
  

 

 

 

 

THREE ESSAYS ON COMMODITY MARKETS 

 

 

 

 

 

 

BY 

 

ZHEPENG HU 

 

 

 

 

 

 

 

DISSERTATION 

 

Submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in Agricultural and Applied Economics  

in the Graduate College of the  

University of Illinois at Urbana-Champaign, 2020 

 

 

 

Urbana, Illinois 

 

 

 

Doctoral Committee: 

  

 Professor Philip Garcia, Co-Chair 

 Professor Maria Teresa Serra Devesa, Co-Chair 

 Assistant Professor Todd Hubbs 

 Associate Professor Mindy Mallory, Purdue University 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/334979787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii 

 

ABSTRACT 

 

This dissertation consists of three essays that investigate issues in agricultural commodity futures 

and cash markets. The first essay uses price discovery measures and intraday data to quantify the 

proportional contribution of nearby and deferred contracts in price discovery in the corn and live 

cattle futures markets. On average, nearby contracts reflect information more quickly than 

deferred contracts in the corn market but have a relatively less dominant role in the live cattle 

market. In both markets, the nearby contract loses dominance when its relative volume share dips 

below 50%, which typically occurs when the nearby is close to maturity. Regression results 

indicate that the share of price discovery is mainly related to trading volume and time to 

expiration in both markets. In the corn market, the price discovery share between nearby and 

deferred contracts is also related to inverse carrying charges, crop year differences, USDA 

announcements, market crashes, and commodity index position rolls. Differences between corn 

and live cattle markets are consistent with differences in the contracts’ liquidity and commodity 

storability.  

The second essay investigates the effect of algorithmic trading activity, as measured by 

quoting, on the corn, soybean, and live cattle commodity futures market quality. Using the 

CME’s limit-order-book data and a heteroskedasticity-based identification approach, we find 

more intensive algorithmic quoting (AQ) is beneficial in multiple dimensions of market quality. 

On average, AQ improves pricing efficiency and mitigates short-term volatility, but its effects on 

liquidity costs are somewhat mixed. Increased AQ significantly narrows effective spreads in the 

corn and soybean markets, but not in the less traded live cattle futures market. The narrowing in 

effective spreads emerges from a reduction in adverse selection costs as more informed traders 
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lose their market advantage. There also is evidence that liquidity provider revenues increase with 

heightened AQ activity in the corn futures market, albeit the effect is not statistically significant 

in the soybean and live cattle futures markets.  

The third essay investigates how export prices and sales responses to exchange rate 

movements are affected by the level of the stocks-to-use ratio.  The analysis is performed in the 

corn, soybean, and wheat export markets using Threshold Vector Autoregressive (TVAR) 

models and monthly data for the January 1990-December 2019 period. Both importer and 

exporter exchange rates are considered in our analysis. Results show that the effects of both 

importer and exporter exchange rates on corn export prices and sales are either insignificant or 

have small economic value due to the relatively small export share of production. In the more 

export-oriented soybean and wheat markets, an increase in the value of the dollar relative to 

other exporters’ currencies causes an expected and significant decrease in the export price, but 

export sales are not significantly affected which reflects the low substitutability between the U.S. 

exports and competitors’ exports in terms of marketing seasons and crop classes. The effects of 

importer exchange rates present significant threshold effects in soybean and wheat markets as 

export prices and sales are more responsive in the low regime of stocks-to-use ratio. Similar 

threshold effects are also found in the exporter exchange rate impacts on corn export prices and 

sales. However, the impacts across regimes are not largely different in economic value. 
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CHAPTER 1: 

INTRODUCTION 

 

In the past decade, agricultural commodity futures and cash markets have witnessed structural 

changes and market events that created important impacts. In agricultural futures markets, the 

transformation from open outcry trading to electronic trading has changed the nature of futures 

trading. The speed at which information enters the market has increased, but this has caused 

concerns that market quality and efficiency have been harmed. In agricultural cash markets, U.S. 

exports are facing increasing competition in global export markets. In addition, recent trading 

tensions between the U.S. and major trading patterners cause tremendous uncertainty in U.S. 

export markets.  In this context, this dissertation examines three contemporary issues in 

agricultural commodity futures and cash markets, aiming to provide implications for 

understanding the nature of electronic trading and challenges in U.S. agricultural exports.  

The first two essays focus on market microstructure in agricultural commodity futures 

markets. The first essay uses high frequency trade data and price discovery shares to study price 

discovery along the futures forward in storable and non-storable markets. The second essay 

investigates the effects of algorithmic trading on agricultural futures market quality. The last 

essay focuses on exchange rate effects on agricultural export prices and sales.  

The first essay, “Measuring Price Discovery between Nearby and Deferred Contracts in 

Storable and Non-Storable Commodity Futures Markets,” uses high frequency intraday 

transaction data and price discovery measures, including Putniņš’ (2013) information leadership 

share, to measure the share of price discovery between nearby and deferred contracts in corn and 

live cattle markets. It has been widely shown in previous studies that the nearby contract 



 

2 

 

provides most price discovery in agricultural futures markets. However, price discovery along 

the forward curve is a dynamic process. Using intraday futures transaction data, this essay 

studies for the first time when, and the speed at which price discovery switches from the nearby 

contract to the next nearby contract. The results are helpful to researchers who need to build time 

series of rolling nearby futures prices. In addition, regression analysis is used to identify the 

factors that relate to price discovery, considering for the first time Working’s and Tomek’s 

predictions about the location of price discovery, as well as the effects of commodity index 

trading and pit trading closure.  

While electronic trading changes the nature of price discovery in agricultural commodity 

futures markets, the change in the speed of trading also influences agricultural futures markets in 

many other ways. While a growing number of studies on the microstructure of agricultural 

commodity futures markets have emerged in recent years (e.g., Wang, Garcia, and Irwin 2013; 

Couleau, Serra, and Garcia 2018, 2019), they do not provide direct identification of the effects of 

high frequency trading. The second essay, “Algorithmic Quoting, Trading, and Market Quality 

in Agricultural Commodity Futures Markets,” provides the first empirical evidence for the 

effects of algorithmic quoting, on the corn, soybean, and live cattle commodity futures market 

quality. Using limit order book data and a heteroskedasticity based identification approach, this 

essay shows algorithmic quoting is beneficial to market quality in multiple dimensions. 

However, there is evidence that heightened algorithmic quoting is associated with higher 

liquidity provider revenues. These findings point to a tradeoff between the dimensions of market 

quality, and the need for continued monitoring of algorithmic trading activity in agricultural 

commodity futures markets.   
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While the effect of electronic algorithmic trading on commodity markets can’t be denied, 

market fundamentals continue to be relevant for understanding agricultural commodity markets. 

Exchange rate effects of agricultural commodity prices and exports have long been studied since 

Schuh’s (1974) classic article. However, only a few studies have shown how the underlying 

market supply-demand conditions affect the exchange rate-exports relationship. The third essay, 

“Exchange Rate Effects on Agricultural Export Prices and Sales in High-Low Stock 

Regimes,” studies export prices and sales responses to exchange rate movements in different 

stocks-to-use conditions in the corn, soybean, and wheat export markets. The results provide 

important implications for both policymakers and market participants that stocks-to-use 

conditions need to be considered for accurate evaluations and forecasts on exchange rate effects 

in agricultural markets.  
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CHAPTER 2: 

MEASURING PRICE DISCOVERY BETWEEN NEARBY AND DEFERRED 

CONTRACTS IN STORABLE AND NON-STORABLE COMMODITY FUTURES 

MARKETS 

 

2.1 Introduction 

Price discovery is a main function of futures markets. Traditional research on price discovery in 

agricultural futures markets has developed in three main areas: determining which dominates, 

cash or futures price (Garbade and Silber, 1983; Schroeder and Goodwin, 1991; Ahumada and 

Cornejo, 2016); which of several geographically differentiated markets dominates (Koontz, 

Garcia and Hudson, 1990; Janzen and Adjemian, 2017; Arnade and Hoffman, 2018); and 

whether there is a difference in the quality of price discovery in storable versus non-storable 

commodities (Leuthold, Junkus and Cordier, 1989; Yang, Bessler and Leatham, 2001). 

Overwhelming evidence suggests that futures markets lead cash markets in price discovery.  

The recent introduction of electronic trading in futures markets has heightened their liquidity 

and increased the speed of response to new information. Relative to cash markets, which 

typically report prices daily, this has strengthened the leadership of futures markets in price 

discovery. But futures markets are not completely homogeneous; instead a market contains 

contracts with different maturities to meet trader needs that differ in time. Little is known about 

where along the futures forward contract curve new information gets impounded into prices. 

Understanding how each contract contributes to price discovery is essential for market 

participants making sound hedging and trading decisions.  
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 Working (1948, 1949) developed a theory explaining price relationships along the futures 

forward curve for storable commodities. Prices for a storable commodity are linked through time 

by the net costs of carrying inventories. Exceptions may occur in periods of inverse carrying 

charges as low inventories break down the normal storage linkage. Working’s view of deferred 

futures prices implies that they may play a less dominant role in price discovery compared to the 

nearby futures prices as they only adjust to nearby prices based on changes in storage costs. 

However, Tomek and Gray (1970) and Tomek (1997) argue that commodity futures not only 

provide guidance for carrying inventories, but also forecasts of expected futures prices reflecting 

future supply and demand conditions. Hence, their view implies that price discovery along the 

forward curve is not always dominated by the nearby contract. In particular, when traders act on 

market news that affects their expectations about the supply and demand conditions in a deferred 

month, price discovery is more likely to occur first in a deferred contract. 

 While Working’s and Tomek’s theories offer different predictions on the price discovery role 

of the nearby contract, empirical studies find the nearby contract, on average, provides most 

price discovery in futures markets for agricultural commodities (Sanders, Garcia and Manfredo, 

2008; Schnake, Karali and Dorfman, 2012), as well as other financial assets (Chen and Tsai, 

2017). However, price discovery along the forward curve is dynamic. The forward curve shifts 

as days to expiration decrease for each contract and new contracts are added. The nearby contract 

loses importance as the delivery period approaches, evidenced by falling volume and open 

interest. However, no research has directly examined when and the speed at which price 

discovery switches from the nearby contract to the next. In addition, while long-run cointegration 

between commodity prices has been widely examined in previous studies on price discovery, the 
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cointegration relationship between agricultural commodity futures prices for different time 

horizons within a day has never been studied. 

 In this paper we measure price discovery between nearby and deferred futures for each day 

from 2008 to 2015. We use Chicago Mercantile Exchange (CME) transactions data for corn and 

live cattle that are time-stamped to the second. We employ the information leadership share 

(Putniņš, 2013), which is designed for high frequency data samples and is robust to differences 

in noise in price series. This price discovery share (PS) measure enables us to determine the 

relative proportion of information impounded in nearby and deferred futures prices. The use of 

high frequency data allows us to measure price discovery daily and offer a day-to-day dynamic 

characterization of how futures price discovery switches from one contract to the next as the 

nearby nears expiration.  

 We first document patterns in daily PSs between nearby and deferred futures contracts. 

Findings reveal PSs are strongly related to the contracts’ relative volume shares (VSs). The 

nearby contract dominates deferred contracts in price discovery when it has more trading 

volume, which typically occurs until several days before the nearby enters the delivery period. 

The nearby contract systematically loses dominance when its relative VS dips below 50%. Also, 

the nearby contract plays a more important role in price discovery in the corn than in the live 

cattle market. Using regression analysis, we investigate the factors that are related to PS between 

nearby and deferred futures. We find PS is strongly related to trading volume and days-to-

expiration. In corn, PS is also related to inverse carrying charges, the nearby and deferred 

contracts representing different crop years, USDA reports, price declines, and commodity index 

rolls. Differences between corn and live cattle markets are consistent with differences in 

liquidity, storability and other market characteristics.   
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 This paper contributes to the literature in two ways. First, this is the first paper that uses high 

frequency data to study daily price discovery dynamics in physical commodities with different 

degrees of storability. Previous studies typically use daily data and focus on price discovery in 

the long run (Covey and Bessler, 1995; Yang, Bessler and Leatham, 2001). We provide day-to-

day dynamics on how fast price discovery switches from the nearby contract to the next. This is 

especially useful to empirical research that relies on futures prices and builds a time series of 

rolling nearby futures prices. Two rolling techniques are common: rolling on a fixed number of 

days prior to expiration and rolling when volume in the first deferred overtakes volume in the 

nearby. Our paper shows the latter is preferable from a price discovery perspective. Second, we 

identify the factors that relate to PS, considering for the first time Working’s and Tomek’s 

predictions about the location of price discovery, as well as the effects of commodity index 

trading and pit trading closure.  

2.2 Price Discovery Measures 

Garbade and Silber (1983) first developed a measure (the GS measure) to quantify price 

discovery. It is based on lead-lag relationships captured by the following model of price 

behavior: 

[
𝑝1,𝑡

𝑝2,𝑡
] = [

𝛼1

𝛼2
] + [

1 − 𝛽1 𝛽1

𝛽2 1 − 𝛽2
] [

𝑝1,𝑡−1

𝑝2,𝑡−1
] + [

𝜔1,𝑡

𝜔2,𝑡
]                              (2.1) 

where 𝑝1,𝑡 and 𝑝2,𝑡 are the prices for nearby and deferred futures contracts at time 𝑡, repectively. 

The coefficients 𝛽1 and 𝛽2 measure the effect of one-period lagged deferred futures price on the 

current nearby futures price and vice versa, respectively. The shares: 

𝐺𝑆1 =
𝛽2

𝛽1+𝛽2
 , 𝐺𝑆2 =

𝛽1

𝛽1+𝛽2
                                                 (2.2) 
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are used for measuring the proportional contribution of each contract to the price discovery 

process. However, the GS measure ignores the possibility that the two prices share a common 

stochastic trend that represents the common efficient price being discovered.        

More recent price discovery measures are derived from structural models of the data 

generating process based on cointegration and error correction models. Hasbrouck (1995) 

information share (IS) and Harris, McInish and Wood (2002) component share (CS) are the most 

widely used. The fundamental value of a commodity at contract maturity (𝑤) is unknown but 

discovered through a dynamic process. Let 𝑤𝑡 be the fundamental value of price conditional on 

the information available at time t.  𝑤𝑡 is assumed to follow a random walk: 

𝑤𝑡 = 𝑤𝑡−1 + 𝑣𝑡,     𝑣𝑡~𝑁(0, 𝜎𝑣),                                              (2.3) 

where 𝑣𝑡 is i.i.d. Market participants incorporate information and expectations about 

fundamentals with a delay of 𝛿𝑖 periods into the observed futures price 𝑝𝑖,𝑡, as they need time to 

interpret the information and take appropriate positions. As a result, 𝑝𝑖,𝑡 is: 

𝑝𝑖,𝑡 = 𝑤𝑡−𝛿𝑖
+ 𝑠𝑖,𝑡,   𝑠𝑖,𝑡~𝑁(0, 𝜎𝑠𝑖

)                                            (2.4) 

where 𝑖 = 1 and 2 are nearby and deferred contracts and 𝑠𝑖,𝑡 represents i.i.d noise. Thus, price 

deviations from the fundamental value are only transient which results in cointegration between 

prices for nearby and deferred contracts. Both IS and CS are derived by estimating a (bivariate) 

VECM: 

∆𝒑𝒕 = 𝜶(𝜷′𝒑𝒕 − 𝜇) + ∑ 𝜞𝒋∆𝒑𝒕−𝒋
𝐽
𝑗=1 + 𝒆𝒕                                      (2.5) 

where 𝒑𝒕 = (𝑝1,𝑡, 𝑝2,𝑡)′ is a vector of nearby and deferred futures prices at time 𝑡. 𝜷 ∈ ℝ2 is a 

cointegrating vector of parameters that allows for a constant term μ which reflects the difference 

between nearby and deferred prices. Since storage costs are typically quoted in cents per day in 

commercial settings, it is reasonable to assume that they are constant within the day and thus 
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reflected in μ. The parameter vector 𝜶 = (𝛼1, 𝛼2)′ contains error correction coefficients that 

measure the speed at which disruptions of the long-run price equilibrium are corrected. 𝜞𝒋 ∈

ℝ2×2 is a vector of autoregressive coefficients representing short-run dynamics and 𝐽 is the 

number of lags in the model. The error term 𝒆𝒕 is a zero-mean vector of white noise residuals 

with covariance matrix: 

𝛴 = (
𝜎1

2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ).                                                         (2.6) 

Harris, McInish, and Wood (2002) show CS can be calculated from the normalized orthogonal 

to the vector of error correction coefficients, 𝛼⊥ = (𝛾1, 𝛾2)′. By noting that 𝐶𝑆1+𝐶𝑆2=1, 

𝐶𝑆1 = 𝛾1 =
𝛼2

𝛼2−𝛼1
, 𝐶𝑆2 = 𝛾2 =

𝛼1

𝛼1−𝛼2
                                          (2.7) 

are the CS measures for nearby and deferred contracts, respectively.  

The IS measures for nearby (𝐼𝑆1) and deferred (𝐼𝑆2) contracts can be derived from the error 

correction coefficients and the variance-covariance matrix of the error terms as follows 

(Hasbrouck, 1995): 

𝐼𝑆1 =
(𝛾1𝑚11+𝛾2𝑚12)2

(𝛾1𝑚11+𝛾2𝑚12)2+(𝛾2𝑚22)2 , 𝐼𝑆2 =
(𝛾2𝑚22)2

(𝛾1𝑚11+𝛾2𝑚12)2+(𝛾2𝑚22)2,                      (2.8) 

where 𝛾1 and 𝛾2 are the CS measures in equation (2.7), and 𝑚11, 𝑚12, and 𝑚22 are from the 

Cholesky factorization of the VECM residual covariance matrix, 𝛴 = 𝑀𝑀′, where 

𝑀 = (
𝜎1 0

𝜌𝜎2 𝜎2(1 − 𝜌1/2)1/2) = (
𝑚11 0
𝑚12 𝑚22

).                                    (2.9) 

The Cholesky factorization eliminates the contemporaneous relationship between price 

innovations (Hasbrouck, 1995). However, this procedure makes the IS results order dependent. 

Following Baillie et al. (2002) and others, we calculate IS by averaging the measures of the two 

price orderings.  
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Price discovery metrics are designed to reflect the leadership in the speed in impounding new 

information (Hasbrouck, 1995). However, Yan and Zivot (2010), and Putniņš (2013) show that 

IS and CS measure a combination of speed in impounding new information and noise due to 

trading frictions. Although contract specifications such as tick size and price limits are the same 

for nearby and deferred contracts, differences in noise levels in nearby and deferred prices can be 

large due to differences in trading frequency or high frequency trading activities (Wang, Garcia 

and Irwin, 2013; Couleau, Serra and Garcia, 2019). Price discovery incorporates information into 

the market through active trading and higher volume, which leads to increased price updating 

and more microstructure noise. In contrast, less trading activity is associated with less 

information entering the market, but also less noise. When the difference in noise levels between 

nearby and deferred is larger than the difference in the speed at which information is impounded, 

IS and CS may lead to an over-stating of the price discovery contribution of the contract with 

lower trading volume. Yan and Zivot (2010) propose a combination of IS and CS that nets out 

transitory frictions which cause the noise. Their measure, termed “information leadership” (IL) in 

Putniņš (2013), is expressed as:  

𝐼𝐿1 = |
𝐼𝑆1

𝐼𝑆2

𝐶𝑆2

𝐶𝑆1
| , 𝐼𝐿2 = |

𝐼𝑆2

𝐼𝑆1

𝐶𝑆1

𝐶𝑆2
|                                              (2.10) 

where 𝐼𝐿1 and 𝐼𝐿2 are the IL measures for nearby and deferred contracts, respectively. The IL is 

not a “share.” For comparability and interpretation, Putniņš (2013) defines information 

leadership shares for nearby (𝐼𝐿𝑆1) and deferred (𝐼𝐿𝑆2) as: 

𝐼𝐿𝑆1 =
𝐼𝐿1

𝐼𝐿1+𝐼𝐿2
, 𝐼𝐿𝑆2 =

𝐼𝐿2

𝐼𝐿1+𝐼𝐿2
.                                             (2.11) 

Since the ILS is more robust to differences in noise, when prices are cointegrated, we use the ILS 

measure.  
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2.3 Data 

The analysis uses corn and live cattle futures contracts traded at the Chicago Mercantile 

Exchange (CME). These markets represent the most actively traded storable and non-storable 

agricultural commodities. The sample period studied for corn is from January 14, 2008 through 

December 14, 2015, and the period used for live cattle ranges from January 1, 2008 to December 

31, 2015. This period is characterized by a growing relevance of electronic trading in agricultural 

commodity futures markets. The electronic platform’s shares of corn and live cattle futures 

trades were about 80% and 10% at the beginning of 2008 (Irwin and Sanders, 2012), and both 

rose to over 95% in July 2015, after which CME closed pit trading (Gousgounis and Onur, 

2017). The period examined also includes pit trade closure, price boom-bust cycles, as well as 

periods when the markets were inverted, i.e., when the price of deferred futures contracts was 

lower than the price of the nearby contract.  

We use high frequency transactions prices time stamped to the second and ordered 

chronologically by sequence numbers. Data are obtained from CME Group’s Top-of-Book 

Electronic Platform database. To study price discovery, we need to define an intraday sampling 

frequency. Janzen and Adjemian (2017) use 1-minute sampling intervals and take the first 

transaction price in each 1-minute interval. When there is no transaction within a given minute, 

they replace the missing value using the most recent transaction price. However, this can 

generate two problems. First, since trading is becoming more frequent, multiple trades can occur 

even within such a short-time interval, making it difficult to accurately identify which price 

moves first. Second, prices can vary little during periods of the day and replacing missing 

observations can lead to stale prices, increasing difficulties in model specification, making 

residuals serially dependent, and reducing the ability to accurately identify price discovery. 
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Researchers facing similar problems in empirical microstructure price discovery studies 

(Brogaard, Hendershott, and Riordan, 2014; Hansen and Lunde, 2006; Hasbrouck, 2018) have 

switched to event time analysis which in our case limits the analysis to prices which correspond 

to an actual transaction in at least one of the contracts. Our event time analysis is consistent with 

the evidence that information flows take place through trading (Kyle and Obizhaeva, 2016; 

Evans and Lyons, 2008). Beginning with seconds, we keep only seconds when at least one 

transaction occurs in either the nearby or deferred contract. In the situation where only one 

contract has transactions, these prices are matched with the last transaction price in the other 

contract.1 When the two contracts have a different number of transactions within a second, we 

first match them by their sequence number, then match any remaining (unmatched) transactions 

in one contract with the most recent transaction in the other contract. While CME electronic 

trading system is open nearly 24 hours a day, we only consider the day-time trading session for 

both the corn and live cattle contracts when the most active trading occurs. On each day, we have 

an average between 19 to 30 thousand observations for each contract pair in the corn market, and 

between 4 and 7 thousand observations for contract pairs in the live cattle market (see 

supplementary result 2 for detailed summary statistics on the number of daily observations). 

