shown. Notably, the trees in T are edge separable for Ti,j,k but are not edge
separable for T ′i,j,k.

In the remainder of this chapter, we present the first DTM method, NJMerge. As we
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will show, NJMerge runs in polynomial time and enables divide-and-conquer pipelines (for

estimating gene trees or species trees) that are provably statistically consistent. We also

present the results of a simulation study evaluating the effectiveness of NJMerge for multi-

locus species tree estimation. Our study found that NJMerge improves the running time of

ASTRAL-III, SVDquartets, and CA-ML using RAxML without sacrificing accuracy. Fur-

thermore, NJMerge enabled SVDquartets and RAxML to run on large datasets (e.g., 1 000

species and 1 000 genes), on which SVDquartets and RAxML would otherwise fail to run

when limited to 64 GB of memory. While NJMerge is not guaranteed to find a compatibility

supertree, the failure rate of NJMerge in our experiments was low (less than 1% of tests), so

NJMerge failed on fewer datasets than either ASTRAL-III, SVDquartets, or RAxML when

given the same computational resources. Together, these empirical and theoretical results

suggest that NJMerge is a valuable technique for species tree estimation, especially when

computational resources are limited.

4.2 APPROACH

In this section, we present the NJMerge algorithm and then show how it can be used

within a divide-and-conquer framework to enable statistically consistent phylogeny estima-

tion pipelines.

4.2.1 NJMerge

NJMerge extends NJ by imposing a set of topological constraints on the output tree;

therefore, NJMerge has the same input as NJ but additionally requires a set of constraint

trees.

• NJMerge Input:

– Set T = {T1, T2, . . . , Tk} of unrooted phylogenetic trees such that S(Ti)∩S(Tj) =

∅ for all i 6= j

– Set A of auxiliary data; specifically

∗ An n× n dissimilarity matrix D on label set S = ∪ki=1S(Ti)

• NJMerge Output: A (possibly refined) compatibility supertree for T that is fully

resolved

Because the trees in T are on pairwise disjoint leaf label sets, we refer to them as being leaf-

label-disjoint. A compatibility supertree always exists for leaf-label-disjoint trees; however,
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the objective is to find a tree that is close to the true (but unknown) phylogeny from the set

of all compatibility supertrees for T . NJMerge uses the dissimilarity matrix D to achieve

this objective (Figure 4.2).

The traditional NJ algorithm has an iterative design that builds the tree from the bottom

up, producing a rooted tree that is then unrooted; this approach is akin to hierarchical

clustering. Initially, there are n leaf labels. When two leaf labels x and y are selected to be

siblings, the pair of leaf leaves is replaced by a single leaf label z, which represents a rooted

tree on the two leaves. This reduces the number of leaf labels by one. This process repeats

until there is only one leaf, representing a rooted tree on n leaves; this tree is then unrooted

and returned. Note that at each iteration, NJ makes a siblinghood decision by building a

secondary matrix Q from D and simultaneously searching for a minimal element. If Q[i, j]

is a minimal element of Q, leaves i and j are made siblings; see [121] for details.

Ti

A

B

C

E

Tj
D

H

F

G

+

Di j

A 0 2 4 4 4 5 6 6
B 2 0 4 4 4 5 6 6
C 4 4 0 2 4 5 6 6
D 4 4 2 0 4 5 6 6
E 4 4 4 4 0 3 4 4
F 5 5 5 5 3 0 3 3
G 6 6 6 6 4 3 0 2
H 6 6 6 6 4 3 2 0

NJMerge

Ti j

A

B

C D

E H

G

F

Figure 4.2: NJMerge Input/Output Example. The input to NJMerge is a set T =
{Ti, Tj} of constraint trees and a dissimilarity matrix Dij that is additive (Definition 2.11)
for the tree T given by the Newick string: (((A,B), (C,D)), E, (F, (G,H))) (note that T has
the same topology as Ti,j but swaps leaves H and F ). Traditional NJ applied to Dij returns
T (Theorem 2.2); however, NJMerge rejects the siblinghood proposal (G,H), because it
violates constraint tree Tj. NJMerge makes G and F siblings, returning tree Ti,j.

NJMerge operates in a similar fashion even using the same formulas as NJ to compute Q
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and update D; however, NJMerge can make different siblinghood decisions than NJ based

on the input constraint trees. After accepting a siblinghood proposal, NJMerge updates D

as well as the constraint trees in T . For example, if x labels a leaf in Ti and y labels a leaf

in Tj, then the siblinghood decision (x, y) requires Ti and Tj to be updated by relabeling

x in Ti and y in Tj by a new label z, which represents the rooted subtree (x, y). Because

siblinghood decisions can result in constraint trees no longer being on pairwise disjoint leaf

label sets (Figure 4.3), they have the potential to make the set of constraint trees incom-

patible. Determining whether a set of k > 2 unrooted trees is compatible (Definition 2.7) is

NP-complete [71, 229], so NJMerge uses a polynomial-time heuristic.

At each iteration, NJMerge sorts the entries of Q from least to greatest and then, based

on this ordering, evaluates each siblinghood proposal (x, y) as follows.

• Test that the proposed siblinghood does not violate the constraint trees.

– If x and y both label leaves in some constraint tree Ti, check that they label

siblings in Ti. If not, move to the next siblinghood proposal.

• Use a heuristic to test that the proposed siblinghood does not make the set of constraint

trees incompatible.

– Update all of the constraint trees as follows. If x and y both label leaves in a

constraint tree Ti, replace (x, y) by a single leaf labeled z. If only x (or y) are in

some constraint Ti, then update Ti relabeling x (or y) with the new label z.

– Use a heuristic to test if T is compatible. If the test passes, accept the proposal;

otherwise, reverse the updates and move to the next proposal.

Because a heuristic is used to test compatibility, it is possible for NJMerge to accept a sib-

linghood proposal that will eventually cause the algorithm to fail when none of the remain-

ing leaves can be joined without violating the compatibility of constraint trees. Although

NJMerge can fail, it is easy to see that when NJMerge returns a tree, it is a compatibility

supertree for the input set T of constraint trees.

If a set T of trees is compatible, then every pair of trees in T is compatible (the reverse

statement does not hold). We implemented NJMerge using pairwise compatibility as a

heuristic. It is worth noting that NJMerge was developed as a subroutine of TreeMerge

(Chapter 5), and in this context, NJMerge is run on k = 2 constraint trees of bounded size.

In retrospect, it suffices to check only those pairs of constraint trees with leaves labeled by

at least one of x and y; all other pairs of trees are unchanged by accepting the siblinghood

proposal and are pairwise compatible by induction. After being updated, this subset of
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Ti

A

B

C

E

Tj
D

H

F

G

Proposed
siblinghood
X = (C, D)

T ′
i

A

B

X

E

T ′
j

X

H

F

G

Figure 4.3: NJMerge Siblinghood Proposal Example. In this example, NJMerge
evaluates the siblinghood proposal (C,D). Because C labels a leaf in Ti and D labels a leaf
in Tj, NJMerge updates the constraint trees Ti and Tj based on the proposed siblinghood,
labeling C andD byX, which represents the siblinghood (C,D). The two updated constraint
trees are no longer on disjoint label sets.

constraint trees can be rooted at the edge incident to the leaf labeled z, which represents

subtree (x, y). Testing the compatibility of rooted trees can be accomplished in polynomial

time [230, 231]. Therefore, an alternative heuristic is to test the compatibility of all constraint

trees with the new leaf label.

Theorem 4.1. Let T = {Ti}ki=1 be a set of unrooted phylogenetic tree, and let D be an n×n
dissimilarity matrix on label set S =

⋃k
i=1 S(Ti). Then, NJMerge applied to input (T , D)

fails or returns a (possibly refined) compatibility supertree for T in O(n4k) time if using the

pairwise compatibility heuristic or in O(n4 log2 n) time if using the alternative heuristic.

Proof. We first prove that if NJMerge completes, then it returns a (possibly refined) compat-

ibility supertree. At each iteration, NJMerge updates every constraint tree Ti ∈ T based on

the siblinghood descision. We use superscript (w) to denote a tree after the wth siblinghood

decision, where each leaf representing a rooted subtree is replaced by that subtree. Initially,

T
(0)
i is compatible with Ti, as no siblinghood decisions have been made (Definition 2.1). As-

sume that after w− 1 siblinghood decisions, T
(w−1)
i is compatible Ti. At the wth siblinghood

decision, there are four cases:

• Neither x nor y label leaves in T
(w−1)
i . NJMerge does nothing. In this case, T

(w)
i =

T
(w−1)
i , so T

(w)
i is compatible Ti.

• Leaves labeled by x and y are siblings in T
(w−1)
i . NJMerge replaces (x, y) by a single

leaf labeled z. In this case, T
(w)
i = T

(w−1)
i , so T

(w)
i is compatible with Ti.

• Only x labels a leaf in T
(w−1)
i . NJMerge relabels x by z. In this case, T

(w)
i is T

(w−1)
i with
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the subtree represented by y connected to the branch above the subtree represented

by x, so T
(w)
i is compatible with T

(w−1)
i and thus is compatible with Ti.

• Only y labels a leaf in T
(w−1)
i . Apply the same argument from above.

By induction on the number of siblinghood decisions, T
(n−1)
i is compatible with Ti for all

Ti ∈ T . After n − 1 iterations, every Ti ∈ T is replaced by a single leaf, which represents

a rooted tree on n leaves, so T
(n−1)
1 = T

(n−1)
2 = · · · = T

(n−1)
k = T . Therefore, the unrooted

version of T is a refined compatibility supertree for T .

We now address the worst-case running time of NJMerge (Algorithm 4.2 in Section 4.9),

assuming that n species are divided into k subsets of size n/k for simplicity. To begin, we

compute a vector ~r containing the row sums of D in O(n2) time. Then, we perform O(n)

iterations with each iteration having three steps.

• In step 1, we build and sort the O(n2) entries of Q from least to greatest. Each element

of Q can be computed in constant time from D and ~r, so this takes O(n2 log n) time.

• In step 2, we evaluate each siblinghood proposal z = (x, y) in the order suggested by

sorting Q, breaking on the first siblinghood proposal that passes the heuristic test of

compatibility, denoted IsCompatibleHeuristic in Algorithm 4.3 (Section 4.9).

– Pairwise compatibility heuristic: Test the compatibility of all pairs of constraint

trees with the new leaf label z are compatible (Algorithm 4.4 in Section 4.9). This

can be achieved by restricting the two trees to their shared leaf label set and then

computing their Robinson-Foulds (RF) distance using the linear-time algorithm

proposed by Day [232]. Each of the k trees in T has at most n/k leaves, so this

takes O(nk) time.

– Alternative heuristic: Test the compatibility of all constraint trees with the new

leaf label z using the algorithm by Deng and Fernández-Baca [231], which runs in

O(M log2M) time, where M is the total number of edges and nodes in T . Each

of the k trees in T has at most n/k leaves, so this takes O(n log2 n) time.

In the best case, the first element passes the heuristic test, and in the worst case, none of

the O(n2) proposals pass the heuristic test (in which case NJMerge fails). Therefore, in

the worst-case, step 2 requires O(n3k) time if using the pairwise compatibility heuristic

and O(n3 log2 n) time if using the other heuristic.

• In step 3, we update D and ~r in O(n) time.

In summary, the worst-case running time of NJMerge is O(n4k) if using the pairwise com-
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patibility heuristic and is O(n4 log2 n) if using the alternative heuristic. QED.

Note that if the best case always occurs for step 2, then the running time is O(n3 log n);

therefore, the running time of NJMerge can vary greatly depending on the input. Although

running time improves in this scenario, it means that NJMerge returns the same tree as

the traditional NJ algorithm, which is less than ideal, as this means that NJMerge does not

improve upon the accuracy of traditional NJ.

4.2.2 Divide-and-Conquer Pipelines for Phylogeny Estimation

NJMerge can be used in divide-and-conquer pipelines for phylogeny estimation, as shown

in Algorithm 4.1 and Figure 4.4.

2. Decompose species set
into pairwise disjoint subsets.Full

species
set

3. Build a tree on each
subset using method MT.

4. Run NJMerge.
Tree

on full
species set

Distance
matrix
on full

species set 

2a. Build tree,
e.g., using NJ.

1. Estimate distances
between pairs of species
using method MD.

2b. Decompose tree 
into pairwise disjoint 
subsets of species.

Figure 4.4: Divide-and-Conquer Pipeline using NJMerge. Circles are sets of (species)
labels, squares are dissimilarity matrices, and triangles are phylogenetic trees. Note that
henceforth MD (in step 1) is referred to as ΦD and MT (in step 3) is referred to as ΦT .

4.2.3 Statistical Consistency

Algorithm 4.1 shows that a user must select a method for estimating a dissimilarity

matrix ΦD (step 1), a method Φ0 for dividing the leaf labels of a tree into pairwise disjoint
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Algorithm 4.1: Divide-and-Conquer Pipeline using NJMerge.

Input :
S Set of species labels

X Dataset for S

ΦD Method for estimating distances between pairs of species in X

ΦT Method for estimating phylogeny from X

Φ0 Method for dividing a label set into pairwise disjoint subsets of bounded size given a tree on that

label set (e.g., the centroid edge decomposition [233])

max Maximum subset size

Output: A (possibly refined) compatibility supertree for T

Function DivideAndConquer(X, ΦT , ΦD, Φ0, max):

Step 1: Estimate distances between all pairs of species.

D ← ΦD(X)

Step 2: Divide the species set into pairwise disjoint subsets.

T0 ← NJ(D)

{S1, S2, . . . , Sk} ← Φ0(T0,max)

Step 3: Estimate a tree on the dataset restricted to each subset of species, producing a set of

constraint trees; this can performed in serial or in parallel, depending on the computational

resources available.

T ← ∅
for i ∈ 1, 2, . . . , k do

Ti ← ΦT (X|Si
)

T ← T ∪ {Ti}
end

Step 4: Merge subset trees.

T ← NJMerge(T , D)

return T

subsets (step 2), a maximum subset size max (step 2), and a method ΦT for estimating

subset trees (step 3). Therefore, users can select methods ΦD and ΦT to be appropriate for

gene tree estimation or species tree estimation (note that the user also should select max to

be appropriate given these methods and the computational resources that they can access).

We prove that with the proper choices of ΦD and ΦT divide-and-conquer pipelines using

NJMerge are statistically consistent under the Generalized Time Reversible (GTR) model

of DNA evolution and under the MSC model. These results follow from Theorem 4.2.

Theorem 4.2. Let T = {T1, T2, . . . , Tk} be a set of unrooted phylogenetic trees, and let D

be an n × n dissimilarity matrix on label set S =
⋃k
i=1 S(Ti), and let T ∗ be an unrooted,
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fully resolved tree on label set S. Suppose that D is a nearly additive matrix for T ∗ (Defi-

nition 2.11) and that T ∗ is compatible with Ti for all i ∈ {1, . . . , k} (Definition 2.1). Then,

NJMerge applied to input (T , D) returns T ∗.

Proof. NJ applied to a nearly additive dissimilarity matrix for T ∗ will return T ∗ (Theo-

rem 2.2). Because T ∗ is compatible with every tree in T , the siblinghood proposals suggested

by NJ will never violate the trees in T or the (heuristic test of the) compatibility of T . It

follows that NJMerge applied to (T , D) will return the same output as NJ applied to D,

which is T ∗. QED.

We now define statistical consistency in the context of gene tree estimation (Definition

4.1) and show that NJMerge can be used to create statistically consistent divide-and-conquer

pipelines for gene tree estimation (Corollary 4.1).

Definition 4.1 (Statistical Consistency under GTR model). Let (T,Θ) be a GTR model

tree with topology T and numerical parameters Θ. A method M for constructing gene trees

from DNA sequences is statistically consistent under the GTR model if, for all ε > 0, there

exists a constant l > 0 such that, when given at least l sites generated independently from

the GTR model tree, M returns the unrooted version of T with probability at least 1− ε.

Corollary 4.1. NJMerge can be used in a gene tree estimation pipeline that is statistically

consistent under the GTR model.

Proof. Let (T ∗,Θ) be a GTR model tree, let ΦD be a method for calculating distances

between pairs of DNA sequences, and let ΦT be a method for constructing trees from site

patterns (DNA sequences). Suppose that

• the divide-and-conquer pipeline produces k pairwise disjoint subsets of DNA sequences

labeled by the set S

• method ΦD is statistically consistent under the GTR model, for example the log-det

distance [123])

• method ΦT is statistically consistent under the GTR model, for example a maximum

likelihood (ML) method [116]

Now let ε > 0, and select εD, εT > 0 such that εD + kεT < ε. By Definition 4.1, there

exists a constant lD such that NJ applied to matrix D computed from DNA sequences with

at least lD sites returns T ∗ with probability at least 1 − εD, and there exists a constant

lT such that ΦT given DNA sequences with at least lT sites returns T ∗ with probability at
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least 1 − εT . If a phylogenetic distance matrix D is calculated using ΦD and a set of k

phylogenetic (constraint) trees T are constructed using ΦT , given DNA sequences with at

least max{lD, lT} sites, then the probability that NJ applied to D returns T ∗ and that ΦT

returns a tree that agrees with T ∗ for all k constraint trees in T is at least 1− ε, as

(1− εD)(1− εT )k ≥ (1− εD)(1− kεT ) by Bernoulli’s Inequality [234] (4.1)

= 1− εD − kεT + kεDεT

> 1− (εD + kεT ) > 1− ε

Then, by Theorem 4.2, NJMerge applied to the input (T , D) will return the T ∗ with prob-

ability at least 1 − ε, and by Definition 4.1, NJMerge is statistically consistent under the

GTR model. QED.

Finally, we define statistical consistency in the context of species tree estimation (Defi-

nition 4.2) and show that NJMerge can be used to create statistically consistent divide-and-

conquer pipelines for species estimation (Corollary 4.2).

Definition 4.2 (Statistical Consistency under MSC model). Let (T,Θ) be an MSC model

tree with topology T and numerical parameters Θ. A method M for constructing species

trees from true gene trees is statistically consistent under the MSC model if, for all ε > 0,

there exists a constant m > 0 such that, given at least m gene trees generated independently

from the MSC model tree, M returns T with probability at least 1− ε.

Corollary 4.2. NJMerge can be used in a species tree estimation pipeline that is statistically

consistent under the MSC model.

Proof. This proof is similar to Corollary 4.1 except that we must make choices appropriate

for species trees estimation. Therefore, we would suppose that

• the divide-and-conquer pipeline produces k pairwise disjoint subsets of species labeled

by the set S

• method ΦD is statistically consistent under the MSC model, for example the AGID

[153]

• method ΦT is statistically consistent under the MSC model, for example ASTRAL [49]

and then, letting ε > 0, we would select εD, εT > 0 such that εD + kεT < ε and proceed in a

fashion similar to Corollary 4.1. QED.
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Note that the above proof easily could be extended to the MSC+GTR model for site-

based methods that take the concatenated alignment as input.

Lastly, because distance estimation (for D) and phylogeny estimation (for T ) are both

performed using statistically consistent methods, this begs the question: why not just run

NJ instead of NJMerge? The major take-away is that data are neither infinite nor error-free

in practice, so two statistically consistent methods can perform very differently (in terms of

accuracy) on the same dataset.

4.3 PERFORMANCE STUDY

We present results of using NJMerge to estimate species trees on large multi-locus

datasets simulated using the protocol presented in [152]. Our simulation produced four

model conditions, described by two numbers of species (100 and 1 000) and two levels of

ILS (low/moderate and very high), each with 20 replicate datasets. Datasets included both

exon-like sequences and intron-like sequences with exons characterized by slower rates of

evolution across sites (less phylogenetic signal) and introns characterized by faster rates of

evolution across sites (greater phylogenetic signal). The 100-species datasets were analyzed

using 25, 100, and 1 000 genes, and the 1 000-species datasets were analyzed using 1 000

genes; note that exons and introns were always analyzed separately. For each of these 320

datasets, we estimated dissimilarity matrices using two different methods and constraint

trees using four different methods. This provided 2 560 different tests on which to evaluate

NJMerge. NJMerge failed on 11/2 560 tests, so the failure rate in our experiments was less

than 1% (although these tests are not independent). Species tree estimation methods were

evaluated in terms of running time and species tree error, as measured by the RF error rate

(Equation 2.3).

4.3.1 Simulated Datasets

Species trees and gene trees: Datasets, each with a true species tree and 2000 true gene

trees, were simulated under the MSC model using SimPhy version 1.0.2. All model conditions

had deep speciation (towards the root) and 20 replicate datasets. By holding the effective

population size (EPS) constant (200K) and varying the species tree height (in generations),

model conditions with different levels of incomplete lineage sorting (ILS) were generated.

For species tree heights of 10M and 500K generations, the average distance (AD) was 8–10%

and 68–69% respectively. Thus, we referred to these levels of ILS as “low/moderate” and

“very high,” respectively.
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DNA (gene) sequence data: DNA sequences were simulated for each true gene tree

using INDELible version 1.03 [197] under the GTR+GAMMA model. For each gene, the

parameters for the GTR+GAMMA model (~π, Q, and α) were drawn from distributions based

on estimates of these parameters from the Avian Phylogenomics Dataset [23]. Distributions

were fitted for exons and introns, separately (Supplementary Table S1), so for each dataset

(with 2000 genes), 1 000 gene sequences were simulated with parameters drawn from the

exon distributions, and 1 000 gene sequences were simulated with parameters drawn from

the intron distributions. Sequence lengths were also drawn from a distribution (varying from

300 to 1 500 bp). DNA sequences were simulated without insertions or deletions, so multiple

sequence alignment (MSA) estimation was not necessary.

Estimated gene trees: ML gene trees were estimated using FastTree-2 version 2.1.10

under the GTR+CAT model. GTEE was computed as the normalized symmetric difference

between true and estimated gene trees (Equation 2.4), averaged across all gene trees. Across

all model conditions datasets, the gene tree estimation error (GTEE), averaged across all

replicates, ranged from 26% to 51% for introns and 38% to 64% for exons and thus was

higher for exon datasets (Supplementary Table S2).

4.3.2 Species Tree Estimation

For each model condition (characterized by number of species and level of ILS), species

tree estimation methods were run either given the exon-like genes or the intron-like genes

as input. Species trees were estimated on 25, 100, or 1 000 genes for the 100-species species

and 1 000 genes for the 1 000-species datasets using three different methods: ASTRAL-III

(as implemented in version 5.6.1), SVDquartets (as implemented in PAUP* version 4a161),

and CA-ML under the GTR+GAMMA model (as implemented in RAxML version 8.2.12

with pthreads and SSE3).

4.3.3 Divide-and-conquer pipeline using NJMerge

Distance matrices: Distance matrices were created using two different approaches.

• DAGID denotes the AGID matrix computed from estimated gene trees using ASTRID

version 1.1.

• DLD denotes the log-det distance matrix computed from concatenated alignment using

PAUP* version 4a163.
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Subset decomposition: We decomposed the species set into subsets as indicated by

the blue dashed arrows in Figure 4.4. First, a starting tree was built by running NJ (as

implemented in FastME version 2.1.5) on the estimated dissimilarity matrix and then used

to define pairwise disjoint subsets of species. Essentially, the set of species was divided

into subsets by repeatedly deleting centroid edges (edges whose deletions divide the leaf set

roughly in half) until the resulting subsets are smaller than the predetermined maximum size;

see the centroid edge decomposition described in PASTA [233]. Datasets with 100 species

were decomposed into four to six subsets with a maximum subset size of 30 species, and

datasets with 1 000 species were decomposed into 10–15 subsets with a maximum subset size

of 120 species.

Constraint trees: Constraint trees were created using four different approaches.

• Ttrue denotes constraint trees computed by restricting the true species tree to each

subset of species.

• TAST denotes constraint trees estimated by running ASTRAL-III on each subset, i.e.,

on the estimated gene trees restricted to each subset of species.

• TSV D denotes constraint trees estimated by running SVDquartets on each subset, i.e.,

on the concatenated alignment restricted to each subset of species.

• TRAX denotes constraint trees estimated by running RAxML on each subset, i.e., on

the concatenated alignment restricted to each subset of species.

Notation: We often specify the inputs to NJ and NJMerge using the following notation:

NJ(D) and NJMerge(T , D). For example, NJMerge(TRAX , DLD) refers to NJMerge given

the RAxML constraint trees and the log-det distance matrix as input, whereas NJMerge(TRAX ,

D) refers to NJMerge given the RAxML constraint trees and either the AGID matrix or the

log-det distance matrix as input.

4.3.4 Computational Experiments and Running Time Evaluation

All computational experiments were run on the Blue Waters supercomputer, specifically

the XE6 dual-socket nodes with 64 GB of physical memory and two AMD Interlagos model

6276 CPU processors (i.e., one per socket each with 8 floating-point cores). All methods were

given access to 16 threads with 1 thread per bulldozer (floating-point) core. SVDquartets

and RAxML were explicitly run with 16 threads; however, ASTRAL-III and NJMerge were
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not implemented with multi-threading at the time of this study. All methods were restricted

to a maximum wall-clock time of 48 hours.

Running time was measured as the wall-clock time recorded in seconds. For ASTRAL,

SVDquartets, and RAxML, timing data was recorded for running the method on the full

dataset as well as for running the method on subsets of the dataset to produce constraint

trees for NJMerge. RAxML did not complete within the maximum wall-clock time of 48

hours on datasets with 1 000 species, so we used the last checkpoint file to evaluate species

tree estimation error and running time (i.e., running time was the time between the info file

being written and the last checkpoint file being written).

We computed the total running time of the NJMerge pipeline by combining the tim-

ing data for estimating the dissimilarity matrix, estimating the subset trees, and running

NJMerge; see Supplementary Tables S9 and S10 for the average time required for each of

these steps. If a user only had access to one compute node, subset trees would need to be

estimated in serial, so the running time of the NJMerge pipeline would be

time
(
ΦD(X)

)
+
∑
T∈T

time
(
ΦT (X|S(T ))

)
+ time

(
NJMerge(T , D)

)
(4.2)

using the notation defined in Algorithm 4.1. Note that Equation 4.2 does not include the

timing data for estimating the starting tree, as this took less than a minute even for datasets

with 1 000 species. Finally, if given access to multiple compute nodes (at least six nodes

for the 100-species datasets and at least 15 nodes for the 1 000-species datasets), the subset

trees could be estimated in an embarrassingly parallel fashion. In this case, the running time

of the NJMerge pipeline would be

time
(
ΦD(X)

)
+ max

T∈T
{time

(
ΦT (X|S(T ))

)
}+ time

(
NJMerge(T , D)

)
(4.3)

Results computed using Equation 4.3 are provided in [235].

It is worth noting that running ASTRAL-III and computing the AGID matrix require

gene trees to be estimated. Using the same experimental set-up (a single Blue Waters

compute node with 64 GB of memory and 16 floating-point cores), FastTree-2 took on average

18 ± 2 minutes to estimate 1 000 gene trees for datasets with 100 species and on average

217±20 minutes to estimate 1 000 gene trees for datasets with 1 000 species (Supplementary

Tables S4 and S5). The amount of time for gene tree estimation can vary greatly, depending

on the method used and the analysis performed. We did not include the time to estimate

gene trees in the reported running times.
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4.4 RESULTS

Pipelines using NJMerge can be viewed in two different ways: (i) as techniques for

potentially improving the accuracy of NJ (hopefully without a large increase in running time)

or (ii) as techniques for potentially improving the scalability of the method used to estimate

constraint trees (hopefully without sacrificing accuracy). For the former, we would expect

NJMerge to improve the accuracy of traditional NJ whenever distance-based species tree

estimation is less accurate than other methods (which can used to estimate constraint trees).

For the latter, we would expect NJMerge to improve the running time of methods (used to

estimate constraint trees) whenever these methods are more computationally intensive than

distance-based methods (which is often the case).

We compared the accuracy of the NJMerge pipeline to traditional NJ, and we also com-

pared the accuracy and running time of the NJMerge pipeline to running ΦT on the full

dataset, where ΦT is the method used to estimate the constraint trees for NJMerge. Results

for intron-like datasets are provided below, and results for exon-like datasets are provided in

the Supplementary Materials. Unless otherwise noted, results were similar for both sequence

types; however, species trees estimated on the exon datasets had slightly higher error rates

than those estimated on the intron datasets. This is expected, as the exons had slower rates

of evolution (and thus less phylogenetic signal) than the introns.

4.4.1 How do pipelines using NJMerge compare to NJ?

In this section, we report on the effectiveness of using NJMerge as compared to traditional

NJ in terms of species tree accuracy.

Impact of estimated dissimilarity matrix: In this section, we compare traditional NJ

to the NJMerge pipeline, both given distance matrices estimated from 100-species datasets

with varying numbers of genes (Figure 4.5 and Supplementary Figure S1). Because the

accuracy of NJMerge also depends on the amount of error in the input constraint trees,

we studied the ideal case, giving NJMerge true constraint trees (i.e., constraint trees that

agreed with the true species tree). We found that NJMerge(Ttrue, D) was more accurate

than NJ(D) for all model conditions and that the difference in error was especially large

when the number of genes was small and the level of ILS was very high; for example, the

difference in mean error was greater than 15% when matrices were estimated from 25 introns

but was closer to 5% when matrices were estimated from 1 000 introns. A similar trend was

observed for matrices computed using the log-det distance. Interestingly, both NJ(D) and
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NJMerge(Ttrue, D) were more accurate when given the AGID matrix rather than the log-det

distance matrix as input even when ILS was low/moderate. In summary, NJMerge(Ttrue, D)

was always more accurate than NJ(D), but the improvement in accuracy was greater under

challenging model conditions, suggesting that NJMerge(Ttrue, D) is more robust to error in

the estimated dissimilarity matrix than NJ(D).

Impact of estimated constraint trees: In this section, we compare traditional NJ to the

NJMerge pipeline given estimated constraint trees on datasets with 1 000species and 1 000

genes (Figure 4.6 and Supplementary Figure S2). When ILS was low/moderate, NJMerge

outperformed NJ regardless of the method used to estimate species trees. For intron-like

datasets with low/moderate ILS, the use of constraint trees reduced the median species

tree error from 11–14% (NJ) to less than 3–6% (NJMerge); however, when ILS was very

high, the performance of NJMerge varied greatly with the species tree estimation method.

Specifically, NJMerge(TSV D, D) and NJMerge(TRAX , D) were less accurate than NJ(D) by

0-4% on average, whereas NJMerge(TAST , D) was more accurate than NJ(D) by 0–1% on

average (Supplementary Tables S7 and S8). These trends were consistent with the relative

performance of methods on the 100-species datasets (Figure 4.7 and Supplementary Figure

S3). In summary, NJMerge was highly impacted by the quality of the constraint trees,

so that accurate constraint trees resulted in NJMerge being more accurate than NJ, but

inaccurate constraint trees resulted in NJMerge being less accurate than NJ.

4.4.2 How do pipelines using NJMerge compare to ASTRAL-III, SVDquartets, and
RAxML?

In this section, we compare the NJMerge pipeline to running ΦT on the full dataset,

where ΦT is the method used to estimate constraint trees for NJMerge. NJMerge was more

accurate when given the AGID matrix (Figure 4.5 and Supplementary Figure S1), so we

show results for NJMerge given the AGID matrix and provide results for NJMerge given the

log-det distance matrix in the Supplementary Materials.

ASTRAL-III vs. NJMerge: Both NJMerge(TAST , DAGID) and NJMerge(TAST , DLD)

provided substantial running time advantages over ASTRAL-III on datasets with 1 000

species, 1 000 genes, and very high ILS. On 40/40 datasets (20 replicates with exon-like

sequences and 20 replicates with intron-like sequences), NJMerge(TAST , DAGID) completed

in under 300 minutes (approximately 5 hours) on average; this included the time to estimate

the dissimilarity matrix, the time to estimate subset trees with ASTRAL-III in a serialized
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fashion, and the time to combine subset trees using NJMerge (Figure 4.8 and Supplementary

Figure S4). ASTRAL-III completed on 17/40 of these dataset but ran for more than 2000

minutes (approximately 33 hours) on average. ASTRAL-III failed to complete within 48

hours (maximum wall-clock time) on the other 23/40 datasets with very high ILS (Table

4.1); however, when the ILS was low/moderate, ASTRAL-III completed (in less than 9 hours

on average) on 40/40 datasets. This difference between low/moderate ILS and very high ILS

is interesting (see discussion in Section 4.5). In comparison, NJMerge(TAST , DAGID) failed

on 0 datasets, and NJMerge(TAST , DLD) failed on 2 datasets (Table 4.1).

ASTRAL-III and NJMerge(TAST , DAGID) achieved similar accuracy with mean species

tree error between 0–2% for both intron-like and exon-like datasets (Figure 4.8, Supple-

mentary Figure S4, and Supplementary Table S7). Trends were similar for NJMerge(TAST ,

DLD) except when ILS was very high; under these conditions, the mean species tree error

was 2–6% greater for NJMerge(TAST , DLD) than for ASTRAL-III (Supplementary Figures

S7–S8 and Supplementary Table S8).

NJMerge vs. SVDquartets: The SVDquartets pipeline (as implemented in PAUP*)

allows the user to specify whether to run SVDquartets on all (n choose four) possible quartets

or on a subset of these quartets. A prior study [180] showed that using all quartets provided

the best accuracy, so we ran PAUP* specifying that SVDquartets be run on all (n choose four)

possible quartets for datasets with 100 species. This was not possible for datasets with 1 000

species, because the maximum number of quartets allowed by PAUP* was 4.15833× 1010 at

the time of the study. We attempted to run PAUP* on a random subset of quartets (without

replacement), but running PAUP* in this fashion resulted in a segmentation fault for all

datasets. Thus, SVDquartets failed on 80/80 datasets with 1 000 species and 1 000 genes. In

contrast, NJMerge(TSV D, DAGID) failed on 0 datasets, and NJMerge(TSV D, DLD) failed on

3 datasets (Table 4.1). Thus, NJMerge enabled SVDquartets to complete on datasets with

1 000 species and 1 000 genes.

NJMerge also improved the running time of SVDquartets on datasets with 100 species;

for example, SVDquartets completed in 19–81 minutes on average, whereas NJMerge(TSV D,

DAGID) completed in less than 2 minutes on average for datasets with 100 species and 1 000

genes (Figure 4.9 and Supplementary Figure S5). This running time comparison does not

take into account the time needed to estimate gene trees, which required on average 18

minutes using FastTree-2 on datasets with 100 species and 1 000 genes.

NJMerge(TSV D, DAGID) typically produced species trees with less error than SVDquar-

tets. The difference between methods was typically small (mean species tree error between

0–2%) when ILS was low/moderate but could be larger than 10% when ILS was very high.
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Similar trends were observed for NJMerge(TSV D, DLD) (Supplementary Figures S9 and S10).

NJMerge vs. RAxML: Both NJMerge(TRAX , DAGID) and NJMerge(TRAX , DLD) en-

abled RAxML to run on datasets with 1 000 species and 1 000 genes. Specifically, RAxML

failed to run on 38/40 intron-like datasets and 3/40 exon-like datasets due to “Out of Mem-

ory” (OOM) errors (Table 4.1); this difference between intron-like and exon-like datasets

is noteworthy (see discussion in Section 4.5). Thus, while NJMerge can fail to return a

tree, NJMerge failed less frequently than RAxML when both methods were given the same

computational resources. NJMerge(TRAX , DAGID) failed on 1 dataset, and NJMerge(TRAX ,

DLD) failed on 2 datasets.

Furthermore, both NJMerge(TRAX , DAGID) and NJMerge(TRAX , DLD) provided sub-

stantial running time advantages over RAxML, often reducing its running time by more

than half, even though RAxML was run on the subset trees in a serialized fashion (Figure

4.10 and Supplementary Figure S6). For the exon-like datasets with 1 000 species and 1 000

genes, NJMerge(TRAX , DAGID) completed in less than 1 000 minutes (16.6 hours) on average

when ILS was low/moderate and in less than 500 minutes (8.3 hours) on average when ILS

was very high. In contrast, the final checkpoint was written by RAxML after more than

2250 minutes (∼37.5 hours) on average. Note that the running times for NJMerge do not

include the time to estimate gene trees; it took on average 217 minutes (less than 4 hours)

to estimate 1 000 gene trees on datasets with 1 000 species using FastTree-2.

The difference in accuracy between RAxML and NJMerge(TRAX , DAGID) depended on

the model condition, but was typically small. For datasets with low/moderate ILS, RAxML

produced species trees with less error (0–3% on average) than NJMerge(TRAX , DAGID);

however, for datasets with very high ILS, NJMerge(TRAX , DAGID) produced species trees

with less error (0–4% on average) than RAxML (Figure 4.10 and Supplementary Figure S3).

Similar trends were observed for NJMerge(TRAX , DLD) (Supplementary Figures S11–S12).

4.5 DISCUSSION

4.5.1 Utility of pipelines using NJMerge

Pipelines using NJMerge can be viewed either as techniques for improving traditional

NJ or as techniques for scaling a computationally-intensive base method (denoted ΦT ) to

larger datasets. Thus, in order to maximize the utility of NJMerge, users should select a

base method that is both more accurate and more computationally intensive than NJ. Our

results show that selecting base methods for NJMerge may not be trivial when analyzing
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multi-locus datasets, because both accuracy and running time were impacted by the level of

ILS. For example, ASTRAL-III was very fast when the level of ILS was low/moderate but was

substantially slower when the level of ILS was very high. Similarly, when the level of ILS was

low/moderate, SVDquartets and RAxML were both more accurate than NJ(DAGID), which

is equivalent to NJst; however, SVDquartets and RAxML were less accurate than NJ(DAGID)

when the level of ILS was very high. This trend is consistent with results and discussion

from Chapter 3. Overall, our results suggest that constraint trees should be estimated using

RAxML when the level of ILS is low/moderate and using ASTRAL-III when the level of ILS

is very high. Hence, determining the level of ILS in a multi-locus dataset is an important

area of future research; a similar conclusion was also drawn in Section 3.5 but regarding the

utility of gene filtering. Lastly, NJMerge, when given constraint trees that agreed with the

true species tree, was very accurate (less than 2% error on average) even when the level of

ILS was very high, suggesting that NJMerge is a promising technique for scaling Bayesian

co-estimation methods (e.g., Starbeast2 [43]) and future species tree estimation methods

(which are more accurate and more computationally intensive than current methods) to

larger datasets.

An important issue is that NJMerge can fail to return a tree. In our experiments,

NJMerge failed on 11/2560 test cases from running NJMerge on 320 datasets with two

different types of distance matrices and four different types of constraint trees (Table 4.1).

Therefore, NJMerge failed on fewer datasets than ASTRAL-III, SVDquartets, or RAxML

when all methods were given the same computational resources: a single compute node

with 64 GB of memory, 16 cores, and a maximum wall-clock time of 48 hours. It is worth

noting that NJMerge was run within the divide-and-conquer pipeline shown in Figure 4.4, so

subsets of species were created by decomposing the NJ tree (blue dashed lines); our results

on the failure rate of NJMerge likely do not generalize to arbitrary inputs.

Impact of dissimilarity matrix on NJ: Our results showed that on average NJ(DAGID)

was as accurate or more accurate than NJ(DLD). There was a clear difference between these

two methods on datasets with 100 species, 1 000 intron-like genes, and low/moderate ILS;

specifically NJ(DAGID) produced trees with less than 5% error on average, whereas NJ(DLD)

produced trees with greater than 12% error on average). However, on the exact same model

condition but with 1 000 species, NJ(DAGID) and NJ(DLD) produced trees with similar levels

of accuracy (mean species tree error was 11%). Interestingly, for low/moderate ILS datasets

only, the median branch length varied with the number of species, so that overall, the 1 000-

species datasets had shorter internal branches than the 100-species datasets (Supplementary

Table S3). Branch length and other factors that limit the accuracy of NJ(DLD) in the context
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of gene tree estimation may also apply in the context of species tree estimation. Even so,

NJ(DLD) was more accurate than either SVDquartets or RAxML when the level of ILS

was very high, providing support for Allman et al.’s statement, “The simplicity and speed

of distance-based inference suggests log-det based methods should serve as benchmarks for

judging more elaborate and computationally-intensive species trees inference methods” [41].

Impact of ILS and sequence type on ASTRAL-III: Our results showed that ASTRAL-

III was much faster on the low/moderate ILS datasets than on the very high ILS datasets.

This finding makes sense in light of ASTRAL-III’s algorithm design. ASTRAL-III operates

by searching for an optimal solution to its search problem within a constrained search space

that is defined by the set Σ of bipartitions in the estimated gene trees, and in particular,

ASTRAL-III’s running time scales with |Σ|1.726 [158]. The set of gene trees will become

more heterogeneous for higher levels of ILS, and thus, the size of Σ will increase, as every

gene tree could be different when the level of ILS is very high. In addition, GTEE can also

increase the size of Σ, explaining why ASTRAL-III failed to complete on exon datasets more

often than on intron datasets (Table 4.1 Supplementary Table S2).

Impact of sequence type on RAxML: Our results showed that RAxML failed on more

intron-like datasets than exon-like datasets. This finding makes sense in light of RAxML’s

implementation. RAxML uses redundancy in site patterns to store the input MSA com-

pactly, so memory scales with the number of unique site patterns. Introns are less conserved

that exons and thus have more unique site patterns, explaining why RAxML required more

memory to analyze intron-like datasets.

4.5.2 Statistical consistency of pipelines using NJMerge

The probability that NJMerge fails goes to zero as the number of true gene trees generated

under the MSC model goes to infinity. This is a consequence of Corollary 4.2, which relies

on the choice of heuristics for determining whether or not to accept a siblinghood proposal.

Indeed, it is easy to think of other heuristics that prevent NJMerge from failing but do not

have the guarantee of correctness (Theorem 4.2) and therefore do not have the guarantee of

statistical consistency (Corollary 4.2). Finally, our proof of statistical consistency under the

MSC model requires that the number of true gene trees goes to infinity, which is equivalent to

requiring that both the number of gene trees and the number of sites per gene go to infinity.

Roch et al. [125] recently showed that many (if not all) gene tree summary methods can be

statistically inconsistent under the MSC model when the number of sites per gene is
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bounded; these theoretical results apply to divide-and-conquer pipelines using NJMerge.

4.6 CONCLUSIONS

In this chapter, we introduced a divide-and-conquer approach to phylogeny estimation

that divides a set of species into pairwise disjoint subsets, builds a tree on each subset of

species using a base method, and then merges the subset trees together using a dissimilarity

matrix. For the merger step, we presented a new method, called NJMerge and proved

that some divide-and-conquer pipelines using NJMerge are statistically consistent under

the GTR model and the MSC model. We then evaluated pipelines using NJMerge in the

context of species tree estimation, specifically using simulated multi-locus datasets with

two levels of ILS and up to 1 000 species and 1 000 genes. We found that pipelines using

NJMerge provided several benefits to large-scale species tree estimation; specifically, under

some model conditions, pipelines using NJMerge improved the accuracy of traditional NJ

and substantially reduced the running time of three popular species tree methods (ASTRAL-

III, SVDquartets, and concatenation analysis using RAxML) without sacrificing accuracy

(see Section 4.5 for details as the results depended on the level of ILS).

These theoretical and empirical results suggest that NJMerge is a promising approach;

however, there are still open challenges. First, NJMerge can fail to return a tree. While

this did not occur very often in our simulation study (NJMerge failed on only 11 out of

2 560 test cases), the potential for failure is still an undesirable attribute for a method.

Second, NJMerge may be more scalable than other methods, but its worst-case running

time is quite terrible O(n4 log2 n) and its quadratic storage requirement is untenable for

very large numbers of species. Lastly, although NJMerge could be naively implemented for

a distributed-memory system, its performance would suffer from the global communication

(all-to-one and one-to-all) required to coordinate each of the n siblinghood joins. We address

these challenges in Chapter 5 and discuss further opportunities for future research.
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4.7 PLOTS

This section contains the six plots presented in Section 4.4 Results.
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Figure 4.5: Impact of estimated dissimilarity matrix on NJMerge. NJ and NJMerge
were benchmarked on distance matrices estimated using two different metrics; in addition,
NJMerge was given constraint trees that agreed with the true species tree (see Section 4.3
for notation). Datasets had 100 species, 25 to 1 000 intron-like genes, and two levels of ILS.
Species tree error is the RF error rate. Lines represent the average over replicate datasets,
and filled regions indicate the standard error.
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Figure 4.6: Impact of estimated constraint trees on NJMerge. NJ and NJMerge
were benchmarked on distance matrices estimated using two different metrics; in addition,
NJMerge was given constraint trees estimated using four different techniques (see Section 4.3
for notation). Datasets had 1 000 species, 1 000 intron-like genes, and two levels of ILS.
Species tree error is the RF error rate. Gray bars represent medians, gray squares represent
means, gray circles represent outliers, box plots are defined by quartiles (extending from the
first to the third quartiles), and whiskers extend to plus/minus 1.5 times the interquartile
distance (unless greater/less than the maximum/minimum value).

76



25 introns 100 introns 1000 introns
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

S
pe

ci
es

Tr
ee

E
rr

or

Low/moderate ILS (100 taxa)

NJ(DAGID)
NJ(DLD)

ASTRAL-III
SVDquartets

RAxML

25 introns 100 introns 1000 introns
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

S
pe

ci
es

Tr
ee

E
rr

or

Very high ILS (100 taxa)

Figure 4.7: Comparison of species tree methods. NJ was benchmarked on distance
matrices estimated using two different metrics (see Section 4.3 for notation). Datasets had
100 species, 25 to 1 000 intron-like genes, and two levels of ILS. Species tree estimation error
is the RF error rate. Gray bars represent medians, gray squares represent means, gray circles
represent outliers, box plots are defined by quartiles (extending from the first to the third
quartiles), and whiskers extend to plus/minus 1.5 times the interquartile distance (unless
greater/less than the maximum/minimum value).
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Figure 4.8: ASTRAL-III vs. NJMerge given ASTRAL-III constraint trees and
AGID matrix. Subplots in the top row show species tree error (RF error rate). Gray bars
represent medians, gray squares represent means, gray circles represent outliers, box plots are
defined by quartiles (extending from the first to the third quartiles), and whiskers extend to
plus/minus 1.5 times the interquartile distance (unless greater/less than the maximum/min-
imum value). Subplots in the bottom row show running time (in minutes); bars represent
means and error bars represent standard deviations across replicate datasets. NJMerge run-
ning times are for computing the subset trees in a serialized fashion (Equation 4.2). The
numbers of replicates on which the methods completed is shown on the x-axis; for exam-
ple, N = X, Y indicates that ASTRAL-III completed on X out of 20 replicates and that
NJMerge(TAST , DAGID) completed on Y out of 20 replicates. ASTRAL-III did not complete
within the maximum wall-clock time of 48 hours on 4/40 intron-like datasets with 1 000
species (taxa) and very high ILS.
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Figure 4.9: SVDquartets vs. NJMerge given SVDquartet constraint trees and
AGID matrix. Subplots in the top row show species tree error (RF error rate). Gray bars
represent medians, gray squares represent means, gray circles represent outliers, box plots are
defined by quartiles (extending from the first to the third quartiles), and whiskers extend to
plus/minus 1.5 times the interquartile distance (unless greater/less than the maximum/min-
imum value). Subplots in the bottom row show running time (in minutes); bars represent
means and error bars represent standard deviations across replicate datasets. NJMerge run-
ning times are for computing the subset trees in a serialized fashion (Equation 4.2). The
numbers of replicates on which the methods completed is shown on the x-axis; for exam-
ple, N = X, Y indicates that SVDquartets completed on X out of 20 replicates and that
NJMerge(TSV D, DAGID) completed on Y out of 20 replicates. SVDquartets did not run any
datasets with 1 000 species (taxa) due to segmentation faults.
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Figure 4.10: RAxML vs. NJMerge given RAxML constraint trees and and AGID
matrix. Subplots in the top row show species tree error (RF error rate). Gray bars rep-
resent medians, gray squares represent means, gray circles represent outliers, box plots are
defined by quartiles (extending from the first to the third quartiles), and whiskers extend to
plus/minus 1.5 times the interquartile distance (unless greater/less than the maximum/min-
imum value). Subplots in the bottom row show running time (in minutes); bars represent
means and error bars represent standard deviations across replicate datasets. NJMerge
running times are for computing the subset trees in a serialized fashion (Equation 4.2).
The numbers of replicates on which the methods completed is shown on the x-axis; for
example, N = X, Y indicates that RAxML completed on X out of 20 replicates and that
NJMerge(TRAX , DAGID) completed on Y out of 20 replicates. RAxML was only able to run
on 1/40 intron-like datasets with 1 000 species (taxa) due to “Out of Memory” errors.
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4.8 TABLE

This section contains the table presented in Section 4.4 Results.