The corn futures contract has five delivery months (March, May, July, September, and 

December) and live cattle futures have six delivery months (February, April, June, August, 

October, and December). Since volumes in the distant deferred contracts are quite low, we use 

the first five (four) nearby contracts for corn (live cattle), and refer to them as the nearby, 

 
1 See supplemental result 1 for the percentage of cases where a transaction’s price in one contract is 

matched with the last transaction in the other contract. We also tried using sampling intervals of 1-second 

and results are similar.  
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deferred 1, deferred 2, and so on. Corn futures contracts expire on the business day prior to the 

15th calendar day of the delivery month and live cattle futures contracts expire on the last 

business day of each maturity month. We define a contract to be the nearby from the business 

day after the previous nearby contract expires through the current nearby contract expiration. We 

do not roll the nearby contract to the next, since we clearly want to identify how price discovery 

share in the nearby declines as expiration approaches.  

2.4 Empirical Results 

2.4.1 Cointegration Tests 

Since the ILS, as well as CS and IS, are based on a VECM, we test for cointegration first. Daily 

nearby and deferred futures prices are often found to be cointegrated in the literature. However, 

intraday prices for nearby and deferred futures may not be cointegrated due to the presence of 

inverse carrying charges in a storable commodity, short-run market inefficiency (Schroeder and 

Goodwin, 1991), and pricing of the nearby contract being altered by delivery conditions (Garcia, 

Irwin and Smith, 2015). 

For each sample day, we employ Johansen tests to assess cointegration between the nearby 

and each deferred contract. Lags for the test are selected based on the Bayesian Information 

Criteria (BIC) for each day. Consistent with equation (2.5), a constant term is included in the 

cointegrating vector to allow for storage costs. We have 1992 and 2015 sample trading days for 

corn and live cattle, respectively. However, we excluded slightly more than 10 days for live 

cattle as prices varied little due to primarily limit moves, but also because deferred contracts 

were not sufficiently active to allow for testing.  

We follow Fricke and Menkhoff (2011) and use Johansen rank test to categorize data in each 

day into three categories: 1) Stationarity: intraday nearby and deferred futures prices are both 

https://scholar.google.com/citations?user=gYKhEAUAAAAJ&hl=en&oi=sra
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stationary I(0) series, in which case we fail to reject the null hypothesis of a rank of 2 at the 5% 

significance level. 2) Cointegration: intraday nearby and deferred futures prices are cointegrated 

I(1) series, in which case we fail to reject the null hypothesis of a rank of 1 at the 5% 

significance level. 3) Non-cointegration: intraday nearby and deferred futures prices are both 

non-stationary and not cointegrated, in which case we fail to reject the null hypothesis of a rank 

of 0 at the 5% significance level.  

Table 2.1 summarizes the percentage of days that belong to each category. The probability of 

both prices being stationary ranges from 8% to 11% in the corn market and about 6% across 

contract pairs in the live cattle market. The percentage of days in which the nearby and deferred 

futures are cointegrated is about 80% across all contract pairs for corn and 70% for live cattle. 

The percentage of non-cointegration days ranges from 4% to 12% for corn and from 16% to 27% 

for live cattle. The percentage of non-cointegration generally increases at more deferred 

contracts. This is consistent with Tomek and Gray (1970) and Tomek (1997) and shows that 

contracts at more distant maturities may reflect different price information (i.e., expected supply 

and demand), particularly in live cattle where prices are not linked through storage costs. 

Figure 2.1 and figure 2.2 present the distribution of Johansen test results through time for corn 

and live cattle, respectively. Each observation is colored coded to reflect the test results and 

located relative to the vertical axis to represent the nearby contract volume share (VS). VS equals 

the volume of the nearby contract divided by the total volume of the nearby and deferred 

contracts on the same day. Shaded areas represent periods of inverse carrying charges. In both 

figures, we see VS presents a cyclic pattern, with the nearby contract’s VS decreasing as 

expiration approaches and then increasing with the shift to the next nearby contract. In figure 2.1, 

a clear pattern emerges for corn, with most non-cointegration days (red squares) appearing in 
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periods of inverse carrying charges. This result shows that an inverted market reduces the link 

between different maturities in storable commodities and is consistent with Working’s (1948 and 

1949) theory. Consistent with live cattle’s non-storable character, figure 2.2 shows non-

cointegration in live cattle does not concentrate in periods when the market was inverted. In both 

markets, we find that as expiration approaches, the number of non-cointegration days increases.2 

Further, in the corn market nearby and deferred futures prices are less likely to be both stationary 

in the first few weeks after entering the nearby period.  

2.4.2 Price Discovery Shares for the Nearby Contract Relative to Deferred Contracts 

We calculate ILS for each day when intraday nearby and deferred transaction prices are 

cointegrated. For days when both prices are stationary, we use the GS measure. Non-

cointegration days are not included in the price discovery analysis as these prices do not share 

and discover a common efficient price (Fricke and Menkhoff, 2011). We calculate daily price 

discovery shares for the nearby contract relative to each deferred contract separately. For ILS, the 

BIC recommends estimating a VECM that has between 1 and 10 lags for both commodities. 

Following Garbade and Silber (1983), we set negative estimates of 𝛽1 and 𝛽2 to 0 when 

calculating the GS measure, since they have no conceptual meaning. Hereafter, we refer to PS as 

the combination of ILS and GS as they reflect the same basic notion of price discovery. 

    Table 2.2 reports the averages of daily price discovery and volume shares for the nearby 

contract and deferred contracts for corn and live cattle. Although ILS is the preferred price 

discovery measure when data are cointegrated, we also report CS and IS for comparison. In both 

markets, price discovery shares as well as VS for the nearby contract generally increase with the 

 
2 To save space, details are in supplementary result 3. 

 

https://scholar.google.com/citations?user=gYKhEAUAAAAJ&hl=en&oi=sra
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temporal distance between the nearby and deferred contract.3 This term structure is expected 

because volume and accompanying liquidity at distant horizons are usually lower which implies 

less market information. Although CS, IS, and ILS suggest the same term structure, in both 

markets, CS and IS for the nearby contract are consistently lower than the ILS when the nearby 

contract has a higher VS. As the CS and IS give higher share to less noisy price series relative to 

the ILS, their relatively lower values suggest that the more actively traded nearby contracts are 

noisier than deferred contracts.4 Since CS and IS are biased compared to ILS, hereafter, we focus 

on PS as the price discovery measure. For corn futures, the nearby contract only slightly 

dominates the first deferred contract with an average PS of 53%. However, the nearby PS rises 

quickly when the nearby is compared to more deferred contracts. By the deferred 4 contract the 

nearby PS has reached 83%.  

Compared to corn, the nearby live cattle contract is less dominant in price discovery. On 

average, the nearby contract does not provide more price discovery than the next nearby contract 

with an average PS of 37%. Compared to the second and third deferred contracts, the nearby 

contract contributes about 57% and 67% of the price discovery. Informatively, VSs for deferred 1 

contract are appreciably below 50%, and only reach 50% for the deferred 2 contract suggesting 

much less trading in the nearby contract which again contrasts with the corn contract. For live 

cattle futures, since there is no storage arbitrage to link the contracts with differing maturities, 

contracts for different delivery dates provide information of equilibrium conditions at different 

 
3 VS and PS are not statistically different at the 5% level only in the first contract pair for corn and the 

first and last contract pair for live cattle 

4 Noise levels are presented in supplementary result 4.  
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future dates (Leuthold, Junkus and Cordier, 1989). Thus, the difference in the dominance of the 

nearby contract for corn and live cattle can be attributed to their difference in storability.  

Figures 2.3 and 2.4 show the daily dynamics of PS for the nearby contract relative to each 

deferred contract for corn and live cattle.5 In both figures, we observe a cyclic pattern where the 

nearby contract’s PS decreases as expiration approaches which is similar to the behavior of VS 

presented in figures 2.1 and 2.2. This pattern is stable in the corn market, except when the market 

is inverted during which price discovery shares become more volatile. In the live cattle market, 

although PS follows a similar general cyclic pattern, it is more volatile relative to the corn 

market. Examination of the plots also suggests a dominance of the nearby contract relative to 

distant contracts particularly in the corn market. The nearby PS is progressively more 

concentrated near the top of the PS range at more deferred contracts, which is consistent with the 

term structure of PS (table 2.2).  

2.4.3 Price Discovery Shares in the Nearby Period for Each Contract Month  

To examine more closely the behavior of price discovery, we average VS and PS for nearby 

contracts across years and plot them for each contract (figures 2.5 and 2.6). The horizontal axis 

in all plots measures the trading days to contract expiration.  Because the December corn 

contract becomes important for hedging and pricing early in the marketing year as it reflects 

information on the new crop, we also compare the nearby July contract to the December contract 

(figure 2.5, panel 6). 

PSs for corn are presented in figure 2.5 and exhibit similar patterns for most contract months, 

except when September is the nearby contract. Initially, most nearby contracts have a PS around 

80% and continue to dominate (i.e. a share higher than 50%) price discovery until 2-3 weeks 

 
5 We present information on the error correction parameters in supplementary result 5.   
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prior to contract expiration. In general, the PS moves in tandem with the VS, declining sharply as 

trading volume decreases in the nearby contract. The nearby contract loses its dominance in price 

discovery nearly at the same time as it loses dominance in volume. This typically happens 2-3 

weeks prior to contract expiration which roughly coincides with the beginning of the delivery 

window.  

The notable exception to the price discovery pattern described is the September-December 

contract pair (figure 2.5, panel 4). While most contracts begin with a PS at nearly 80%, the 

September contract only initially and briefly breaks 50%, and then remains well below 40% to 

expiration. This suggests that the September contract does not have a dominant role in price 

discovery even when it is the nearby contract. Since the December contract reflects information 

on the new crop which becomes highly relevant in the summer months, we also examine the PS 

and VS for the July contract relative to December contract (figure 2.5, panel 6). This exhibits a 

pattern more similar to the other corn panels.6 Hence, as the July contract approaches expiration, 

price discovery shifts rapidly to the December contract. The relative lack of importance of the 

September contract in the pricing process is likely due to its position between two crop years. 

Other researchers have suggested avoiding using the September contract for constructing nearby 

series based on its price volatility patterns (Smith, 2005) and ability to predict subsequent cash 

prices (Leath and Garcia, 1983). While the September contract does not dominate the price 

discovery process, it still accounts for 30-40% of the price discovery before entering the delivery 

month and therefore should not be totally ignored as a price signal. However, the leadership of 

 
6 We also compare the December and May contracts. Results show a similar pattern, except the May 

contract is more dominant.  This is found in supplementary result 6.  
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the December contract for such an extended period indicates that December futures prices 

become the focus of hedgers and market participants even early in the summer months. 

Figure 2.6 plots the PS for the live cattle market. Both PS and VS exhibit a similar general 

downward trend across all contract months. The nearby contract loses its pricing dominance 

almost at the same point when VS declines below 50%. Both the dominance of price discovery 

and trading volume of the nearby contract switch to the next nearby contract about 2 weeks prior 

to the delivery, which is earlier than in the corn market. The earlier switch is likely because of 

the added days in delivery months in the live cattle market. Compared to the corn market, PS is 

more volatile in delivery in the live cattle market. The PS initially decreases but declines more 

slowly or remains relatively stable close to expiration. In some contract months, PS can even 

increase in the final trading days,7 which reflects unstable intertemporal price relationships near 

expiration in the live cattle market that has been widely identified in the literature (Leuthold, 

1972; Naik and Leuthold, 1988). Similar behavior, although to a much less extent, can be found 

in the corn market which could reflect price distortions in the nearby futures in delivery found in 

grain markets in recent years (Garcia, Irwin and Smith, 2015).  

2.4.4 Regression Analysis 

In this section, we assess the relationships between the nearby contracts’ PS relative to deferred 

contracts and several factors using a regression framework. The analysis focuses on equations 

(2.12) and (2.13) for the corn and live cattle markets, respectively: 

𝑃𝑆𝑐𝑜𝑟𝑛,𝑑 = 𝑓(𝑉𝑆𝑑, 𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑑 , 𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛2
𝑑

, 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝑑, 𝑇𝑜𝑚𝑒𝑘𝑑, 

𝑊𝐴𝑆𝐷𝐸&𝐶𝑃𝑑 , 𝐺𝑅𝑆𝑑, 𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑑 , 𝐶𝑟𝑎𝑠ℎ𝑑 , 𝑃𝑖𝑡𝑑, 𝐼𝑛𝑑𝑒𝑥𝑟𝑜𝑙𝑙𝑑, 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦𝑑).   (2.12) 

 
7 Examination of the individual PSs revealed that the values in figure 2.6 are not driven by outliers or 

non-cointegration days.     
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𝑃𝑆𝑙𝑖𝑣𝑒𝑐𝑎𝑡𝑡𝑙𝑒,𝑑 = 𝑓(𝑉𝑆𝑑, 𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑑 , 𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛2
𝑑

, 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝑑, 

𝐶𝐹𝑑−1, 𝑊𝐴𝑆𝐷𝐸&𝐶𝑃𝑑 , 𝐺𝑅𝑆𝑑, 𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑑 , 𝐷2015𝑑 , 𝐼𝑛𝑑𝑒𝑥𝑟𝑜𝑙𝑙𝑑, 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦𝑑).  (2.13) 

where PS is the day d price discovery share for the nearby relative contract. VS and Expiration 

are the nearby contract volume share and a variable that counts the number of days to expiration, 

respectively.  Similar factors were identified as relevant in explaining PS in the VIX (Chen and 

Tsai, 2017) and bond futures markets (Mizrach and Neely, 2008; Fricke and Menkhoff, 2011). 

To allow for the non-linear pattern observed in the price discovery (Figure 2.3 and 2.4), we 

include a quadratic term, 𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛2. Because we use a combination of GS and ILS as our 

price discovery measure, the magnitude of the PS on a given day may be affected by the price 

discovery measure applied. Thus, we introduce a dummy variable 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 that equals one if 

the prices are both stationary in which case the GS is used.  

To measure the relationship between PS and an inverted market, we create a dummy variable 

𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑑 that equals one on days when deferred futures settlement price is below the nearby 

futures settlement price. We expect 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑑 to be non-significant in the non-storable live cattle 

futures’ regressions. However, consistent with Working’s (1948, 1949) view of price discovery, 

an inverted market may be negatively correlated with PS in the storable corn market. To test 

Tomek’s hypothesis, we create a dummy variable Tomek, which equals 1 when the deferred 

contract represents a new crop year and the nearby contract represents the old crop. As the 

nearby and deferred 4 contracts always represent prices for different crop years, the dummy 

variable Tomek is not included in the equation for those contracts. As predicted by Tomek and 

Gray (1970) and Tomek (1997), we expect the nearby contract to have a smaller share of price 

discovery when nearby and deferred contracts represent prices for different crop years.  
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 In addition, we include several market factors which may be related to the price discovery 

process. The first is USDA market reports which impart important information about 

fundamentals that is quickly reflected in futures prices across maturities (McKenzie, 2008; 

Adjemian, 2012; Dorfman and Karali, 2015). For the corn market, we consider three important 

USDA grain market reports: World Agricultural Supply and Demand Estimate (WASDE) report, 

Crop Production (CP) report and Grain Stocks (GRS) report. Since the WASDE and CP reports 

are usually released in the second week of each month on the same day, we create a single 

dummy variable 𝑊𝐴𝑆𝐷𝐸&𝐶𝑃 for the two reports. The GRS report releases are quarterly and 

release days, captured by the dummy variable 𝐺𝑅𝑆, are usually in mid-January and the end of 

March, June and September. For live cattle, we use the Cattle on Feed (captured by the dummy 

variable 𝐶𝐹) report that has the largest impact on the live cattle market among all USDA reports 

(Isengildina, Irwin, and Good, 2006). We also include corn market reports as corn is used as feed 

for live cattle.8  

 Another set of factors is included to account for period events. Both markets experienced 

dramatic price declines which we capture through the dummy 𝐶𝑟𝑎𝑠ℎ. For corn, 𝐶𝑟𝑎𝑠ℎ equals 

one from July 03, 2008 when prices peaked to December 08, 2008 when prices hit bottom. The 

brief period of rapid corn price declines from August 09, 2012 to September 14, 2012, which 

followed a run up due to the severe drought in the summer of 2012, is captured by the dummy 

 
8 Grain market reports are released either before market opening or during the regular trading session and 

thus should affect prices on the release day. CF reports are released on the third Friday of each month 

after regular trading hours and thus should affect price the next day. Therefore, the dummy variables for 

the grain market reports equal 1 on the release day and the dummy variable for CF reports equals 1 on the 

following trading day. 
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variable 𝐷𝑟𝑜𝑢𝑔ℎ𝑡. During this one-month period, corn nearby futures price declined 7.89%. 

Since the drought also affected the live cattle market, the variable 𝐷𝑟𝑜𝑢𝑔ℎ𝑡 for live cattle equals 

1 from December 19, 2012, when nearby futures’ price peaked at 134.40 cents/lb after the 

drought, to May 20, 2013 when the price bottomed at 118.00 cents/lb. A more sustained collapse 

in cattle prices occurred in 2015 causing concerns about the price discovery function of the live 

cattle futures market. This period overlaps the time of CME’s pit trading closure, which was 

announced in February 2015 and started officially in July 2015. Therefore, we create the dummy 

𝐷2015 which equals 1 in the year of 2015, to capture the possible joint price decline and pit 

closure. The corn market remained relatively stable during 2015, providing a good opportunity 

for identifying changes related to the pit trading closure. Consistent with Gousgounis and Onur 

(2017), we create a dummy variable 𝑃𝑖𝑡 that equals 1 after February 4, 2015 when the closing of 

pit trading was announced for corn.9 Commodity index funds have increased investments in 

commodity futures markets (Irwin and Sanders, 2012). These funds typically follow a 

predetermined schedule to roll their positions from the nearby to the next nearby contract. 

Considering the vast position changes involved in the rolling process, changes may occur in the 

discovery process. We include a dummy variable 𝐼𝑛𝑑𝑒𝑥𝑟𝑜𝑙𝑙 that equals 1 between the fifth and 

tenth business days of the month prior to expiration, which includes the roll periods of the two 

largest commodity indices: S&P Goldman Sachs and Dow Jones UBS commodity indices.  

2.4.5 Regression Results 

Regression models are estimated for each pair of contracts in corn and live cattle markets using 

the OLS and presented in Table 2.3 and 2.4, respectively. Heteroscedasticity and autocorrelation 

 
9 Similar results are obtained using the period after July 2015 when this decision was officially executed.   

https://scholar.google.com/citations?user=-v7Kj1YAAAAJ&hl=en&oi=sra
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robust standard errors using the Newey-West (1994) estimator are presented in parentheses and 

adjusted R-squared values are in the lower panel in each table. Adjusted R-squared values in corn 

models are consistently higher than in live cattle models, reinforcing the graphical analysis 

which demonstrates that price discovery in the corn market is more correlated with observable 

variables than in the live cattle market. In each market, R-squared values decrease as the length 

of time between the nearby and deferred contracts increases, indicating the model fits better for 

contract pairs with closer maturities. The coefficients for stationarity are not significant 

suggesting that our results are robust to the selection of price discovery measures.  

Consistent with the economic intuition that information is incorporated in the market through 

volume, the VS coefficient is significant and positive across contract pairs in both markets. A 1% 

increase in the nearby contract’s VS is associated to a 0.56% to 0.69% increase in the nearby 

contract’s PS in the corn market, and between 0.30% and 0.39% in the live cattle market.  

In the corn market, the coefficients of the days to expiration variable and its quadratic term 

are both significant. The coefficients of Expiration are positive and indicate that one day closer 

to contract expiration is associated with a 0.6%-1.1% decrease in the nearby contact’s PS. The 

significant negative Expiration2 parameters indicate the decline in PS occurs in a non-linear 

fashion, first declining gradually and then dropping off more sharply as expiration approaches. 

The relationship between days-to-expiration and PS is only significant in the first contract pair in 

the live cattle market. The coefficient of Expiration in the nearby and deferred 1 contract pair is 

significant and negative, while its quadratic term is significant and positive. This evidence 

supports the earlier observation in figure 2.6 that the PS for the live cattle nearby contract 

declines as expiration approaches but can increase in the last few days.  
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  The coefficients of Inverted and Tomek provide some support for the implications of 

Working’s and Tomek’s theories on price discovery. Consistent with Working’s theory, price 

discovery along the forward curve is uncorrelated with the inverted market indicator in the non-

storable live cattle market. In the corn market and for the first deferred pair, the nearby contract’s 

PS increases about 6.8% when the market is inverted. However, in the other corn contract pairs, 

the PS is not significantly related to Inverted. As expected, the coefficient for Tomek has a 

negative sign in all cases, albeit it is not statistically different from zero in the nearby and first 

deferred contract pair. These findings indicate a decline in the price discovery dominance of the 

nearby contract when the deferred contract represents a different crop year.  

The correlations of PS with USDA reports, price declines and commodity index position rolls, 

are significant in the corn market but not in the live cattle market. In addition, no statistically 

significant relationship between the closure of pit trading and PS along the forward curve are 

found in either market. On average, the PSs for corn nearby contracts are generally lower on 

USDA report days. Coefficients for WASDE&CP are negative across all contract pairs and 

statistically different from zero in the second and third pairs. There is a statistically significant 

and negative correlation between GRS and PS in the nearby and deferred 4 contract pair. The 

result likely reflects that grain reports contain outlook information and market participants use 

this information to adjust their forecasts for longer horizons, therefore improving price discovery 

in deferred contracts. These findings are consistent with Tomek and Gray’s (1970) and Tomek’s 

(1997) view that futures along the forward curve provide information about expected future 

supply-demand information. 

Several small positive relationships between price declines and PS are found in the corn 

market. PS is correlated with the dummy Drought. During that period, the PS of the nearby 
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contract relative to the second deferred contract significantly increased by 4.4%. However, no 

significant coefficients are found in other contract pairs. The response to the July-early 

December 2008 crash in prices appears more relevant. Nearby and deferred 1 contracts 

responded similarly to the sharp decline in prices. At more distant horizons, the nearby contracts, 

which were most closely tied temporally to the initial sharp decline and possessed greater 

liquidity, responded more quickly. The insignificant coefficient in the nearby and deferred 4 

contract pair is positive and follows what appears to be a declining importance of the nearby 

contract through time.   

Index commodity roll periods are positively correlated with the PS of the nearby contract for 

the first two contract pairs. However, the magnitude and significance of the parameter decreases 

from 3.9% in the first contract pair to 3.6% in the second contract pair and becomes insignificant 

in the third and fourth contract pairs. Several studies have documented a “sunshine trading 

effect,” which consists of a predetermined commodity index roll period attracting counterparties 

and increasing liquidity supply (Shang, Mallory and Garcia, 2018). Since traders are highly 

concentrated in the nearby contract during index rolling periods (Aulerich, Irwin and Garcia, 

2014), one possible explanation for the positive correlation between index rolling and PS could 

be that liquidity improvement caused by the “sunshine trading effect” is more pronounced in 

nearby contracts than deferred contracts.  

2.5 Conclusions 

Understanding price discovery along the futures forward curve is important for market 

participants in making sound trading, hedging, and production decisions. In the corn and live 

cattle futures markets, we quantify price discovery using intraday data, and graphical and 

statistical analysis for the 2008-2015 period—a period characterized by highly volatile prices and 
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the closure of pit trading. We measure the price discovery share between nearby and deferred 

contracts and identify when the dominance of price discovery switches between contracts. We 

also estimate the importance of the factors related to price discovery. 

Our results provide nuanced support for the theory of price of storage. We find price 

discovery is more dominated by the nearby contract in the storable corn market than the non-

storable live cattle market. In addition, except when the market is inverted, intraday nearby and 

deferred futures prices are more likely to be cointegrated in the storable corn market than in the 

non-storable live cattle market. However, deferred contracts play a non-trivial role in price 

discovery not only in the non-storable live cattle market, but also in the storable corn market, 

particularly when the deferred contract prices represent a new crop year. This demonstrates the 

importance of futures’ forward pricing role in price discovery as argued by Tomek and Gray 

(1970) and Tomek (1997). 

The price discovery share of the nearby contract decreases in both markets as expiration 

approaches and trading becomes less active. The nearby contract leadership in price discovery is 

tightly related to trading volume. This finding has a practical implication for researchers and 

practitioners who need to construct a continuous series of nearby contracts. Since price discovery 

is closely linked to volume share, we recommend rolling to the next nearby contract when it 

achieves more than 50% of the volume share, instead of using date-based methods. Another 

informative finding is that the September corn contract rarely dominates the next nearby 

(December) contract. This suggests that price discovery is dominated by the December contract 

as early as the beginning of July.  

The regression results show in both markets the share of price discovery along the forward 

curve is strongly linearly correlated with trading volume and nonlinearly correlated with time to 
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expiration. Other market-related factors only have statistically meaningful correlations with the 

share of price discovery in the corn market. During periods of price declines and commodity 

index rolls, price discovery in the corn market is more likely to concentrate in the more traded 

nearby contract than in deferred contracts. Consistent with Working’s theory, we find that an 

inverted market increases price discovery in the corn nearby contract, though only in the first 

deferred pair. In addition, Tomek and Gray’s (1970) and Tomek’s (1997) view that futures not 

only provide guidance for carrying inventories but also forecasts of expected futures prices, is 

supported. We find that deferred contracts’ price discovery role becomes more important when 

they represent a new crop year and on days when the USDA releases important forward-looking 

market information.  

Overall, while the result that price discovery occurs principally in nearby futures contracts is 

consistent with earlier more descriptive analyses based on daily prices (e.g., Working, 1948, 

1949; Tomek, 1997; Leuthold et al., 1989), our findings highlight the dynamic and systematic 

aspects of the price discovery process in agricultural markets.  Differences exist between storable 

and non-storable markets, but their importance in price discovery can also vary in time and by 

market. Despite these differences, the clear relationship across markets between volume share 

and relative price discovery is striking. Informatively, while nearby contracts tend to dominate 

the price discovery process, we identify the non-trivial role that deferred contracts play in 

today’s fast-moving markets. This information should be of value to the pricing and hedging 

decisions that market participants make and to researchers interested in uncovering relevant 

relationships in electronically traded agricultural markets. Future research might expand our 

analysis to other markets, examine the relationships at more disaggregate temporal units and 
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intervals within the day, and focus more specifically on how the intraday price discovery process 

changes on USDA announcement days. 
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2.6 Tables and Figures 

Table 2.1 Distribution of Days Based on Johansen Rank Test Results, 2008-2015  

  Stationarity Cointegration Non-cointegration Total 

Corn     

Nearby and Deferred 1  11.75% 84.14% 4.11% 1992 

Nearby and Deferred 2 9.59% 83.89% 6.52% 1992 

Nearby and Deferred 3 8.89% 83.28% 7.83% 1992 

Nearby and Deferred 4 8.38% 79.62% 12.00% 1992 
     

Live Cattle     

Nearby and Deferred 1  6.85% 75.73% 16.92% 2005 

Nearby and Deferred 2 5.91% 72.26% 21.29% 2003 

Nearby and Deferred 3 5.61% 65.76% 27.99% 2002 

Note: Results are based on Johansen rank hypothesis tests between intraday nearby and deferred 

futures prices at the 5% significance level using trace statistics. Percentages are given as 

percentage of total number of days.  
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Table 2.2 Average Price Discovery and Volume Shares for the Nearby Contract, 2008-2015 

Contract Pair CS IS ILS GS PS VS 

Corn   
   

 

Nearby vs Deferred 1 0.515 0.504 0.535 0.571 0.537 0.532 

Nearby vs Deferred 2 0.473 0.590 0.697 0.724 0.699 0.700 

Nearby vs Deferred 3 0.524 0.662 0.784 0.761 0.783 0.797 

Nearby vs Deferred 4 0.438 0.701 0.830 0.801 0.831 0.855 

      
 

Live cattle   
   

 

Nearby vs Deferred 1 0.425 0.394 0.369 0.571 0.367 0.332 

Nearby vs Deferred 2 0.569 0.550 0.574 0.724 0.571 0.504 

Nearby vs Deferred 3 0.517 0.637 0.680 0.761 0.672 0.621 

Note: Days with cointegrated I(1) intraday nearby and deferred prices are used for CS, IS, and  

ILS. Days with stationary intraday nearby and deferred prices are used for the GS.  PS represents 

the combination of ILS and GS estimates. VS is the nearby contract’s volume share that equals 

the volume of the nearby contract divided by the total volume of the nearby and deferred 

contracts on the same day. 
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Table 2.3 Regression Results for the Corn Futures Contracts, 2008-2015 

  

Nearby and 

Deferred 1 

Nearby and 

Deferred 2 

Nearby and 

Deferred 3 

Nearby and 

Deferred 4 

VS 0.683*** 0.560*** 0.625*** 0.687*** 

 (0.037) (0.041) (0.043) (0.057) 

Expiration 0.007*** 0.011*** 0.009*** 0.006*** 

 (0.002) (0.002) (0.002) (0.002) 

Expiration2 -0.000** -0.000*** -0.000*** -0.000** 

 (0.000) (0.000) (0.000) (0.000) 

Inverted 0.068*** 0.009 -0.007 -0.005 

 (0.014) (0.017) (0.014) (0.013) 

Tomek -0.026 -0.043*** -0.027*  

 (0.016) (0.013) (0.013)  

WASDE & CP -0.022 -0.044** -0.071*** -0.043 

 (0.013) (0.017) (0.021) (0.025) 

GRS 0.006 0.012 -0.021 -0.101* 

 (0.035) (0.042) (0.038) (0.049) 

Drought -0.005 0.044* 0.038 -0.002 

 (0.023) (0.021) (0.050) (0.046) 

Crash -0.010 0.062* 0.067*** 0.044 

 (0.017) (0.027) (0.019) (0.024) 

Pit 0.011 -0.004 -0.014 -0.009 

 (0.010) (0.014) (0.017) (0.017) 

Indexroll 0.039*** 0.036** 0.006 0.012 

 (0.010) (0.012) (0.014) (0.012) 

Stationarity 0.013 0.036*** 0.010 -0.006 

 (0.008) (0.010) (0.011) (0.011) 

Intercept 0.038** 0.081*** 0.112*** 0.103* 

 (0.014) (0.024) (0.032) (0.042) 
     
Adjusted R2 0.78 0.70 0.64 0.52 

Observations 1908 1861 1834 1752 

Note: VS is the nearby contract’s volume share. Expiration is the number of days to the nearby 

contract’s expiration. Inverted is a dummy variable for days in which deferred futures settlement 

price was below nearby futures settlement price. WASDE&CP is a dummy variable for USDA 

WASDE and Crop Production report days. GRS is a dummy variable for USDA Grain Stocks 

report days.  Drought is dummy variable for the period of declining corn prices following the 

2012 drought. Crash is a dummy variable for the corn market crash period in 2008. Pit is a 

dummy variable for days after CME’s pit closure announcement. Tomek is a dummy variable 

which equals 1 when the deferred contract represents a new crop year and the nearby contract 

represents prices for the old crop. Stationarity is a dummy variable for days in which intraday 

nearby and deferred prices were both stationary. Heteroscedasticity and autocorrelation robust 

standard errors are reported in parenthesis. Asterisks ***, **, and * indicate significance at the 

0.1%, 1%, and 5% levels. 
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Table 2.4 Regression Results for the Live Cattle Futures Contracts, 2008-2015 
  Nearby and Deferred 1 Nearby and Deferred 2 Nearby and Deferred 3 

VS 0.305*** 0.387*** 0.348*** 

 (0.081) (0.079) (0.080) 

Expiration -0.008** 0.005 0.006 

 (0.003) (0.003) (0.004) 

Expiration2 0.000*** 0.000 0.000 

 (0.000) (0.000) (0.000) 

Inverted -0.011 0.020 0.011 

 (0.013) (0.016) (0.019) 

CF 0.036 -0.009 -0.041 

 (0.028) (0.030) (0.033) 

WASDE & CP -0.026 -0.049 -0.013 

 (0.020) (0.026) (0.028) 

GRS 0.041 0.041 0.015 

 (0.049) (0.052) (0.043) 

Drought -0.019 -0.032 0.029 

 (0.015) (0.024) (0.027) 

D2015 -0.007 -0.045 0.014 

 (0.023) (0.050) (0.050) 

Indexroll 0.008 -0.002 -0.004 

 (0.013) (0.016) (0.018) 

Stationarity -0.025* -0.021 -0.028* 

 (0.011) (0.013) (0.014) 

Intercept 0.294*** 0.242*** 0.295*** 

 (0.026) (0.026) (0.034) 

 

Adjusted R2 0.29 0.27 0.21 

Observations 1661 1570 1436 

Note: VS is the nearby contract’s volume share. Expiration is the number of days to the nearby 

contract’s expiration. Inverted is a dummy variable for days in which deferred futures settlement 

price was below nearby futures settlement price. CF is a dummy variable for the trading day 

following the release of Cattle on Feed report. WASDE&CP is a dummy variable for USDA 

WASDE and Crop Production report days. GRS is a dummy variable for USDA Grain Stocks 

report days. Drought is dummy variable for the period of declining live cattle prices following 

the 2012 drought.  D2015 is a dummy variable for the year of 2015. Indexroll is a dummy 

variable for commodity index rolling periods.  Stationarity is a dummy variable for days in 

which intraday nearby and deferred prices were both stationary. Heteroscedasticity and 

autocorrelation robust standard errors are reported in parenthesis. Numbers are rounded to the 

third decimal place. Asterisks ***, **, and * indicate significance at the 0.1%, 1%, and 5% 

levels. 
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Figure 2.1 Johansen Rank Test Results and Volume Shares for the Corn Futures Contracts, 2008-2015 

 

Note: Shaded areas represent backwardation periods. Corn futures contracts expire on the business day prior to the 15th calendar day 

of the maturity month. 
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Figure 2.2 Johansen Rank Test Results and Volume Shares for the Live Cattle Futures Contracts, 2008-2015 

  

Note: Shaded areas represent backwardation periods. Live cattle futures contracts expire on the last business day of the maturity 

month. 
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Figure 2.3 Price Discovery Shares for the Nearby Contract Compared to Deferred 1, 2, 3, And 4 Contracts in the Corn Futures Market, 

2008-2015 

 

Note: Shaded areas represent backwardation periods. Corn futures contracts expire on the business day prior to the 15th calendar day 

of the maturity month. 
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Figure 2.4 Price Discovery Shares for the Nearby Contract Compared to Deferred 1, 2, and 3 Contracts in the Live Cattle Futures 

Market, 2008-2015 

  

Note: Shaded areas represent backwardation periods. Live cattle futures contracts expire on the last business day of the maturity 

month.
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Figure 2.5 Price Discovery and Volume Shares in the Nearby Period for each Contract Month in 

the Corn Futures Market, 2008-2015 

 

Note: Panels show the average over years of volume share of nearby relative to the first deferred 

and price discovery share between nearby and first deferred contract. The information is 

organized along the x-axis by days to maturity of the nearby.  
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Figure 2.6 Price Discovery and Volume Shares in the Nearby Period for each Contract Month in 

the Live Cattle Futures Market, 2008-2015 

 

Note: Panels show the average over years of volume share of nearby relative to the first deferred 

and price discovery share between nearby and first deferred contract. The information is 

organized along the x-axis by days to maturity of the nearby.  
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2.7 Supplementary Results 

Supplementary Result 1 

Supplemental Table 2.1 Percentage of Replaced Observations for each Contract Pair in the Corn 

Market, 2008-2015 

  Contract Pair 1 Contract Pair 2 Contract Pair 3 Contract Pair 4 

  Nearby Deferred 1 Nearby Deferred 2 Nearby Deferred 3 Nearby Deferred 4 

Mean 37.33% 46.84% 22.14% 68.17% 16.03% 78.60% 12.34% 83.71% 

Min 0.56% 0.00% 0.03% 0.04% 0.01% 0.14% 0.00% 0.91% 

Max 99.96% 93.40% 99.88% 99.40% 99.79% 99.75% 98.82% 99.90% 

S.D 37.43% 35.20% 32.29% 32.33% 28.39% 29.49% 24.50% 25.34% 

Note: percentage of cases where a transaction’s price in one contract is matched with the last 

transaction in the other contract. While not shown here, these percentages follow a dynamic 

pattern consistent with volume (they grow for the nearby and decline for the first deferred 

contract as the nearby contract approaches expiration). 

 

 

Supplemental Table 2.2 Percentage of Replaced Observations for each Contract Pair in the Live 

Cattle Market, 2008-2015 

  Contract Pair 1 Contract Pair 2 Contract Pair 3   

  Nearby Deferred 1 Nearby Deferred 2 Nearby Deferred 3   

Mean 57.53% 23.17% 39.06% 50.10% 29.46% 63.97%   

Min 3.99% 0.00% 2.44% 0.49% 1.27% 0.59%   

Max 99.89% 80.98% 99.39% 89.80% 99.41% 96.76%   

S.D 28.83% 21.30% 27.21% 24.26% 24.70% 23.87%   

Note: percentage of cases where a transaction’s price in one contract is matched with the last 

transaction in the other contract. While not shown here, these percentages follow a dynamic 

pattern consistent with volume (they grow for the nearby and decline for the first deferred 

contract as the nearby contract approaches expiration). 
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Supplementary Result 2 

Supplemental Table 2.3 Number of Daily Observations for each Contract Pair in the Corn 

Futures Market, 2008-2015  

  Nearby and Deferred 1 Nearby and Deferred 2 Nearby and Deferred 3 Nearby and Deferred 4 

Mean 29,662 22,191 20,168 19,473 

Minimum 696 665 253 131 

Maximum 152,565 152,059 150,931 154,009 

Median 23,868 15,793 14,382 13,756 

Standard Deviation 19,607 19,222 18,383 18,423 

 

Supplemental Table 2.4 Number of Daily Observations for each Contract Pair in the Live Cattle 

Futures Market, 2008-2015 

  Nearby and Deferred 1 Nearby and Deferred 2 Nearby and Deferred 3 

Mean 7,224 4,471 3,901 

Minimum 249 96 28 

Maximum 30,815 29,024 27,689 

Median 6,778 3,509 2,732 

Standard Deviation 5,106 3,778 3,651 
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Supplementary Result 3 

 

                                   Corn                                                                   Live cattle 

Supplemental Figure 2.1 Histograms of Days when Intraday Nearby and Deferred Futures Prices 

were not Cointegrated, 2008-2015 

 

Note: Histograms for corn and live cattle are in the left and right panels, respectively. 

 

 

                                   Corn                                                                   Live cattle 

Supplemental Figure 2.2 Histograms of Days when Intraday Nearby and Deferred Futures Prices 

were both Stationary, 2008-2015 

 

Note: Histograms for corn and live cattle are in the left and right panels, respectively. 
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Supplementary Result 4 

 

Supplemental Figure 2.3 Variance Signature Plots for Corn (left) and Live Cattle (right) Prices, 

2008-2015 

As explained in Hansen and Lunde (2005) and others, realized variance (RV) using higher 

sampling frequencies incorporate variance due to both changes in efficient price and the variance 

of noise, while the RV using low frequency is close to the variance of efficient price. Thus, RV 

using sampling frequency at higher frequencies can be used as a consistent estimator of noise 

(Bandi and Russell 2008), and the difference between RV using higher and lower sampling 

frequencies reflects the variance of noise. We calculate RV as the sum of non-overlapping 

squared intraday returns using n second sampling frequency for nearby and deferred contracts in 

corn and live cattle markets for each day during the whole sample period. We take n equals 

1,5,60, and 300 seconds. The figure above shows daily average RV using different sampling 

frequencies for nearby and deferred contracts for both commodities. We find in both markets, 

nearby and deferred contracts have similar levels of efficient price variance, which can be 

proxied by the RV using 300 seconds sampling frequency (i.e., 0.15 for corn and 0.25 for live 

cattle). This evidence is consistent with the fact that prices for nearby and deferred contracts 

follow a common efficient trend in most days. However, the nearby contracts are associated with 

higher 1-sec RV and larger differences between RV using high (1 second) and low sampling 

0.00

0.10

0.20

0.30

0.40

0.50

1 second 5 seconds 60 seconds 300 seconds

Nearby Deferred 1 Deferred 2

Deferred 3 Deferred 4

0

0.5

1

1.5

1 second 5 seconds 60 seconds 300 seconds

Nearby Deferred 1

Deferred 2 Deferred 3



 

43 

 

(500 seconds) frequencies. The differences between RV for nearby and first deferred contracts is 

small in both markets, consistent with the fact that differences between CS, IS and ILS are 

smaller between the nearby and first deferred contracts in both markets as shown in table 2 in the 

article.  

Supplementary Result 5 

We present information on the error correction parameters below and find that a clear pattern 

emerges from supplemental Figures 2.4 and 2.5. After entering the nearby contract period, the 

magnitude of the error correction parameters peaks for both nearby and deferred contracts 

reflecting stronger adjustments to deviations from the intraday parity. As we approach the 

delivery period, adjustments are less strong, as reflected by a decline in the magnitude of the 

error correction parameters. Adjustments are larger during tumultuous periods (e.g., 2008-09) 

when market shocks are more likely to pull apart the two contract prices, requiring more active 

adjustment to maintain the equilibrium parity. Error correction coefficients are very small for 

inverted corn markets, reflecting the deterioration of the link between maturities during these 

periods. Weak exogeneity tests show that the null of weak exogeneity is usually rejected for both 

contract pairs. 
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Supplemental Figure 2.4 Error Correction Coefficients for the Corn Market, 2008-2015  

 

Note: Shaded areas represent backwardation periods. Corn futures contracts expire on the 

business day prior to the 15th calendar day of the maturity month. 
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Supplemental Figure 2.5 Error Correction Coefficients for the Live Cattle Market, 2008-2015 

Note: Live cattle futures contracts expire on the last business day of the maturity month. 
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Supplemental Table 2.5 Percentage of Days when Price is Exogenous in the VECM (Corn) 

  Contract Pair 1  Contract Pair  2 Contract Pair 3 Contract Pair 4 

Nearby 1%  5% 14% 22% 

Deferred 4%  4% 3% 2% 

Note: these tests should be considered carefully due to the presence of microstructure noise. 

 

Supplemental Table 2.6 Percentage of Days when Price is Exogenous in the VECM (Live Cattle) 

  Contract pair 1 Contract pair 2 Contract pair 3 

Nearby 16% 10% 9% 

Deferred 6% 16% 24% 

Note: these tests should be considered carefully due to the presence of microstructure noise.  
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Supplementary Result 6 

 

Supplemental Figure 2.6 Price Discovery and Volume Shares for the May Contract, 2008-2015 
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CHAPTER 3:  

ALGORITHMIC QUOTING, TRADING, AND MARKET QUALITY IN 

AGRICULTURAL COMMODITY FUTURES MARKETS 

 

3.1 Introduction 

“Traditional end-users— such as those from the agricultural community—are particularly 

concerned about the effects of automated trading on these markets. It is especially important for 

us to be able to respond to the concerns of those who are not so-called “flash boys,” and are only 

moving at human speed.” 

Commodity Futures Trading Commission Former Chairman Timothy Massad10 

Algorithmic trading (AT), which adopts computer programs to automatically monitor markets 

and implement trading strategies, has become common in commodity futures markets. 

According to Commodity Futures Trading Commission’s (CFTC) studies by Haynes and Roberts 

(2015, 2017), in the period November 2014 to October 2016 the proportion of automated trading 

reached 49% in grain and oilseed markets, and 45.8% in livestock markets. Since the emergence 

of AT, there have been concerns about its effects on commodity futures market quality, 

particularly in the agricultural community.  

Most research as well as policy concerns over AT have focused on whether it impairs pricing 

efficiency, increases volatility, and diminishes liquidity (SEC 2014). Studies find AT improves 

 
10 Statement by Chairman Timothy Massad regarding the approval of supplement proposal to automated 

trading regulation on November 4, 2016. https://www.cftc.gov/PressRoom/SpeechesTestimony 

/massadstatement110416 

 

https://www.cftc.gov/PressRoom/SpeechesTestimony
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pricing efficiency  (Conrad, Wahal and Xiang, 2015; Chaboud et al., 2014; Brogaard, 

Hendershott and Riordan, 2014; Carrion, 2013) and liquidity (Hendershott, Jones and Menkveld, 

2011; Hasbrouck and Saar, 2013; Conrad, Wahal and Xiang, 2015), but have not reached 

consensus on how it influences market volatility. For instance, Hasbrouck and Saar (2013) show 

low latency trading reduces short-term volatility and Hagströmer and Nordén (2013) find passive 

market making algorithms mitigate intraday market volatility. More recently, Brogaard et al. 