Table 4.1: Failures. The number of datasets on which methods failed is indicated by
model condition. ASTRAL-III failed due to running beyond the maximum wall clock time
of 48 hours, SVDquartets failed due to segmentation faults, RAxML failed due to running
out of memory, and NJMerge failed due to being unable to find a legal siblinghood. Note
that NJMerge is described by the input set T of constraint trees and input dissimilarity
matrix D (see Section 4.3 for notation).

# of # of ILS Sequence Method # of Failures
Species Genes Level Type (out of 20)

100 25 very high exon NJMerge(Ttrue, DLD) 1
100 25 very high exon NJMerge(TRAX , DAGID) 1
100 25 very high intron NJMerge(Ttrue,DAGID) 1

1 000 1 000 low/moderate exon SVDquartets 20
1 000 1 000 low/moderate exon RAxML 3
1 000 1 000 low/moderate intron NJMerge(TAST , DLD) 1
1 000 1 000 low/moderate intron SVDquartets 20
1 000 1 000 low/moderate intron RAxML 20
1 000 1 000 very high exon ASTRAL-III 19
1 000 1 000 very high exon NJMerge(Ttrue, DLD) 1
1 000 1 000 very high exon NJMerge(TAST , DLD) 1
1 000 1 000 very high exon NJMerge(TSV D, DLD) 2
1 000 1 000 very high exon NJMerge(TRAX , DLD) 2
1 000 1 000 very high exon SVDquartets 20
1 000 1 000 very high intron ASTRAL-III 4
1 000 1 000 very high intron NJMerge(TSV D, DLD) 1
1 000 1 000 very high intron SVDquartets 20
1 000 1 000 very high intron RAxML 19
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4.9 ALGORITHMS

This section contains the three algorithms presented in Section 4.2 Approach.

Algorithm 4.2: NJMerge.

Input : Set T = {Ti}ki=1 of unrooted phylogenetic trees such that S(Ti) ∩ S(Tj) = ∅ ∀ i 6= j and

an n× n dissimilarity matrix D on label set S =
⋃k

i=1 S(Ti)

Output: A (possibly refined) compatibility supertree for T that is fully resolved

Function NJMerge(T , D):

I ← {1, 2, . . . , n}; S ← list version of S

Relabel Ti ∈ T , so a leaf labeled s is now labeled i if row i in D is labeled s

for i ∈ I do r[i]←∑
j∈I D[i, j]

while |I| > 3 do

Step 1: Build Q, so that Q[i, j]← (|I| − 2)D[i, j]− r[i]− r[j] ∀ i, j ∈ I, and

simultaneously sort Q from smallest to largest, producing the vector sorted.

Step 2: Select next sibling pair (x, y) to join.

for i ∈ {1, 2, . . . , (|I|2 − |I|)/2} do
(x, y)← sorted[i]

pass← RunCompatiblityHeuristicAndUpdateConstraints(T , x, y)
if pass then break

if not pass then return fail

Step 3a: Update D.
~dx← [0]n; dxy ← D[x, y]

for i ∈ I \ {x, y} do
dx[i]← D[x, i]

D[x, i]← 1
2

(
dx[i] +D[y, i]− dxy

)
; D[i, x]← D[x, i]

Step 3b: Update ~r.

for i ∈ I \ {x, y} do
r[i]← r[i]− dx[i]−D[y, i] +D[x, i]

r[x]←∑
i∈I\{x,y}D[x, i]

Step 3c: Update indices and labels.

I ← I \ {y}
S[x]← ‘(’ + S[x] + ‘,’+ S[y] + ‘)’

T ← [NULL]3; j ← 1

for i ∈ I do

T [j]← L[i]; j ← j + 1

return ‘(’ + T[1] + ‘,’+ T[2] + ‘,’ + T[3] + ‘);’
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Algorithm 4.3: RunCompatiblityHeuristicAndUpdateConstraints. We as-

sume that the representation of each constraint tree T uses O(n) space and includes

an n-vector L(T ) of leaf nodes, so that the element at position i is either the leaf

with label i or NULL if there is no leaf with label i. This allows leaf nodes to be

accessed by their labels in constant time.

Input : Set T = {T1, T2, . . . , Tk} of unrooted phylogenetic trees and labels x, y ∈ S =
⋃k

i=1 S(Ti)

Output: true if the test passes, and false otherwise

Function RunCompatiblityHeuristicAndUpdateConstraints(T , x, y):
for i ∈ {1, 2, . . . , k} do

L← L(Ti)

if L[x] 6= NULL and L[y] 6= NULL then

if not IsSiblingPair(Ti, x, y) then return fail

P = ∅; update← [0]k
for i ∈ {1, 2, . . . , k} do

update[i]← UpdateTree(Ti, x, y)

if update[i] 6= 0 then

P ← P ∪ Ti
if IsCompatibleHeuristic(P) then return true

for i ∈ {1, 2, . . . , k} do ReverseUpdateTree(Ti, x, y, update[i])

return fail

Function UpdateTree(T , x, y):

L← L(T )

if L[x] 6= NULL and L[y] 6= NULL then

update← 1; PruneLeaf(T , y)

else if L[y] 6= NULL then
update← 2; RelabelLeaf(T , y, x);

else if L[x] 6= NULL then

update← 3

return update

Function ReverseUpdateTree(T , x, y, update):

if update = 1 then

AddSibling(T , x, y)

else if update = 2 then

RelabelLeaf(T , x, y)
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Algorithm 4.4: IsCompatibleHeuristic. We assume that the representation of

each constraint tree T uses O(n) space and includes an n-vector L(T ) of leaf nodes,

so that the element at position i is either the leaf with label i or NULL if there is

no leaf with label i. This allows leaf nodes to be accessed by their labels in constant

time. Note that this is a naive implementation.

Input : Set P = {T1, T2, . . . , Tp} of unrooted phylogenetic trees

Output: true if the test passes, and false otherwise

Function IsCompatibleHeuristic(P):
for i ∈ {1, 2, . . . , p− 1} do

for j ∈ {i+ 1, . . . , p} do
Li ← L(Ti); Lj ← L(Tj)

R← ∅
for s ∈ S(Ti) ∩ S(Tj) do

if Li[s] 6= NULL and Lj [s] 6= NULL then

R← R ∪ {s}
P ′i ← CopyTree(Pi); RestrictTree(P ′i , R)

P ′j ← CopyTree(Pj); RestrictTree(P ′j, R)

rf ← ComputeRF(P ′i , P
′
j)

DeleteTree(P ′i); DeleteTree(P ′j)

if rf > 0 then

return false
return true

Function RestrictTree(T , R):

for l ∈ S(T ) \R do

PruneLeaf(T , l)
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CHAPTER 5: DIVIDE-AND-CONQUER PIPELINES WITH TREEMERGE

This chapter contains material previously published in “TreeMerge: a new method for

improving the scalability of species tree estimation methods” [236], which was joint work with

T. Warnow. Software commands necessary to reproduce this study are freely available on

the Illinois Data Bank: doi.org/10.13012/B2IDB-9570561 V1. TreeMerge is freely available

on Github: github.com/ekmolloy/treemerge. Note that plots and tables appear at the end of

this chapter in Sections 5.7 and 5.8, respectively.

5.1 INTRODUCTION

In Chapter 4, we proposed an alternative approach to divide-and-conquer that operates

by (i) dividing the species set into pairwise disjoint subsets of a predetermined maximum

size, (ii) estimating a tree on each subset, (iii) computing any auxiliary data required for

merging subset trees, and then (iv) using the auxiliary data to merge the subset trees together

into a compatibility supertree (Definition 2.7). For the final step, we presented NJMerge,

a disjoint tree merger (DTM) method that uses a dissimilarity matrix to build a (possibly

refined) compatibility supertree for the subset trees. Despite its promising theoretical and

empirical results, NJMerge has two major issues that limit its utility in practice. First,

NJMerge can fail to return a tree, and second, the worst-case running time of NJMerge is

O(n4k), where the input has n species (leaf labels) divided across k leaf-label-disjoint trees.

In this chapter, we address the limitations of NJMerge by presenting new methods, all

of which are guaranteed to return a compatibility supertree when given (fully resolved)

leaf-label-disjoint trees as input. The first method, NJMerge-2, is a minor modification to

NJMerge; it has the same theoretical properties as NJMerge except that it does not fail. The

second method, TreeMerge, seeks to address the scalability issue by merging subset trees in

two phases: a local merge phase and a global merge phase. In the local merge phase, a highly

accurate but computationally intensive method is used to merge leaf-label-disjoint trees in

an embarrassingly parallel fashion. In the global merge phase, the trees computed during

the local merge phase are then combined via a reduction. Within the divide-and-conquer

framework, TreeMerge runs in O(n log n) time or in O(n2) time if the reduction is serialized.

This running time analysis assumes that the mergers during the global phase are performed

using a linear-time technique.

As we will show, the linear-time merge operation constrains the space of allowed solu-

tions, which in turn places some additional (but achievable) requirements for divide-and-
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conquer pipelines using TreeMerge to be statistically consistent (as compared to those using

NJMerge or NJMerge-2). Nevertheless, the results of our simulation study show that species

trees estimated using TreeMerge can be quite accurate, comparing favorably to those esti-

mated by other DTM-based divide-and-conquer pipelines or traditional species tree estima-

tion methods (ASTRAL-III and CA-ML using RAxML). Like NJMerge, TreeMerge enables

the dominant species tree estimation methods to scale to larger datasets without sacrificing

accuracy. Unlike NJMerge, TreeMerge is guaranteed to return a compatibility supertree,

is much faster (in terms of its worst-case running time), and is more easily parallelizable,

making it a notable advance for large-scale phylogeny estimation.

5.2 APPROACH

We now present the NJMerge-2 and TreeMerge algorithms focusing on worst-case running

time, correctness, and statistical consistency within divide-and-conquer pipelines.

5.2.1 NJMerge-2

NJMerge-2 is a simple extension to NJMerge so that it is guaranteed to return a com-

patibility supertree for the input constraint (subset) trees. Recall that NJMerge modifies

NJ by imposing a set of topological constraints on the output tree. For each siblinghood

proposal, NJMerge updates the constraint trees based on the proposed siblinghood and then

tests the compatibility of the updated constraint trees; if the test passes, NJMerge accepts

the siblinghood proposal. Because determining the compatibility of a set of k unrooted trees

on overlapping leaf label sets is NP-complete [71], NJMerge uses a heuristic that can fail for

k > 2 trees. Therefore, by running NJMerge on two constraint trees at a time, it will never

fail; this observation is the basis of NJMerge-2 (Algorithm 5.1).

Theorem 5.1. Let T = {T1, T2, . . . , Tk} be a set of unrooted phylogenetic trees such that

S(Ti) ∩ S(Tj) = ∅ for all i 6= j, and let D be an n × n dissimilarity matrix on label

set S = ∪ki=1S(Ti). Then, NJMerge-2 applied to input (T , D) returns a (possibly refined)

compatibility supertree for T in O(n4k) time; the parallel version of NJMerge-2 runs in O(n4)

time. Furthermore, if D is a nearly additive matrix for a fully resolved tree T ∗ on label set S

(Definition 2.11) and if T ∗ is compatible with Ti for all i ∈ {1, . . . , k} (Definition 2.1), then

NJMerge-2 returns T ∗.

Proof. Returns a compatibility supertree: It is easy to see that the constraint trees remain

leaf-label-disjoint and thus compatible at each iteration, and because the heuristics used
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by NJMerge correctly determine compatibility for two trees, NJMerge applied to the input(
{t, t′}, D|S(t)∪S(t′)

)
is guaranteed to return a (possibly refined) compatibility supertree (The-

orem 4.1). By induction on the number of constraint trees, NJMerge-2 returns a (possibly

refined) compatibility supertree for T .

Correctness: If, in addition, the trees in T are compatible with T ∗ and the dissimilarity

matrix D is nearly additive for T ∗, then for any pair of trees t, t′ ∈ T , NJMerge applied

to the input
(
{t, t′}, D|S(t)∪S(t′)

)
returns T ∗|S(t)∪S(t′) (Theorem 4.2). Therefore, the set T

remains compatible with T ∗ during the iterative process. By induction on the number of

constraint trees, NJMerge-2 returns T ∗.

Running time: For the running time analysis, we make the simplifying assumption that

each of the k trees in T has exactly n/k leaves. At iteration w, for any two trees t, t′ ∈ T ,

|S(t) ∪ S(t′)| ≤ (w + 1)n/k, so the worst-case running time of NJMerge given any pair of

trees is O(w4n4/k4) (Theorem 4.1). A total of k − 1 iterations are required, so the running

time of NJMerge-2 scales with (n4/k4)
∑k

w=2w
4. Because

∑k
w=2w

4 is O(k5), the worst-case

running time of NJMerge-2 is O(n4k). Although Algorithm 5.1 runs NJMerge-2 on pairs

of trees in serial, we could consider a parallel version of NJMerge-2. Assuming that k is a

power of two for simplicity, at iteration w, we run NJMerge on each of the k/(2w) pairs of

trees in parallel, where for any pair of trees t, t′ ∈ T , |S(t) ∪ S(t′)| = 2wn/k. A total of

p = log2 (k)− 1 iterations are required, so the parallel running time of NJMerge scales with

(n4/k4)
∑p

w=2 24w and thus is O(n4). This is expected as the running time of NJMerge-2 is

dominated by the time to run NJMerge in the final iteration. QED.

Algorithm 5.1: NJMerge-2.

Input : Set T = {Ti}ki=1 of unrooted phylogenetic tree such that S(Ti) ∩ S(Tj) = ∅ for all i 6= j

and an n× n dissimilarity matrix D on label set Sk
i=1

⋃
Si

Output: A (possibly refined) compatibility supertree for T that is fully resolved

Function NJMergeTwoSerial(T , D, S):

while |T | > 1 do

t, t′ ← An arbitrary pair of trees in T
R← [S(t) ∪ S(t′)]

D|R ← CopyMatrixRestricted(D, R)

T ← NJMerge({t, t′}, D|R, R)
DeleteMatrix(D|R)
T ←

(
T \ {t, t′}

)
∪ {T}

return T
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We do not specify an order for merging pairs of constraint trees in Algorithm 5.1. While

the order does not impact the theoretical guarantees of NJMerge-2, it likely impacts per-

formance (accuracy) in practice. Consider a collection of constraint trees that are edge

separable for a caterpillar tree T with a very large evolutionary diameter (the longest evolu-

tionary distance between any pair of leaves in a phylogenetic tree). If, in the first iteration,

we merge two constraint trees on opposite sides of the caterpillar tree, the output tree may

contain incorrect bipartitions due to long branch attraction; these incorrect bipartitions

will be propagated through subsequent iterations. Hence, it may be beneficial to perform

mergers in an order that respects locality by selecting pairs of trees t, t′ ∈ T based on the

evolutionary distance between set S(t) and set S(t′) in D. Exploiting locality can also be

useful for improving computationally efficiency, as we will show.

5.2.2 TreeMerge

We now introduce TreeMerge, the first DTM method that combines an embarrassingly

parallel local merge phase with a global merge phase. As shown in Algorithm 5.2, these

two phases are enabled through the use of a merge guide tree given as part of the input.

The generic TreeMerge algorithm also requires auxiliary data in order to build compatibility

supertrees during both the local and the global merge phases. The exact details of the

algorithm can be implemented in a variety of ways; we present two examples: TreeMerge-

fast (which was previously mentioned) and TreeMerge-slow.

• TreeMerge Input:

– Set T = {T1, T2, . . . , Tk} of unrooted, fully resolved phylogenetic trees such that

S(Ti) ∩ S(Tj) = ∅ for all i 6= j

– Set A of auxiliary data, including

∗ Merge guide tree G with nodes bijectively labeled by elements of the set

{1, 2, . . . , k} such that node i corresponds to tree Ti ∈ T
∗ Data that can be used to merge trees, for example

· TreeMerge-fast: Set D = {Di,j : (i, j) ∈ E(G)} of dissimilarity matrices

· TreeMerge-slow: Dissimilarity matrix D on label set S =
⋃k
i=1 S(Ti)

• TreeMerge Output: Compatibility supertree for T

We now describe the local and global phases for TreeMerge-slow and TreeMerge-fast.
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Algorithm 5.2: Generic TreeMerge Algorithm.

Input : Set T = {T1, T2, . . . , Tk} of unrooted, fully resolved phylogenetic trees with constraint

tree Ti on label set Si such that Si ∩ Sj = ∅ for all i 6= j, a set A of auxiliary data, which

includes a tree G, called the merge guide tree, with nodes bijectively labeled by elements

of the set {1, 2, . . . , k} so that node i corresponds to tree Ti ∈ T .

Output: Compatibilitysupertree for T

Function GenericTreeMerge(T , A):

Local merge phase: For each edge (i, j) ∈ E(G), build a compatibility supertree Ti,j for

{Ti, Tj} using some auxiliary data in A

Global merge phase:

(x, y)← An arbitrary edge in E(G)

T ← Tx,y
G ← G rooted at edge (x, y)

for (i, j) ∈ PreOrderEdgeTraversal(G) do
T ← Compatibility supertree for {T, Ti,j} built using their backbone tree T |S(T )∩S(Ti,j)

and possibly some auxiliary data in A

return T

Local merge phase: During the local merge phase, mergers are performed on pairs of

trees that are local, meaning that they are connected by edges in the merge guide tree G.

For every edge (i, j) ∈ E(G), both TreeMerge-slow and TreeMerge-fast build a compatibility

supertree Ti,j by running NJMerge on the input ({Ti, Tj}, Di,j). Afterward, TreeMerge-fast

uses Di,j to fit branch lengths to Ti,j via the least squares approach proposed by Bryant

and Waddell [237]. Note that TreeMerge-fast takes Di,j as input, whereas TreeMerge-slow

creates Di,j by restricting D to label set S(Ti) ∪ S(Tj).

Global merge phase: During the global merge phase, mergers are performed following a

pre-order edge traversal of the merge guide tree G, combining the trees computed during the

local merge phase into a single tree on label set S (note that this can also be implemented

as a reduction; see Figure 5.1 for an example). The merge technique is related to the Strict

Consensus Merger [221, 226].

We describe this merge technique in the context of merging two trees Ti,j and Tj,k that

are compatibility supertrees for {Ti, Tj} ⊂ T and {Tj, Tk} ⊂ T , respectively. The input trees

in T are fully resolved, so Ti,j and Tj,k induce a common tree topology Tj when restricted

to their shared label set; we refer to Tj as the backbone tree. Each edge e in E(Tj) maps to

a path pi,j(e) in Ti,j and a path pj,k(e) in Tj,k. When pi,j(e) or pj,k(e) have length greater
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than one, the internal nodes on those paths define subtrees that need to be inserted onto

edge e in the backbone tree Tj. Let Vi,j(e) denote the set of subtrees in Ti,j that need to be

attached to edge e, and similarly, let Vj,k(e) denote the set of subtrees in Tj,k that need to be

attached to edge e. It is easy to see that adding subtrees in the set Vi,j(e) ∪ Vj,k(e) to edge

e in an arbitrary order and then repeating this process for all edges in E(Tj), produces a

(possibly refined) compatibility supertree for {Ti,j, Tj,k} and thus for {Ti, Tj, Tk}. If Ti,j and

Tj,k never contribute subtrees to the same edge, Ti,j,k is the unique compatibility supertree

for {Ti, Tj, Tk}; otherwise, Ti,j,k is a refined compatibility supertree.

When Ti,j and Tj,k both contribute subtrees to the same edge (referred to as a collision),

there are multiple ways to merge the two trees while maintaining compatibility (Figure

5.2). Picking the best resolution cannot be done using tree topologies of Ti,j and Tj,k alone.

TreeMerge-fast and TreeMerge-slow differ with respect to how they resolve collisions.

TreeMerge-fast: TreeMerge-fast resolves edge collisions by using the branch lengths fitted

to Ti,j and Tj,k during the local merge phase. Suppose that Ti,j and Tj,k each contribute one

or more subtrees to an edge e in their shared backbone tree Tj. Then, edge e has two different

lengths: the length given by path pi,j(e) in Ti,j and the length given by path pj,k(e) in Tj,k.

TreeMerge-fast rescales these paths so that they have same length, producing an order for

subtrees in Vi,j(e) ∪ Vj,k(e) to be added to edge e. This approach does not allow subtrees

contributed by Ti,j and Tj,k to blend together (Figure 5.2), limiting the potential solutions

that can be returned by TreeMerge-fast. It is not possible for TreeMerge-fast to recover the

correct tree for some subset decomposition and merge guide tree pairs (Figure 5.3).

TreeMerge-slow: TreeMerge-slow resolves edge collisions between two trees Ti,j and Tj,k

using the shared backbone tree Tj as follows. Let e = (X ′, Y ′) ∈ E(Tj) be an edge involved

in a collision, and select two labels X, Y ∈ S(Tj) corresponding to leaves on opposite sides

of e. We define a constraint tree t by restricting Ti,j to leaf label set {X, Y } ∪ {S(v) :

v ∈ Vi,j(e)}, and we define another constraint tree t′ by restricting Tj,k to leaf label set

{X, Y } ∪ {S(v) : v ∈ Vj,k(e)}. Because t and t′ have only leaves X and Y in common, they

are compatible; therefore, a compatibility supertree for {t, t′} can be computed in polynomial

time by running NJMerge on the input
(
{t, t′}, DS(t)∪S(t′)) (Theorem 4.1). The compatibility

supertree for {t, t′} can be inserted into Tj by attaching leaf X at node X ′ and leaf Y at

node Y ′. This technique allows t and t′ to blend (Figure 5.2).
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Figure 5.2: TreeMerge-slow vs. TreeMerge-fast. TreeMerge-slow and TreeMerge-
fast differ with respect to how they resolve edge collisions. Consider the case where two
compatible trees Ti,j and Tj,k are involved in a collision on edge e = (X ′, Y ′) in the backbone
tree Tj, using the notation from Section 5.2.2. Select two leaves X and Y on opposite sides
of the edge e in Tj. We define a constraint tree t (upper left corner) by restricting Ti,j to leaf
label set {x, y}∪{S(v) : v ∈ Vi,j(e)}, so the subtrees in Vi,j(e) are given by the Newick strings:
(A,B) and (C). We define another constraint tree t′ (upper right corner) by restricting Tj,k
to leaf label set {x, y} ∪ {S(v) : v ∈ Vj,k(e)}, so the one subtree in Vi,k(e) is given by the
Newick string: (D, (E,F )). The goal is to produce a compatibility supertree t∗ for {t, t′}
and then insert t into the backbone tree Tj by attaching leaf X at internal node X ′ and
attaching leaf Y at internal node Y ′. TreeMerge-fast builds t∗ by rescaling branch lengths (if
necessary) so that the paths from X to Y in t and t′ have the same length (as shown here);
t is then defined by superimposing these paths. When resolving collisions, TreeMerge-fast
does not allow blending, because the subtrees in the set Vi,j(e) ∪ Vj,k(e) ∪ {X, Y } must be
edge separable for t∗. In contrast, TreeMerge-slow builds t∗ by running NJMerge on the
input

(
{t, t′}, D|S(t)∪S(t′)

)
; this enables blending.
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Figure 5.3: Impact of collisions on the correctness of TreeMerge-fast. For each
subfigure, the true tree T is shown. Colors indicate how the leaves of T have been decomposed
into subsets: subset i, j, and k are shown in red, black, and blue, respectively. Suppose that
subset trees Ti, Tj, or Tk are correct and thus can be created by restricting T to the red, black,
or blue leaves, respectively. The merge guide tree G indicates how the TreeMerge algorithm
proceeds. For example, in subfigure (a), G indicates that {Ti, Tj} and {Tj, Tk} are merged
during the local phase. Again, suppose that the resulting trees are correct; therefore, Ti,j can
be created by restricting T to the red and black leaves, and Tj,k can be created by restricting
T to the black and blue leaves. During the global phase, TreeMerge-fast merges Ti,j and Tj,k
via the backbone tree Tj. Subfigure (a) shows no collisions, so TreeMerge-fast returns the
correct tree. Subfigure (b) shows a collision on the edge with bipartition A,B,C|D in Tj, so
TreeMerge-fast returns the incorrect tree; for example, TreeMerge-fast could return the tree
given by Newick string: ((A,B), C), (((((G,H), F ), E), (I, J)), (K, ((L,M), (O,N)))), D).
Note that subfigure (b) shows the same subset decomposition as subfigure (a), but G is
different. Subfigure (c) shows a collision occurring regardless of G, and TreeMerge returns the
incorrect tree for this decomposition regardless of the G; for example, TreeMerge-fast run on
{Ti,j, Ti,k} could return (((A,B), C), (((G,H), F ), E), (I, (J, (K, ((L,M), (O,N))))), D).
Subfigure (d) shows no collisions, so TreeMerge-fast returns the correct tree. Unlike in the
other subfigures, the subset trees {Ti, Tj, Tj} are not edge separable for T .
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We now provide some theoretical guarantees for TreeMerge-fast and TreeMerge-slow.