(2018) focus on high frequency trading (HFT) and extreme price movements in the security 

market and find no evidence of HFT causing extreme price movements. However, a number of 

studies conclude AT is associated with increasing price volatility (Boehmer, Fong and Wu, 2012; 

Zhang 2010; Scholtus, Dijk and Frijns, 2014). None of this research has examined agricultural 

futures markets. 

In recent years, a growing number of studies on the microstructure of agricultural commodity 

futures markets have emerged. Wang, Garcia and Irwin (2013) document that liquidity costs are 

lower in the transition to electronic trading in the corn futures. Couleau, Serra and Garcia (2018) 

investigate microstructure noises in the live cattle futures market and find no evidence that high 

frequency trading (HFT) is responsible for any economically meaningful market noise. Adjemian 

and Irwin (2018) investigate the USDA announcement effects in real time. They find that the 

average size per trade just after announcement time has fallen while the bid-ask spread has 

increased in the real-time era, indicating the possibility that high frequency traders increase 

trading costs in the short window following the report. While these studies document important 

liquidity, noise, and volatility measures in periods associated with different levels of AT (or 

HFT), they do not directly identify effects of AT on these market quality measures.  
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Motivated by the recent policy concerns and the limited information on AT behavior in 

agricultural commodity markets, this paper aims to identify the effects of AT on pricing 

efficiency, volatility and liquidity in the corn, soybean, and live cattle futures markets. 

Identifying the effects of AT is complicated because regulatory agencies such as the CFTC have 

not clearly defined AT, and public or regulatory data are not readily available.  Even when 

available, data often do not contain the relevant measures.  For instance, the CFTC’s dataset 

contains transaction-level data, but evidence suggests that AT’s effects are more related to the 

changes in the supply of quotations rather than trades (e.g., Conrad, Wahal and Xiang, 2015; 

Hendershott, Jones and Menkveld, 2011; Hasbrouck and Saar, 2013; Hasbrouck 2018). 

This paper focuses on the effects of quotations rather than trades generated by trading 

algorithms. The main advantage of using algorithms is that there is virtually zero marginal cost 

to monitor the market and adjust quotes, therefore the effects of AT are more likely to be 

revealed in quotes (Hendershott, Jones and Menkveld, 2011; Conrad, Wahal and Xiang, 2015). 

In addition, regulatory agencies appear to focus on algorithmic quoting (AQ) rather than trading. 

Recently, several AQ practices in commodity futures markets have caused concerns on whether 

they impede the market efficiency and generate order-execution risks. For instance, the CME 

launched the Messaging Efficiency Program (MEP) aiming to restrict inefficient messaging such 

as massive order cancellations and nonmarketable order submissions for corn and soybean 

futures in 2013 and 2016 for the live cattle futures. The CFTC has also taken several 

enforcement actions against proprietary traders who use computer algorithms for spoofing, 

which is based on generating a large number of quotes. For example, on January 31, 2019 the 

CFTC charged a trader at a proprietary trading firm in Chicago for engaging in spoofing the 
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CME’s soybean futures between August 2013 and June 2016.11 Hasbrouck (2018), Li, Wang and 

Ye (2017) among many others, note that high speed changes in quote updates might cause order-

execution risks, with slow traders losing to fast traders who are able to adversely select favorable 

orders to trade. Thus, traditional futures users such as farmers and ranchers who are not fast 

traders may lose to fast algorithmic traders and not be able to effectively hedge their business 

risks.  

We follow Conrad, Wahal and Xiang (2015) and Hendershott, Jones and Menkveld (2011) 

who use the rate of electronic message traffic to measure AQ. Message traffic includes quote 

updates in the limit order book (LOB) caused by order submissions, cancelations, and trades. 

Following Hendershott, Jones and Menkveld (2011), we normalize quote updates by trade 

volume; the variation in this measure reflects the intensity of quote updates relative to trade 

volume. We examine the effect of AQ on different market quality measures in each market 

separately. AQ and market quality measures such as liquidity and volatility are simultaneously 

determined. To analyze the causal effects of AQ on different market quality measures, we follow 

Chaboud et al. (2014) and use a heteroskedasticity-based identification approach. 

The results demonstrate that more intensive AQ is associated with more efficient prices and 

lower short-term volatility. AQ also narrows effective spreads, i.e. order execution costs, 

particularly in the more liquid corn and soybean markets. Lower effective spreads are a result of 

reduced adverse selection costs. Also, there is evidence that AQ significantly increases realized 

spreads, which represent liquidity provider revenues, in the corn futures market. Such evidence 

indicates that currently algorithmic liquidity providers have a competitive advantage in the 

market, which is likely because of their trading speed. No evidence emerges that more intensive 

 
11 https://www.cftc.gov/PressRoom/PressReleases/7865-19  
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AQ is associated with increased realized spreads in the soybean and live cattle markets. These 

results provide important implications on current policy debates on algorithmic trading in 

agricultural futures markets.  

3.2 Data and Measurement 

We use CME’s market depth data for the period of November 20, 2015 to May 14, 2017 for 

three agricultural commodities: corn, soybeans, and live cattle. The sample period was chosen 

because CME’s Market Data Platform (MDP) 3.0, which provides more accurate and detailed 

market depth data than previous versions of the dataset, is available beginning in November 

2015.12 The data are detailed LOB updates that are time-stamped to the nanosecond. Updates to 

the LOB occur as orders are (1) added, (2) deleted from the book due to cancellation or 

execution (3) or changed. The data also provide detailed trade information including the price, 

size, time, sequence, and direction of each trade. 

In processing the LOB data, we only use quotes and trades in the outright book, while implied 

quotes and trades from the implied book (spread trading) are excluded from the analysis. 

Although spread trades also consume and supply liquidity to the outright book, algorithms used 

in the spread book are more likely to be intended to impact price spreads rather than price levels. 

Besides, implied trades are initiated in the spread book and do not have trade initiators in the 

LOB data that are required for calculating realized spreads and adverse selection costs used in 

 
12 Before, the CME Globex FIX format was used. The MDP data compared to the FIX data, provide 

nanosecond resolution and more accurate trade size information. These improvements help with reducing 

measurement errors when computing market quality measures, particularly for order execution cost 

measures. 
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our analysis.13 On each day, we choose the contract with the highest message traffic because AQ 

is more prevalent in contracts that are more active. 

3.2.1 AQ Measure  

As alluded to earlier, our data do not allow us to observe whether an update in the LOB is 

generated by a computer algorithm. Following the literature (e.g., Conrad, Wahal and Xiang, 

2015; Hendershott, Jones and Menkveld, 2011), we build the AQ measure using the rate of 

electronic message traffic which captures updates in the outright LOB per traded contract. This 

proxy is used by researchers and market participants based on the observed correlation between 

the increase in message traffic and the fast growth of AT. An AT strategy can submit and cancel 

orders multiple times before the transaction is executed or “slice and dice” a large order into 

multiple small orders, therefore generating more messages. However, an increase in message 

traffic can result from an increase in trading rather than the change in the trading practice. Hence, 

we normalize the raw number of quote updates by the dollar trading volume, and 𝐴𝑄𝑡 is 

calculated as,  

𝐴𝑄𝑡 =
𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑡

𝐷𝑜𝑙𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒𝑡
,                                                        (3.1) 

where 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑡 is the number of updates in the LOB and 𝐷𝑜𝑙𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒𝑡 is the total dollar 

volume over the time interval 𝑡, respectively. Hence, 𝐴𝑄𝑡 is a proxy for the intensity of AQ 

 
13 The Lee and Ready (1991) rule cannot be used for inferring trade directions for implied trades as they 

are initiated in the spread book. Additionally, realized spreads and adverse selection costs can be 

miscalculated as liquidity provider revenues and losses are not realized in the outright book. 
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relative to trading volume.14 A high 𝐴𝑄𝑡 indicates that quote updates are frequent compared to 

the volume of trade. 

We measure AQ over 10-minute intervals for corn and soybeans, and 25-minute intervals for 

live cattle. The lengths of the measurement intervals are selected based on the trade-off between 

two purposes. First, the measurement interval 𝑡 needs to be long enough to capture enough AQ 

activity. Second, 𝑡 needs to be smaller than a day to capture possible intraday patterns in AQ 

activity, which will help in the statistical identification, and also increase the statistical power in 

the regression analysis. For corn and soybeans, we use day-time trading hours (8:30 a.m. – 1:20 

p.m. CT), so each day has 29 10-minute intervals. In total, there are 11,020 measurement 

intervals for corn and soybeans. The live cattle futures market changed trading hours to 8:30 a.m. 

- 1:05 p.m. CT on February 29, 2016. Before, the live cattle futures market used different trading 

hours during the week.15 For the period after February 29, 2016, we use the whole trading 

session and each day has 11 25-minute intervals. For the period prior to the change in trading 

hours, since prices are typically stale after 1:00 p.m. we use the first 9 and 12 25-minute intervals 

for Monday and Tuesday to Friday, respectively, i.e. only including time intervals before 1:05 

p.m. In total, we have 4,209 observations for live cattle. The same measurement intervals are 

also used for market quality measures described below. In the robustness check section, we show 

 
14 Hendershott, Jones and Menkveld (2011) interpret AQ as a proxy for the amount of AT taking place in 

the market. They argue this measure essentially captures changes in liquidity supply caused by trading 

algorithms. The measure 𝐴𝑄𝑡  is also similar to the message-to-fill ratio used in the CME’s Messaging 

Efficiency Program for inferring the degree of algorithmic quoting’s impact.  

15 9:05 to 16:00 for Monday. 8:00 to 16:00 for Tuesday to Thursday. 8:00 to 13:55 for Friday.  
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that our conclusions remain unchanged when using different sample selections and subsample 

periods.   

The number of quote updates, dollar volume, and AQ for the corn, soybean and live cattle 

markets are presented in figures 3.1-3.3, respectively. For most of the time, the AQ measure is 

relatively stable in the three markets, with no visible upward or downward trend, which is 

consistent with Haynes and Roberts' (2017) evidence that the proportion of automated trades in 

these markets does not change much during the sample period. However, large spikes of AQ are 

present in all the three markets, with more spikes in the corn and soybean markets and much 

fewer in the live cattle market. In the corn market, large spikes are clustered at the end of the 

sample period, the first half of the year 2017, when trading was light due to high South American 

corn yields and limited surprises in the USDA reports (Hubbs, 2017a,b). In the soybean market, 

large spikes of AQ are found when the low-volume August contract is the nearby contract, which 

is a typical seasonal pattern in the soybean market.  

Massive quote updates are more likely generated by algorithms rather than humans when 

trade volume is small. For example, AQ reaches a high of 53 during the 13:00-13:10 period on 

Jan 26, 2016 in the corn futures market, with 18 trades but as many as 7,127 quote updates. In 

particular, we find 1,065 quote updates happened within a second (13:14:49) during this ten-

minute interval. More interestingly, some of the largest spikes are associated with “strategic 

runs” as defined in Hasbrouck and Saar (2013), which are linked order submissions and 

cancelations that are likely to be part of an algorithm, particularly in the corn market. In 

supplementary result 1, we show an example of a “strategic run” that generates 135 messages in 

the LOB within just 41 milliseconds in the corn market. 
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It is not clear when and why “strategic runs” as well as other types of algorithmic quoting 

became more active and generated massive messages in these periods, since algorithmic trading 

strategies are confidential and predictions from theoretical models typically only focus on one 

type of algorithm and depend on restrictive (and sometimes unrealistic) assumptions (Hasbrouck 

and Saar, 2013; Li, Wang and Ye, 2017; Biais, Declerck and Moinas, 2016). Future research 

may want to explore the reasons for active algorithmic quoting during periods of low trade 

volume.  

3.2.2 Pricing Efficiency Measure  

Variance ratios are commonly used in empirical market microstructure studies to examine 

pricing efficiency (e.g., Bessembinder 2003; Conrad, Wahal and Xiang, 2015). Typically, the 

variance ratio compares the variance of price returns at two different time scales. This measure 

assumes that price changes in a long horizon are dominated by movements in the fundamental 

value, while price changes in a short horizon are more affected by noise. Consistent with the 

measurement interval for AQ, we calculate a variance ratio over each 10 minutes for corn and 

soybeans, and 25 minutes for live cattle. We divide each measurement interval into 𝑛 equally 

spaced non-overlapping long intervals and 𝑞 equally spaced non-overlapping short intervals in 

each long interval. Both 𝑛 and 𝑞 need to be integers greater than 1. Since microstructure noise is 

generally more important at a shorter scale (Charles and Darné, 2009), we chose the short 

interval to be 500ms therefore 𝑞=1,200 for grains and 3,000 for live cattle. To show variance 

ratios are robust to the selection of 𝑞, we also present results using 1-second short intervals. The 

longer interval needs to be long enough to be dominated by changes in fundamentals. As shown 

in Hu et al. (2017) and Couleau, Serra and Garcia (2018), price variance is dominated by 

fundamentals when using 5-minutes sampling intervals in corn and live cattle markets. As a 
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result, we choose 𝑛 to be two for corn and five for live cattle, and each long interval therefore is 

5 minutes. Following specifications in Lo and MacKinlay (1989), we define 𝑋𝑘, where 𝑘 =

0,1,2 … 𝑛𝑞, as the log quote midpoints process. The mean drift in prices, �̂�, is as follows, 

    �̂� =
1

𝑛𝑞
∑ (𝑋𝑘 − 𝑋𝑘−1) =

1

𝑛𝑞
(𝑋𝑛𝑞 − 𝑋0)𝑛𝑞

𝑘=1 .                                   (3.2) 

The variance of non-overlapping short interval (𝑠) price differences with bias correction then 

is  

   �̂�𝑠
2 =

1

𝑛𝑞−1
∑ (𝑋𝑘 − 𝑋𝑘−1 − �̂�)2𝑛𝑞

𝑘=1 ,                                         (3.3) 

and the bias-corrected variance of 𝑛𝑞 − 𝑞 − 1 overlapping long interval price differences (𝑙) is 

   �̂�𝑙
2 =

1

𝑞(𝑛𝑞−𝑞+1)(1−
𝑞

𝑛𝑞
)

∑ (𝑋𝑘 − 𝑋𝑘−𝑞 − 𝑞�̂�)
2𝑛𝑞

𝑘=𝑞 .                                (3.4) 

The variance ratio for the time interval 𝑡 is calculated as follows: 

     𝑉𝑅𝑡 =
�̂�𝑙

2

�̂�𝑠
2.                                                             (3.5) 

A benchmark variance ratio of one, is consistent with a random walk pricing process that is 

considered as the weak-form pricing efficiency (Campbell, Lo and MacKinlay, 1997). 

Intuitively, the smaller the noise in price, the closer �̂�𝑠
2 is to �̂�𝑙

2, and 𝑉𝑅𝑡 gets closer to one. In 

contrast, if microstructure noise is large, �̂�𝑠
2 is larger than �̂�𝑙

2 and the value of 𝑉𝑅𝑡 moves away 

from 1. Following Conrad, Wahal and Xiang (2015), hence, we use the absolute value of 𝑉𝑅𝑡’s 

deviation from 1, i.e. |𝑉𝑅𝑡 − 1| as the measure for pricing efficiency, where a smaller value of 

|𝑉𝑅𝑡 − 1| indicates more efficient prices. We exclude the intervals with less than 30 non-zero 

price differences to maximize the power of the statistical analysis.  

3.2.3 Volatility Measure 

The debate on whether AT increases volatility has been concentrated on whether certain AT 

practices cause extreme price changes (Kirilenko et al., 2017; Brogaard et al., 2018). Following, 
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Hasbrouck and Saar (2013), we employ the high-low price range which has the benefit of 

capturing the maximum price movement in a short window as the measure for volatility. The 

volatility measure 𝐻𝑖𝑔ℎ𝐿𝑜𝑤 is expressed in basis points (bps) and is defined as 

                             𝐻𝑖𝑔ℎ𝐿𝑜𝑤𝑡 =
ℎ𝑖𝑔ℎ𝑡−𝑙𝑜𝑤𝑡

𝑚𝑖𝑑𝑡
,                                                       (3.6) 

where ℎ𝑖𝑔ℎ and 𝑙𝑜𝑤, are the highest and lowest midquote in the time interval 𝑡, respectively. 

The denominator 𝑚𝑖𝑑𝑡 is the midpoint between ℎ𝑖𝑔ℎ𝑡 and 𝑙𝑜𝑤𝑡. For consistency with the other 

AQ and market quality measures, 𝑡 is set to be 10 minutes for corn and soybean, and 25 minutes 

for live cattle. 

3.2.4 Liquidity and Order Execution Cost Measures 

We use the effective half spread (𝑒𝑠) to measure liquidity. For the 𝑖𝑡ℎ trade, the proportional 

effective half-spread, 𝑒𝑠𝑖 is defined as 

     𝑒𝑠𝑖 =
𝐼𝑖(𝑝𝑖−𝑚𝑖)

𝑚𝑖
,                                                             (3.7) 

where 𝐼𝑖 equals 1 for buyer-initiated trades and -1 for seller-initiated trades,  𝑝𝑖 is the transaction 

price, and 𝑚𝑖 is the prevailing quote midpoint calculated from the bid and ask quotes. Effective 

spread can be decomposed into two components: realized spread and price impact. Realized 

spread (𝑟𝑠) can be calculated as  

    𝑟𝑠𝑖 =
𝐼𝑖(𝑝𝑖−𝑚𝑖+𝜏)

𝑚𝑖
,                                                           (3.8) 

where 𝑚𝑖+𝜏 is the quote midpoint, 𝜏 periods after the transaction. The realized spread measures 

the revenue liquidity providers receive. The time horizon for 𝜏 needs to be short as it is intended 

to reflect the horizon in which liquidity providers close their position. Research has traditionally 

used 5 minutes for 𝜏. However, given the frequency of quoting and trading under the current 

market environment, 5 minutes may be too long. Recently, O’Hara (2015) suggests using 5 or 15 
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seconds for 𝜏, and Conrad, Wahal and Xiang (2015) suggest 𝜏 less than 20 seconds. We calculate 

realized spreads using 𝜏 equals 5 and 10 seconds, and present results for both. The adverse 

selection cost (𝑎𝑑) or price impact, which measures losses that liquidity providers incur to better 

informed traders, can be computed as  

    𝑎𝑑𝑖 =
𝐼𝑖(𝑚𝑖+𝜏−𝑚𝑖)

𝑚𝑖
.                                                     (3.9)  

Consistent with other measures, we calculate volume weighted averages for each measurement 

interval 𝑡 and express 𝑒𝑠, 𝑟𝑠 and 𝑎𝑑 in bps. 

Table 3.1 presents mean values for AQ and market quality measures calculated over 𝑡 

intervals in the sample period. The measures all have a high standard deviation as they can vary 

considerably within the day and under different market conditions. The live cattle market has a 

lower degree of pricing efficiency than the corn and soybean markets, which is expected as the 

live cattle market is a much thinner market than the other two markets. However, one needs to be 

cautious when comparing measures across markets that are normalized by dollar volume, 

namely, AQ and execution cost measures. The live cattle market can have a high value of AQ 

simply because it has a lower denominator (the average price for live cattle during the sample 

period was 112 cents/pound versus 336 cents/bushel for corn and 983 cents/bushel for soybeans). 

Hence, a higher AQ for live cattle cannot be interpreted as the live cattle market being associated 

to a higher level of AQ than the other two markets.   

Similarly, since grain and live cattle markets use different price quotations and tick sizes, one 

cannot infer their relative liquidity levels by comparing the levels of their effective spreads. The 

average effective spreads are 3.5 basis points for corn and 1.5 basis points for soybeans. Using a 

simple calculation, we obtain the approximate average effective spread that equals 0.128 

cent/bushel (3.5 basis points × 336 cents/bushel) for corn, and 0.147 cents/bushel (1.5 basis 
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points × 983 cents/bushel) for soybeans, with both measures close to half of their tick size (0.125 

cents). These findings are consistent with Wang, Garcia and Irwin (2013) who reveal that the 

average bid-ask spread in the electronically traded corn market is close to one tick size. By 

applying the same calculation, we get the average effective half spread equals 0.021 cents/pound 

(1.8 basis points × 112 cents/pound) for live cattle, which is close to one tick size (0.025 cents). 

Thus, these results indicate that the live cattle market is a less liquid market relative to the other 

two markets. In contrast to corn and soybean markets, realized spreads which represent returns to 

liquidity supplier are negative on average in the live cattle market. This reflects that the live 

cattle market is a less liquid market and liquidity supply is less profitable than in the other two 

markets. Our results for live cattle are consistent with Frank and Garcia (2011) assessment of 

live cattle BAS.  

3.3 Model Specification  

We identify more clearly the effects of AQ on different market quality measures using regression 

analysis. The selection of explanatory variables is based on research findings on the determinants 

of market quality (e.g., Wang, Garcia and Irwin, 2013; Hendershott, Jones and Menkveld, 2011; 

Chaboud et al., 2014) and is constructed as follows:  

𝑀𝑄𝑡 = 𝛽0 + 𝛽1𝐴𝑄𝑡 + 𝛽3𝑀𝑄𝑡−1 + 𝛽4𝑡𝑟𝑒𝑛𝑑𝑡−19:𝑡−1 + 𝛽5𝑈𝑆𝐷𝐴𝑡              

+𝛽6𝐼𝑛𝑑𝑒𝑥𝑅𝑜𝑙𝑙𝑡 + 𝑫𝑡
′ 𝜸 + 𝑪𝑡

′ 𝜹 + 𝑒𝑡,                                    (3.10) 

where 𝑡 = 1,…,T indexes 10-minute or 25-minute time intervals. Following the literature, we 

examine the influence of AQ on each market quality variable separately and 𝑀𝑄 represents one 

of the five market quality measures described above. The variable 𝑀𝑄𝑡−1 is the one lag term of 

𝑀𝑄 and the variable 𝑡𝑟𝑒𝑛𝑑𝑡−19:𝑡−1 is the sum of returns over the last 20 measurement intervals. 

These two variables aim to capture the lagged effect of 𝑀𝑄 and informational shocks in the 
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market, and by construction they are predetermined. The dummies 𝑈𝑆𝐷𝐴𝑡 and 𝐼𝑛𝑑𝑒𝑥𝑅𝑜𝑙𝑙𝑡 

control for the effects of two exogenous events, USDA reports and commodity index rolling. 