Theorem 5.2. Suppose that the input (T ,A) has n leaf labels divided across k leaf-label-

disjoint trees in T . Then, TreeMerge-fast applied to (T ,A) returns a compatibility supertree

for T in O(nk+n2/k+n4/k3) time if using the serial version and O(n log2 k+n2/k2+n4/k4)

time if using the parallel version. TreeMerge-fast requires O(n2/k) storage.

In contrast, TreeMerge-slow applied to (T ,A) returns a compatibility supertree for T
in O(n4k) time if using the serial version and O(n4) time if using the parallel version.

TreeMerge-slow requires O(n2) storage.

Proof. The proof that both TreeMerge-slow and TreeMerge-fast return a compatibility su-

pertree follows from the technique for building compatibility supertrees (in the local merge

phase) returning a compatibility supertree when given two leaf-disjoint trees as input and

from the techniques for resolving collisions (in the global merge phase) returning a compat-

ibility supertree when given two trees that agree on their shared leaf label set.

For the running time analysis, we make the simplifying assumptions that each tree in T
has exactly n/k leaves and that k − 1 is a power of two.

Local merge phase: In the local merge phase, both TreeMerge-slow and TreeMerge-fast

run NJMerge on input ({Ti, Tj}, Di,j) for each of the k − 1 edges in the merge guide tree G.

All input constraint trees have n/k leaves, so the local merge phase uses O(n2/k) storage.

The running time of the local merge phase is O(n4/k3) if mergers are performed in serial

and O(n4/k4) if mergers are performed in parallel.

Extended local merge phase for TreeMerge-fast: TreeMerge-fast extends the local merge

phase by computing branch lengths for each of the k− 1 trees using the quadratic time and

space algorithm from [237]. The running time of the extended local merge phase is then

O(n2/k) if performed in serial and O(n2/k2) if performed in parallel.

TreeMerge-fast and TreeMerge-slow implement the global merge phase differently; we

discuss these methods separately using the notation from Algorithm 5.2.

Global merge phase for TreeMerge-fast: At iteration w, TreeMerge-fast merges trees Ti,j

and T using their shared backbone tree tB and branch lengths. This is just a special case of

the algorithm proposed by Bansal [238] for Optimal Tree Completion under the Robinson-

Foulds (RF) Distance. This algorithm scales linearly with the number of leaf labels in the

output tree, so |S(Ti,j) ∪ S(T )| = (w + 2)n/k. A total of k − 2 iterations are required,

so the running time scales with (n/k)
∑k

w=3w. Because
∑p

w=3w is O(p2), the worst-case

running time of TreeMerge-fast is O(kn). It is possible to perform this global merge phase in

parallel via a reduction on the merge guide tree G. We merge trees using branch lengths in

log2 (k − 1) iterations and each iteration is O(n); therefore, in the parallelized global merge

94



phase, TreeMerge-fast uses O(n log2 k) time.

Global merge phase for TreeMerge-slow: At iteration w, TreeMerge-slow merges trees Ti,j

and T using their shared backbone tree tB, where |S(Ti,j)| = 2n/k, |S(T )| = (w + 1)n/k,

and |S(tB)| = n/k. There are (w + 1)n/k possible leaves that could be contributed to the

n/k− 3 edges in tB. In the worst case analysis, (w+ 1)n/k leaves are contributed to a single

edge in tB, so NJMerge uses O(w4n4/k4) time and O(w2n2/k2) storage. A total of k − 2

iterations are required, so the running time scales with (n4/k4)
∑k

w=3w
4. Because

∑p
w=3w

4

is O(p5), the worst-case running time of TreeMerge-slow is O(kn4). In the serialized global

merge phase, TreeMerge-slow uses O(n4k) time and uses O(n2) storage. Notably, the worst-

case analysis is effectively the same as the analysis for NJMerge-2 (essentially just specifying

the order of the mergers). It is possible to perform the global merge phase in parallel via a

reduction on the merge guide tree G; the worst-case analysis is effectively the parallel version

of NJMerge-2, so TreeMerge-slow requires O(n4) time.

Overall, TreeMerge-slow uses O(n2) storage and TreeMerge-fast uses O(n2/k) storage.

For the serialized versions, TreeMerge-slow runs in O(n4k) time and TreeMerge-fast runs in

O(nk+n2/k+n4/k3) time. For the parallelized versions, TreeMerge-slow runs in O(n4) time

and TreeMerge-fast runs in O(n log2 k + n2/k2 + n4/k4) time. QED.

Note that while the worst-case running time of TreeMerge-slow is the same as the worst-

case running time of NJMerge-2, these two methods can have very different running times

in practice, for example when there are very few collisions. In fact, when there are zero

collisions, TreeMerge-slow and TreeMerge-fast have the same running time. That being

said, it is possible for large collisions to occur; for example, if TreeMerge-slow was run on

the case presented in Figure 5.3b, it would run NJMerge on two red leaves (D and either A,

B, or C), all black leaves, and all blue leaves, so basically the entire tree!

Theorem 5.3. If a phylogenetic tree T ∗ is compatible with every tree in T , and D is nearly

additive for T ∗. Then, TreeMerge-slow returns T ∗.

Proof. Let Tx and Ty be two trees in T . NJMerge applied to
(
{Tx, Ty}, D|S(Tx)∪S(Ty)

)
returns

T ∗|S(Tx)∪S(Ty) by Theorem 4.2. As TreeMerge-slow performs all its mergers using NJMerge,

the result follows by induction on the number of mergers. QED.

Theorem 5.4. If a phylogenetic tree T ∗ is compatible with every tree in T , and D is nearly

additive for T ∗. Then, TreeMerge-fast is guaranteed to return T ∗ provided that there are no

collisions during the global merge phase.

Proof. If there are no collisions during the global merge phase, TreeMerge-fast performs all of

its mergers with NJMerge; the result follows by induction on the number of mergers. QED.
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5.2.3 Divide-and-conquer Pipelines for Phylogeny Estimation and Statistical Consistency

We now provide some theoretical guarantees for divide-and-conquer pipelines that use

either NJMerge-2, TreeMerge-slow, or TreeMerge-fast to combine subset trees; see Algo-

rithm 4.1.

Corollary 5.1. When run within the divide-and-conquer framework proposed in Algo-

rithm 4.1, TreeMerge-fast runs in O(n2) time if using the serial version and O(n log2 n) time

if using the parallel version. In contrast, the parallel versions of NJMerge-2 and TreeMerge-

slow run in O(n4) time, and the serial versions of NJMerge, NJMerge-2, and TreeMerge-slow

run in O(n5) time.

Proof. In the divide-and-conquer framework, the input dataset of n species is divided into

k pairwise disjoint subsets of bounded size, so c = n/k and therefore k = n/c = O(n).

Then, the result follows from updating the equations for worst-case running time given in

Table 5.1. QED.

Corollary 5.2. NJMerge-2 and TreeMerge-slow can be used in a gene tree estimation

pipeline that is statistically consistent under the Generalized Time Reversible (GTR) model,

and they can be used in a species tree estimation pipeline that is statistically consistent under

the Multi-Species Coalescent (MSC) model.

The proof, which is similar to the proofs of Corollaries 4.1 and 4.2, follows easily from

Theorems 5.1 and 5.3. To summarize, divide-and-conquer pipelines using either NJMerge,

NJMerge-2, or TreeMerge-slow are statistically consistent when the method ΦD used to

estimate distances between pairs of species and the method ΦT used to estimate constraint

trees are statistically consistent under the model of interest. These proofs of statistical

consistency do not depend on the subset decomposition, the order that subsets are merged

(for NJMerge-2), or the merge guide tree (for TreeMerge-slow). Because TreeMerge-fast can

fail to combine two trees correctly when collisions occur (Figure 5.3), divide-and-conquer

pipelines using TreeMerge-fast are statistically consistent under a model if the probability of

collisions goes to zero, as the number of samples generated under the model goes to infinity.

Theorem 5.5. Consider the following pipeline:

• Estimate a starting tree T0 using method Φ0. Decompose the starting tree T0 into

pairwise disjoint subsets S1, S2, . . . , Sk by removing a set E0 of edges from T0 such that

every pair of edges in E0 is separated by at least two edges in T0 (e.g., Figure 5.3a).

Label node v in T0 by i if v is on a path between two leaves that are both in Si. Define
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the merge guide tree G on vertex set {1, 2, . . . , k} by making i and j adjacent in G if

and only if there is an edge in T0 whose endpoints are labeled by i and j.

• Build a dissimilarity matrix Di,j by running method ΦD to estimate distances between

all pairs of species in the set Si ∪ Sj; repeat for every edge (i, j) ∈ G to produce a set

D of dissimilarity matrices.

• Estimate a tree Ti on subset Si using method ΦT ; repeat for all i ∈ {1, 2, . . . , k} to

produce a set T of constraint trees.

Suppose that Φ0, ΦD, and ΦT are statistically consistent under some model of evolution.

Then, as the number of independent samples generated under the model goes to infinity, the

phylogenetic tree computed using TreeMerge-fast on input (T , {D,G}) will converge to the

true (model) tree T ∗. In other words, this divide-and-conquer pipeline using TreeMerge-fast

is statistically consistent.

Proof. As the number of samples increases, each estimated dissimilarity matrix Di,j ∈ D
will converge to a matrix that is additive for T ∗|S(Ti)∪S(Tj), each estimated constraint tree

Ti ∈ T will converge to T ∗|Si
, and the estimated starting tree T0 will converge to T ∗. Hence,

for a large enough number of samples, the following occurs with high probability. (i) The

deletion of edges in E0 from the T0 produces subsets such that the labeling of T0 described

above assigns each internal node with a unique label in the set {1, 2, . . . , k}; in other words,

the labeling is convex on T0 and thus on T ∗. (ii) If i and j are adjacent in the merge guide

tree G, then T ∗|Si∪Sj
can be created by connecting Ti and Tj with an edge. It is easy to see

that under these conditions there will no collisions with high probability, so by Theorem 5.4,

TreeMerge-fast will return T ∗ with high probability. QED.

5.3 PERFORMANCE STUDY

We present the results of using TreeMerge-fast to estimate species trees on large multi-

locus datasets simulated for the NJMerge study (Section 4.3.1). Recall that these datasets

had 1 000 species and 1 000 genes and were characterized by two levels of incomplete lineage

sorting (ILS) (low/moderate and very high) and two data types (exons and introns). In this

study, we focus our attention on TreeMerge-fast comparing it to NJMerge and NJMerge-2.

Note that NJMerge-2 and TreeMerge-slow have the same theoretical properties for worst-

case running time and statistical consistency (Table 5.1), but NJMerge-2 is much simpler to

implement.
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We also perform a study similar to the NJMerge study (Section 4.3), comparing TreeMerge-

fast to two of the dominant species tree estimation methods: ASTRAL-III and CA-ML using

RAxML. Recall that this type of study compares running a method ΦT within a divide-

and-conquer pipeline to estimate subset trees versus running ΦT de novo (i.e., on the full

dataset). All methods are evaluated with respect to their algorithmic failure rate (which is

only relevant to NJMerge), computational failure rate (failure to complete due to insufficient

computational resources), (empirical) running time, and species tree accuracy.

It is worth noting that the divide-and-conquer pipelines tested in these experiments

(which were performed prior to writing Theorem 5.5) do not guarantee that the requirements

for TreeMerge-fast to be statistically consistent were met.

5.3.1 Divide-and-Conquer Pipelines

Divide-and-conquer pipelines require the user to specify several inputs (Algorithm 4.1).

We created two different pipelines: the ASTRAL-III pipeline used the estimated gene trees

as input, and the RAxML pipeline used the concatenated alignment as input.

Divide-and-conquer pipeline using ASTRAL-III:

• Dissimilarity matrix: AGID matrix computed using ASTRID version 1.4 given esti-

mated gene trees as input

• Starting tree: NJ tree computed using FastME version 2.1.5 on the AGID distance

matrix (i.e., the NJst tree)

• Constraint trees: Species trees computed using ASTRAL version 5.6.1 (i.e., ASTRAL-

III) given the estimated gene trees restricted to a specific subset of species as input

Divide-and-conquer pipeline using RAxML:

• Dissimilarity matrix: Matrix of log-det distances computed using PAUP* version

4a163 given the concatenated alignment as input

• Starting tree: Greedy maximum parsimony tree based on a random taxon addition

order computed using RAxML version 8.2.12 (with SSE3 and pthreads) given the

concatenated alignment as input

• Constraint trees: Species trees computed under the GTR+GAMMA model of evolu-

tion using RAxML version 8.2.12 (with SSE3 and pthreads) given the concatenated

alignment restricted to a specific subset of species as input
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Subset decomposition: For both pipelines, pairwise disjoint subsets of species were cre-

ated by applying the centroid edge decomposition to the estimated starting tree T0. Note

that the centroid edge decomposition does not prevent edges incident to the same node in

T0 from being deleted, so the requirements for TreeMerge-fast to be statistically consistent

are not guaranteed to be satisfied by this pipeline (Theorem 5.5).

Running TreeMerge-fast: TreeMerge-fast requires as input a merge guide tree G, which

is a tree with vertices bijectively labeled by the trees in T . We used the starting tree T0

to construct G as follows. First, we randomly selected one leaf from each tree in T and

deleted all other leaves from T0, suppressing internal nodes of degree 2; this produced a tree

T ′0 that had one leaf for every tree in T . Second, we built a complete graph G0 with nodes

labeled by the trees in T and edges (Ti, Tj) weighted by the path distance between leaves

corresponding to Ti and Tj in T ′0. Third, we computed a minimum spanning tree G on G0
using Kruskal’s algorithm [239]. This approach for producing G does not guarantee that

requirements for TreeMerge-fast to be statistically consistent are met (Theorem 5.5). To

make a fair comparison between TreeMerge-fast and NJMerge-2, the order that subset trees

were merged by NJMerge-2 was equivalent to the order that subset trees were merged by

TreeMerge-fast during the global merge phase.

TreeMerge-fast also requires branch lengths to be estimated on the trees produced during

the local merge phase; this was accomplished by using PAUP* version 4a163 to fit least

squares positive branch lengths to each of these trees using the same dissimilarity matrix

from the local merge phase.

5.3.2 Evaluation

Methods were evaluated in terms of species tree error, measured as the RF error rate

(Equation 2.3), and running time, measured as the wall-clock time recorded in seconds. All

computational experiments were run on the Blue Waters supercomputer, as described in

Section 4.3.4. We compared the time to run method ΦT de novo (i.e., on the full dataset)

to the time to run the entire divide-and-conquer pipeline; this was approximated as

time
(
ΦD(X)

)
+
∑
T∈T

time
(
ΦT (X|S(T ))

)
+ time

(
ΦM(T ,A)

)
(5.1)

where ΦM denotes the method to merge constraint trees using auxiliary information A; see

Algorithm 4.1 for other notation. Equation 5.1 does not include the time to estimate starting

trees, as required a few minutes compared to hundreds or thousands of minutes.
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5.4 RESULTS

5.4.1 How does TreeMerge compare to NJMerge and NJMerge-2?

We first evaluate the impact of running either NJMerge, NJMerge-2, and TreeMerge-fast

within two divide-and-conquer pipelines (one using ASTRAL-III on subsets and one using

RAxML on subsets). First, we discuss the cases where NJMerge failed to return a tree;

these failures were algorithmic rather than computational. When ASTRAL-III was used

to construct subset trees, NJMerge failed to return a tree on 0/80 datasets; however, when

RAxML was used to construct subset trees, NJMerge failed to return a tree on 6/80 datasets

(i.e., the failure rate was 7.5%). For the same analyses in the NJMerge study (Section 4.3),

only 2/80 datasets resulted in failures (i.e., the failure rate was 2.5%). The only difference

between the analyses here and the ones in Section 4.3 is the starting tree; in this study, we

used the greedy (randomized) parsimony tree from RAxML as the starting tree, whereas

in the previous study, we used the NJ tree computed from the log-det distance matrix.

This finding suggests that the choice of starting tree may be a factor in whether or not

NJMerge fails. In contrast, NJMerge-2 and TreeMerge-fast completed on all datasets within

the allowed time using the allowed memory.

On the replicate datasets for which all methods returned a tree, we compared NJMerge,

NJMerge-2, and TreeMerge-fast in terms of species tree accuracy. We found that NJMerge-

2 produced trees with the same average error as those produced by NJMerge and that

TreeMerge-fast produced trees with at most 1% greater error on average than those produced

by NJMerge (Table 5.2).

That TreeMerge-fast had similar performance compared to NJMerge and NJMerge-2 is

noteworthy, as the ASTRAL-III pipeline guarantees statistical consistency for NJMerge and

for NJMerge-2 but does not for TreeMerge-fast. In particular, the centroid edge decomposi-

tion and the construction of the merge guide tree G do not meet the requirements described

in Theorem 5.5. This suggests the possibility that TreeMerge-fast might be even more ac-

curate when used within pipelines that provide a guarantee of statistical consistency, which

we note in Section 5.6 as a topic for future research.

5.4.2 What is the impact of using TreeMerge-fast on ASTRAL-III and RAxML?

We now evaluate TreeMerge-fast within two divide-and-conquer pipelines (one using

ASTRAL-III on subsets and one using RAxML on subsets) compared to running these

methods de novo.
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Failure rate: In our experiments, ASTRAL-III and RAxML failed to complete analyses

on many datasets though for different reasons. ASTRAL-III failed to complete its analyses

within 48 hours on 19/40 exon datasets and 4/40 intron datasets (i.e., the combined fail-

ure rate was 29%); note that all of these failures occurred on datasets with very high ILS.

RAxML reported Out Of Memory (OOM) errors on 3/40 exon datasets and 39/40 intron

datasets (i.e., the combined failure rate was 53%). In contrast, when run within divide-and-

conquer pipelines using TreeMerge-fast, all analyses with ASTRAL-III and RAxML com-

pleted. Thus, TreeMerge-fast enabled both ASTRAL-III and RAxML to complete analyses

on large datasets when given only 64 GB of memory and 48 hours wall-clock time.

Notably, the failure rate for ASTRAL-III and RAxML depended on the model condition.

RAxML failed (due to running out of memory) on more intron datasets than exon datasets.

Exon-like sequences, which evolve more slowly than intron-like sequences, had fewer distinct

alignment patterns and thus could be more effectively compressed. When the alignments

could not be effectively compressed (as was the case for the intron datasets), RAxML was

more likely to run out of memory. A distributed-memory version of RAxML, called ExaML,

can be used to estimate trees when RAxML runs out of memory, provided that users have

access to a distributed-memory system; in our study, we explicitly limited all methods to

a single compute node, assuming users had limited computational resources. ASTRAL-III

failed (due to running longer than 48 hours) on datasets with very high ILS. High ILS

datasets are characterized by true gene trees that are topologically very different from each

other and from the true species tree. The running time of ASTRAL-III depends on the degree

of gene tree heterogeneity [158], explaining why ASTRAL-III failed to complete within 48

hours on many of the high ILS datasets.

On the replicate datasets for which ASTRAL-III or RAxML completed, we compared

running the methods de novo to running them within the divide-and-conquer pipeline based

on TreeMerge-fast.

Running time: We found that running ASTRAL-III or RAxML within the divide-and-

conquer pipeline (using TreeMerge-fast) reduced running time, often dramatically (Figures

5.4 and 5.5). For example, when the level of ILS was very high, running ASTRAL-III within

the divide-and-conquer pipeline reduced the total running time from 42 hours to 4 hours

on average. Similarly, for exon datasets, running RAxML within the divide-and-conquer

pipeline reduced the total running time from 43 hours to 11 hours on average. The time re-

quired to estimate subset trees using ASTRAL-III or RAxML typically dominated the total

running time of the divide-and-conquer pipeline (with one exception: using ASTRAL-III to

estimate subset trees on low ILS datasets). Merging subset trees together with TreeMerge-
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fast was relatively fast, requiring no more than 46 minutes, which was between 3–11% of

the average time required to estimate subset trees using RAxML (Table 5.3). We proto-

typed TreeMerge-fast (without parallelism) in Python using dendropy [240], so an optimized

implementation (with parallelism) would produce even better results.

Species tree error: We found that whether ASTRAL-III or RAxML were run de novo or

within the divide-and-conquer pipeline (using TreeMerge-fast) had little impact on species

tree accuracy, with error rates differing by at most 1% on average (Figures 5.4 and 5.5).

These effects were most pronounced for datasets with very high ILS; specifically, ASTRAL-

III was more accurate (by 1% on average) when run de novo, whereas RAxML was less

accurate (by 1% on average) when run de novo.

5.5 DISCUSSION

5.5.1 Computational Complexity, Accuracy, and Statistical Consistency

The proof of statistical consistency for divide-and-conquer pipelines using TreeMerge-fast

depends on the techniques used to decompose the species set into subsets and to build the

merge guide tree. In Theorem 5.5, we show how this can be accomplished by estimating

a starting tree on the full set of species using a statistically consistent method (e.g., a

distance method). Notably, divide-and-conquer pipelines using NJMerge (Algorithm 4.1)

also compute the subset decomposition based on a starting tree.

While the statistical consistency of divide-and-conquer pipelines using NJMerge does

not depend on estimating a starting tree, there is no reason not to perform the subset

decomposition in this way. NJMerge already requires an n × n dissimilarity matrix and

runs O(n5) within the divide-and-conquer pipeline, so it is slower than traditional NJ and

requires the same input (plus constraint trees). The goal of NJMerge is to improve upon the

accuracy of NJ by using a highly accurate but computationally intensive method to estimate

subset trees. The effectiveness of this approach (in terms of accuracy) depends on both the

model condition and the methods used to estimate subset trees, as discussed in Section 4.5.