Adjemian and Irwin (2018) find the effect of USDA announcements dissipates within a few 

trading minutes after the real-time releases. Hence, the dummy variable 𝑈𝑆𝐷𝐴 equals one for the 

first ten-minute interval after USDA WASDE, Crop Production, and Grain Stocks 

announcements for corn and soybean, and zero otherwise. For live cattle, we use the Cattle on 

Feed report. Because Cattle on Feed reports are released after trading hours, the dummy variable 

𝑈𝑆𝐷𝐴 for live cattle equals one for the first 25-minute interval on days following the report. The 

dummy variable 𝐼𝑛𝑑𝑒𝑥𝑅𝑜𝑙𝑙 equals one for the ten-minute intervals between the fifth and tenth 

business days of the month preceding the expiration month, which includes the roll periods of the 

two largest commodity indices: S&P - Goldman Sachs and Dow Jones - UBS commodity 

indices. Notice that the index rolling dummy may also capture part of the effect of agency order 

execution algorithms.16 The vector 𝑫 is a set of dummy variables (𝑫𝑡 =

(𝑂𝑝𝑒𝑛𝑡, 𝐶𝑙𝑜𝑠𝑒𝑡, 𝑀𝑜𝑛𝑡 , 𝑇𝑢𝑒𝑡, 𝑊𝑒𝑑𝑡, 𝑇ℎ𝑢𝑡)) that controls for market opening, closing and the day-

of-the-week effect. To control for market opening and closing effects, the dummies 𝑂𝑝𝑒𝑛𝑡, and 

𝐶𝑙𝑜𝑠𝑒𝑡 equal one for the first (except for intervals following cattle on feed reports in the live 

cattle market) and last measurement intervals of the day, respectively. Vector 𝑪 is a set of 

contract month dummies. 

 
16 Agency algorithms are widely used by “buy-side” institutions to minimize trading costs when executing 

large orders for portfolio rebalancing (O’Hara， 2015). Since numerous positions need to be liquidated 

during the short rolling window (typically 5 days), commodity index funds managed by major financial 

institutions depend on automated trading algorithms rather than manual trades. 
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3.4 Identification Strategy 

AQ and market quality measures are likely to be simultaneously determined. For example, 

algorithmic traders would be more willing to trade in a more liquid and efficient market because 

it is easier for them to manage risk in such environment (Conrad, Wahal and Xiang, 2015). 

Previous studies typically rely on an exogenous event such as an update in the trading system 

(e.g., decimalization, auto-quote, and change in settlement rule) which facilitates identification of 

an AQ effect. However, such exogenous events do not exist in the markets we study during the 

sample period.17  

Recent developments in identification through heteroskedasticity (e.g., Rigobon, 2003; 

Lewbel, 2012) provide a solution when typical sources of identification such as imposing 

parameters based on economic intuition and instrumental variables are not available. Chaboud et 

al. (2014) adopt Rigobon's (2003) identification through heteroskedasticity approach to identify 

the impact of AT in foreign exchange markets. This identification approach is based on the 

heteroskedasticity of the structural shocks to identify simultaneous-equation systems. However, 

Rigobon's (2003) approach requires that data can be split into two subsamples with the structural 

shocks having different degrees of variance. Since our data sample does not fulfill this requisite, 

we instead use Lewbel's (2012) heteroskedasticity approach which does not depend on the 

assumption that the variances of structural shocks have two regimes.     

 
17 Corn and soybean futures were added to the CME’s messaging efficient program before the sample 

period. We have tried using the messaging efficiency program as an instrument for identifying the effects 

of AQ on market quality measures in the live cattle market. However, Stock-Yogo test results suggest the 

messaging efficient program is a weak instrument. Intuitively, the market efficiency program provides an 

upper limit to AQ rather than causing a dramatic reduction in the level of AQ. 
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As explained in Lewbel (2012), the identification can be achieved if there exists a vector of 

explanatory exogenous variables Z and error terms are heteroskedastic. Variables in Z could 

equal or be a subset of the exogenous variables in the regression. Excellent candidates for Z are 

variables that are clearly exogenous. The variables, except for 𝐴𝑄 are all good candidates for Z, 

as they are either predetermined lagged terms or exogenous events. Lewbel's (2012) approach 

requires a two-stage estimator. In the first stage, the endogenous variable 𝐴𝑄 is regressed on all 

the control variables including the variables in Z. Specifically, we run the following regression: 

    𝐴𝑄𝑡 = 𝛼 + 𝑿′𝜷 + 𝒁′𝜸 + 휀𝑡,                                                   (3.11) 

Where 𝑿 is a vector of exogenous variables in equation (3.10) that are not in vector 𝒁 and the 

other terms are as previously defined. The Lewbel's (2012) approach requires that 휀𝑡 is 

heteroskedastic which is a common feature in models of endogeneity. As suggested by Lewbel 

(2012), we use the Breusch and Pagan (1979) test for heteroskedasticity and results suggest that 

the null of homoscedasticity can be rejected with a p-value less than 0.01 in all cases.  

As shown in Lewbel (2012) the identification can be achieved using the standard Generalized 

Method of Moments-Instrumental Variable (GMM-IV) estimator and (𝒁 − �̅�)휀𝑡 as an 

instrument, where �̅� is a vector of means of the variables in 𝒁. The exogeneity of 𝒁 guarantees 

that (𝒁 − �̅�)휀𝑡 is not correlated with the error term 𝑒𝑡 in equation (3.10). The restriction of 

heteroskedasticity, i.e. cov(𝒁,휀𝑡
2)≠ 0, guarantees that (𝒁 − �̅�)휀𝑡 is correlated with 휀𝑡 in equation 

(3.11) and therefore with the endogenous variable 𝐴𝑄. The degree of correlation between (𝒁 −

�̅�)휀𝑡 and 𝐴𝑄 depends on the degree of heteroskedasticity of 휀𝑡 with respect to 𝒁. A low degree of 

cov(𝒁,휀𝑡
2) can cause (𝒁 − �̅�)휀𝑡 to be a weak instrument. Since then approach uses a standard 

GMM IV estimator, Stock and Yogo (2005) test can be used to test whether (𝒁 − �̅�)휀𝑡 is a weak 
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instrument. In addition, when multiple variables are included in 𝒁, Hansen’s (1982) test can also 

be employed to test for overidentification 

We use a forward stepwise procedure to select the variables included in Z for each market and 

regression. First, we chose one exogenous regressor at a time and add it to the current vector Z 

until the specification passes the weak IV test and the overidentification test (if more than one 

variable is used for 𝒁). If not, we add two variables, and then three and so on, until the model is 

correctly specified for all equations and markets. Using this procedure, we select  𝑡𝑟𝑒𝑛𝑑𝑡−19:𝑡−1 

for Z for corn and live cattle markets, and (𝑡𝑟𝑒𝑛𝑑𝑡−19:𝑡−1 ,𝑂𝑝𝑒𝑛𝑡, 𝐶𝑙𝑜𝑠𝑒𝑡) for Z for the soybean 

market18. In all cases, Stock-Yogo tests statistics suggest (𝒁 − �̅�)휀𝑡 has enough correlation with 

𝐴𝑄 using the Stock and Yogo (2005) critical values. For the soybean market, where multiple 

variables are included in 𝒁, Hansen’s J statistics indicate instrumental variables are exogenous in 

all cases. These test statistics are presented in the last two rows in tables 3.3 to table 3.5.   

3.5 Regression Results 

Before discussing the regression results, we conduct a preliminary exploratory analysis of the 

relationship between AQ and market quality based on the descriptive statistics. We divide the 

sample period into low (AQLow), medium (AQMedium) and high (AQHigh) AQ periods with 

equivalent sample size, and present summary statistics for the market quality measures for each 

subsample in table 3.2. With very few exceptions, sample periods with higher AQs are 

associated with a variance structure closer to the efficient random walk benchmark, lower short-

term volatility, narrower effective spreads, and smaller adverse selection costs. The results for 

the realized spread are mixed across markets. The average realized spread increases 

 
18 As shown in Lewbel (2012), the selection of variables only affects the efficiency but not the 

consistency. 
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monotonically from AQLow to AQHigh in the corn market but does not show a consistent 

increasing or decreasing pattern in the soybean and live cattle markets. This may indicate that 

informed traders are losing more to AQ liquidity providers in the corn futures market. However, 

the cross-sectional comparisons do not provide causal relationships. To shed light on the causal 

relationships between the AQ and market quality, we present the regression results in tables from 

3.3 to 3.5. To save space, control variables for the day-of-the-week and contract effects are 

omitted from the tables. Results for these dummy variables reflect market conditions in different 

time periods during the December 2015 to May 2017 period and are presented in supplementary 

result 2.   

3.5.1 AQ and Pricing Efficiency 

Table 3.3 reports coefficients from the pricing efficiency equations. As explained, pricing 

efficiency is measured using the deviations in variance ratios from the pricing efficiency 

benchmark value of one (|𝑉𝑅𝑡 − 1|), using two different short sampling intervals, 500 

milliseconds and 1 second. Price trend, USDA reports and weekday dummies have limited 

influence on the efficiency of prices in the three markets. Significant contract effects on pricing 

efficiency are found in the soybean and live cattle markets, but not in the corn market 

(supplementary result 2). In particular, more efficient prices are in contract months with lower 

volatility in the soybean and live cattle markets. 

The results show a clear intraday pattern where pricing efficiency tends to be higher (lower 

|𝑉𝑅𝑡 − 1|) at the open and significantly lower (higher |𝑉𝑅𝑡 − 1|)  at the close in all the three 

markets. As less news is coming into the market at the end of the trading day and intraday traders 

liquidate their positions, trades near the market close are more likely to be noise trades. 

Commodity index rolling, which initiates trades for portfolio management rather than based on 
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fundamentals, is found to improve pricing efficiency, albeit its effect is not consistently 

significant across markets. The “sunshine trading effect” of commodity index rolling on liquidity 

has been widely captured in agricultural commodity markets. Our findings suggest that the 

increase in liquidity providers during these periods more than offsets any negative effects of 

index rolling practices on pricing efficiency. Whether more informed traders also participate in 

the pricing process at these moments is less clear but would be consistent with Hu et al. (2017) 

who find commodity index rolling improves price discovery in nearby contracts in corn and live 

cattle markets.  

AQ significantly improves the efficiency of prices at the 10% level in the corn market but has 

no significant effect in the soybean market. As shown in table 3.1, a one standard deviation 

change in the AQ measure is 1.338 in the corn futures market. Hence, the parameter representing 

the variance ratio using 500 ms (1 second) short intervals in the corn futures market suggests that 

a one standard deviation increase in AQ narrows the deviation of the variance ratio from 1 by 

1.338bps × 0.096 (0.138) = 0.128bps (0.184bps), representing a 24% (34%) decline from the 

mean pricing efficiency measure of 0.53bps (0.54bps) for corn. In the live cattle market, results 

indicate that AQ significantly improves the efficiency of prices using 1-second short sampling 

intervals at the 10% level. 

In recent years, traditional agricultural commercials have complained that algorithmic traders 

cause extreme price volatility that does not reflect changes in fundamentals.19 By focusing on 

price variance behavior in recent years, Couleau, Serra and Garcia (2018) find no evidence that 

high frequency trading is responsible for economically meaningful market noise in the live cattle 

futures market. Our results suggest that AQ decreases the degree of market noise. A possible 

 
19 See https://www.reuters.com/article/usa-cattle-markets-idUSL2N15003S for an example. 

https://www.reuters.com/article/usa-cattle-markets-idUSL2N15003S
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explanation is that trading algorithms can quickly respond to market news and other information, 

reducing the staleness of quotes and reflecting the fundamental information faster. These results 

are also consistent with previous evidence found in equity markets (Conrad, Wahal and Xiang 

2015; Chaboud et al., 2014; Brogaard, Hendershott and Riordan, 2014; Carrion, 2013). 

3.5.2 AQ and Volatility 

Volatility, measured by the high-low price range, is heavily affected by USDA reports in all the 

three markets (table 3.4). Open and close dummies capture the widely documented U shape 

pattern of intraday volatility. The one-period lagged volatility and contract dummies show 

significant impacts in all the three markets as well, while commodity index rolling and weekday 

dummies have limited effects (supplementary result 2).  

After controlling for other factors, the results show that, on average, AQ significantly reduces 

short-term volatility in all the three markets, particularly in the corn market. Using the standard 

deviations of the AQ measures presented in table 3.1 and estimated AQ coefficients in table 3.4, 

a one standard deviation increase in AQ reduces the high-low volatility by 1.149bps (1.338bps 

×0.859), 0.529bps (0.553bps×0.956), and 1.620bps (1.904bps ×0.851) in the corn, soybean, and 

live cattle markets, respectively. Based on sample average prices, these can be translated into a 

0.039 (366cents/bushel × 1.149bps), 0.052 (983cents/bushel × 0.529bps), and 0.018 

(112cents/bushel × 1.620bps) cents/bushel decrease in the average high-low price range in the 

corn, soybean, and live cattle markets, respectively. These changes represent about 15% to 20% 

of a tick size in these markets. These results are consistent with Hasbrouck and Saar (2013) who 

find that proprietary algorithmic trading reduces short-term volatility.  
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3.5.3 AQ, Liquidity, and Order Execution Costs 

Table 3.5 shows the effect of AQ on market liquidity. The effective spread is decomposed into a 

realized spread and an adverse selection cost component that are calculated using quote midpoint 

5 and 10 seconds after the trade. IV regressions are estimated for the effective spread and each 

component. The results show that, in general, the effective spread is positively related to its own 

lagged term, USDA reports, and market open and close, while negatively related to price trend 

and commodity index rolling. These effects have expected signs and are consistent with the 

findings in Wang, Garcia and Irwin (2013). Contract effects also suggest order execution costs 

are higher in more volatility months (supplementary result 2). 

As table 3.5 shows both realized spread and adverse selection cost are positively related to 

their lagged terms in all cases. Consistent with the literature, market trend and USDA report 

dummies, which represent time periods with volatile prices and informational shocks, 

significantly increase revenues to better informed traders and decrease returns to liquidity 

providers (Silber 1984; Shang, Mallory and Garcia, 2018; Hendershott, Jones and Menkveld, 

2011). While commodity index rolling significantly reduces the effective spread in the corn 

futures market, it has limited influence on the realized spread and adverse selection cost in any of 

the markets. The realized spread and adverse selection cost in the corn and soybean markets have 

different intraday patterns than the live cattle market. In the corn and soybean markets, realized 

spreads (adverse selection costs) are significantly lower (higher) at the market open and higher 

(lower) at the close. This pattern is consistent with the intraday pattern of pricing efficiency 

presented previously, that market news is more concentrated at the market open where better 

informed traders earn larger profits and lose less to liquidity providers. In contrast, at the close, 

less news enters the market.  Also, intraday traders may need liquidity to close their positions, 
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yielding higher revenues to liquidity providers. In the live cattle market, market close and open 

have the same effects on the realized spread and adverse selection costs as in the other two 

markets, except that realized spreads are also significantly higher at market open. This is 

probably because trading activity in the live cattle market is highly concentrated in the morning 

and liquidity is limited in the afternoon (Shang, Mallory and Garcia, 2018). Hence liquidity 

providers earn higher profits at the market open compared to other periods of the day.  

AQ does not have a significant effect on the live cattle market effective spread, nor on its 

realized spread and adverse selection cost components. This may be related to the lower presence 

of automated algorithms in the thinly traded live cattle market during the sample period (Haynes 

and Roberts, 2015, 2017). However, in the corn and soybean markets, AQ significantly reduces 

effective spreads. A one standard deviation increase in the AQ measure is associated with a 

0.024bps (1.338 × 0.018bps) and a 0.034bps (0.553×0.062bps) decrease in effective spreads in 

the corn and soybean markets, respectively. These represent a 0.7% and a 2% decrease from the 

mean effective spread of 3.5bps and 1.5bps in the corn and soybean markets, respectively. 

Considering mean effective spreads in the corn and soybean markets are close to their minimum, 

i.e. half of a tick size, it is not surprising to find small percent reductions in effective spreads 

associated with a higher level of AQ. Our results are compatible with the low quoted spreads in 

the corn futures market reported by Wang, Garcia and Irwin (2013). 

By decomposing the effective spread into the realized spread and adverse selection, we are 

able to identify the sources behind the decreased immediacy costs (effective spreads) in the 

presence of more intensive AQ. As discussed above, narrower effective spreads indicate either 

less revenues to liquidity providers (smaller realized spreads), smaller losses to better-informed 

traders (smaller adverse selection costs), or both. In the corn futures market, on average, AQ 
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significantly increases realized spreads but also significantly reduces adverse selection costs by a 

larger magnitude. In the soybean market, AQ does not have a significant effect on realized 

spreads, but significantly reduces adverse selection costs when the 10-second horizon is used. 

These results suggest that the improvement in liquidity associated with higher AQ activity can be 

mainly attributed to reduced adverse selection costs in these markets, as liquidity providers are 

losing far less to informed traders when AQ is more active.  

The highly significant positive effect of AQ on the realized spread in the corn market 

indicates AQ liquidity providers earn greater revenues from liquidity demanders than their 

conventional counterparts. Using the results based on the 5-second realized spread as an 

example, if the corn price is 400 cents/bushel a 0.1 increase in the AQ measure is associated with 

a 0.1 × 0.055 bps × 400 cents/bushel × 5000 bushel/contract × 0.01 $/cents ≈ $1.10 increase in 

the AQ liquidity provider revenue per contract. A large commercial trader who trades 100 

contracts, in this case, pays additional $100 to liquidity providers for immediacy.   

The result suggests that algorithmic liquidity providers, on aggregate, have a competitive 

advantage in the corn market. As CME’s agricultural commodity futures mainly use time to 

determine order execution priority for orders quoted at the same price,20 high-frequency 

 
20 Corn and soybean futures use a split FIFO (first in, first out)/ Pro-Rata based matching algorithm, while 

the live cattle market only uses the FIFO. The FIFO algorithm only uses time and the Pro-Rata algorithm 

only uses order size to determine the priority for orders at the same price. Under a split FIFO/Pro-Rata 

algorithm, when large orders are submitted to the LOB, a certain percentage of each matching order gets 

allocated FIFO and the remainder is allocated Pro-Rata. By contacting with officials in the CME group, 

we were informed that about 70% - 80% of the time, FIFO is used to determine order priority in crop 

futures markets.  
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algorithmic liquidity providers who have a speed advantage can adversely select slower traders 

(Li, Wang and Ye, 2017). For example, if a liquidity provision algorithm observes a large buy 

order has been submitted and anticipates price will move up, the algorithm can quickly replace 

its current sell order with a higher ask price and sell to a slow trader who does not observe this 

order information due to the time delay.  

In recent years, proprietary algorithmic trading firms have been heavily invested in 

developing low latency automated trading algorithms. The positive relationship between AQ and 

the realized spread reflects the marginal benefit of investing in developing liquidity provision 

algorithms. On the other side, many algorithmic trading firms have been selling high-frequency 

order-execution services to traditional agricultural commercial futures users to help them avoid 

losses to high frequency traders.21 It is not clear why significant effects are not found in the 

soybean and live cattle markets. It is likely that these markets have different levels of liquidity 

and competitiveness among algorithmic traders. 

3.6 Robustness Checks 

In this section, we show that our results are robust to using different sample selection criteria. 

Algorithmic quoting activity is less likely to exist when the market is not active. Thus, to 

examine whether results are robust to using inactive market time periods, we exclude 

measurement intervals that either belong to the first quantile of the number of quote updates or 

have less than 30 trades, and then replicate the analysis. We find the results are generally the 

same after excluding these time intervals. To save space, results are presented in supplementary 

result 3.  

 
21 For example https://www.rcmalternatives.com/services/futures-traders-hedgers-commercials/ag-

hedging-services/. 

https://www.rcmalternatives.com/services/futures-traders-hedgers-commercials/ag-hedging-services/
https://www.rcmalternatives.com/services/futures-traders-hedgers-commercials/ag-hedging-services/
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Hendershott, Jones and Menkveld (2011) show that algorithmic liquidity supplier market 

advantage is only temporary and declines as more competitive algorithms are developed and 

used in the market. It could be that our finding of liquidity provider market advantage is 

dominated by the early sample period and the effect is only temporary. Thus, to examine whether 

liquidity provider market advantage in the corn market disappeared in the later period of the 

sample as trading algorithms were increasingly used, we replicate the analysis for sample period 

before and after 2017 for the corn market (supplementary result 4). The results show AQ 

significantly increases the 5 and 10-second realized spreads in both periods suggesting that 

algorithmic liquidity providers in the corn futures market have a competitive advantage 

throughout the sample period.   

3.7 Conclusions 

Motivated by recent increasing concerns about the effects of algorithmic activity in agricultural 

futures markets, this paper investigates how quotations generated by algorithmic trading 

strategies affect pricing efficiency, short-term volatility, and liquidity in the corn, soybean, and 

live cattle futures markets.  

Following Hendershott, Jones and Menkveld (2011), we use the number of quote updates in 

the LOB weighted by dollar volume as a measure for algorithmic trading activity. We show that 

even when overall trading is low, quotes in the LOB are updated frequently which is likely a 

result of active AQ activity. Our results are consistent with previous findings in equity markets 

(e.g., Hendershott, Jones and Menkveld, 2011; Conrad, Wahal and Xiang 2015) that, on average, 

more intensive AQ is not harmful to market quality. In particular, we show AQ significantly 

improves pricing efficiency in the corn and live cattle market which complements Couleau, Serra 

and Garcia (2017) who find no evidence of HFT causing meaningful market noises in the live 
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cattle market. AQ also significantly mitigates short-term volatility in all the three markets 

studied. Higher AQ also significantly reduces the costs of immediacy in the more liquid corn and 

soybean markets, but not in the live cattle market. Lower costs of immediacy are due to reduced 

adverse selection costs facing these liquidity providers. The latter is suggestive that algorithmic 

liquidity providers are better informed than their conventional counterparts and quickly 

incorporate fundamental news and other information into the market, leading to an overall 

increase in market quality. Liquidity providers who adopt scalping strategies have long existed in 

futures market since the pit trading era. As shown in Silber (1984), traditional scalpers’ 

profitability depends on their expertise in evaluating short-run bid-ask imbalances and is 

negatively correlated with the holding period of their positions. By operating at a higher speed 

and possibly possessing better market analytical capacities than conventional liquidity providers, 

AT liquidity providers are capable of obtaining higher profits. Hence, while algorithmic activity, 

overall, is beneficial to market quality, our findings suggest informed commercial hedgers pay 

additional costs for improvements in market quality.  

Our results have important implications for regulations and market design. While algorithmic 

traders provide liquidity to the market and reduce the overall costs immediacy, it is important to 

ensure the benefits of competition among different algorithms. Commodity exchanges may 

consider offering lower market access and co-location service fees to attract a variety of 

algorithmic traders. Alternatively, exchanges may consider alternate order matching algorithms, 

such as frequent batch auctions, to reduce traditional commercial hedgers’ disadvantage in speed.  

Due to the limitations of the data, we are only able to show the aggregate effects of AQ. 

While we show that, on aggregate, AQ is beneficial to market quality of multiple dimensions in 

agricultural futures markets, there is a need for continued assessment and monitoring of AT 
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activity. Future work may consider exploring the heterogeneity of the effects of different types of 

algorithms. However, this also requires regulatory agencies to provide more detailed information 

to the research community.   
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3.8 Tables and Figures  

Table 3.1 Summary Statistics, December 2015-May 2017 
 Corn Soybeans Live Cattle 
 Mean S.D. Mean S.D. Mean S.D. 

Messages per minute 514.925 382.337 1144.776 819.982 189.437 102.996 

Trades per minute 39.405 33.887 53.881 46.992 19.969 11.385 

Dollar Volume 11463.069 11339.354 20549.512 19756.642 1442.062 941.130 

AQ 0.790 1.338 0.719 0.553 3.711 1.904 

Pricing efficiency (500 ms) 0.683 0.683 0.757 0.901 1.756 1.503 

Pricing efficiency (1s) 0.703 0.760 0.784 0.966 1.747 1.499 

Volatility, bps 25.762 20.384 23.688 17.849 51.237 29.831 

Volume-weighted effective spread, bps 3.502 0.484 1.504 0.603 1.839 0.608 

Volume-weighted realized Spread (5 s), bps 0.374 1.076 0.081 0.586 -0.017 0.625 

Volume-weighted realized Spread (10 s), bps 0.365 1.139 0.077 0.718 -0.066 0.686 

Volume-weighted adverse selection cost (5 s), bps 3.128 1.253 1.423 1.029 1.856 0.892 

Volume-weighted adverse selection cost (10 s), bps 3.137 1.338 1.427 1.138 1.905 0.925 

Note: This table presents mean values for AQ and market quality measures. All measures are calculated over 10-minute intervals for corn and 

soybean, and 25-minute intervals for live cattle. Pricing efficiency measures are based on variance ratios calculated using 500 milliseconds and 1 

second short sampling intervals. Realized spread and price impact measures are calculated using quote midpoint 5 and 10 seconds after the trade. 
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Table 3.2 Means of Market Quality Measures across High-Low AQ Groups, December 2015-May 2017 

 

Pricing Efficiency  

(500ms) 

Pricing Efficiency  

(1s) 

     

Volatility 

Effective  

Spread 

 Realized Spread  

(5s) 

Realized Spread  

(10s) 

Adverse Selection 

(5s) 

Adverse Selection 

(10s) 

 Corn 

AQLow 0.77 0.79 26.02 3.56  0.31 0.28 3.25 3.29 

 (0.96) (1.24) (22.60) (0.65)  (1.14) (1.29) (1.47) (1.66) 

AQMedium 0.71 0.72 26.17 3.52  0.33 0.34 3.19 3.18 

 (0.68) (1.09) (20.83) (0.36)  (0.98) (1.01) (1.07) (1.11) 

AQHigh 0.65 0.65 25.66 3.42  0.46 0.46 2.97 2.97 

 (0.41) (0.72) (17.60) (0.38)  (1.09) (1.09) (1.16) (1.16) 

 Soybeans 

AQLow 0.86 0.85 25.90 1.59  0.11 0.08 1.48 1.50 

 (1.10) (1.03) (23.17) (0.94)  (0.83) (1.04) (1.61) (1.78) 

AQMedium 0.72 0.77 23.48 1.47  0.08 0.08 1.40 1.39 

 (0.84) (1.00) (15.58) (0.29)  (0.39) (0.45) (0.52) (0.57) 

AQHIgh 0.70 0.75 21.69 1.45  0.06 0.07 1.39 1.39 

 (0.73) (0.88) (12.93) (0.34)  (0.44) (0.50) (0.57) (0.62) 

 Live Cattle 

AQLow 1.71 1.83 52.08 1.84  -0.03 -0.05 1.87 1.89 

 (1.50) (1.60) (31.27) (0.57)  (0.62) (0.66) (0.87) (0.89) 

AQMedium 1.80 1.72 48.79 1.76  -0.06 -0.11 1.82 1.87 

 (1.45) (1.40) (28.22) (0.53)  (0.60) (0.63) (0.87) (0.88) 

AQHigh 1.75 1.56 45.99 1.76  0.00 -0.07 1.76 1.83 

  (1.56) (1.29) (25.46) (0.51)  (0.57) (0.64) (0.75) (0.81) 

Note: This table presents averages and standard deviations for market quality measures for subsamples that are associated with different levels of 

AQ in each market. AQLow , AQMedium, and AQHigh  represents sample periods that are associated with the lowest, medium, and highest AQ measures, 

respectively. Standard deviations are presented in parenthesis. All measures are calculated over 10-minute intervals for corn and soybeans, and 25-

minute intervals for live cattle. Pricing efficiency measures are based on variance ratios calculated using 500 milliseconds and 1 second short 

sampling intervals. Realized spread and adverse selection cost are calculated using quote midpoint 5 and 10 seconds after the trade.   
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Table 3.3 Effect of Algorithmic Quoting on Pricing Efficiency, December 2015-May 2017  

  Corn Soybeans Live Cattle 

        500 ms           1 sec           500 ms          1 sec          500 ms   1 sec 

AQt -0.096* -0.138* 0.061 0.080 -0.017 -0.046* 

 (0.054) (0.075) (0.068) (0.074) (0.022) (0.025) 

|VRt-1|t-1 0.066* 0.074** 0.007 0.010 0.041** 0.035** 

 (0.036) (0.035) (0.016) (0.017) (0.017) (0.017) 

Trendt-19:t-1 0.146 0.229* -0.613 -0.294 -0.018 -0.024 

 (0.093) (0.132) (1.085) (1.175) (0.057) (0.057) 

USDAt -0.057 -0.081 -0.041 -0.050 0.054 0.194 

 (0.167) (0.170) (0.109) (0.116) (0.407) (0.517) 

Opent -0.010 -0.005 -0.042 -0.020 -0.389* -0.379* 

 (0.043) (0.052) (0.042) (0.046) (0.219) (0.213) 

Closet 0.733*** 0.855*** 0.430*** 0.472*** 0.012 0.043* 

 (0.178) (0.214) (0.088) (0.094) (0.110) (0.110) 

IndexRollt -0.043 -0.032 -0.050** -0.052* -0.154** -0.146 

 (0.033) (0.042) (0.025) (0.027) (0.076) (0.077) 

Intercept 0.691*** 0.725*** 0.741*** 0.761*** 1.858*** 1.948*** 

 (0.057) (0.071) (0.062) (0.067) (0.133) (0.140) 

Over identification test: 

Hansen’s J Statistic 
  1.132 1.248   

Weak IV test: 

F Statistic  16.559 18.115 48.830 47.370 27.069 51.052 

Number of Obs. 2263         1973         8439         8184         3536         3563 

Note: This table presents parameter estimates for the pricing efficiency equations. Equations are estimated separately for each market. 

Pricing efficiency measures (|VRt-1|) are based on variance ratios calculated using 500 milliseconds and 1 second short sampling 

intervals. Standard errors that are robust to heteroskedasticity and autocorrelation are reported in parentheses. *,**,*** denote 

significance at the 90%, 95%, 99% level, respectively. Results for day-of-week and contract dummies are not reported in the table due 

to space limit and they can be found in supplementary result 2. 
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Table 3.4 Effect of Algorithmic Quoting on Volatility, December 2015-May 2017 
 Corn Soybean Live Cattle 

AQt -0.859*** -0.956* -0.851* 

 (0.283) (0.545) (0.506) 

HighLowt-1 0.388*** 0.386*** 0.357*** 

 (0.022) (0.021) (0.019) 

Trendt-19:t-1 2.734** 23.632 -1.606 

 (1.066) (18.214) (1.264) 

USDAt 171.092*** 142.006*** 56.653*** 

 (21.239) (19.303) (8.254) 

Opent 29.917*** 23.095*** 28.954*** 

 (1.460) (1.068) (5.904) 

Closet 11.913*** 8.091*** 29.182*** 

 (0.972) (0.742) (2.541) 

IndexRollt 0.354 -0.528 1.047 

 (0.460) (0.366) (1.230) 

Intercept 1.799*** 17.730*** 36.009*** 

 (0.079) (0.807) (2.943) 

Over identification test: 

Hansen’s J Statistic 
 2.914  

Weak IV test: 

F Statistic 38.920 40.360 44.841 

Number of Obs. 11001 10916 3574 

Note: This table presents parameter estimates from the volatility equations. Equations are estimated separately for each market. 

Standard errors that are robust to heteroskedasticity and autocorrelation are reported in parentheses. *,**,*** denote significance at 

the 90%, 95%, 99% level. Results for day-of-week and contract dummies are not reported in the table due to space limit and they can 

be found in supplementary result 2. 
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Table 3.5 Effect of Algorithmic Quoting on Liquidity, December 2015-May 2017 

 AQt LagMQt Trendt-19:t-1 USDAt Opent Closet IndexRollt Intercept 

Hansen’s 

J Statistic F Statistic 

Corn (N = 11001) 

es -0.018** 0.192*** -0.051** 3.197*** 0.155*** 0.014 -0.044*** 3.016***  41.865 

 (0.009) (0.034) (0.026) (0.524) (0.017) (0.013) (0.011) (0.129)   

rs (5 seconds) 0.055*** 0.177*** -0.282*** -1.364*** -0.256*** 0.456*** -0.019 0.140***  39.646 

 (0.021) (0.011) (0.057) (0.425) (0.040) (0.046) (0.030) (0.030)   

rs (10 seconds) 0.056** 0.141*** -0.324*** -2.438*** -0.255*** 0.386*** 0.000 0.153***  39.043 

 (0.023) (0.064) (0.662) (0.046) (0.053) (0.032) (0.034) (0.011)   

ad (5 seconds) -0.074*** 0.177*** 0.230*** 4.598*** 0.412*** -0.443*** -0.026 2.931***  39.045 

 (0.021) (0.012) (0.063) (0.728) (0.043) (0.050) (0.085) (0.056)   

ad (10 seconds) -0.076*** 0.148*** 0.268*** 5.735*** 0.413*** -0.373*** -0.047 3.029***  38.301 

 (0.023) (0.069) (0.916) (0.050) (0.055) (0.036) (0.055) (0.011)   

Soybeans (N = 10916) 

es -0.062*** 0.096*** -0.368 2.204*** 0.156*** 0.062*** 0.005 1.480*** 0.040 40.831 

 (0.020) (0.027) (0.660) (0.345) (0.019) (0.018) (0.013) (0.049)   

rs (5 seconds) -0.006 0.083** -0.563 -1.083*** -0.067*** 0.168*** -0.022 0.047** 0.196 40.438 

 (0.024) (0.038) (0.759) (0.349) (0.022) (0.026) (0.015) (0.022)   

rs (10 seconds) -0.023 0.097** -0.510 -1.226** -0.106*** 0.162*** -0.024 0.062** 1.541 40.465 

 (0.033) (0.034) (0.984) (0.597) (0.026) (0.034) (0.021) (0.027)   

ad (5 seconds) -0.055* 0.066* 0.177 3.480*** 0.225*** -0.105*** 0.027 1.478*** 0.117 40.909 

 (0.031) (0.034) (1.171) (0.584) (0.032) (0.036) (0.022) (0.062)   

ad (10 seconds) -0.029 0.085** -0.134 3.592*** 0.256*** -0.099** 0.025 1.430*** 1.140 40.838 

 (0.039) (0.033) (1.330) (0.684) (0.035) (0.044) (0.027) (0.063)    
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Table 3.5 (continued) 

 AQt LagMQt Trendt-19:t-1 USDAt Opent Closet IndexRollt Intercept 

Hansen’s 

J Statistic F Statistic 

Live Cattle (N = 3574) 

es 0.002 0.274*** -0.048** 0.618* 0.768*** 0.096*** 0.037 1.503***  45.655 

 (0.025) (0.026) (0.023) (0.328) (0.119) (0.025) (0.023) (0.125)   

rs (5 seconds) 0.007 0.139*** 0.028 0.096 0.283*** 0.156*** 0.020 0.013  47.729 

 (0.021) (0.028) (0.021) (0.130) (0.078) (0.032) (0.028) (0.087)   

rs (10 seconds) 0.000 0.115*** 0.009 -0.440*** 0.205** 0.175*** 0.041 -0.003  48.260 

 (0.028) (0.027) (0.028) (0.055) (0.089) (0.038) (0.031) (0.113)   

ad (5 seconds) -0.002 0.223*** -0.079** 0.552 0.491*** -0.062 0.021 1.595***  44.901 

 (0.017) (0.024) (0.034) (0.456) (0.159) (0.043) (0.038) (0.102)   

ad (10 seconds) 0.005 0.204*** -0.060 1.086*** 0.559*** -0.086* 0.002 1.649***  46.220 

  (0.018) (0.025) (0.038) (0.371) (0.157) (0.048) (0.041) (0.011)     

Note: This table reports effects of AQ on effective spread (es) and its realized spread (rs) and adverse selection cost (ad) components.  

Equations are estimated separately for each variable and each market. Realized spread and adverse selection cost measures are 

calculated using quote midpoint 5 and 10 seconds after the trade. Standard errors that are robust to heteroskedasticity and 

autocorrelation are reported in parentheses. *,**,*** denote significance at the 90%, 95%, 99% level. Results for day-of-week and 

contract dummies are not reported in the table due to space limit and they can be found in supplementary result 2.
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Figure 3.1 AQ, Quote Updates, and Dollar Volume in the Corn Futures Market, December 2015-

May 2017 

 

Note: AQ, quote updates, and dollar volume are measured over 10-minute intervals through the 

sample period. For a more readable plot of AQ measures, four observations for the 11:20-11:30, 

11:30-11:40, 12:30-12:40, and 13:00-13:10 intervals on Jan 30, 2017 are clipped, as AQ reached 

a high of 53. 
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Figure 3.2 AQ, Quote Updates, and Dollar Volume in the Soybean Futures Market, December 

2015-May 2017 

 

Note: Number of quote updates, trades, and AQ are measured over 10-minute intervals through 

the sample period. For a more readable plot of AQ measures, two observations for the 12:30-

12:40 interval on June 28, 2016 and the 13:00-13:10 interval on June 27, 2016 are clipped. 
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Figure 3.3 AQ, Quote Updates, and Dollar Volume in the Live Cattle Futures Market, December 

2015-May 2017 

 

Note: Number of quote updates, trades, and AQ are measured over 25-minute intervals through 

the sample period. 

 

 

 
 

 

 



 

84 

 

3.9 Supplementary Results 

Supplementary Result 1 

This part shows an example of “strategic runs” that happened between 13:06:56:69 and 

13:06:56:110. To save space, the table ends at 13:06:56:82. Over this time, updates in the LOB 

only happened in the best and second-best bids.  An order is submitted and canceled multiple 

times resulting in best bid size changes between 112 and 113 every time the order fleets within 1 

millisecond. Meanwhile, another order is submitted and canceled at the second-best bid, 

resulting in the bid size changes between 281 and 280, and the update in the second best bid 

typically happened within 1 millisecond after the quote updated in the best bid. It is not clear the 

two strategic runs are created by the same algorithm or there are two algorithms competing. The 

two “strategic runs” in total create 135 messages in just 41 milliseconds, until the best ask size 

starts to decrease.  
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Supplemental Table 3.1 Strategic Runs 

Time Millisecond Bid 2 Bid Size 2 Bid 1 Bid Size 1 Ask 1 AskSize 1 Ask 2 AskSize 2 

1:06:05 PM 69 373.5 281 373.75 113 374 63 374.25 299 

1:06:05 PM 69 373.5 280 373.75 113 374 63 374.25 299 

1:06:05 PM 69 373.5 280 373.75 112 374 63 374.25 299 

1:06:05 PM 69 373.5 281 373.75 112 374 63 374.25 299 

1:06:05 PM 70 373.5 281 373.75 113 374 63 374.25 299 

1:06:05 PM 70 373.5 280 373.75 113 374 63 374.25 299 

1:06:05 PM 70 373.5 280 373.75 112 374 63 374.25 299 

1:06:05 PM 70 373.5 281 373.75 112 374 63 374.25 299 

1:06:05 PM 71 373.5 281 373.75 113 374 63 374.25 299 

1:06:05 PM 71 373.5 280 373.75 113 374 63 374.25 299 

1:06:05 PM 72 373.5 280 373.75 112 374 63 374.25 299 

1:06:05 PM 72 373.5 281 373.75 112 374 63 374.25 299 

1:06:05 PM 73 373.5 281 373.75 113 374 63 374.25 299 

1:06:05 PM 73 373.5 280 373.75 113 374 63 374.25 299 

1:06:05 PM 73 373.5 280 373.75 112 374 63 374.25 299 

1:06:05 PM 73 373.5 281 373.75 112 374 63 374.25 299 

1:06:05 PM 74 373.5 281 373.75 113 374 63 374.25 299 

1:06:05 PM 74 373.5 280 373.75 113 374 63 374.25 299 

1:06:05 PM 74 373.5 280 373.75 112 374 63 374.25 299 

1:06:05 PM 74 373.5 281 373.75 112 374 63 374.25 299 

1:06:05 PM 75 373.5 281 373.75 113 374 63 374.25 299 

1:06:05 PM 75 373.5 280 373.75 113 374 63 374.25 299 

1:06:05 PM 75 373.5 280 373.75 112 374 63 374.25 299 

1:06:05 PM 75 373.5 281 373.75 112 374 63 374.25 299 

1:06:05 PM 77 373.5 281 373.75 113 374 63 374.25 299 

1:06:05 PM 77 373.5 280 373.75 113 374 63 374.25 299 

1:06:05 PM 77 373.5 280 373.75 112 374 63 374.25 299 

1:06:05 PM 77 373.5 281 373.75 112 374 63 374.25 299 

1:06:05 PM 78 373.5 281 373.75 113 374 63 374.25 299 

1:06:05 PM 78 373.5 280 373.75 113 374 63 374.25 299 

1:06:05 PM 78 373.5 280 373.75 112 374 63 374.25 299 

1:06:05 PM 78 373.5 281 373.75 112 374 63 374.25 299 

1:06:05 PM 79 373.5 281 373.75 113 374 63 374.25 299 

1:06:05 PM 79 373.5 280 373.75 113 374 63 374.25 299 

1:06:05 PM 79 373.5 280 373.75 112 374 63 374.25 299 

1:06:05 PM 79 373.5 281 373.75 112 374 63 374.25 299 

1:06:05 PM 80 373.5 281 373.75 113 374 63 374.25 299 

1:06:05 PM 80 373.5 280 373.75 113 374 63 374.25 299 

1:06:05 PM 81 373.5 280 373.75 112 374 63 374.25 299 

1:06:05 PM 81 373.5 281 373.75 112 374 63 374.25 299 
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Supplementary Result 2 

This section shows the full estimation results for the regressions. 

Supplemental Table 3.2 Parameter Estimates for the Corn Market, December 2015-May 2017 

  

Price 
Efficiency  

(500 ms) 

Price 
Efficiency 

 (1 sec) Volatility Effective Spread 

Realized Spread 

 (5 sec) 

Realized Spread 

 (10 sec) 

Adverse Selection 

 (5 sec) 

Adverse Selection 

 (10 sec) 

AQ -0.096* -0.138* -0.859*** -0.018** 0.055*** 0.056** -0.074*** -0.076*** 

 (0.054) (0.075) (0.283) (0.009) (0.021) (0.023) (0.021) (0.023) 

LagMQ 0.066* 0.074** 3.883*** 0.192*** 0.177*** 0.141*** 0.177*** 0.148*** 

 (0.036) (0.035) (0.218) (0.034) (0.011) (0.064) (0.012) (0.069) 

Trend 0.146 0.229* 2.734** -0.051** -0.282*** -0.324*** 0.230*** 0.268*** 

 (0.093) (0.132) (1.066) (0.026) (0.057) (0.662) (0.063) (0.916) 

USDA -0.057 -0.081 171.092*** 3.197*** -1.364*** -2.438*** 4.598*** 5.735*** 

 (0.167) (0.170) (21.239) (0.524) (0.425) (0.046) (0.728) (0.050) 

Open -0.010 -0.005 29.917*** 0.155*** -0.256*** -0.255*** 0.412*** 0.413*** 

 (0.043) (0.052) (1.460) (0.017) (0.040) (0.053) (0.043) (0.055) 

Close 0.733*** 0.855*** 11.913*** 0.014 0.456*** 0.386*** -0.443*** -0.373*** 

 (0.178) (0.214) (0.972) (0.013) (0.046) (0.032) (0.050) (0.036) 

Roll -0.043 -0.032 0.354 -0.044*** -0.019 0.000 -0.026 -0.047 

 (0.033) (0.042) (0.460) (0.011) (0.030) (0.034) (0.034) (0.040) 

Mon -0.037 -0.042 -0.117 0.000 -0.036 -0.061* 0.036 0.061 

 (0.050) (0.057) (0.450) (0.016) (0.032) (0.036) (0.038) (0.042) 

Tue -0.003 0.014 0.194 -0.010 -0.039 -0.055 0.028 0.044 

 (0.044) (0.053) (0.474) (0.014) (0.033) (0.032) (0.039) (0.036) 
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Supplemental Table 3.2 (continued) 

Note: This table presents parameter estimates for the corn market. Equations are estimated separately. All measures are calculated over 10-minute intervals. 

Pricing efficiency measures are based on variance ratios calculated using 500 milliseconds and 1 second short sampling intervals. Realized spread and adverse 
selection cost are calculated using quote midpoint 5 and 10 seconds after the trade. Standard errors that are robust to heteroskedasticity and autocorrelation are 

reported in parentheses. *,**,*** denote significance at the 90%, 95%, 99% level, respectively. H,K,N,U represents March, May, July, and September, 

respectively. 