In contrast, TreeMerge-fast does not require an n × n dissimilarity matrix and is faster

than NJ, running in O(n log n) time instead of O(n3) time, within the divide-and-conquer

pipeline. FastME, which builds a tree from a dissimilarity matrix in O(n2 log n) time, could

be used instead of NJ, but even so, the running time of the divide-and-conquer pipeline

using TreeMerge-fast will be dominated by the time to estimate a starting tree as well as

the time to perform preprocessing (discussed in the next section).
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For users who are willing to forgo the guarantee of statistical consistency, the first step

(of building a merge guide tree and subset decomposition) could be performed using less

computationally intensive techniques (especially if these techniques are highly accurate in

simulation studies). This opens up many avenues for algorithm design, and of course, deter-

mining whether these new techniques enable pipelines to be provably statistically consistent

is another exciting avenue of future research. Other algorithmic developments may aid in

this endeavor; for example, combining divide-and-conquer with iteration has been used suc-

cessfully to improve robustness to the initial subset decomposition in a related application:

co-estimating an MSA and ML (gene) tree [227, 233, 241, 242]. Iteration seems likely to be

useful in the context of TreeMerge, as large collisions (i.e., collisions where TreeMerge-slow

would run NJMerge on a large number of species) may indicate that starting over with a

new subset decomposition and merge guide tree is necessary.

5.5.2 Computational Requirements of Species Tree Estimation Pipelines

Many biological studies (e.g., [24, 243]) have analyzed multi-locus datasets using AS-

TRAL and RAxML, so differences in their computational requirements are of interest. The

timings we report for ASTRAL-III and RAxML are not directly comparable, because the

ASTRAL-III timings do not include the time required for gene tree estimation. Using the

same experimental set-up (a single Blue Waters compute node with 64 GB of memory and

16 floating-point cores), FastTree-2 took 3.6 hours on average to estimate 1 000 gene trees

for datasets with 1 000 species (Supplementary Tables S4 and S5 in [220]), so in our study

the amount time spent estimating 1 000 gene trees was small in comparison to the amount

of time spent running ASTRAL-III on datasets with very high ILS (42 hours on average).

However, the time required for gene tree estimation can vary greatly, depending on the

method used and the analysis performed (e.g., analyses that search from multiple starting

trees or perform non-parametric bootstrapping will be more computationally intensive).

It is possible that the bulk of the time could be spent estimating gene trees, but in some

cases with very large numbers of species, the entire species tree estimation pipeline (which

includes gene tree estimation) could be sped up by using TreeMerge-fast. Such a pipeline

would proceed as follows.

1. Define pairwise disjoint subsets S1, S2, . . . , Sk of species and a merge guide tree G.

2. Compute T = {T1, T2, . . . , Tk} and D = {Di,j : (i, j) ∈ G} as follows.

• Root G at the node labeled 1 (i.e., the node corresponding to subset S1).

104



• For every edge e = (i, j) in a preorder traversal of G:

– For each gene g = {1, 2, . . . ,m}:
∗ Estimate an multiple sequence alignment (MSA) Ai,jg on species set Si∪Sj.
∗ Estimate an maximum likelihood (ML) gene tree P i,j

g from Ai,jg .

– Compute the AGID distance matrix Di,j from P i,j = {P i,jg : g ∈ {1, . . . ,m}}.
– Estimate a constraint tree Tj from {P |j : P ∈ P i,j} using ASTRAL.

• Estimate constraint tree T1 on P1,j such that (1, j) exists in E(G).

3. Run TreeMerge on the input (T , {D,G}).

This pipeline exploits locality at multiple levels: species trees do not need to be estimated

on the full set of species, and similarly, gene trees and MSAs do not need to be estimated

on the full set of species.

For users who want the guarantee of statistical consistency, the first step could be per-

formed by using a statistically consistent method to build a starting tree T0 on S and then

using T0 to define pairwise disjoint subsets of species and a merge guide as described in

Theorem 5.5. The former could be achieved by running NJ on a dissimilarity matrix D of

log-det distances (recall that log-det distances are statistically consistent under the MSC

model). While this requires estimating an MSA for each gene on the full set S of species, it

does not require gene tree estimation on the full set of species. This is critical as most (if

not all) ML methods implement parallelism across sites in the MSA but not across species

and therefore can be quite computationally intensive for very large numbers of species. In

fact, a promising direction of future research is to explore divide-and-conquer pipelines using

TreeMerge-fast in the context of gene tree estimation.

5.5.3 Future Studies

Future studies should investigate the robustness of TreeMerge-fast to the subset decompo-

sition and the merge guide tree. Along these lines, other variations on the divide-and-conquer

pipeline should be explicitly tested on a large collection of biological and simulated datasets.

In particular, datasets should be simulated under challenging but biologically realistic model

conditions, including those that produce model violations when estimating gene trees and/or

species trees with popular methods. This is a condition where using TreeMerge may have

an advantage, as some model assumptions may be preserved locally but not globally across

a tree. In the context of gene tree estimation, changes in GC content can provide evidence

that stationarity, an assumption of SRH models, is violated across the tree, but this model
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violation may be less significant locally. In addition, the substitution rate matrix can change

across branches of the tree, producing a model violation referred to as heterotachy. There

is a growing body of literature surrounding heterotachy [244, 245, 246, 247], and this, in

turn, has sparked the development of new methods, such as GHOST [248]. These methods

are more computationally intensive than traditional methods, so divide-and-conquer may be

particularly beneficial in this context.

Of course, biologists not only want a tree topology, they also want estimates of uncer-

tainty or estimates of the probability of error on each branch. This is commonly achieved

through non-parametric bootstrapping, an approach that can easily be applied in the context

of divide-and-conquer pipelines using TreeMerge-fast. However, as discussed in Section 3.4,

model violations can result in highly supported false positive branches, so interpreting dif-

ferences between species estimated on the same biological datasets can be challenging.

Since the time of our study, there have been many new developments in divide-and-

conquer phylogeny estimation. Most notably, Le et al. [249] implemented a new algorithm for

merging leaf-disjoint trees, called constrained-INC [250], and evaluated it within the context

of gene tree estimation and species tree estimation, finding that it achieved comparable

accuracy to NJMerge. Constrained-INC is more computationally efficient than NJMerge,

so constrained-INC instead of NJMerge could be called during the local merge phase or

during the global merge phase (to resolve collisions when using TreeMerge-slow). Lastly,

divide-and-conquer pipelines using DTM methods could be compared to traditional divide-

and-conquer pipelines (e.g., Disk Covering Methods) when robust implementations become

publicly available for species tree estimation.

5.6 CONCLUSIONS

We presented TreeMerge, a new technique for merging leaf-label-disjoint trees that ad-

dresses two important limitations of NJMerge: first that NJMerge can fail and second that

NJMerge is slow, running in O(n4k) time, where n is the number of species. In contrast, the

serial version of TreeMerge-fast runs in O(nk) time and the parallel version runs in O(n log k)

time. This running time advantage came at the expense of restricting the solution space,

but in our simulation study, there was little difference between the accuracy of TreeMerge-

fast and NJMerge. Indeed, TreeMerge-fast was effective at scaling computationally intensive

species tree estimation methods to large datasets. The impact was greatest for those datasets

on which ASTRAL-III or RAxML failed to complete, either due to limited running time (for

ASTRAL-III) or limited memory (for RAxML). When using genome-scale data, the com-

putational requirements for ML analyses can be very large even for datasets with small
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numbers of species; for example, the Avian Phylogeomics Project with whole genomes for

48 birds used one TB of memory and took more than 200 CPU years to complete. Today,

we hope that DTM methods, including TreeMerge-fast, make it computationally feasible for

researchers with limited resources to analyze large multi-locus datasets—phylogenomics for

all. In the future, we hope that the work here facilitates the development of highly parallel

phylogeny estimation pipelines that have good empirical performance (accuracy) as well as

good theoretical performance (statistical consistency).
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5.7 PLOTS

This section contains the two plots presented in Section 5.4 Results.
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Figure 5.4: Impact of using TreeMerge-fast with ASTRAL-III. The top row shows
species tree estimation error for datasets with 1 000 species and 1 000 genes. Gray bars
represent medians, gray squares represent means, gray circles represent outliers, box plots
extend from the first to the third quartiles, and whiskers extend to plus/minus 1.5 times
the interquartile distance (unless greater/less than the maximum/minimum value). The
bottom row shows running time (in minutes); bars represent means, and error bars represent
standard deviations across replicate datasets. The running time of TreeMerge-fast is the time
to estimate the distance matrix, to estimate each subset tree using ASTRAL-III, and to
combine the subset trees using TreeMerge-fast (Equation 5.1). The number N of replicates
on which ASTRAL-III completed is shown on the x-axis; note that averages are taken across
the replicates on which ASTRAL-III completed. When ASTRAL-III did not complete, it
was due to running longer than the 48-hour maximum wall-clock time.
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Figure 5.5: Impact of using TreeMerge-fast with RAxML. The top row shows species
tree estimation error for datasets with 1 000 species and 1 000 genes. Gray bars represent
medians, gray squares represent means, gray circles represent outliers, box plots extend from
the first to the third quartiles, and whiskers extend to plus/minus 1.5 times the interquartile
distance (unless greater/less than the maximum/minimum value). The bottom row shows
running time (in minutes); bars represent means, and error bars represent standard devia-
tions across replicate datasets. The running time of TreeMerge-fast is the time to estimate
the distance matrix, to estimate each subset tree using RAxML, and to combine the subset
trees using TreeMerge-fast (Equation 5.1). The number N of replicates on which RAxML
completed is shown on the x-axis; note that averages are taken across the replicates on which
RAxML completed. When RAxML did not complete, it was due to Out Of Memory (OOM)
errors; otherwise the last checkpoint written by RAxML was evaluated.
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5.8 TABLES

This section contains the two tables presented in Section 5.4 Results.

Table 5.2: Species tree error for NJMerge vs. NJMerge-2 vs. TreeMerge-fast.
A comparison of TreeMerge-fast to NJMerge and NJMerge-2 is shown below. Species tree
estimation error (average ± standard deviation; maximum error is one) is shown for datasets
with 1 000 species and 1 000 genes. The number of replicates on which NJMerge returned a
tree is also shown, and averages are taken across the replicates on which NJMerge completed.
When NJMerge failed to return a tree, it was due to algorithmic failure (i.e., considering a
siblinghood proposal to be safe when it wasn’t).

Level of Data Number of NJMerge NJMerge-2 TreeMerge-fast
ILS Type Replicates

ASTRAL-III Analysis (i.e., MT = ASTRAL-III, MD = AGID)

low/mod exon 20 0.06± 0.03 0.06± 0.03 0.07± 0.03
low/mod intron 20 0.05± 0.03 0.05± 0.03 0.06± 0.03
very high exon 20 0.08± 0.04 0.08± 0.04 0.09± 0.03
very high intron 20 0.06± 0.02 0.06± 0.02 0.06± 0.02

RAxML Analysis (i.e., MT = RAxML, MD = log-det)

low/mod exon 19 0.04± 0.02 0.05± 0.02 0.05± 0.02
low/mod intron 20 0.03± 0.01 0.03± 0.01 0.04± 0.01
very high exon 17 0.10± 0.01 0.10± 0.01 0.11± 0.01
very high intron 18 0.09± 0.01 0.09± 0.01 0.10± 0.01
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Table 5.3: Running time for each step in divide-and-conquer pipelines using
TreeMerge-fast. The running time in minutes (mean ± standard deviation; maximum
error is one) is given for each step in the divide-and-conquer pipeline broken down into the
time to compute the distance matrix and the time to compute all subset trees and the time
to merge the trees together using TreeMerge-fast (i.e., the three terms of Equation 5.1).
We do not show the time required to compute the starting tree, which required just a few
minutes for both RAxML and ASTRAL-III analyses.

Species Tree Data MD MT on all TreeMerge
Height Type subsets (D, T )

ASTRAL-III Analysis (i.e., MT = ASTRAL-III, MD = AGID)

low/mod exon 1± 0 49± 7 32± 5
low/mod intron 1± 0 26± 7 31± 5
very high exon 1± 0 216± 23 33± 6
very high intron 1± 0 178± 19 34± 4

RAxML Analysis (i.e., MT = RAxML, MD = log-det)

low/mod exon 24± 1 801± 228 34± 4
low/mod intron 34± 3 1333± 301 32± 4
very high exon 23± 2 412± 199 30± 5
very high intron 40± 3 752± 442 30± 4
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CHAPTER 6: SPECIES TREE ESTIMATION IN THE PRESENCE OF
GENE DUPLICATION AND LOSS WITH FASTMULRFS

This chapter contains material perviously published in “FastMulRFS: Fast and accurate

species tree estimation under generic gene duplication or loss models” [251], which was joint

work with T. Warnow. All supplementary materials referenced in this chapter are freely

available on Dryad: doi.org/10.1101/835553. Datasets and software commands necessary to

reproduce this study are freely available on the Illinois Data Bank: doi.org/10.13012/B2IDB-

5721322 V1. FastMulRFS is freely available on Github: github.com/ekmolloy/fastmulrfs.

Note that plots and tables appear at the end of this chapter in Sections 6.7 and 6.8, respec-

tively.

6.1 INTRODUCTION

In the previous chapters, we discussed species tree estimation in the presence of in-

complete lineage sorting (ILS), where gene tree heterogeneity is the result of genealogical

relationships between alleles. Gene duplication and loss (GDL) is another major source of

gene tree heterogeneity (one that is expected to be common in fungi [32] and plants [25]).

However, most species tree estimation methods, including the ones discussed thus far in this

dissertation (Section 2.7), are designed for orthologous genes. Because orthology detection

is still difficult to do correctly [35, 36, 37] and mistakes in orthology prediction can result

in incorrect species trees, multi-copy genes are often excluded from species tree estimation

(e.g., [24, 25]). Methods that can estimate species trees from gene families are of increasing

interest, as this would not only avoid the challenges of orthology detection but also enable

the phylogenetic signal in multi-copy genes to be leveraged during species tree estimation.

Several methods have been proposed to estimate species trees from multi-copy genes.

The most well-known method explicitly based on a parametric model of GDL is probably

PHYLDOG [212], which uses likelihood to co-estimate the species tree and gene family trees.

PHYLDOG is very computationally intensive and so is limited to very small datasets with

10 or so species. Recently, De Oliveira Martins et al. [252] proposed a Bayesian supertree

method guenomu for multi-copy gene trees. Because guenomu requires a posterior distribu-

tion to be estimated for each gene family tree (e.g., using MrBayes [203]) as input, it is not

fast enough to use on genome-scale datasets with 100 or more species.

Non-parametric methods are more commonly used alternatives. For example, Gene Tree

Parsimony (GTP) methods take a set of (estimated) gene family trees as input, and then

seek a species tree that implies the minimum number of evolutionary events, such as gene
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duplications and gene losses. Examples of GTP methods include DupTree [61], iGTP [253],

and DynaDup [254]. Since GTP is NP-hard, most of these methods operate by using hill-

climbing. DynaDup, in contrast, uses dynamic programming (DP) to find an optimal solu-

tion within a constrained search space; this type of approach, to the best of our knowledge,

was first proposed in [48] and has since been utilized for other problems (note that this is the

type of approach used by ASTRAL to solve the bipartition-constrained maximum quartet

support supertree (MQSS) problem [49, 78]). Although GTP methods can be computa-

tionally intensive, they are more scalable than other approaches, and several phylogenomic

studies have used GTP methods to analyze biological datasets (e.g., [255, 256]).

Other fast approaches include supertree methods that have been adapted to work with

gene family trees, referred to as MUL-trees. The most well known supertree method

for MUL-trees is perhaps MulRF [47], which attempts to find a solution to the NP-hard

Robinson-Foulds Supertree problem for MUL-trees (RFS-MUL-trees). Although MulRF

does not explicitly account for GDL, it has been shown to produce more accurate species

trees than DupTree and iGTP on datasets simulated under challenging model conditions

with gene tree heterogeneity due to GDL, ILS, horizontal gene transfer (HGT), and gene

tree estimation error (GTEE) [257].

In a very recent advance, Legried et al. [57] proved that ASTRAL-multi [58], an ex-

tension of ASTRAL [49] to address multi-allele inputs, is statistically consistent under the

probabilistic model of GDL proposed by Arvestad et al. [258] (recall that gene trees evolve

i.i.d. within a species tree with a duplication rate and a loss rate fixed across the edges of

the species tree; see Section 2.5.2). In fact, ASTRAL-multi is the only method that has

been proven statistically consistent under any GDL model. Yet, the experimental study

comparing ASTRAL-multi to three earlier species tree estimation methods, including Dup-

Tree, STAG [259], and MulRF, showed that ASTRAL-multi had good but not exceptional

accuracy. When the duplication and loss rates were both high, ASTRAL-multi was less ac-

curate than MulRF (although ASTRAL-multi was more accurate than STAG and typically

more accurate than DupTree except when GTEE was low). The high accuracy of MulRF

in comparison to ASTRAL-multi encouraged us to explore the optimization problem that

MulRF attempts to solve.

In the remainder of this chapter, we prove that the true species tree is an optimal solution

to the RFS-MUL-trees problem, provided there is no adversarial GDL (which occurs when

the pattern of duplication events and loss events produces bipartitions that are incompatible

with the species tree). This model is less restrictive than the probablistic GDL model in

that it does not assume genes evolve i.i.d. (similar to the No Common Mechanism (NCM)

model) but is more restrictive in that it prohibits adversarial GDL. However, we conjecture
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that adversarial GDL will occur with sufficiently low probability so that an exact solution to

the RFS-MUL-trees problem will be statistically consistent for reasonable duplication and

loss probabilities. This result is enabled by proving that, when solving the RFS-MUL-trees

problem, any input set of MUL-trees can be replaced by a set of singly-labeled trees. By

combining this reduction technique with DP within a constrained search space, we develop

a new method, FastMulRFS. As we will show, FastMulRFS is statistically consistent under

a generic GDL model that prohibits adversarial GDL.

Lastly, we compare FastMulRFS to ASTRAL-multi, DupTree, and MulRF on datasets

simulated under the DLCoal model with varying levels of GDL, ILS, and GTEE. As we will

show, FastMulRFS is generally more accurate than DupTree and ASTRAL-multi and ties

for most accurate with MulRF. In addition, FastMulRFS is much faster than MulRF and

ASTRAL-multi and ties for fastest with DupTree. The improvement in performance over

ASTRAL-multi is the most important result, as ASTRAL-multi is the only other method

to date that has been proven statistically consistent under a probabilistic GDL model. In

summary, FastMulRFS is a fast method for species tree estimation that does not require

reliable orthology detection and outperforms the leading alternative methods (even under

conditions for which FastMulRFS is not yet established to be statistically consistent).

6.2 APPROACH

We begin by extending some of the terminology and definitions from Sections 2.1—2.3

to MUL-trees. Recall that a phylogenetic tree T is defined by the triplet (t, S, φ), where

t is a tree, S is a set of labels, and φ : L(t) → S assigns labels to the leaves of t. If φ

is a bijection, we say that T is singly-labeled; otherwise, we say that φ is multi-labeled or

equivalently that T is a MUL-tree. Recall that deleting an edge e but not its endpoints from

T produces two subtrees tA and tB, defining two label sets: A = {φ(l) : l ∈ L(tA)} and

B = {φ(l) : l ∈ L(tB)}. When T is singly-labeled, every edge e ∈ E(T ) splits the leaf labels

into two sets A and B such that A ∩ B = ∅; this does not hold when there are two leaves

in T with the same label. Lastly, recall that the RF distance (i.e., the edit distance under

contraction and refinement operations) between two singly-labeled trees on the same label

set can be computed as the bipartition distance (Theorem 2.1). Theorem 2.1 does not hold

when one or both trees is a MUL-tree.

6.2.1 Robinson-Foulds Supertree problem for MUL-trees

To present the RF supertree problem for MUL-trees, we need three additional definitions
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from Ganapathy et al. [260] and Chaudhary et al. [46].

Definition 6.1 (Full Differentiation). We say that M ′ = (m,S ′, φ′) is a full differentiation

of MUL-tree M = (m,φ, S) if φ′ : L(m) → S ′ is a bijection. In other words, M ′ is a

singly-labeled version of M .

Definition 6.2 (Mutually Consistent Full Differentiations). Let M ′
1 = (m1, S

′, φ′1) and M ′
2 =

(m2, S
′, φ′2) be full differentiations of MUL-trees M1 = (m1, S, φ1) and M2 = (m2, S, φ2),

respectively. For i = 1, 2, we define Ri(s) ⊆ S ′ to be the set of labels given to the leaves

in M ′
i that are labeled s in Mi. We say that M ′

1 and M ′
2 are mutually consistent full

differentiations (MCFDs) of M1 and M2 if R1(s) = R2(s) ∀s ∈ S.

Ganapathy et al. [260] showed that if M1 and M2 are both MUL-trees, then their RF

distance can be computed as

MulRF (M1,M2) := min{RF (M ′
1,M

′
2) : M ′

1,M
′
2 are MCFDs of M1,M2} (6.1)

which implies an exponential-time algorithm for computing the RF distance between two

MUL-trees [260], Later, this problem was proven to be NP-complete by Chaudhary et al.

[46].

Chaudhary et al. [46] also introduced a special case, where one of the two MUL-trees

has the following property: every leaf with the same label is grouped together in a polytomy

that is separated by an edge from the rest of the tree. A MUL-tree with this property can

be viewed as an extended version of a singly-labeled tree.

Definition 6.3 (Extended Version). Let T = (t, S, φT ) be a singly-labeled tree, let M =

(m,S, φM) be a MUL-tree, and let k(s) be the number of leaves with label s in M . The

extended version of T with respect to M , denoted Ext(T,M), is created by attaching k(s)

new leaves to the leaf labeled s in T , assigning label s to each of these new leaves, and then

repeating this process for all s ∈ S.

Chaudhary et al. [46] showed that the RF distance between a MUL-tree M and an

extended version of a singly-labeled tree Ext(T,M) can be computed in polynomial time.

Based on this result, they proposed the Robinson-Foulds Supertree problem for MUL-trees

(RFS-MUL-trees).

Definition 6.4 (Robonsin-Foulds Supertree Problem for MUL-trees). Let T be a set of

MUL- trees. If a tree T ∗ on label set S =
⋃
M∈T S(M) is in the set∑

M∈P

RF (Ext(T |S(M),M)′,M ′) (6.2)
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then we say that T ∗ is an RFS-MUL-trees supertree for T .

Note that when P is a profile of singly-labeled trees, then the RFS-MUL-trees problem

is equivalent to the Robinson-Foulds supertree (RFS) problem.
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Figure 6.1: Reduction of the RFS-MUL-trees problem to the RFS problem. Sub-
figure (a) shows a candidate RFS-MUL-trees supertree T for a set P of MUL-trees, and
subfigure (b) shows a MUL-tree M in P ; note that both T and M are on the same label
set S = {A,B,C,D,E}. To compute the RF distance between T and M , we build the
extended version of T with respect to M (Definition 6.3), producing Ext(T,M), as shown
in subfigure (c). The trivial edges in Ext(T,M) (shown in orange) exist in any possible
singly-labeled, binary tree on S, so these edges do not impact the solution to the RFS-MUL-
trees problem. Similarly, the edges in MUL-tree M that are shown in red cannot exist in
an extended version of any possible singly-labeled, binary tree on S, so these edges do not
impact the solution to the RFS-MUL-trees problem. We contract all internal edges in M
with the property that there are at least two leaves, one on either side of the edge, with the
same label; this produces X (M), as shown in subfigure (d). Furthermore, because all leaves
with the same label are now on the same side of every edge in X (M), we can delete all but
one leaf with each label; this produces R(X (M)), as shown in subfigure (e). The resulting
tree is a non-binary, singly-labeled tree on S, so we can compute the RF distance between
T and R(X (M)) using Equation 2.1. These observations are formalized in Lemma 6.1.

116



6.2.2 Reducing from MUL-trees to singly-labeled trees

We simplify the RFS-MUL-trees problem by providing an alternative proof that the RF

distance between between a singly-labeled tree T and a MUL-tree M can be computed (up to

a constant factor that does not depend on T ) in polynomial time by reducing the MUL-trees

to a set of singly-labeled trees; see Figure 6.1 for intuition behind this proof.

To begin, we define two transformations that can be applied to a MUL-tree M = (m,S, φ)

or to its full differentiation M ′ = (m,S ′, φ′) by using the function f : S ′ → S with the

property that f(φ′(l)) = φ(l) for all l ∈ L(m).