 

 

 

 

 

 

 

 

 

 

  

Price 
Efficiency  

(500 ms) 

Price 
Efficiency 

 (1 sec) Volatility Effective Spread 

Realized Spread 

 (5 sec) 

Realized Spread 

 (10 sec) 

Adverse Selection 

 (5 sec) 

Adverse Selection 

 (10 sec) 

Wen -0.060 -0.041 -0.602 -0.022* -0.019 -0.021 -0.004 -0.003 

 (0.042) (0.051) (0.425) (0.012) (0.031) (0.033) (0.035) (0.036) 

Thu 0.004 -0.004 0.870* -0.005 -0.043 -0.034 0.038 0.029 

 (0.045) (0.053) (0.464) (0.012) (0.031) (0.029) (0.035) (0.032) 

H 0.003 0.013 -6.540*** -0.180*** 0.219*** 0.237*** -0.402*** -0.425*** 

 (0.049) (0.064) (0.433) (0.012) (0.027) (0.031) (0.030) (0.036) 

K -0.051 -0.088 -7.178*** -0.213*** 0.253*** 0.253*** -0.469*** -0.475*** 

 (0.061) (0.064) (0.443) (0.015) (0.029) (0.034) (0.035) (0.041) 

N -0.004 -0.015 -0.247 -0.346*** 0.050* 0.053 -0.401*** -0.416*** 

 (0.031) (0.037) (0.512) (0.020) (0.030) (0.090) (0.036) (0.091) 

U 0.083 0.137 -4.627*** -0.253*** 0.637*** 0.541*** -0.890*** -0.798*** 

 (0.182) (0.235) (0.967) (0.037) (0.084) (0.031) (0.085) (0.055) 

Intercept 0.691*** 0.725*** 17.987*** 3.016*** 0.140*** 0.153*** 2.931*** 3.029*** 

 (0.057) (0.071) (0.786) (0.129) (0.030) (0.011) (0.056) (0.011) 
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Supplemental Table 3.3 Parameter Estimates for the Soybean Market, December 2015-May 2017 

 

Price 
Efficiency  

(500 ms) 

Price 
Efficiency 

 (1 sec) Volatility Effective Spread 

Realized Spread 

 (5 sec) 

Realized Spread  

(10 sec) 

Adverse Selection 

 (5 sec) 

Adverse Selection 

 (10 sec) 

AQ 0.061 0.080 -0.956* -0.062*** -0.006 -0.023 -0.055* -0.029 

 (0.068) (0.074) (0.545) (0.020) (0.024) (0.033) (0.031) (0.039) 

LagMQ 0.007 0.010 0.386*** 0.096*** 0.083** 0.097** 0.066* 0.085** 

 (0.016) (0.017) (0.021) (0.027) (0.038) (0.034) (0.034) (0.033) 

Trend -0.613 -0.294 23.632 -0.368 -0.563 -0.510 0.177 -0.134 

 (1.085) (1.175) (18.214) (0.660) (0.759) (0.984) (1.171) (1.330) 

USDA -0.041 -0.050 142.006*** 2.204*** -1.083*** -1.226** 3.480*** 3.592*** 

 (0.109) (0.116) (19.303) (0.345) (0.349) (0.597) (0.584) (0.684) 

Open -0.042 -0.020 23.095*** 0.156*** -0.067*** -0.106*** 0.225*** 0.256*** 

 (0.042) (0.046) (1.068) (0.019) (0.022) (0.026) (0.032) (0.035) 

Close 0.430*** 0.472*** 8.091*** 0.062*** 0.168*** 0.162*** -0.105*** -0.099** 

 (0.088) (0.094) (0.742) (0.018) (0.026) (0.034) (0.036) (0.044) 

Roll -0.050** -0.052* -0.528 0.005 -0.022 -0.024 0.027 0.025 

 (0.025) (0.027) (0.366) (0.013) (0.015) (0.021) (0.022) (0.027) 

Mon 0.023 0.021 -0.357 0.019 -0.016 -0.026 0.036 0.045* 

 (0.035) (0.039) (0.391) (0.016) (0.013) (0.016) (0.022) (0.024) 

Tue -0.044 -0.051 -0.299 0.003 -0.014 -0.014 0.018 0.014 

 (0.030) (0.033) (0.387) (0.013) (0.016) (0.022) (0.024) (0.029) 

Wen 0.005 0.002 -0.616* -0.001 -0.017 -0.030* 0.017 0.030 

 (0.032) (0.035) (0.367) (0.012) (0.014) (0.016) (0.021) (0.023) 

Thu -0.037 -0.046 0.106 0.016 -0.001 -0.007 0.017 0.027 

 (0.029) (0.033) (0.400) (0.020) (0.019) (0.022) (0.036) (0.038) 
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Supplemental Table 3.3 (continued) 

  

Price 
Efficiency  

(500 ms) 

Price 
Efficiency 

 (1 sec) Volatility Effective Spread 

Realized Spread 

 (5 sec) 

Realized Spread 

 (10 sec) 

Adverse Selection 

 (5 sec) 

Adverse Selection 

 (10 sec) 

F -0.064* -0.067* -3.097*** -0.112*** 0.007 0.016 -0.122*** -0.128*** 

 (0.035) (0.038) (0.464) (0.019) (0.017) (0.020) (0.029) (0.031) 

H -0.094*** -0.111*** -6.393*** -0.117*** 0.092*** 0.093*** -0.215*** -0.213*** 

 (0.027) (0.030) (0.406) (0.015) (0.013) (0.015) (0.022) (0.023) 

K -0.078** -0.088* -8.230*** -0.163*** 0.103*** 0.093*** -0.273*** -0.254*** 

 (0.033) (0.036) (0.465) (0.024) (0.021) (0.023) (0.040) (0.041) 

N 0.017 0.030 -1.125*** -0.153*** -0.009 0.000 -0.150*** -0.157*** 

 (0.032) (0.035) (0.428) (0.016) (0.014) (0.019) (0.024) (0.027) 

Q 0.358*** 0.302*** 7.402*** 0.457*** 0.106* 0.135* 0.365*** 0.318*** 

 (0.106) (0.106) (1.607) (0.053) (0.057) (0.076) (0.078) (0.090) 

Intercept 0.741*** 0.761*** 17.730*** 1.480*** 0.047** 0.062** 1.478*** 1.430*** 

 (0.062) (0.067) (0.807) (0.049) (0.022) (0.027) (0.062) (0.063) 

Note: This table presents parameter estimates for the soybean market. Equations are estimated separately. All measures are calculated over 10-minute intervals. 

Pricing efficiency measures are based on variance ratios calculated using 500 milliseconds and 1 second short sampling intervals. Realized spread and adverse 

selection cost are calculated using quote midpoint 5 and 10 seconds after the trade. Standard errors that are robust to heteroskedasticity and autocorrelation are 

reported in parentheses. *,**,*** denote significance at the 90%, 95%, 99% level, respectively. F,H,K,N,Q, represents February, March, May, July, and August, 

respectively. 
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Supplemental Table 3.4 Parameter Estimates for the Live Cattle Market, December 2015-May 2017 

  

Price 
Efficiency  

(500 ms) 

Price 
Efficiency 

 (1 sec) Volatility Effective Spread 

Realized Spread  

(5 sec) 

Realized Spread 

 (10 sec) 

Adverse Selection 

 (5 sec) 

Adverse Selection 

 (10 sec) 

AQ -0.017 -0.046* -0.851* 0.002 0.007 0.000 -0.002 0.005 

 (0.022) (0.025) (0.506) (0.025) (0.021) (0.028) (0.017) (0.018) 

LagMQ 0.041** 0.035** 0.357*** 0.274*** 0.139*** 0.115*** 0.223*** 0.204*** 

 (0.017) (0.017) (0.019) (0.026) (0.028) (0.027) (0.024) (0.025) 

Trend -0.018 -0.024 -1.606 -0.048** 0.028 0.009 -0.079** -0.060 

 (0.057) (0.057) (1.264) (0.023) (0.021) (0.028) (0.034) (0.038) 

USDA 0.054 0.194 56.653*** 0.618* 0.096 -0.440*** 0.552 1.086*** 

 (0.407) (0.517) (8.254) (0.328) (0.130) (0.055) (0.456) (0.371) 

Open -0.389* -0.379* 28.954*** 0.768*** 0.283*** 0.205** 0.491*** 0.559*** 

 (0.219) (0.213) (5.904) (0.119) (0.078) (0.089) (0.159) (0.157) 

Close 0.012 0.043* 29.182*** 0.096*** 0.156*** 0.175*** -0.062 -0.086* 

 (0.110) (0.110) (2.541) (0.025) (0.032) (0.038) (0.043) (0.048) 

Roll -0.154** -0.146 1.047 0.037 0.020 0.041 0.021 0.002 

 (0.076) (0.077) (1.230) (0.023) (0.028) (0.031) (0.038) (0.041) 

Mon -0.015 0.010 -3.834*** -0.054* -0.076** -0.083** 0.013 0.020 

 (0.083) (0.083) (1.271) (0.029) (0.035) (0.038) (0.044) (0.046) 

Tue -0.024 -0.010 -0.251 -0.044* -0.059* -0.080** 0.003 0.022 

 (0.079) (0.079) (1.356) (0.025) (0.030) (0.033) (0.041) (0.043) 

Wen 0.037 0.038 0.945 -0.003 -0.028 -0.048 0.023 0.041 

 (0.081) (0.081) (1.283) (0.026) (0.027) (0.031) (0.039) (0.042) 

Thu 0.032 0.041 1.737 0.037 -0.046 -0.029 0.081* 0.065 

 (0.081) (0.081) (1.375) (0.029) (0.028) (0.031) (0.043) (0.044) 
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Supplemental Table 3.4 (continued) 

  

Price 
Efficiency  

(500 ms) 

Price 
Efficiency 

 (1 sec) Volatility Effective Spread 

Realized Spread 

 (5 sec) 

Realized Spread 

 (10 sec) 

Adverse Selection 

 (5 sec) 

Adverse Selection 

 (10 sec) 

G -0.112 -0.092 -2.734 -0.212*** -0.076* -0.058 -0.161*** -0.180*** 

 (0.097) (0.097) (1.761) (0.034) (0.041) (0.043) (0.058) (0.059) 

J -0.340*** -0.329*** -11.125*** -0.397*** 0.055 0.045 -0.475*** -0.475*** 

 (0.097) (0.096) (1.660) (0.035) (0.036) (0.039) (0.053) (0.056) 

M 0.093 0.082 -3.341* -0.270*** -0.064* -0.073* -0.232*** -0.230*** 

 (0.095) (0.095) (1.776) (0.037) (0.037) (0.041) (0.055) (0.058) 

Q -0.133 -0.153 -1.536 -0.212*** -0.246*** -0.255*** -0.004 -0.001 

 (0.102) (0.101) (1.943) (0.037) (0.045) (0.048) (0.062) (0.064) 

V -0.027 -0.015 -3.854** -0.195*** 0.048 0.099** -0.252*** -0.300*** 

 (0.107) (0.107) (1.963) (0.040) (0.042) (0.047) (0.059) (0.062) 

Intercept 1.858*** 1.948*** 36.009*** 1.503*** 0.013 -0.003 1.595*** 1.649*** 

 (0.133) (0.140) (2.943) (0.125) (0.087) (0.113) (0.102) (0.110) 

Note: This table presents parameter estimates the live cattle market. Equations are estimated separately. All measures are calculated over 25-minute intervals. 

Pricing efficiency measures are based on variance ratios calculated using 500 milliseconds and 1 second short sampling intervals. Realized spread and adverse 

selection cost are calculated using quote midpoint 5 and 10 seconds after the trade. Standard errors that are robust to heteroskedasticity and autocorrelation are 

reported in parentheses. *,**,*** denote significance at the 90%, 95%, 99% level, respectively. G, J, M, Q, V, represents February, April, June, August, and 

October, respectively. 
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Supplementary Result 3 

 

This table replicates regression results in the paper using measurement intervals that do not belong to the first quantile of the 

distribution of the number of quote updates and contain at least 30 trades. The replications use the same test and estimation procedures 

as in the paper. IVs are created using the same variables as used in the paper. To save space, only the coefficient estimates for the AQ 

measure are reported. Standard errors that are robust to heteroskedasticity and autocorrelation are reported in parentheses. *,**,*** 

denote significance at the 90%, 95%, 99% level.  

Supplemental Table 3.5 Robustness Check 
 Pricing efficiency Pricing efficiency 

Volatility Effective Spread 
Realized Spread Realized Spread Adverse Selection Adverse Selection 

 (500ms) (1s) (5s) (10s) (5s) (10s) 

Corn -0.096* -0.138* -0.955** -0.030** 0.085*** 0.080** -0.118*** -0.115*** 
 (0.054) (0.075) (0.013) (0.013) (0.028) (0.033) (0.030) (0.034) 
Soybeans 0.050 0.061 -4.798*** -0.157*** -0.024 -0.059 -0.134** -0.100 
 (0.071) (0.075) (1.173) (0.038) (0.039) (0.053) (0.060) (0.072) 
Live Cattle -0.005 -0.025 -0.942* 0.014 0.017 0.016 -0.003 -0.003 

 (0.023) (0.022) (0.570) (0.028) (0.023) (0.031) (0.019) (0.020) 
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Supplementary Result 4 

This section replicates the results for the effects of AQ on the effective spread, adverse selection 

cost, and realized spread in the corn futures market using sample periods before and after 2017. 

The replications use the same test and estimation procedures as in the paper. IVs are created 

using the same variables as used in the paper. To save space, only the coefficient estimates for 

the AQ measure are reported.  Standard errors that are robust to heteroskedasticity and 

autocorrelation are reported in parentheses. *,**,*** denote significance at the 90%, 95%, 99% 

level.  

Supplemental Table 3.6 Subsample Results 
  Pre 2017 Post 2017 

Effective Spread -0.015 -0.014 

 (0.015) (0.012) 

Realized Spread (5 seconds) 0.081* 0.095*** 

 (0.044) (0.034) 

Realized Spread (10 seconds) 0.081** 0.097*** 

 (0.035) (0.037) 

Adverse Selection (5 seconds) -0.105 -0.107*** 

 (0.044) (0.037) 

Adverse Selection (10 seconds) -0.107** -0.109*** 

  (0.033) (0.039) 
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CHAPTER 4:  

EXCHANGE RATE EFFECTS ON AGRICULTURAL EXPORT PRICES AND SALES 

IN HIGH-LOW STOCK REGIMES 

 

4.1. Introduction 

Since Schuh’s (1974) classic article, the effects of exchange rates on U.S. agricultural 

commodity exports has been area of investigation.  Schuh explains the agricultural commodity 

price boom and increased world demand for U.S. farm products in the early 1970s as a result of 

the two Nixon administration dollar devaluations. Chambers and Just (1981) also provide 

empirical evidence that the devaluation of the dollar in 1971 significantly boosted U.S. 

agricultural commodity exports and prices. Later, Schuh (1984), Chambers (1984) and Orden 

(1986) attribute depressed agricultural exports in the early 1980s to an overvalued dollar, and 

MacDonald (1992) and Stallings (1988) argue that recovered U.S. agricultural export activity in 

the late 1980s and 1990s can be explained by a decline in the value of the dollar. While major 

U.S. agricultural exports in the 2000s are largely driven by increased demand from emerging 

economies (Wright, 2011), recent studies also document linkages between exchange rates and 

agricultural prices (Harri, Nalley and Hudson, 2009; Hatzenbuehler, Abbott and Foster, 2016), 

which can impact exports.  

Despite these findings, other studies fail to identify a clear relationship between exchange 

rates and agricultural commodity export prices and quantities. For example, Bessler and Babul 

(1987) find exchange rates have some impacts on wheat prices but little effect on wheat export 

sales and shipments. Babul, Ruppel and Sessler (1995) show the same results in the corn export 

market. Bradshaw and Orden (1990) reveal mixed evidence on the causality from exchange rates 
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to prices. Frank and Garcia (2010) find exchange rates have limited influence on agricultural 

commodity markets during the period of 1998-2006. But linkages between exchange rates and 

agricultural prices appear to be stronger during the 2006 -2009 commodity boom and bust. The 

mixed evidence on the effects of exchange rates on export prices and quantities warrants further 

research.  

Classic commodity excess supply-demand theory (Kost, 1976; Chambers and Just, 1979) 

suggests that the domestic demand along with available domestic supply shape the excess supply 

function for agricultural exports. In the large exporter case, its excess supply function and the 

excess demand from importers interact to determine quantity traded and prices that in a 

competitive environment and in absence of transaction costs are equal in the exporting and 

importing countries when adjusted by exchange rates. Increases in the value of importers’ 

exchange rates increase excess demand and raise prices and quantity traded.  Conversely, a 

decrease in the value of importers exchange rates decreases excess demand and reduces prices 

and quantity traded.  In these situations, the magnitudes of the change in price and quantity will 

be influenced by the magnitude of the change in the exchange rate, and by the shape of the 

excess supply function.  The more inelastic (elastic) the excess supply function the larger 

(smaller) the price effect and the smaller (larger) the quantity effect.  

In storable commodity markets, the theory of competitive storage shows that the overall 

elasticity of domestic demand for grains varies with the level of inventories and is highly 

inelastic when the level of stocks falls below a certain level (Wright, 2011).  Since the excess 

supply function is determined by domestic demand and available domestic supply, it can become 

inelastic as well and results in large price changes with changing exchange rates. As a 

consequence, the degree of exchange rate impacts on export prices and quantities may differ 
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depending on stock conditions. More specifically, one would anticipate that responses of export 

prices to exchange rate changes are greater when stocks are low. Similarly, when stocks are low 

one would expect sales to vary little (Chambers and Just, 1979). However, this may not be the 

case in a dynamic situation. Chambers and Just (1981) illustrate that export responses to changes 

in exchange rates are more elastic than static theory would imply, and that shorter responses are 

often more pronounced since markets adjust to changing conditions.   

In this paper, we investigate how export prices and sales respond to exchange rate movements 

allowing for changes in stocks-to-use ratio in several important grain markets for the period of 

1990-2019. The analysis is performed in the corn, soybean, and wheat export markets using 

Threshold Vector Autoregressive (TVAR) models and monthly data. We extend the linear VAR 

framework that has been widely adopted in previous literature to study linkages among the 

exchange rate, commodity price, and export sales, by introducing the stocks-to-use ratio as an 

endogenous threshold variable. This allows us to relate the variation in the impact of the 

exchange rate on export price and volume to changes in exporter’s market stocks-to-use ratio.  

This study contributes to the literature by providing an economic explanation for changes in 

the exchange rate-exports relationship. Previous studies typically address this issue statistically 

by identifying a structural break and estimating the impact of the exchange rate in different 

sample periods (e.g., Babula, Ruppel and Bessler, 1995). However, structural breaks that are 

relevant to storable commodities should be reflected in the stocks-to-use ratio. This is the case of 

the 2006-2009 food commodity price boom and bust that are mostly explained by low stocks of 

major grains (Wright, 2011; Janzen et al., 2014; Bruno, Büyükşahin and Robe, 2017). 

Empirically framing the changes in market behavior in the context of a continuous variable like 

the stocks-to-use ratio may be preferable to using a one-time structural phenomenon. These 
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changes are likely to recur regularly, though with different intensities, and seem more 

realistically represented based on changing market stock conditions.  

Perhaps the closest paper to ours is Hatzenbuehler, Abbott and Foster (2016), who show that 

supply-use factors such as low stocks and policy shifts can affect the responsiveness of soybean 

and corn prices to exchange rates. We extend their study in several ways. First, in addition to the 

price responsiveness, we explore for the first time the impact of the level of stocks on the 

responsiveness of export sales to exchange rates. In recent years, major U.S. grain stocks-to-use 

ratios are above the historical averages and prices are depressed. In an era where a weak dollar 

has been advocated to boost exports, understanding the impact of the exchange rate on exports 

allowing for differences in stock conditions has important policy implications.22  

Second, in addition to USDA trade-weighted exchange rates that reflect changes in the dollar 

value relative to importing countries’ currencies, we investigate for the first time how U.S. 

export competitors’ exchange rates affect U.S. export prices and sales by constructing exporter 

weighted exchange rate indices for each commodity using major exporters’ share of global 

exports as weights. A strong dollar tends to make U.S. agricultural exports less competitive as it 

raises export prices relative to other competitors. However, considering the differences in 

marketing seasons and grain quality between the U.S. and other exporting countries, the degree 

to which export sales are affected by competitors’ currencies is not clear. Our paper provides the 

first empirical evidence.  

Third, although Hatzenbuehler, Abbott and Foster (2016) do not ignore stocks, they treat them 

as an exogenous variable in a static model. We, instead, use the TVAR model that allows for the 

 
22 For example, see Steven Mnuchin who endorsed the weakening of the dollar as good for U.S. exports at 

the World Economic Forum in Davos.  
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dynamics of the system of export prices, quantities and exchange rates to adjust to different 

endogenous stock conditions. In addition, the TVAR model also allows us to generate 

Generalized Impulse Response Functions to show the time-variant responses of export prices and 

sales to exchange rate changes given different levels of stocks-to-use ratio. 

 Overall, our results suggest that the influence of the exchange rate on U.S. agricultural exports 

is rather complex. The impacts of the exchange rate on export prices and sales differ across 

markets, and the importance of importer and exporter exchange rate also differ within each 

market. Primarily, the extent to which exchange rate changes affect export prices and sales is 

determined by the degree of market dependence on exports. Exchange rate effects are more 

pronounced in the more export-dependent soybean and wheat markets. In contrast, the effects of 

both importer and exporter exchange rates in the corn market are either not significant or small in 

economic value due to the relatively small export share of production.  

 The results for the soybean and wheat export markets indicate that exporter exchange rate 

effects are limited by the low substitutability of exports between the U.S. and other exporting 

countries. Specifically, major soybean exporters have different marketing seasons than the U.S., 

and U.S. wheat classes and uses are different from other wheat exporters. Our results indicate 

that while a dollar appreciation relative to other export competitors has expected negative 

impacts on export prices in soybean and wheat markets, the magnitudes of these effects are much 

smaller compared to the effect of changes in importer exchange rates. More importantly, 

exporter exchange rates effects on both soybean and wheat export sales are not significant.  

 Expected threshold effects are found in the importer exchange rate-exports relationship in 

soybean and wheat markets, indicating the important role of stock conditions in determining the 

effects of importer exchange rates in these markets. In both markets, an increase in the value of 
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the dollar relative to importing countries’ currencies has significant and negative impacts on 

export prices and sales in both low and high stocks-to-use regimes. More importantly, responses 

of export prices and sales to exporter exchange rate changes are higher in the low stocks-to-use 

regime in soybean and wheat markets. The corn exporter exchange rate also presents similar 

threshold effects, albeit price and export sales responses are not largely different in their 

economic value across regimes. Our results provide important implications for both 

policymakers and market participants that stocks-to-use conditions need to be considered for 

accurate evaluations and forecasts on exchange rate effects in agricultural markets.  