Definition 6.5 (Contracted Version). The contracted version of M , denoted X (M), is

created by contracting every internal edge e with the property that there are at least two

leaves, one on either side of the edge, with the same label. Similarly, the contracted version

of M ′, denoted X (M ′), is created by contracting every internal edge e with π(e) = A|B such

that f(A) ∩ f(B) 6= ∅.

Definition 6.6 (Reduced Version). If all leaves with species label s are on the same side of

every internal edge in E(M), then they can be represented by a single leaf labeled s. The

reduced version of M or M ′, denoted R(M) or R(M ′), respectively, is created as follows.

For every s ∈ S with the aforementioned property, delete all but one of the leaves in the set

{f(φ′(l)) = φ(l) = s : l ∈ L(m)} (suppressing internal nodes of degree 2) and relabel the

remaining leaf s.

It is easy to see that R(X (M ′)) is a singly-labeled tree that is isomorphic to R(X (M)),

because after applying the function Σ to either M ′ or M , all the leaves with species label s

will be on the same side of every edge and thus can be replaced by a single leaf with species

label s by applying the function R. This observation holds for all s ∈ S.

Lemma 6.1. Let T be an unrooted, singly-labeled, and fully resolved tree on label set S,

let M = (m,S, φ) be an unrooted MUL-tree, and let Ext(T,M)′ and M ′ = (m,S ′, φ′) be

MCFDs of Ext(T,M) and M , respectively. Then,

RF (Ext(T,M)′,M ′) = RF (T,MX) +K (6.3)

where MX = R(Σ(M)) and K is a constant that does not depend on the topology of the

singly-labeled tree T on S.

Proof. Let f : S ′ → S be a function with the property that f(φ′(l)) = φ(l) for all l ∈ L(m).
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Now we define the following bipartition sets.

X = {A|B ∈ Bip(M ′) : f(A) ∩ f(B) 6= ∅} (6.4)

R = {A|B ∈ Bip(M ′) \X : |A| > 1, |B| > 1, and either |f(A)| = 1 or |f(B)| = 1} (6.5)

It is easy to see that X contains bipartitions that cannot exist in Bip(Ext(T,M)′) for any

singly-labeled tree T on S and thatR contains bipartitions that must exist inBip(Ext(T,M)′)

for any singly-labeled tree T on S. (note that edges that induce bipartitions in the set X

are colored red in Figure 6.1b and edges that induce bipartitions in the set R are colored

orange in Figure 6.1c.) Let E ′ denote Ext(T,M)′. Then,

|Bip(E ′) ∩Bip(M ′)| = |Bip(E ′) ∩Bip(X (M ′))| (6.6)

= |Bip(R(E ′)) ∩Bip(R(X (M ′)))|+ |R|+ |L(m)| − |S|
= |Bip(T ) ∩Bip(MX)|+ |R|+ |L(m)| − |S|
= 0.5

[
|E(MX)|+ |E(T )| −RF (T,MX)

]
+ |R|+ |L(m)| − |S|

= 0.5
[
|E(MX)|+ 2|S| − 3−RF (T,MX)

]
+ |R|+ |L(m)| − |S|

= 0.5
[
|E(MX)| − 3−RF (T,MX)

]
+ |R|+ |L(m)|

Let c be the number of species in S(M) that have multiple copies (i.e., c = |{s ∈ S(M)}|).
Then,

RF (E ′,M ′) = |E(E ′)|+ |E(M ′)| − 2|Bip(E ′) ∩Bip(M ′)| (6.7)

=
(
|S| − 3 + c+ |L(m)|

)
+ |E(m)| − 2|Bip(E ′) ∩Bip(M ′)|

= RF (T,MX) + |S|+ c+ |E(m)| − |E(MX)| − 2|R| − |L(m)|

where S, c, E(m), E(MX), R, and L(m) are independent of T . QED.

In Lemma 6.1, we show that MulRF (Ext(T,M),M) can be computed in polynomial

time, because computing RF (Ext(T,M)′,M ′) does not depend on the MCFDs of Ext(T,M)

and M . In addition, we show that the RF distance between Ext(T,M) and M can be

computed (up to a constant factor that does not depend on the topology of a singly-labeled

tree T on S) by simply transforming M into a (potentially unresolved) singly-labeled tree

on S and computing its RF distance from T .

The following theorem easily follows from Lemma 6.1.

Theorem 6.1. Let P be a set of unrooted MUL-trees, let PX = {R(X (M)) : M ∈ P}, and

let T be an unrooted, singly-labeled, and fully resolved tree on label set S =
⋃
M∈P S(M).
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Then, T is an RFS-MUL-trees supertree for P if and only if T is an RF supertree for PX .

Definition 6.7 (Valid and Invalid Bipartitions). Let M = (m,S, φ) be an unrooted MUL-

tree. Suppose that deleting an edge e but not its endpoints from M produces two subtrees

mA(e) and mB(e), defining the label sets: A = {φ(l) : l ∈ L(MA)} and B = {φ(l) : l ∈
L(MB)}. If A∩B = ∅, we say that e induces a valid bipartition and allow π(e) = A|B to be

contributed to the set Bip(M). If A ∩ B 6= ∅, we say that e induces an invalid bipartition

and do not allow π(e) = A|B to be contributed to the set Bip(M); alternatively, we say

that e fails to induce a bipartition.

Theorem 6.2. Let P be a set of unrooted MUL-trees, and let T be an unrooted, singly-

labeled, and fully resolved tree on label set S =
⋃
M∈P S(M). By combining Lemma 6.1 and

Definition 6.7, it is easy to see that T is in the set:∑
M∈P

RF (T |S(M),M) (6.8)

if and only if T is an RFS-MUL-trees supertree for P .

6.2.3 FastMulRFS

A consequence of Theorem 6.1 is that any heuristic for the RFS problem can be used

for the RFS-MUL-trees problem simply by computing PX prior to running the heuristic. In

this study, we explore the impact of using FastRFS [59], an effective heuristic for the RFS

problem, which solves the bipartition-constrained version of the RFS problem exactly using

DP. We refer to this pipeline as FastMulRFS.

• FastMulRFS Input: Set P = {M1,M2, . . . ,Mk} of unrooted MUL-trees

• FastMulRFS Output: An unrooted, fully resolved phylogenetic tree T on label set

S =
⋃k
i=1 S(Mi) such that

∑k
i=1RF (T |S(Mi),Mi) is maximized and Bip(T ) ⊆ Σ (note

that Σ is a set of allowed bipartitions computed from P)

The set Σ is the space that FastRFS required to run FastRFS, and the current implementa-

tion of FastRFS runs ASTRAL-III to compute Σ. This leads to the following pipeline.

In summary, FastMulRFS runs in O(mnk + nk|Σ|2) time, where n is the number of

species, k is the number of MUL-trees, and m is the largest number of leaves in any of the

MUL-trees. The default technique for constructing the set Σ of allowed bipartitions enforces
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Algorithm 6.1: FastMulRFS.

Input : Set P = {M1,M2, . . . ,Mk} of unrooted MUL-trees

Output: An unrooted, fully resolved phylogenetic tree T on S =
⋃k
i=1 S(Mi) s.t.∑k

i=1RF (T |S(Mi),Mi) is maximized and Bip(T ) ⊆ Σ

Function FastMulRFS(P):

Step 1: Use Algorithm 6.2 to create PX = {R(X (M)) : M ∈ P} in O(mnk) time,

where n = |S| and m is the largest number of leaves in any MUL-tree in P.

PX ← ContractThenReduceMultree(P)

Step 2: Use ASTRAL-III [261] to produce a set Σ of allowed bipartitions s.t.

|Σ| = O(nk). By default, Σ includes the bipartition set induced by every tree in

MX ∈ PX such that S(MX) = S. Other bipartitions may be added to Σ to guarantee

at least one fully resolved tree T satisfies Bip(T ) ⊆ Σ and to improve accuracy by

expanding the space of allowed solutions. The running time of ASTRAL-III is

O(nk|Σ|1.726); we run ASTRAL-III to construct Σ and then exit.

Σ←ASTRAL(PX)

Step 3: Run FastRFS [59] in O(nk|Σ|2) time.

T ← FastRFS(PX , Σ)

return T

|Σ| = O(nk) and as we will show, this suffices for proofs of statistical consistency under

generic GDL models when no adversarial GDL occurs.

6.2.4 Species Tree Estimation using FastMulRFS

Generic GDL models: Our generic GDL models proceed in the same fashion as the

probabilistic GDL models proposed by Arvestad et al. [258]; however, instead of having one

duplication rate λ and one loss rate µ that is fixed across every branch of the species tree

and across every gene, we allow each gene g and each edge e to have its own duplication

rate λ(e, g) and loss rate µ(e, g); in this way, our generic GDL model is similar to the NCM

model. It is easy to see that our generic GDL models contain the probabilistic GDL models

of [258] as sub-models. Recall that under these GDL models, duplications and losses follow

a Poisson process. Let N(e, g) denote the number of events (either duplications or losses)

on edge e for gene g, and let t(e) denote the length of the edge e in time units. Then, for

120



gene g, the probability of n events on edge e is

P
(
N(e, g) = n

)
=

1

n!

((
λ(e, g) + µ(e, g)

)
· t(e)

)n
× exp

(
−
(
λ(e, g) + µ(e, g)

)
· t(e)

)
(6.9)

Clearly, the probability of no duplication/loss events (i.e., n = 0) is strictly greater than

zero for every edge e and every gene g.

Adversarial GDL: We say that adversarial GDL has occurred when the gene evolution

process produces a gene family tree with a bipartition π that is not compatible with the true

species tree T ∗ (Definition 2.4). Adversarial GDL requires a sequence of events (a duplication

followed by a carefully selected set of losses) that coordinate to produce such a bipartition.

Figure 6.2d illustrates a scenario where adversarial GDL occurs: a gene duplicates on the

edge above Y , the most recent common ancestor (MRCA) of species {A,B,C}, in the species

tree (Figure 6.2a), so that Y has two copies of the gene. Then, one copy of the gene is lost on

the edge above B, whereas the other copy of the gene is lost on the edge above A and on the

edge above C. As a result, the gene family tree shown in Figure 6.2d is singly-labeled, but

the gene family tree induces a bipartition (A,C|B,D) that is incompatible with the species

tree; by definition, this is adversarial GDL.

Figure 6.2b illustrates an alternative scenario where the same duplication event is followed

by one copy of the gene being lost on the branch above the MRCA of species {B,C}. In

this case, not only is there no adversarial GDL, but also the gene family tree induces a

bipartition (A,D|B,C) that is compatible with the species tree. Because one of the species

retains both copies of a gene, the two arcs that are incident to the duplication node fail

to induce bipartitions, as they are on the path between two leaves with the same label.

Furthermore, suppose that A, B, and C are clades (rather than leaves), then every edge

in the two A clades (and the edges on the path connecting the two A clades) would fail

to induce a bipartition (assuming no other loss events). In contrast, every edge in the B

clade and the C clade would induce a bipartition that is compatible with the species tree

(assuming no other duplication events).

In some sense, duplication events hide bipartitions, while losses (following a duplication

event) can reveal bipartitions. A carefully selected pattern of losses (after the duplication)

can result in adversarial GDL (i.e., a particular bipartition π that is not in the species tree),

but small changes to that pattern may well produce bipartitions that are in the true species

tree or are incompatible with π. Therefore, while adversarial GDL may occur, it may not

have high impact on tree estimation based on the RFS-MUL-trees criterion.
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(d) Gene tree: 1 duplication, 3 losses

Figure 6.2: Impact of duplications and losses on RFS-MUL-trees. Subfigure (a)
shows a rooted species tree and subfigures (b)–(d) show three rooted gene family trees that
evolved within the species tree. Internal edges that induce valid bipartitions are shown in
blue, internal edges that induce invalid bipartitions are shown in red, terminal edges are
shown in black, and losses are shown in orange. Subfigure (b) shows a gene family tree with
a duplication event on the edge above the MRCA of species {A,B,C}, which we refer to
as species Y . All internal edges below the duplication fail to induce bipartitions; therefore,
they do not impact the solution space for RFS-MUL-trees. Subfigure (c) shows a gene family
tree with the same duplication event followed by one copy of the gene being lost from the
MRCA of species {B,C}. Because A retains both copies, the internal edges on the path
between A (on the left) and A (on the right) fail to induce bipartitions; therefore, they do
not impact the solution space for RFS-MUL-trees. As long as one species retains both copies
of a gene, the two arcs that are incident to the duplication node fail to induce bipartitions,
as they must be on the path between two leaves with the same label. Subfigure (d) shows a
gene family tree with the same duplication event followed by one copy of the gene being lost
from species B and the other copy of the gene being lost from both species A and C. None
of the species that evolved from Y retain both copies of the gene, so all edges below the
duplication node induce valid bipartitions. Because this scenario produces a valid bipartition
that is incompatible with the species tree, we refer to this situation as adversarial GDL.
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In the remainder of this section, we will discuss model conditions under which adversarial

GDL cannot occur: the duplication-only case, where all genes evolve with duplication but no

loss, and the loss-only case, where all genes evolve with loss but no duplication. To prove that

a model condition prohibits adversarial GDL, we need to establish that any bipartition that

appears in a gene family tree is compatible with the species tree. Equivalently, any complete

bipartition (i.e., a bipartition on the full species set) induced by any gene family tree must

also be induced by the species tree, and any incomplete bipartition (i.e., a bipartition on a

proper subset of the species set) induced by any gene family tree must be able to be extended

(by adding the missing species) so that it becomes a bipartition induced by the species tree

(Definition 2.4). It is trivial to see that if a gene evolves only with losses, then there is no

adversarial GDL for that gene (Lemma 6.2), but the proof for duplication-only evolution is

more interesting (Lemma 6.3).

Lemma 6.2. Let P be a set of true gene trees that evolved within the rooted species tree

T ∗ under a stochastic loss-only model of gene evolution. Then, for π ∈ {Bip(M) : M ∈ P},
π is compatible with T ∗. Hence, loss-only models have no adversarial GDL.

Lemma 6.3. Let P be the set of true gene trees that evolved within the rooted species tree

T ∗ under a stochastic duplication-only model of gene evolution. Then for every MUL-tree

M ∈ P , Bip(M) ⊆ Bip(T ∗). Hence, duplication-only models have no adversarial GDL.

Proof. Let M be an unrooted version of a MUL-tree in P , and let e be an internal edge in

E(M). We say that an internal edge e = (x, y) ∈ E(M) lies below a duplication node if

there is at least one duplication node on the path from either x or y to the root in the rooted

version of M ; otherwise, we say that e is above all duplication nodes. An internal edge e is

below a duplication node if and only if there is at least one species on both sides of e. It

follows that any internal edge e below a duplication node will be contracted when producing

X (M). Conversely, an internal edge e is above all duplication nodes if and only if there are

no leaves on both sides of e with the same species label. It follows that any internal edge e

above all duplication nodes will not be contracted when producing X (M). Finally, consider

a bipartition induced by an edge that is not contracted, and therefore has no duplication

nodes above it. This bipartition appears in the true species tree T ∗, since the only events

that cause the gene family tree to differ from the true species tree are duplications. QED.

We now prove that FastMulRFS is statistically consistent under generic GDL models if

no adversarial GDL occurs.

Theorem 6.3. The true species tree T ∗ is an RFS-MUL-trees supertree for any input P for

which no adversarial gene duplication and loss occurred.
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Proof. The optimization problem seeks a binary tree T that minimizes the sum of the RF

distances to the input MUL-trees; this is equivalent to maximizing the sum of the number

of compatible bipartitions in the input MUL-trees. If no adversarial GDL occurs, then by

definition, every bipartition in the input MUL-trees is compatible with the true species tree

T ∗, and so T ∗ is an optimal solution to the RFS-MUL-trees problem. QED.

Theorem 6.4. FastMulRFS is statistically consistent under a generic GDL model for which

adversarial GDL is prohibited.

Proof. Let T ∗ be the true species tree. By Theorem 6.3, T ∗ is an optimal solution to the

RFS-MUL-trees problem for any input P for which no adversarial GDL occurred, so as

the number of genes increases, T ∗ is an optimal solution to the RFS-MUL-trees problem.

FastMulRFS finds an optimal solution to the RFS-MUL-trees problem subject to the output

tree T satisfying Bip(T ) ⊆ Σ (Theorem 3 in [59] and Theorem 6.1). Our generic GDL models

assume that the probability of no duplication or loss occurring on an edge is always greater

than zero for every gene, so there is a strictly positive probability of the true species tree

T ∗ appearing in the set P of gene family trees; therefore, as the number of genes increases,

Σ (as constructed by the default setting within FastMulRFS) will contain all bipartitions in

the set Bip(T ∗) with probability converging to one. It follows that, as the number of genes

goes to infinity, the probability that FastMulRFS will return T ∗ converges to one. QED.

We conclude this section with a conjecture.

Conjecture 6.1. FastMulRFS is statistically consistent under a generic model of GDL

for probabilities of gene duplication and loss, so that adversarial GDL has sufficiently low

probability.

6.3 PERFORMANCE STUDY

We evaluated FastMulRFS in comparison to ASTRAL-multi, DupTree, and MulRF on

biological and simulated datasets, considering species tree topological accuracy and running

time.

6.3.1 Fungal Dataset

We analyzed a fungal dataset with 16 species and 5 351 genes from Rasmussen and

Kellis [60], who provided gene family trees estimated from their nucleotide alignments (see

Table 6.1 for an analysis of the number of copies per species in this dataset). In a prior
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study, Butler et al. [32] estimated species trees from this same dataset (specifically the

concatenated alignment of putatively orthologous amino acid sequences) using MrBayes

[203]. The comparison of trees estimated on this biological dataset is difficult to interpret,

as the prior concatenation analysis was constrained to enforce the out-grouping of S. castellii

with respect to S. cerevisiae and C. glabrata. Furthermore, the study by Butler et al. [32]

reported several trees that differed with respect to this group (i.e., not all analyses returned

this as a clade) as well as with respect to the placement of K. waltii. According to their

study, none of these resolutions are clearly correct.

6.3.2 Simulated Datasets

Species trees and gene trees: We used SimPhy version 1.0.2 to simulate a collection of

100-species, 1000-gene datasets under the DLCoal model with six different model conditions:

three levels of GDL and two levels of ILS. The easiest model condition was (largely) based

on parameters estimated from the 16-species fungal dataset from Rasmussen and Kellis

[60] except that we assumed 10 generations per year instead of 1.1̄ generations per year,

which resulted in simulated datasets that were similar to the biological dataset in terms

of each species being represented in a similar proportion of gene family trees (Tables 6.1–

6.2); Supplementary Materials for details. To make more challenging model conditions, we

increased the GDL rate and ILS level by increasing the effective population size (EPS).

We quantified the level of ILS by computing the normalized RF distance between each

true locus tree and its respective true gene tree (which are on the same leaf set), averaging

this value across all 1000 locus/gene trees. The average locus-to-gene tree discord across the

10 replicate datasets was 2% for the “no ILS condition” and 12% for the “low/moderate”

ILS condition (note that if we had used 1.1 generations per year, AD would have increased

to 19% and 55%, respectively).

We also quantified the level of GDL by counting the number of leaves and the number of

species per gene tree. All gene trees had approximately 100 leaves, which is expected since

the duplication and loss rates are equal. As the duplication/loss rate increased, the number

of species per gene tree decreased, so even though locus/gene trees had the same number of

leaves on average, these leaves were labeled by fewer species. For duplication/loss rates of

1× 10−10, 2× 10−10, and 5× 10−10 the average number of species per gene tree was 85, 74,

and 53.

We allowed gene trees to deviate from a strict molecular clock by using gene-by-lineage-

specific rate heterogeneity modifiers, meaning that for each gene tree, a gamma distribution

was defined for each gene tree by drawing α from a log-normal distribution with a location
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of 1.5 and a scale of one (same parameters as used in [261]), and then each branch length in

a gene tree was multiplied by a value drawn the gamma distribution corresponding to that

gene tree.

DNA (gene) sequence data: We now describe the simulation of DNA sequence data for

each gene tree produced by SimPhy. Again, our protocol is also based on the fungal dataset

from Rasmussen and Kellis [60], who provided an estimated multiple sequence alignment

(MSA) and an estimated maximum likelihood (ML) tree for each of the 5 351 genes. We

estimated GTR+GAMMA model parameters (~π, Q, and α) for each MSA and ML gene tree

pair using RAxML version 8.2.12 and then fit distributions to the estimated GTR+GAMMA

model parameters (only MSAs with least 500 parsimony-informative sites and at most 25%

gaps were included in this analysis). For each gene tree, we drew GTR+GAMMA model

parameters from these distributions and then simulated DNA sequences (with 1000 sites)

using INDELible version 1.03. Because DNA sequences were simulated without insertions

or deletions, MSA estimation was not necessary.

Estimated gene trees: ML gene trees were estimated under the GTR+GAMMA model

using RAxML version 8.2.12. Prior to gene tree estimation, sequences were truncated to

the first 25, 50, 100, and 250 nucleotides to produce datasets with varying levels of GTEE.

GTEE was measured by the normalized RF distance between the true and the estimated

gene family trees. Sequence lengths of 25, 50, 100, and 250 resulted in mean GTEE of 67%,

52%, 35%, and 19%, respectively.

6.3.3 Species Tree Estimation

Finally, species trees were estimated on 25, 50, 100, and 500 gene family trees, either true

or estimated, using three different methods: ASTRAL-multi (as implemented in ASTRAL

version 5.6.3), DupTree, FastMulRFS (as implemented in release 1.2.0 version 3), and MulRF

(as implemented in version 2.1). All estimated species trees were binary (note that a single

optimal tree was taken as an estimate of the species tree even when multiple equally optimal

trees were returned by FastMulRFS). This created 120 model conditions (three GDL rates,

two levels of ILS, five levels of GTEE, and four numbers of genes), each with 10 replicates,

for a total of 1 200 datasets.

126



6.3.4 Evaluation

Species tree estimation methods were evaluated in terms of running time and species tree

error, as measured by the RF error rate (Equation 2.3). All computational experiments were

performed on the Campus Cluster at the University of Illinois at Urbana-Champaign, which

is a heterogeneous system, meaning that compute nodes can have different specifications

(https://campuscluster.illinois.edu/resources/docs/nodes/).

6.4 RESULTS

6.4.1 Fungal Dataset

In an analysis of the fungal dataset, all methods (ASTRAL-multi, FastMulRFS, DupTree,

and MulRF) produced species trees that were similar to the MrBayes concatenation tree

(Figure 6.3). The differences in species trees are minor given the variability in the trees

found by Butler et al. [32], the use of a topological constraint in their MrBayes analysis,

and the uncertainty about the placement of specific taxa in the tree (see Supplementary

Information Section 5 in [32] for more information).

Given that the topological differences are minor and difficult to interpret, we focus on

differences in empirical running time. FastMulRFS and DupTree completed in under a

minute each, ASTRAL-multi completed in 18 minutes, and MulRF completed in 40 minutes.

Hence, FastMulRFS is much faster than MulRF and ASTRAL-multi. While all four of these

methods were relatively fast on 16 taxa, we expect the difference between methods to increase

on datasets with larger numbers of species and with higher rates of gene duplication. The

improvement in running time over MulRF and ASTRAL-multi is due in part to the fact

that both MulRF and ASTRAL-multi use the original gene family trees, while FastMulRFS

uses the reduced singly-labeled trees; hence, as the number of leaves or the duplication rate

increase, the advantage in running time for FastMulRFS should also increase.

6.4.2 Simulated Datasets

DupTree typically had poorer accuracy than the other tested methods (Figures 6.4–

reffig:fastmulrfs-100gen), especially when the level of GTEE was high. As high GTEE is

consistent with the generally low bootstrap branch support values reported for several multi-

locus datasets (Table 3.1), we focus on comparing MulRF, FastMulRFS, and ASTRAL-

multi. All methods improved in accuracy with larger numbers of genes and degraded in
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Figure 6.3: Species trees were estimated on the 16-taxon fungal dataset with 5 351 gene
family trees estimated by Rasmussen and Kellis [60]. Subfigure (a) shows the MrBayes
concatenation tree estimated by Butler et al. [32], which is based on putative orthologs
instead of the gene family trees. Subfigure (b) shows the ASTRAL-multi tree, and subfigure
(c) shows the FastMulRFS tree, which is the same tree produced by MulRF and DupTree.
Topological differences between the MrBayes concatenation tree are highlighted in red; how-
ever, this is not indicative of which resolution is correct or incorrect, as the true placement
of these taxa is not yet established. DupTree and FastMulRFS were the fastest (both com-
pleted in less than a minute), ASTRAL-multi estimated a species tree in 18 minutes, and
MulRF completed in 40 minutes.

accuracy with higher GTEE levels, ILS levels, and/or GDL rates. The relative accuracy

between methods was consistent across all model conditions, although the degree of difference

depended on the model conditions, with bigger differences for smaller numbers of genes and

higher GTEE levels, ILS levels, and GDL rates. When given 500 gene trees, error levels were

low and differences between methods were (usually) small, so that the main difference was

running time. The fastest method was FastMulRFS, MulRF was the slowest, and ASTRAL-

multi was intermediate.

FastMulRFS vs. MulRF: FastMulRFS and MulRF are both heuristics for the RFS-

MUL-trees problem. They were essentially tied for accuracy across all tested conditions

(Figures 6.4–6.5 and Table 6.3), but FastMulRFS was dramatically faster than MulRF (Fig-

ures 6.4–6.5 and Table 6.4). In addition, FastMulRFS nearly always returned a tree with an

equivalent or better RFS-MUL-trees score than MulRF. Out of the 1 200 datasets analyzed,

FastMulRFS was worse than MulRF on 56 datasets, FastMulRFS was equal to MulRF on
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962 datasets, and FastMulRFS was better than MulRF on 182 datasets.

FastMulRFS vs. ASTRAL-multi: FastMulRFSwas always at least as accurate on aver-

age as ASTRAL-multi (and was often more accurate on average than ASTRAL-multi) across

all model conditions tested (Figures 6.4–6.5 and Table 6.3), with larger differences between

methods for the higher GTEE conditions and smaller differences for the lower GTEE condi-

tions. The running times for ASTRAL-multi and FastMulRFS increased with the number

of genes, but FastMulRFS was always faster (Figures 6.4–6.5 and Table 6.4). For example,

on the 500-gene model conditions, FastMulRFS typically completed in one to two minutes

(and always in under five minutes), whereas ASTRAL-multi used between 10 minutes and

1.2 hours.

6.5 DISCUSSION

To date, only two types of methods have been proven statistically consistent under any

GDL model. The first type of method is based on maximizing quartets that are induced by

the gene family trees, and the second type of method is based on maximizing bipartitions

that are induced by the gene family trees. ASTRAL-multi is an example of the first kind of

method, and FastMulRFS is an example of the second type of method; notably, both methods

use DP to solve their optimization problems exactly within a constrained search space. The

conditions under which these two methods have been proven statistically consistent are

different. ASTRAL-multi is established to be consistent under a gene evolution model that

requires that all the genes evolve i.i.d. within the species tree. Since the time of our study,

Markin and Eulenstein [262] showed that a related quartet-based approach is statistically

consistent under the DLCoal model, which allows for both GDL and ILS but still assumes

that genes evolve i.i.d. within the species tree. In contrast, FastMulRFS has been proven

consistent under a generic model that does not require the genes to evolve i.i.d. and indeed

allows for a very generic model similar to the NCM model. This is a relative strength of

FastMulRFS, as genes do not evolve i.i.d. within a species tree, as discussed in [263]. On the

other hand, FastMulRFS has only been proven consistent when no adversarial GDL occurs

and no ILS occurs; this is a relative weakness of FastMulRFS (although see Conjecture 6.1

regarding adversarial GDL). Therefore, from a theoretical perspective, there are advantages

and disadvantages for both methods.

In terms of empirical performance, FastMulRFS was more accurate and more robust to

GTEE than ASTRAL-multi under most model conditions we examined. The only conditions

in which the two methods achieved similar accuracy were characterized by low GTEE and
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large numbers of genes, where both methods achieved very high accuracy. FastMulRFS also

was much faster than ASTRAL-multi, with large improvements in speed for large numbers

of genes and high GTEE. In summary, FastMulRFS had superior performance compared to

ASTRAL-multi in our experimental evaluation.

A comparison between FastMulRFS and MulRF is also interesting. Both methods at-

tempt to solve the same NP-hard optimization problem, and neither is guaranteed to find

an optimal solution. However, FastMulRFS is guaranteed to find an optimal solution within

a constrained search space in polynomial time; furthermore, the way that FastMulRFS con-

strains its search space is sufficient to ensure that it is statistically consistent. MulRF, in

contrast, uses a locally optimal search strategy combined with hill climbing, so it does not

run in polynomial time and may not be provably statistically consistent. In our experimen-

tal study, the two methods were very close in accuracy, but FastMulRFS was dramatically

faster. Overall, FastMulRFS was superior to MulRF.

FastMulRFS matched or improved on the other methods under all conditions we explored,

where gene trees evolved under a unified model of ILS and GDL (which did not prohibit

adversarial GDL). Our study suggests that FastMulRFS may have good robustness and high

accuracy, even under conditions where it has not (yet) been proven statistically consistent.

(note that we think it is unlikely that FastMulRFS is statistically consistent under conditions

with high ILS.) Future work is clearly needed to evaluate FastMulRFS and other methods

under a wider range of model conditions, including explicit conditions where adversarial

GDL and high levels of ILS occur. Simulations should also be performed to evaluate other

scenarios that produce multi-copy genes, for example whole genome duplication events, which

impact species tree estimation for many major clades, including fungi [32] and plants [25].

More complex simulations also should be performed (including gene conversion and HGT)

in order to better understand the conditions in which methods perform well. Along these

lines, it would be helpful to characterize biological datasets to understand realistic levels of

ILS and GDL (including the frequency of adversarial GDL); this task has been identified as

an important challenge throughout this dissertation.

A limitation of this study is that we examined only a few methods, and future studies

should evaluate other methods, including guenomu (discussed earlier) and MixTreEM [264],

to discover the places in the parameter space of model species trees where each method

outperforms the others. Furthermore, methods that operate by making predictions of or-

thology could be used in a three-phase approach: given inputs with sequence alignments and

MUL-trees, predict orthology, reduce to datasets with just orthologous genes (and hence

singly-labeled gene trees), and then run a preferred species tree estimation method. For

example, in a recent preprint, Zhang et al. [265] presented A-PRO, another modification of
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ASTRAL, and proved that it is statistically consistent under a GDL model if given correctly

“tagged” gene trees (i.e., each node in each gene tree is correctly identified as either a dupli-

cation or not); however, this assumption means that orthology can be inferred without error

(an assumption that is not made for ASTRAL-multi). Studies evaluating A-PRO and these

other approaches under a variety of conditions would enable biologists to select methods

with the best expected accuracy for their datasets.

While we have focused on the estimated species topology, biologists require that branches

in the topology to be annotated with information about the support for or confidence in each

branch. Our reduction on MUL-trees (which transforms them into singly-labeled trees) is

useful not only for estimating species trees but also for interpreting estimated species trees.

First, the reduction allows the branches of the species tree to be annotated by the pro-

portion of MUL-trees that contain that branch; this metric is easy to interpret and therefore

highly useful. Second, by combining the reduction with DP in a constrained search space,

we can use an existing tool, called SIESTA [266], to quantify the space of optimal solutions;

specifically, SIESTA reports the number of optimal solutions in the constrained search space

and annotates each branch by the proportion of optimal solutions that contain that branch.

This seems especially useful in the context of duplication and loss, as the reduction on MUL-

trees illustrates that the MUL-trees are likely to be unresolved when duplications occur; this

combined with losses could result in a large space of optimal solutions.

Third, after applying the reduction to MUL-trees, it possible to determine the relative

weight of each MUL-tree when solving the RFS-MUL-trees problem. A MUL-tree M that

evolves with only a duplication at a leaf induces S(M) − 3 valid bipartitions; however, a

MUL-tree that evolves with only a duplication at the root induces zero valid bipartitions;

therefore, the output tree could be biased towards a small subset of MUL-trees that contain

a disproportionately large number of valid bipartitions compared to the other MUL-trees

in the input set. While this is not a problem in theory, it can be a problem in practice,

as MUL-trees can differ from the species tree due to estimation error and other sources of

heterogeneity. This has already been shown to be an issue in the context of ILS. As an

example, gene trees with different numbers of species induce different numbers of quartets,

and in this case, each gene tree contributes a different number of quartets to the MQSS

problem (which ASTRAL solves within a constrained search space). Two recent studies

[267, 268] showed that the resolution of some controversial branches can change by removing

outlier gene trees that contribute a disproportionately large number of quartets compared to

the other gene trees in the input set. The ability to recognize that two fully resolved MUL-

trees can contribute very different numbers of bipartitions to the RFS-MUL-trees problem

is critical for identifying systematic biases, and we hope the theoretical observations of our
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study further enable the interpretation of species trees estimated from gene family trees.

6.6 CONCLUSIONS

We presented FastMulRFS, a new method for estimating species tree from unrooted gene

family trees, without needing to have any information about orthology. FastMulRFS runs in

polynomial-time and is provably statistically consistent under a generic GDL when adversar-

ial GDL does not occur. Prior to our study, the only method established to be statistically

consistent under any GDL model was ASTRAL-multi (their proof does assume that genes

evolve i.i.d. within the species tree but does not prohibit adversarial GDL). Of course, sta-

tistical consistency does not predict performance on finite amounts of data or in the context

of model violations (which are perhaps certain to occur when analyzing biological datasets).

In our simulation study, FastMulRFS compared quite favorably (in terms of accuracy and

running time) to ASTRAL-multi as well as MulRF. This is significant as we evaluated meth-

ods under conditions where neither FastMulRFS nor ASTRAL-multi are (yet) proven to be

statistically consistent. Specifically, our proof establishes statistical consistency (of FastMul-

RFS) under models where ILS, GTEE, or adversarial GDL are prohibited, whereas our study

benchmarks methods on datasets simulated with two ILS levels, five GTEE levels, and three

GDL rates (note that adversarial GDL was not explicitly prohibited). Although accuracy

is difficult to evaluate on biological datasets, FastMulRFS produced trees that were similar

to those produced by other methods and did not violate known relationships. Overall, the

recent advances in development of statistically consistent methods for species tree estimation

under GDL models is exciting, and the good performance of many of these methods under

a range of model conditions suggests that novel combinations and ideas may lead to even

better methods that provide improved accuracy and scalability.
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6.7 PLOTS

This section contains the four plots presented in Section 6.4 Results.
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Figure 6.4: Comparison of species tree estimation methods on 500 gene datasets
with low/moderate ILS. MulRF (blue), FastMulRFS (orange), ASTRAL-multi (green),
and DupTree (red) are compared on 100-species, 500 gene datasets with low/moderate ILS
(12%), two levels of GTEE, and two GDL rates (lowest and highest). Subplots in the top row
show species tree error (RF error rate). Gray bars represent medians, gray triangles represent
means, gray circles represent outliers, box plots are defined by quartiles (extending from the
first to the third quartiles), and whiskers extend to plus/minus 1.5 times the interquartile
distance (unless greater/less than the maximum/minimum value). Subplots in the bottom
row show running time (in minutes); bars represent means and error bars represent standard
deviations across replicate datasets.). The number N of replicates on which the methods
completed is shown on the x-axis.
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Figure 6.5: Comparison of species tree estimation methods on 100 gene datasets
with low/moderate ILS. MulRF (blue), FastMulRFS (orange), ASTRAL-multi (green),
and DupTree (red) are compared on 100-species, 100 gene datasets with low/moderate ILS
(12%), two levels of GTEE, and two GDL rates (lowest and highest). Subplots in the top row
show species tree error (RF error rate). Gray bars represent medians, gray triangles represent
means, gray circles represent outliers, box plots are defined by quartiles (extending from the
first to the third quartiles), and whiskers extend to plus/minus 1.5 times the interquartile
distance (unless greater/less than the maximum/minimum value). Subplots in the bottom
row show running time (in minutes); bars represent means and error bars represent standard
deviations across replicate datasets.). The number N of replicates on which the methods
completed is shown on the x-axis.
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6.8 TABLES

This section contains the two tables presented in Section 6.3 Performance Study and the

two tables presented in 6.4 Results.

Table 6.1: Statistics on the number of copies of each species in the fungal datasets.
For the fungal biological dataset, we computed the mean (± standard deviation), the mini-
mum, and the maximum number of copies of each species across 5 351 gene trees. We also
report the proportion of gene family trees with more than 1, 2, 5, 10, and 20 copies of a
species; for example, > 1 indicates the proportion of gene family trees (out of 5 351) with
greater than one copy of the species.

Species Mean ± Std Min Max =1 >1 >2 >5 >10 >20

A. gossypii 0.85 ± 0.58 0 13 0.731 0.050 0.008 0.001 0.000 0.000
C. alibicans 1.04 ± 0.65 0 7 0.769 0.111 0.027 0.001 0.000 0.000
C. glabrata 0.93 ± 0.81 0 27 0.667 0.110 0.019 0.002 0.001 0.000

C. guilliermondii 0.99 ± 0.70 0 11 0.722 0.110 0.027 0.001 0.000 0.000
C. lusitaniae 0.95 ± 0.62 0 10 0.728 0.098 0.019 0.000 0.000 0.000

C. parapsilosis 1.00 ± 0.73 0 12 0.729 0.110 0.028 0.003 0.000 0.000
C. tropicalis 1.04 ± 0.73 0 8 0.738 0.122 0.033 0.003 0.000 0.000
D. hansenii 1.02 ± 0.65 0 7 0.756 0.110 0.026 0.002 0.000 0.000

K. latics 0.89 ± 0.63 0 15 0.745 0.063 0.010 0.002 0.000 0.000
K. waltii 0.88 ± 0.71 0 18 0.736 0.059 0.011 0.002 0.001 0.000

L. elongisporus 0.98 ± 0.66 0 9 0.727 0.108 0.021 0.001 0.000 0.000
S. bayanus 0.94 ± 0.81 0 23 0.643 0.128 0.022 0.002 0.000 0.000
S. castellii 1.01 ± 0.91 0 25 0.638 0.154 0.028 0.003 0.001 0.000

S. cerevisiae 1.03 ± 1.09 0 42 0.678 0.141 0.027 0.004 0.001 0.001
S. mikatae 0.92 ± 0.76 0 18 0.646 0.118 0.021 0.002 0.000 0.000

S. paradoxus 0.95 ± 0.83 0 25 0.649 0.129 0.023 0.002 0.000 0.000
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Table 6.2: Statistics on the number of copies of each species in the datasets
simulated based on the fungal dataset. This is the same as Table 6.1 but data for the
first 15 species in the first replicate datasets are shown.

Species Mean ± Std Min Max =1 >1 >2 >5 >10 >20

Assuming 10 generations per year

1 1.02 ± 0.57 0 4 0.743 0.128 0.021 0.000 0.000 0.000
2 1.01 ± 0.60 0 4 0.703 0.144 0.018 0.000 0.000 0.000
3 0.99 ± 0.56 0 5 0.736 0.119 0.012 0.000 0.000 0.000
4 1.01 ± 0.60 0 4 0.703 0.142 0.019 0.000 0.000 0.000
5 1.01 ± 0.61 0 4 0.707 0.140 0.024 0.000 0.000 0.000
6 1.02 ± 0.57 0 4 0.748 0.124 0.021 0.000 0.000 0.000
7 1.05 ± 0.57 0 3 0.726 0.151 0.019 0.000 0.000 0.000
8 1.02 ± 0.58 0 4 0.747 0.125 0.020 0.000 0.000 0.000
9 1.01 ± 0.57 0 4 0.738 0.126 0.019 0.000 0.000 0.000
10 1.02 ± 0.56 0 4 0.759 0.121 0.019 0.000 0.000 0.000
11 1.02 ± 0.58 0 4 0.742 0.127 0.023 0.000 0.000 0.000
12 0.99 ± 0.56 0 5 0.743 0.114 0.013 0.000 0.000 0.000
13 0.96 ± 0.59 0 4 0.709 0.119 0.016 0.000 0.000 0.000
14 1.01 ± 0.60 0 4 0.732 0.124 0.025 0.000 0.000 0.000
15 1.01 ± 0.63 0 4 0.693 0.145 0.022 0.000 0.000 0.000

Assuming 1.1̄ generations per year

1 0.99 ± 0.20 0 3 0.961 0.015 0.001 0.000 0.000 0.000
2 0.99 ± 0.21 0 2 0.955 0.017 0.000 0.000 0.000 0.000
3 0.99 ± 0.18 0 2 0.968 0.012 0.000 0.000 0.000 0.000
4 1.00 ± 0.22 0 3 0.954 0.021 0.001 0.000 0.000 0.000
5 1.00 ± 0.22 0 2 0.950 0.024 0.000 0.000 0.000 0.000
6 0.99 ± 0.19 0 3 0.965 0.011 0.001 0.000 0.000 0.000
7 0.99 ± 0.17 0 2 0.971 0.009 0.000 0.000 0.000 0.000
8 0.99 ± 0.19 0 3 0.965 0.013 0.001 0.000 0.000 0.000
9 0.99 ± 0.19 0 3 0.966 0.011 0.001 0.000 0.000 0.000
10 0.99 ± 0.20 0 3 0.963 0.013 0.001 0.000 0.000 0.000
11 1.00 ± 0.20 0 3 0.962 0.016 0.001 0.000 0.000 0.000
12 0.99 ± 0.18 0 2 0.969 0.012 0.000 0.000 0.000 0.000
13 1.00 ± 0.18 0 2 0.969 0.016 0.000 0.000 0.000 0.000
14 0.99 ± 0.18 0 2 0.966 0.014 0.000 0.000 0.000 0.000
15 1.00 ± 0.20 0 3 0.963 0.017 0.001 0.000 0.000 0.000
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Table 6.3: Species tree error on the simulated datasets. Species tree error is averaged
across 10 replicate datasets for each of the model conditions on 100-species simulated datasets
for ASTRAL-multi / FastMulRFS / MulRF. ILS level is measured using the average
normalized RF distance between true locus trees and true gene trees.

GTEE 25 genes 50 genes 100 genes 500 genes

ILS: 2%, D/L Rate: 1E-10

67% 0.26 / 0.21 / 0.23 0.19 / 0.12 / 0.13 0.17 / 0.08 / 0.09 0.10 / 0.04 / 0.05
52% 0.14 / 0.11 / 0.11 0.09 / 0.07 / 0.07 0.07 / 0.05 / 0.05 0.03 / 0.02 / 0.02
35% 0.07 / 0.06 / 0.06 0.05 / 0.05 / 0.05 0.04 / 0.03 / 0.03 0.02 / 0.02 / 0.02
19% 0.04 / 0.04 / 0.04 0.03 / 0.03 / 0.02 0.02 / 0.02 / 0.02 0.01 / 0.01 / 0.01
0% 0.01 / 0.01 / 0.01 0.01 / 0.00 / 0.00 0.00 / 0.00 / 0.00 0.00 / 0.00 / 0.00

ILS: 2%, D/L Rate: 2E-10

67% 0.33 / 0.29 / 0.36 0.27 / 0.18 / 0.21 0.19 / 0.14 / 0.16 0.12 / 0.06 / 0.07
52% 0.19 / 0.16 / 0.16 0.15 / 0.10 / 0.10 0.11 / 0.08 / 0.08 0.05 / 0.04 / 0.04
35% 0.11 / 0.09 / 0.09 0.08 / 0.05 / 0.05 0.05 / 0.04 / 0.04 0.03 / 0.02 / 0.02
19% 0.07 / 0.05 / 0.05 0.04 / 0.03 / 0.03 0.03 / 0.03 / 0.03 0.01 / 0.01 / 0.01
0% 0.01 / 0.01 / 0.01 0.01 / 0.00 / 0.00 0.01 / 0.00 / 0.00 0.01 / 0.00 / 0.00

ILS: 2%, D/L Rate: 5E-10

67% 0.48 / 0.42 / 0.48 0.37 / 0.29 / 0.33 0.32 / 0.19 / 0.22 0.19 / 0.06 / 0.07
52% 0.33 / 0.27 / 0.29 0.23 / 0.17 / 0.17 0.18 / 0.10 / 0.10 0.09 / 0.04 / 0.04
35% 0.19 / 0.17 / 0.16 0.14 / 0.10 / 0.09 0.11 / 0.06 / 0.06 0.05 / 0.02 / 0.02
19% 0.11 / 0.09 / 0.08 0.09 / 0.05 / 0.05 0.07 / 0.03 / 0.03 0.02 / 0.02 / 0.02
0% 0.04 / 0.01 / 0.01 0.04 / 0.01 / 0.01 0.02 / 0.01 / 0.01 0.00 / 0.00 / 0.00

ILS: 12%, D/L Rate: 1E-10

67% 0.32 / 0.24 / 0.27 0.24 / 0.15 / 0.17 0.18 / 0.11 / 0.14 0.11 / 0.06 / 0.06
52% 0.19 / 0.14 / 0.15 0.13 / 0.12 / 0.11 0.12 / 0.08 / 0.08 0.05 / 0.04 / 0.04
35% 0.11 / 0.09 / 0.09 0.07 / 0.06 / 0.06 0.05 / 0.05 / 0.05 0.03 / 0.02 / 0.02
19% 0.07 / 0.06 / 0.06 0.05 / 0.04 / 0.04 0.03 / 0.03 / 0.03 0.02 / 0.01 / 0.01
0% 0.04 / 0.03 / 0.04 0.02 / 0.02 / 0.02 0.01 / 0.02 / 0.02 0.01 / 0.01 / 0.01

ILS: 12%, D/L Rate: 2E-10

67% 0.35 / 0.29 / 0.34 0.26 / 0.21 / 0.23 0.20 / 0.14 / 0.15 0.11 / 0.07 / 0.07
52% 0.19 / 0.16 / 0.16 0.15 / 0.12 / 0.12 0.12 / 0.08 / 0.07 0.06 / 0.03 / 0.03
35% 0.12 / 0.10 / 0.10 0.09 / 0.09 / 0.08 0.08 / 0.05 / 0.05 0.03 / 0.02 / 0.02
19% 0.07 / 0.06 / 0.06 0.05 / 0.05 / 0.05 0.05 / 0.03 / 0.03 0.02 / 0.02 / 0.02
0% 0.04 / 0.03 / 0.03 0.03 / 0.03 / 0.02 0.02 / 0.01 / 0.01 0.01 / 0.01 / 0.01

ILS: 12%, D/L Rate: 5E-10

67% 0.47 / 0.43 / 0.50 0.41 / 0.28 / 0.33 0.31 / 0.20 / 0.22 0.17 / 0.09 / 0.09
52% 0.36 / 0.28 / 0.32 0.27 / 0.17 / 0.19 0.20 / 0.12 / 0.12 0.10 / 0.05 / 0.06
35% 0.24 / 0.17 / 0.18 0.17 / 0.10 / 0.10 0.13 / 0.08 / 0.08 0.06 / 0.03 / 0.03
19% 0.18 / 0.12 / 0.11 0.13 / 0.08 / 0.08 0.10 / 0.06 / 0.06 0.04 / 0.03 / 0.03
0% 0.12 / 0.05 / 0.05 0.08 / 0.04 / 0.04 0.06 / 0.03 / 0.03 0.02 / 0.01 / 0.01
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Table 6.4: Running time on the simulated datasets. Running time (in seconds) is
averaged across 10 replicate datasets on 100-species simulated datasets for each of the model
conditions for ASTRAL-multi / FastMulRFS / MulRF. ILS level is measured using
the average normalized RF distance between true locus trees and true gene trees.

GTEE 25 genes 50 genes 100 genes 500 genes

ILS: 2%, D/L Rate: 1E-10

67% 42 / 5 / 113 102 / 9 / 263 245 / 22 / 614 2148 / 357 / 7089
52% 28 / 4 / 95 61 / 6 / 262 156 / 14 / 565 1181 / 306 / 7225
35% 22 / 3 / 89 51 / 5 / 211 121 / 11 / 623 756 / 82 / 6921
19% 19 / 2 / 86 37 / 3 / 226 86 / 7 / 596 641 / 50 / 6727
0% 20 / 2 / 99 46 / 2 / 228 106 / 4 / 582 769 / 24 / 6431

ILS: 2%, D/L Rate: 2E-10

67% 52 / 4 / 91 123 / 8 / 273 306 / 20 / 580 2514 / 273 / 6937
52% 36 / 4 / 99 76 / 6 / 280 213 / 12 / 577 1357 / 167 / 7225
35% 24 / 3 / 92 49 / 5 / 254 173 / 9 / 636 930 / 90 / 6987
19% 26 / 2 / 105 47 / 4 / 237 159 / 7 / 613 978 / 50 / 6852
0% 26 / 2 / 103 55 / 3 / 197 157 / 5 / 597 829 / 30 / 6827

ILS: 2%, D/L Rate: 5E-10

67% 86 / 4 / 102 232 / 7 / 232 418 / 16 / 585 4495 / 201 / 6884
52% 49 / 3 / 114 128 / 5 / 691 258 / 11 / 692 2615 / 125 / 6793
35% 40 / 3 / 112 79 / 4 / 265 195 / 8 / 565 1856 / 68 / 6635
19% 32 / 2 / 111 84 / 3 / 241 177 / 6 / 546 1288 / 53 / 6645
0% 36 / 2 / 110 83 / 3 / 215 153 / 5 / 542 1308 / 35 / 6608

ILS: 12%, D/L Rate: 1E-10

67% 43 / 5 / 112 93 / 10 / 239 214 / 28 / 680 2107 / 394 / 6882
52% 29 / 4 / 111 63 / 7 / 573 133 / 19 / 603 1044 / 232 / 7597
35% 21 / 3 / 105 55 / 6 / 479 125 / 12 / 643 726 / 144 / 7351
19% 22 / 2 / 77 49 / 4 / 232 111 / 8 / 610 673 / 56 / 6976
0% 21 / 2 / 83 44 / 3 / 318 102 / 6 / 572 704 / 31 / 6485

ILS: 12%, D/L Rate: 2E-10

67% 57 / 4 / 109 130 / 9 / 510 302 / 22 / 694 3098 / 292 / 7582
52% 32 / 4 / 107 74 / 7 / 383 193 / 15 / 583 1767 / 174 / 7085
35% 28 / 3 / 103 62 / 5 / 223 166 / 10 / 672 1052 / 95 / 6896
19% 22 / 2 / 106 53 / 4 / 238 182 / 7 / 541 836 / 54 / 7189
0% 23 / 2 / 104 47 / 3 / 279 121 / 6 / 586 808 / 35 / 6669

ILS: 12%, D/L Rate: 5E-10

67% 105 / 4 / 109 205 / 7 / 431 469 / 16 / 599 4368 / 196 / 6889
52% 63 / 3 / 128 115 / 5 / 274 258 / 11 / 509 2572 / 123 / 7107
35% 46 / 3 / 112 101 / 4 / 204 185 / 8 / 647 1896 / 64 / 6745
19% 37 / 2 / 112 82 / 4 / 261 193 / 7 / 638 1392 / 54 / 6786
0% 37 / 2 / 95 73 / 3 / 251 173 / 5 / 544 1402 / 41 / 6746
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6.9 ALGORITHMS

This section contains the algorithm presented in Section 6.2 Approach.

Algorithm 6.2: Preprocess MUL-trees.

Input : Unrooted, fully resolved MUL-tree T = (t, S, φ) with |L(t)| = m and |S| = n (Note that
unrooted means there is a trifurcation at the “root” node.)

Output: R(X (T ))

Function PreprocessMulTree(T):
below ← [0]2m×n; above← [0]2m×n; found← [0]n;

Step 1: Fill vector with 1 if species is below node and with 0 otherwise.
for v ∈ PostOrderNodeTraversal(T) do

if IsLeaf(v) then
below[v, φ(v)]← 1

else if IsRoot(v) then
[l,m, r]← GetChildren(v)
for s ∈ S do

below[v, s]← below[l, s] ∨ below[m, s] ∨ below[r, s]
else

[l, r]← GetChildren(v)
for s ∈ S do

below[v, s]← below[l, s] ∨ below[r, s]

Step 2: Fill vector with 1 if species is “above” node and with 0 otherwise.
root← GetRoot(T)
[l,m, r]← GetChildren(root)
for s ∈ S do

above[l][s]← below[m][s] ∨ below[r][s]
above[m][s]← below[l][s] ∨ below[r][s]
above[r][s]← below[l][s] ∨ below[m][s]

for v ∈ PreOrderNodeTraversal(T) do
SetEdgeLength((v, p), 1)
if v /∈ {root, l,m, r} and not IsLeaf(v) then

p← GetParent(v)
[x, y]← GetChildren(p)
if v == x then x← y
for s ∈ S do

above[v][s]← above[p][s] ∨ below[x][s]
if below[v][s] ∧ above[v][s] then

SetEdgeLength((v, p), 0)

Steps 3 and 4: Contract internal edges that fail to induce bipartitions and then remove extra
copies of species.
ContractEdgesWithZeroLength(T)
for l ∈ L(t) do

if found[φ(l)] then PruneLeaf(l)
else found[φ(l)]← 1

return T
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CHAPTER 7: CONCLUSION

In this dissertation, we presented three new supertree-like methods, NJMerge, TreeMerge,

and FastMulRFS, that can be used in the context of species tree estimation from genome-

scale datasets.

The first two methods, NJMerge and TreeMerge, deviate from traditional supertree meth-

ods by taking a set of leaf-label-disjoint trees as input; thus we refer to these methods as

disjoint tree mergers (DTMs). This specification implies that a compatibility supertree for

the input trees exists—but also that the input trees provide no information on how to recover

a compatibility supertree that is close to the true phylogeny. As such, DTM methods require

auxiliary data as input (note that they estimate the phylogeny from this data subject to

the topological constraints defined by the input trees). Of the DTM methods, TreeMerge is

particularly noteworthy, as it seeks to reduce computational and storage requirements (and

improve accuracy) by exploiting locality, combining an embarrassingly parallel local merge

phase with a fast global merge phase. We explore the use of DTM methods in divide-and-

conquer species tree estimation pipelines, providing proofs of statistical consistency under

the Multi-Species Coalescent (MSC) model and presenting empirical results for simulated

datasets (on which the DTM-based pipelines compare favorably in terms of accuracy and

running time to the dominant species tree estimation methods).

The third method, FastMulRFS, deviates from traditional supertree methods by taking

as input a set of multi-labeled trees (MUL-trees). We show the input MUL-trees can be re-

duced to set of singly-labeled trees prior to solving FastMulRF’s optimization problem: the

Robinson-Foulds supertree (RFS) problem for MUL-trees. After applying this transforma-

tion, we then utilize a dynamic programming (DP) technique for solving the problem exactly

within a constrained search space defined by the input. We explore the use of FastMulRFS

in the context of species tree estimation from gene family trees, providing proofs of statistical

consistency under a generic gene duplication and loss (GDL) model (provided no adversarial

GDL occurs) and presenting empirical results for a fungal dataset and for simulated datasets

(on which FastMulRFS compares favorably in terms of accuracy and running time to other

leading methods that take MUL-trees as input).

All three of these methods are combinatorial in nature and operate, at least in part, by

constraining the space of allowed solutions. The goal is to improve scalability by constraining

the solution space but to do so in such a way that good empirical properties (accuracy in

simulation studies) and good theoretical properties (statistical consistency) are maintained.

One of the major challenges is that the (relative) performance of methods and the (relative)
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benefit of using different techniques for improving scalability depends on the model condition.

This requires method developers to perform extensive simulations, benchmarking methods

on a wide range of model conditions. Even with these efforts, interpreting the results can

be difficult when it is unclear which of the model conditions best reflects reality for a given

dataset or for many datasets. This is largely an unknown, as it is still difficult to quantify

“model conditions” in biological datasets due to model violations, estimation error (from

data preprocessing), and missing data. These issues complicate experimental design and

method development.

We have outlined potential future work throughout this dissertation and now review

several broad avenues for method developers.

First, we have consistently identified gene tree estimation error (GTEE) as a potential

problem for gene tree summary methods. While summary methods are surprisingly robust

to GTEE in simulation studies, this may not be the case in biological studies when esti-

mation error may be systematically biased. Developing methods to detect estimation error,

especially systematic error, and developing methods that can leverage large numbers of loci,

where each locus has low phylogenetic signal, are important areas of future research.

Second, we have considered theoretical guarantees under the MSC model or a generic

GDL model, but not under both. Multiple sources of gene tree heterogeneity can occur in

practice, and examining statistical guarantees and empirical performance within such regimes

is an important area of future research (e.g., [262]). In particular, it may be important to

account for sources of heterogeneity, such as horizontal gene transfer (HGT) in bacteria

and hybridization in eukaryotes, that must be modeled by a species network rather than

a species tree (e.g., [269]). Phylogenetic network estimation is far more computationally

intensive than tree estimation [95], so this is an area where method development, especially

focusing on scalability to large datasets, could be highly impactful.

Third, there is growing interest in estimating phylogenies under parameter-rich statisti-

cal models (e.g., [248]) using maximum likelihood (ML) methods [118] or Bayesian methods

(e.g., [42, 43, 203, 218, 270]). Recent work by Wang et al. [271] suggests that constraints

can be applied in the context of Bayesian phylogenetic network estimation to improve com-

putational performance; the combination of constrained estimation with more biologically

realistic models and/or Bayesian methods is largely unexplored to date. Of particular inter-

est to us is how locality in the solution space can be efficiently detected and then exploited

(e.g., through the use of constraints) to reduce running time and to improve parallelism.

Machine learning and dynamic control algorithms could be useful in this context.

These computational and statistical challenges together with the large-scale sequencing

efforts currently underway make it an exciting time to be working in phylogenomics.
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Núñez, P. F. Campos, B. Petersen, T. Sicheritz-Ponten, A. Pas, T. Bailey, P. Scofield,
M. Bunce, D. M. Lambert, Q. Zhou, P. Perelman, A. C. Driskell, B. Shapiro, Z. Xiong,
Y. Zeng, S. Liu, Z. Li, B. Liu, K. Wu, J. Xiao, X. Yinqi, Q. Zheng, Y. Zhang, H. Yang,
J. Wang, L. Smeds, F. E. Rheindt, M. Braun, J. Fjeldsa, L. Orlando, F. K. Barker,
K. A. Jønsson, W. Johnson, K.-P. Koepfli, S. O’Brien, D. Haussler, O. A. Ryder,
C. Rahbek, E. Willerslev, G. R. Graves, T. C. Glenn, J. McCormack, D. Burt, H. El-
legren, P. Alström, S. V. Edwards, A. Stamatakis, D. P. Mindell, J. Cracraft, E. L.
Braun, T. Warnow, W. Jun, M. T. P. Gilbert, and G. Zhang, “Whole-genome analyses
resolve early branches in the tree of life of modern birds,” Science, vol. 346, no. 6215,
pp. 1320–1331, 2014.

[24] N. J. Wickett, S. Mirarab, N. Nguyen, T. Warnow, E. Carpenter, N. Matasci,
S. Ayyampalayam, M. S. Barker, J. G. Burleigh, M. A. Gitzendanner, B. R. Ruh-
fel, E. Wafula, J. P. Der, S. W. Graham, S. Mathews, M. Melkonian, D. E. Soltis, P. S.
Soltis, N. W. Miles, C. J. Rothfels, L. Pokorny, A. J. Shaw, L. DeGironimo, D. W.
Stevenson, B. Surek, J. C. Villarreal, B. Roure, H. Philippe, C. W. dePamphilis,
T. Chen, M. K. Deyholos, R. S. Baucom, T. M. Kutchan, M. M. Augustin, J. Wang,
Y. Zhang, Z. Tian, Z. Yan, X. Wu, X. Sun, G. K.-S. Wong, and J. Leebens-Mack,
“Phylotranscriptomic analysis of the origin and early diversification of land plants,”
Proceedings of the National Academy of Sciences of the United States of America, vol.
111, no. 45, pp. E4859–E4868, 2014.

144



[25] J. H. Leebens-Mack, M. S. Barker, E. J. Carpenter, M. K. Deyholos, M. A. Gitzendan-
ner, S. W. Graham, I. Grosse, Z. Li, M. Melkonian, S. Mirarab, M. Porsch, M. Quint,
S. A. Rensing, D. E. Soltis, P. S. Soltis, D. W. Stevenson, K. K. Ullrich, N. J. Wickett,
L. DeGironimo, P. P. Edger, I. E. Jordon-Thaden, S. Joya, T. Liu, B. Melkonian, N. W.
Miles, L. Pokorny, C. Quigley, P. Thomas, J. C. Villarreal, M. M. Augustin, M. D.
Barrett, R. S. Baucom, D. J. Beerling, R. M. Benstein, E. Biffin, S. F. Brockington,
D. O. Burge, J. N. Burris, K. P. Burris, V. Burtet-Sarramegna, A. L. Caicedo, S. B.
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“Recombination in viruses: Mechanisms, methods of study, and evolutionary con-
sequences,” Infection, Genetics and Evolution, vol. 30, pp. 296–307, 2015.

[90] J. J. Wiens, “Species Delimitation: New Approaches for Discovering Diversity,” Sys-
tematic Biology, vol. 56, no. 6, pp. 875–878, 2007.

[91] B. C. O’Meara, “New Heuristic Methods for Joint Species Delimitation and Species
Tree Inference,” Systematic Biology, vol. 59, no. 1, pp. 59–73, 11 2009.
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M. Vega-Rodŕıguez, Eds. Cham, Switzerland: Springer, 2018, vol. 11488, pp. 167–
178.

[250] Q. R. Zhang, S. Rao, and T. J. Warnow, “Constrained incremental tree building: new
absolute fast converging phylogeny estimation methods with improved scalability and
accuracy,” Algorithms for Molecular Biology, vol. 14, p. 2, 2019.

[251] E. K. Molloy and T. Warnow, “FastMulRFS: fast and accurate species tree estimation
under generic gene duplication and loss models,” Bioinformatics, 2020, conditionally
accepted. Preprint available on at https://doi.org/10.1101/835553.

[252] L. De Oliveira Martins, D. Mallo, and D. Posada, “A Bayesian supertree model for
genome-wide species tree reconstruction,” Systematic Biology, vol. 65, no. 3, pp. 397–
416, 2016.

[253] R. Chaudhary, M. S. Bansal, A. Wehe, D. Fernández-Baca, and O. Eulenstein, “iGTP:
a software package for large-scale gene tree parsimony analysis,” BMC Bioinformatics,
vol. 11, p. 574, 2010.

[254] M. S. Bayzid and T. Warnow, “Gene tree parsimony for incomplete gene trees: ad-
dressing true biological loss,” Algorithms for Molecular Biology, vol. 13, p. 1, 2018.

[255] M. J. Sanderson and M. M. McMahon, “Inferring angiosperm phylogeny from EST
data with widespread gene duplication,” BMC Evolutionary Biology, vol. 7, no. Suppl
1, p. S3, 2007.

[256] J. G. Burleigh, M. S. Bansal, O. Eulenstein, S. Hartmann, A. Wehe, and T. J. Vi-
sion, “Genome-Scale Phylogenetics: Inferring the Plant Tree of Life from 18,896 Gene
Trees,” Systematic Biology, vol. 60, no. 2, pp. 117–125, 2010.

[257] R. Chaudhary, B. Boussau, J. G. Burleigh, and D. Fernández-Baca, “Assessing Ap-
proaches for Inferring Species Trees from Multi-Copy Genes,” Systematic Biology,
vol. 64, no. 2, pp. 325–339, 2014.

[258] L. Arvestad, J. Lagergren, and B. Sennblad, “The Gene Evolution Model and Com-
puting Its Associated Probabilities,” Journal of the ACM, vol. 56, no. 2, p. 7, 2009.

[259] D. Emms and S. Kelly, “STAG: Species Tree Inference from All Genes,” bioRxiv, p.
267914, 2018, available at https://dx.doi.org/10.1101/267914.

163

https://doi.org/10.1101/835553
https://dx.doi.org/10.1101/267914


[260] G. Ganapathy, B. Goodson, R. Jansen, H.-s. Le, V. Ramachandran, and T. Warnow,
“Pattern Identification in Biogeography,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 3, no. 4, pp. 334–346, 2006.

[261] C. Zhang, M. Rabiee, E. Sayyari, and S. Mirarab, “ASTRAL-III: polynomial time
species tree reconstruction from partially resolved gene trees,” BMC Bioinformatics,
vol. 19, no. 6, p. 153, 2018.

[262] A. Markin and O. Eulenstein, “Quartet-Based Inference Methods are Statistically Con-
sistent Under the Unified Duplication-Loss-Coalescence Model,” arXiv, p. 2004.04299,
2020, available at https://arxiv.org/abs/2004.04299.

[263] R. Dondi, M. Lafond, and C. Scornavacca, “Reconciling multiple genes trees via seg-
mental duplications and losses,” Algorithms for Molecular Biology, vol. 14, p. 7, 2019.

[264] I. Ullah, P. Parviainen, and J. Lagergren, “Species Tree Inference Using a Mixture
Model,” Molecular Biology and Evolution, vol. 32, no. 9, pp. 2469–2482, 2015.

[265] C. Zhang, C. Scornavacca, E. K. Molloy, and S. Mirarab, “ASTRAL-Pro: quartet-
based species tree inference despite paralogy,” bioRxiv, p. 874727, 2019, available at
https://dx.doi.org/10.1101/2019.12.12.874727.

[266] V. P. and W. T., “Enhancing Searches for Optimal Trees Using SIESTA,” in Compar-
ative Genomics. RECOMB-CG 2017. Lecture Notes in Computer Science, J. Meidanis
and L. Nakhleh, Eds. Cham, Switzerland: Springer, 2017, vol. 10562, pp. 232–255.

[267] J. Gatesy, R. W. Meredith, J. E. Janecka, M. P. Simmons, W. J. Murphy, and M. S.
Springer, “Resolution of a concatenation/coalescence kerfuffle: partitioned coalescence
support and a robust family-level tree for Mammalia,” Cladistics, vol. 33, no. 3, pp.
295–332, 2017.

[268] J. Gatesy, D. B. Sloan, J. M. Warren, R. H. Baker, M. P. Simmons, and M. S. Springer,
“Partitioned coalescence support reveals biases in species-tree methods and detects
gene trees that determine phylogenomic conflicts,” Molecular Phylogenetics and Evo-
lution, vol. 139, p. 106539, 2019.

[269] N. L. Du P., Ogilvie H.A., “Unifying Gene Duplication, Loss, and Coalescence on
Phylogenetic Networks,” in Bioinformatics Research and Applications. ISBRA 2019.
Lecture Notes in Computer Science, L. M. Cai Z., Skums P., Ed. Cham, Switzerland:
Springer, 2019, vol. 11490, pp. 40–51.
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APPENDIX A: LIST OF ACRONYMS

AD average distance 15, 33, 64

AGID average gene tree internode distance 27, 63

BME balanced minimum evolution 27

CA-ML concatenation analysis with maximum likelihood 25, 31, 53, 86

DLCoal Duplication, Loss, and Coalescence 5, 16, 114

DP dynamic programming 4, 113, 140

DTM disjoint tree merger 4, 54, 85, 140

EPS effective population size 13, 17, 64, 125

FN false negative 9

FP false positive 9, 32

GDL gene duplication and loss 2, 15, 16, 112, 120, 140

GM General Markov 21, 23

GTEE gene tree estimation error 28, 29, 31, 65, 113, 141

GTP Gene Tree Parsimony 112

GTR Generalized Time Reversible 1, 20, 22, 25, 61, 96

HGT horizontal gene transfer 12, 13, 113, 141

i.i.d. independently and identically distributed 13, 15, 113

ILS incomplete lineage sorting 2, 15, 16, 25, 26, 31, 64, 97, 112

JC Jukes-Cantor 1, 21, 23

MBSS maximum bipartition support supertree 11
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MCFD mutually consistent full differentiation 115

ML maximum likelihood 1, 22, 24, 25, 34, 62, 105, 126, 141

MLBS multi-locus bootstrapping 35

MLC Multi-Locus Coalescent 18

MQSS maximum quartet support supertree 10, 27, 30, 113

MRCA most recent common ancestor 7, 16, 121

MSA multiple sequence alignment 2, 22, 23, 25, 27, 34, 65, 105, 126

MSC Multi-Species Coalescent 2, 10, 13, 25, 26, 27, 29, 31, 53, 96, 140

NCM No Common Mechanism 19, 113

NJ Neighbor Joining 23, 27, 55, 86

QFM Quartet Fiduccia Mattheyses 10, 30

RF Robinson-Foulds 8, 15, 18, 34, 59, 94, 114

RFS Robinson-Foulds supertree 11, 116, 140

SMC strict majority consensus 41, 51

SRH stationary, reversible, and homogenous 1, 19, 22, 23, 105

SVD singular value decomposition 29

UCE ultraconserved element 12, 51

WF Wright-Fisher 16
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APPENDIX B: LIST OF TERMS

additive 23, 56

adversarial GDL 5, 113, 121, 122

agree 7, 94

allele 12, 13, 15, 16, 112

anomaly zone 15, 26, 27, 33

ASTRAL 27, 32, 53, 86, 113

ASTRID 27, 32, 65, 99

backbone tree 89

bipartition 8, 11, 25, 28, 88, 113, 119

bipartition-constrained 11, 27, 113

blend 90, 92

bootstrap support 25, 29, 31

caterpillar tree 54, 88

censored coalescent 14, 18

centroid edge decomposition 66, 100

co-estimation 26, 72

coalesce 12, 14, 18

Coalescent 14, 17

coalescent method 25, 31

coalescent unit 14, 34

coalescent event 12, 14, 16, 17, 29

collision 90

167



compatibility 7, 10

compatibility supertree 10, 54, 55, 85, 88, 140

compatible 7, 8, 10, 13, 57, 86, 121

concatenated alignment 2, 25, 29, 64, 99, 125

contracted version 117

contraction 7, 114

disagree 7, 28

dissimilarity matrix 22, 55, 85, 86, 88

distance method 23, 24, 30, 103

duplication event 16, 18, 113

edge separable 54, 88

evolutionary diameter 88

evolutionary distance 21, 23

ExaML 26, 46, 102

exon 12, 44, 64, 97

extended version 115

FastME 27, 66, 99

FastMulRFS 5, 114, 140

FastMulRFS Output 119

FastMulRFS Input 119

FastTree-2 22, 65

Felsenstein Zone 24, 29

full differentiation 115
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fully resolved 7, 8, 13, 15, 18, 28, 41, 55, 85, 88, 117, 119

gap 2, 22, 126

gene 2, 12, 18, 25, 27, 29, 31, 97, 112

gene tree summary method 27, 29, 31, 73

gene family 16, 112

gene tree heterogeneity 13, 31, 112

gene filtering 4, 31, 72

gene tree 2, 12, 13, 15, 18, 25, 26, 27, 55, 96

genome-scale 2, 106, 112, 140

global merge phase 85, 140

GTR+CAT 21, 65

GTR+GAMMA 21, 26, 34, 65, 99, 126

heterotachy 106

INDELible 34, 65, 126

internal node 6, 9, 12, 13, 14, 16, 18, 27, 92, 117

internal edge 6, 8, 23, 28, 117

intron 12, 51, 64, 97

invalid bipartition 119

leaf-label-disjoint 55, 85, 140

lineage 12, 13, 15, 17

local merge phase 85, 140

locus 16

locus tree 18, 125
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log-det distance 23, 30, 62, 99

long branch attraction 24, 25, 88

loss event 16, 113

maximum parsimony 24, 99

merge 54, 85

merge guide tree 88

missing data 4, 29, 31

MP-EST 28, 32, 53

MSC+GTR 25, 26, 29, 64

MUL-tree 16, 113, 119, 140

multi-labeled 6, 16, 23, 140
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