4.2 Data  

We examine effects of exchange rates on U.S. agricultural commodity exports in the corn, 

soybean, and wheat markets for the January 1990 to December 2019 period. The period is 

chosen because fixed exchange rates were used by several countries (e.g., Russia, China, 

Ukraine) before 1990.  

4.2.1 Exchange Rate Indices  

Previous studies typically prefer exchange rate indices to bilateral exchange rates because the 

former can better capture multilateral trade and balance of payments. In this analysis, we 

consider two exchange rate indices. The first one is the USDA real monthly importer-weighted 

exchange rate index compiled by the USDA Economic Research Service (USDA ERS). This 

exchange rate index is calculated for each commodity using real trade-weighted currencies of 

U.S. major importers of the commodity relative to the U.S. dollar. Trade weights are the import 

shares of importing countries, which are calculated based on average shares of U.S. exports 

during the 2014-2016 marketing years. In the corn market, the top three importers—Mexico, 

Japan and Korea—account for nearly 60% of the total share. In the soybean market, the top three 
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importers—China, Mexico and Japan—account for more than 70% of the total share. In the 

wheat market, the top five importers are Japan, Mexico, Philippines, Nigeria, and Brazil. They 

account for 50% of the total share. While the USDA importer exchange rate index is the most 

commonly used exchange rate index in the literature, it has the limitation that it only captures the 

effects of exchange rate movements in countries that import agricultural commodities from the 

U.S. However, U.S. agricultural commodity exports can also be affected by currencies of other 

competitors in export markets.  

To study effects of exchange rates of major U.S. agricultural commodity export competitors 

on U.S. agricultural exports, we construct a real monthly export-weighted exchange rate index by 

using real exchange rates of major exporting countries and their export shares as weights. We 

construct the exporter-weighted exchange rate index using procedures similar to those USDA 

employs to generate the importer-weighted exchange rate index for each commodity. First, we 

obtain real exchange rates of major exporters in each market from the WASDE reports for the 

17/18 marketing year, the most recent finalized numbers.23 Then, we calculate their weights 

based on their total exports in the 17/18 marketing year. Brazil, Argentina and Paraguay are used 

for the soybean market and their weights are 90.3%, 2.5%, and 7.2%, respectively. Brazil, 

Argentina, Ukraine, Russia and South Africa are used for the corn market and their weights are 

33.4%, 31.1%, 25.0%, 7.7%, and 2.8%, respectively. Russia, European Union, Canada, Ukraine 

 
23 USDA ERS typically uses weights based on more recent periods. However, trade weights are not 

updated annually. Here, we use the most recent exports instead of exports during same time period used 

by the USDA ERS as several new competitors have emerged in recent years (e.g. Russia and Ukraine in 

the global wheat market). Including new competitors’ exchange rates will provide more relevant 

implications for the future.    
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Australia and Argentina are used for the wheat market and their weights are 31.6%, 17.8%, 

16.8%, 13.6%, 10.6%, and 9.6%, respectively.24 Then, the exporter exchange rate index for each 

commodity can be derived by multiplying the export weights by the respective real exchange 

rates.  

The two upper panels in figure 4.1 plot the two exchange rate indices over time with 1990 as 

the base year. Both exchange rates represent foreign currencies relative to the U.S. dollar and 

therefore an increase in each of the exchange rate indices indicates an appreciation of the dollar. 

The three importer exchange rates follow a similar pattern over the sample period. An exception 

occurs in the soybean importer exchange rate which increased sharply in 1994 when China 

officially devaluated its currency by 33% as part of a tightly managed floating exchange rate 

policy.  

Exporter exchange rates also follow the same general pattern across markets as they are all 

largely affected by South American grain exporters like Brazil and Argentina, and/or countries in 

the Black Sea region like Russia and Ukraine. However, the exporter exchange rate for corn 

seems to be more volatile compared to the other two exporter exchange rates after 2005. 

Particularly, in the corn market exporter exchange rate index, where Ukraine Hryvnia accounts 

for 25% of the weight, the sharp increase in the exporter exchange rate in early 2015 is related to 

the escalation of the war in eastern Ukraine. However, the magnitude of the increase in the wheat 

exporter exchange rate in the same period is smaller as the weight of Ukraine Hryvnia is only 

13%. No similar sharp increase is found in the soybean exporter exchange rate as it is not 

affected by the Ukraine currency.  

 
24 Former Soviet Union countries and European Union countries use different currencies in early periods 

of the sample; see USDA ERS for how continuous exchange rate series are created for those countries.  

https://www.ers.usda.gov/data-products/agricultural-exchange-rate-data-set/documentation/
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4.2.2 Prices, Export Sales, and Stocks-to-Use Ratios  

Export prices obtained from the USDA Agricultural Marketing Services, are the average 

monthly FOB prices for No. 2 yellow corn, No. 2 yellow soybeans, and No. 1 hard red winter 

wheat, all delivered at the Gulf of Mexico.25 Consistent with previous studies, these prices are 

deflated using the U.S. Consumer Price Index (CPI) from the Federal Reserve to create real 

prices. 

Monthly net export sales for the three commodities are computed from weekly data prepared 

by the Export Sales Reporting Division, USDA Foreign Agricultural Service (USDA FAS). 

Changes in net export sales reflect new foreign purchases as well as cancelled or adjusted 

purchases for a commodity.26 Another candidate for the export quantity variable is export 

shipments. We use sales rather than shipments because export sales are more likely to respond to 

exchange rate changes. As argued by Bradshaw and Orden (1990) and Ruppel (1987), shipments 

are better characterized as a logistic variable depending on logistic factors such as transportation 

costs, the availability of freight space and shipping schedule at the port.  

Monthly stocks-to-use ratios are taken from the World Agricultural Supply and Demand 

Estimates (WASDE) reports. The new marketing year begins in September for corn and 

soybeans and June for wheat. However, traders typically start focusing on the supply-demand 

 
25 Although hard red winter wheat prices are used in our analysis, prices for different wheat classes in the 

U.S. move in tandem during most of the time as shown in Janzen et al. (2014). See Bradshaw and Orden 

(1990) and Bessler and Babula (1987) who also use hard red winter wheat prices.  

26 We use monthly rather than weekly data because weekly sales are frequently affected by revisions and 

cancelations that introduce noise to the measure. Wheat sales are sales for all wheat. Stocks-to-use ratios 

and CPI are only available monthly.  
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conditions for the next marketing year one month before the next marketing year begins (Hu et 

al., 2017). Hence, we use projected ending stocks and total use for the next marketing year 

starting August for corn and soybeans, and May for wheat. Otherwise, estimated/projected U.S. 

ending stocks and total use for the current marketing year are used to calculate the stocks-to-use 

ratio.  

Real commodity prices and export sales are plotted in the two lower panels in figure 4.1. The 

three real commodity prices seem to follow a similar general pattern with important differences 

during the period. By comparing commodity prices and the two exchange rate indices, it appears 

that the value of the dollar is negatively correlated with the level of real commodity price in each 

market.27 For example, both exchange rate indices show an increasing trend in the 1995-2000 

period as well as after 2015, while commodity prices present a decreasing trend in all markets in 

the same periods. Export sales mostly reflect a seasonal pattern with occasional negative 

numbers due to cancelled sales in all the three markets and don’t appear to correlate much with 

exchange rates.28 

Figure 4.2 presents stocks-to-use ratios. The stocks-to-use ratio move within the range of 0.05 

to 0.25 in the corn and soybean markets, and 0.1 to 0.5 in the wheat market. Low stocks-to-use 

ratios appear around the 1996 drought and 2007 commodity price boom periods in all the three 

markets. Further details on the time-series properties of these variables and how the relationship 

between exchange rates and export prices and sales is affected by the level of stocks-to-use ratio 

in each market are discussed in the following sections. Summary statistics for all the variables 

are presented in table 4.1. 

 
27 Correlation coefficients are provided in supplementary result 1.  

28 Again, correlation coefficients are presented in supplementary result 1. 
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4.3 Method 

Economic theory indicates that the magnitudes of the responses of agricultural export prices and 

quantities to exchange rates are determined by the excess supply elasticity (Kost, 1976; 

Chambers and Just, 1979). In storable commodity markets, the theory of competitive storage 

suggests that the supply curve is elastic when stocks are high and inelastic when stocks are low 

(Wright, 2011). Hence, the relationship between exchange rates, agricultural export prices and 

quantities is likely to be non-linear and depend on the level of stocks. To capture the non-linear 

impact of exchange rate changes on agricultural export prices and sales, we adopt the TVAR 

model which has several attractive features that suit our analysis. First, the threshold variable, 

which is the stocks-to-use ratio in our case, is endogenous in the TVAR model. This allows us to 

attribute non-linear dynamics among the variables to regime switches of the stocks-to-use ratio. 

Second, changes in parameters across regimes capture the nonlinearities and allow deriving 

regime-dependent impulse response functions. 

Without losing generality, consider a TVAR model with two regimes (j =1,2). Given the 

vector of endogenous variables (Y) and the threshold variable 𝑤 ∈ 𝑌, the model can be expressed 

as follows: 

𝑌𝑡 = 𝐶𝑗 + ∑ 𝐴𝑗,𝑖𝑌𝑡−𝑖 + 휀𝑡,𝑗
𝑝
𝑖=0                             (4.1) 

where j =1 if 𝑤𝑡−𝑑 < 𝑟 and j=2, otherwise; 𝑟 is the value of the threshold;  𝑝 is the 

autoregressive lag order;  𝑑 is the lag of the threshold variable and 1 ≤ 𝑑 ≤ 𝑝; the matrix 𝐴𝑗,𝑖 is a 

matrix of coefficients for regime j and lag i, and 𝐶𝑗 is a vector of constants specific for each 

regime. Within each regime, the TVAR model is linear, and changes in parameters across 

regimes allow for nonlinearities. 
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 In this analysis, we select and estimate the TVAR model using the following steps. First, we 

specify a linear VAR with 𝑝 autoregressive lags selected using the Bayesian Information 

Criterion (BIC). Then the sup-LR test proposed by Hansen (1999) and modified by Lo and Zivot 

(2001) is employed to test for linearity for different values of the delay parameter d. Because 

there is no prior information about the threshold value 𝑟, the nonlinearity test involves estimating 

the threshold model using all possible threshold values. To avoid overfitting, we restrict the 

possible threshold value so that at least 20% of the observations are in each regime (i.e. the 

trimming parameter = 0.2). If the null hypothesis of linearity is rejected, then the TVAR model 

can be estimated using conditional least squares and the Generalized Impulse Response 

Functions (GIRFs) are used to study the impulse responses in each regime. Otherwise, a linear 

VAR is estimated, and results are presented using linear Impulse Response Functions (IRFs). 

We use the GIRF developed by Koop, Pesaran and Potter (1996) and Pesaran and Shin 

(1998). A GIRF represents the difference between the conditional expectation of 𝑌𝑡+𝑚 with and 

without a shock to a variable of interest which can expressed as: 

𝐺𝐼𝑅𝐹 = 𝐸[𝑌𝑡+𝑚|휀𝑡, 𝜔𝑡−1]  - 𝐸[𝑌𝑡+𝑚|𝜔𝑡−1],                         (4.2) 

where m is the time horizon, 𝜔𝑡−1 represents the history of the series and 휀𝑡 is a vector of 

specific shocks. Typically, the effect of a single shock is examined at a time, so that value of the 

ith element is set to a specific value. The conditional expectation in equation (4.2) and 

confidence intervals are calculated following the algorithm in Baum and Koester (2011): 

1. For each regime with 𝑅 observations, we select a history 𝜔𝑡−1
𝑟  for each possible 

starting point 𝑟 = 1, … , 𝑅.  

2. Generate sequences of shocks 휀𝑡+𝑚
∗  by randomly drawing bootstrap samples from the 

estimated residuals of the TVAR model. 
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3. Simulate the evolution of a variable 𝑦 ∈ 𝑌 over 𝑚 periods by iterating the model 

using 𝜔𝑡−1
𝑟 , 휀𝑡+𝑚

∗  and the estimated coefficients of the TVAR. This yields the 

baseline path 𝑦𝑡+𝑚(𝜔𝑡−1
𝑟 |휀𝑡+𝑚

∗ ). 

4. Add a one standard deviation positive shock 휀0 to the first residual of the randomly 

drawn errors to change the path of 𝑦. Simulate the evolution of 𝑦 over 𝑚 periods to 

derive the shock path 𝑦𝑡+𝑚(𝜔𝑡−1
𝑟 |휀0 , 휀𝑡+𝑚

∗ ). 

5. Repeat step 2 to step 4 500 times to get 500 estimates of the difference between the 

baseline path 𝑦(𝜔𝑡−1
𝑟 |휀𝑡+𝑚

∗ ) and the shocked path 𝑦𝑡+𝑚(𝜔𝑡−1
𝑟 |휀0 , 휀𝑡+𝑚

∗ ). Then, 

calculate the average difference between the baseline path and the shocked path. 

6. Repeat step 1 to step 5 using all possible starting points (i.e. 𝑅 observations) for each 

regime. 

7. The average GIRF for 𝑦𝑡+𝑚 in a given regime with 𝑅 observations can be expressed 

as  

𝑦𝑡+𝑚(휀0 ) =
1

𝑅
∑

𝑦𝑡+𝑚(𝜔𝑡−1
𝑟

|휀0 , 휀𝑡+𝑚
∗

)−𝑦𝑡+𝑚(𝜔𝑡−1
𝑟 | 𝑡+𝑚

∗ )

500
𝑅
𝑟=1  ,                (4.3) 

and the 95% confidence intervals can be obtained using the quantiles from the same sample.  

4.4 Model Specifications and Threshold Tests 

We begin by testing for the stationarity of the data. Previous studies typically conclude that real 

exchange rates and real commodity prices are I(1) and export sales are I(0) series (e.g., Bradshaw 

and Orden, 1990; Babula, Ruppel and Bessler, 1995). Table 4.2 presents the Augmented Dicky-

Fuller (ADF) unit root test results. Consistent with previous findings, ADF tests conclude 

exchange rates and commodity prices are nonstationary at the 5% significance level. For export 

sales and stocks-to-use ratios, ADF tests reject the null hypothesis of a unit root in all cases, 

albeit the significance level is only 10% for the wheat stocks-to-use ratio. Hence, we use levels 
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for export sales and stocks-to-use ratios, and first differences for exchange rates and real prices 

for all the three markets, which is in line with Babula, Ruppel and Bessler (1995) and Bessler 

and Babula (1987).29  

 We investigate the effects of importer and exporter exchange rates separately in each market. 

Four endogenous variables are considered in the VAR/TVAR model: first-differenced exchange 

rate (either the importer or exporter exchange rate), first-differenced real commodity price, 

export sales, and the stocks-to-use ratio. When using the TVAR, ordering of the variables is 

irrelevant since GIRF analysis does not require the orthogonalization of shocks and is invariant 

to ordering (Pesaran and Shin, 1998). For linear VAR models, we order exchange rate changes 

first as our objective is to investigate the impact of exchange rates on export prices and sales. As 

stocks-to-use ratios reflect the overall market supply-demand conditions, they are likely affected 

by all the other variables and therefore appear last in the ordering. We tried using different orders 

for sales and price and found results are visibly the same. Hence, we present IRFs with real 

commodity price ordered before export sales.30 

 
29 We tested for the cointegration relationship between the exchange rates and the real price series and 

found they are cointegrated in soybean and wheat markets. However, first differences are used for these 

variables, since estimation of the VAR and TVAR using their levels leads to a nonstationary model as 

reflected by the impulse response functions. To save space, these results are not presented but are 

available.  

30 The ordering we use is in line with Babula, Ruppel and Bessler (1995) and Bessler and Babula (1987). 

We also considered using GIRFs for VAR models. As shown in Pesaran and Shin (1998), when shocks 

occur in the first variable in a VAR system which is the exchange rate in our case, generalized impulse 

responses and orthogonalized impulse responses are the same. 
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The number of lags (q) in the VAR model is determined by the Bayesian Information 

Criterion (BIC) which strongly penalizes the number of coefficients estimated in the model 

relative alternative information criteria such as AIC. The BIC selects 1 lag in all cases and the 

delay parameter d is set equal to 1 as it cannot exceed q. The sup-LR test proposed by Hansen 

(1999) and modified by Lo and Zivot (2001) is employed to test for the threshold. To avoid 

overfitting, we require that at least 20% of the observations (72 observations) are in each regime. 

We consider the possibility of the existence of two and three regimes, and the test results are 

presented in table 4.3. 

In the corn market, the sup-LR test fails to reject the null hypothesis of linearity when 

importer exchange rates are used. However, the linearity hypothesis is rejected when using corn 

exporter exchange rates, albeit the significance level is only 10% when testing against the 

presence of one threshold. In contrast, significant threshold effects are found using importer 

exchange rates in the soybean market, but the null hypothesis of linearity is not rejected using 

soybean exporter exchange rates. In the wheat market, significant threshold effects are found 

using both importer and exporter exchange rates.  

Based on the sup-LR test results, we estimate a linear VAR model if the null hypothesis of 

linearity is not rejected. Otherwise, a TVAR model is employed to study the impact of exchange 

rates on export prices and sales in different stocks-to-use ratio regimes. One exception is the 

wheat market using exporter exchange rates. While exporter exchange rates have the expected 

negative influence on wheat export prices, unexpected positive effects on export sales were 

found in certain regimes when a TVAR model was used. A possible explanation for the 

unexpected positive impact on wheat export sales is that wheat quality and end use 

characteristics are different between the U.S. and other major wheat exporting countries 
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(O’Brien and Olson, 2014). As wheat varieties produced in other major exporting countries are 

not perfect substitutes for U.S. wheat, their currencies may not have expected effects on U.S. 

wheat export sales. Therefore, we present results from a linear VAR model for wheat when 

exporter exchange rates are used.  

Later, we discuss with more details that the absence of the threshold effect of the importer 

exchange rate in the corn market is likely because only a small proportion of corn is exported 

during the sample period and effects of exchange rates (both importer and exporter exchange 

rates) on corn export prices and sales are either small or non-significant. For exporter exchange 

rates, the absence of the threshold effect in soybean and wheat markets is due to the low 

substitutability between commodities produced in the U.S. and other exporting countries, not 

only in terms of quality but also time.  

To check the sensitivity of our results to the number of lags used in the VAR and TVAR, 

longer lags (up to 3) were tried. We found that the results are generally the same when using 

longer lags, except for the VAR model using soybean exporter change rates. When one lag is 

used, an increase in the soybean exporter exchange rate has an unexpected positive impact on 

soybean export sales. However, the impact becomes statistically indistinguishable from 0 when 

longer lags are used. As a result, we include 2 lags in the VAR model using soybean exporter 

exchange rates. Model specifications adopted for each market using importer and exporter 

exchange rates are summarized in table 4.4.  

Although more significant sup-LR test statistics are found when the presence of two 

thresholds is tested, we present the GIRFs from TVAR models with one threshold.  When 

multiple thresholds are used, responses to exchange rate shocks in the middle regime are often 

undistinguishable from responses in one of the two extreme regimes. The threshold estimates and 
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the number of observations in high and low stocks-to-use ratio regimes are presented in the last 

two columns in table 4.4. Figure 4.2 shows, for each market, the stocks-to-use ratio together with 

the threshold value indicated by a continuous horizontal line and the sample mean indicated by a 

dashed horizontal line. All the threshold values are well below their sample means, particularly 

in soybean and wheat markets. Overall, at least 25% of the observations (94 months) are in the 

low stocks-to-use ratio regime in the markets studied. The 1996-1997 severe drought and the 

2006-2009 period which includes the commodity price boom/bust, financial crisis and biofuel 

expansion (i.e. Renewable Fuel Standard) are in the low stocks-to-use ratio regime in all the 

three markets. While the wheat stocks-to-use ratio remains above its threshold value in the recent 

decade, stocks-to-use ratios below the threshold also appear during the 2012-13 North American 

drought in the soybean and corn markets.  

4.5 Dynamic Responses 

Dynamic responses of real commodity price changes to importer and exporter exchange rate 

shocks are presented in figure 4.3. Dynamic responses of export sales to exchange rate shocks 

are presented in figure 4.4.  The exchange rate shocks are positive and one-standard deviation in 

magnitude. Importer and exporter exchange rate shocks are presented in the left and right panels, 

respectively. Linear IRFs are presented using black lines and GIRFs for high and low stocks-to-

use ratio regimes are presented in blue and red lines, respectively.  

4.5.1 Price Responses 

As shown in figure 4.3, real commodity prices are not only affected by importer exchange rates, 

but also influenced by currencies of major competitors in export markets. In all cases, an 

increase in the value of the dollar leads to a significant decrease in the export price.  However, 

the negative impacts of both importer and exporter exchange rates on real commodity prices are 
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short lived and usually become indistinguishable from zero after 2 to 3 months. As expected, in 

cases where threshold effects are found, namely the corn market using exporter exchange rates 

and soybean and wheat markets using importer exchange rates, the responsiveness of the real 

commodity price change is higher in the low stocks-to-use ratio regime than in the high stocks-

to-use ratio regime. 

To better quantify the economic values of these responses, we present on a percent basis the 

dynamic responses of export prices to a change in exchange rate in table 4.5 for the first 3 

months where significant responses are found. Since real prices enter the model in first 

differences, the percentage change in the real price is computed by dividing the cumulative 

impulse response of the real commodity price by its sample mean. Similarly, the percentage 

change in the exchange rate is computed diving the cumulative exchange rate change by its 

sample mean. Specifically, the dynamic percentage change of the export price (𝑚ℎ
𝑃𝐸) at time 

horizon h is computed as  

𝑚ℎ
𝑃𝐸 =

∆𝑃ℎ

∆𝐸ℎ
∙

�̅�

�̅�
             (4.4) 

where ∆𝑃ℎ and  ∆𝐸ℎ are computed by adding up the corresponding impulse responses of real 

commodity price changes (figure 4.3) and the impulse responses of exchange rate changes31 from 

horizon 1 to h (h=1,2,3), respectively; �̅� and �̅� are the real commodity price and exchange rate 

sample means presented in table 4.1. In addition, we compute the 3-month cumulative economic 

impact (in cents per metric ton) by multiplying the percentage change for the third period by the 

sample mean of the real commodity price (i.e. 
∆𝑃3∙�̅�

∆𝐸3
 ). 

 
31 To save space, these are not presented. 
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As shown in table 4.5, effects of exchange rates are smaller in the corn market than in the 

other two markets, which is likely because the U.S. corn market is less dependent on exports. 

Specifically, U.S. corn exports have been declining and only account for about 7% - 20% of the 

production during the sample period. While the U.S. corn production is mostly for domestic uses, 

particularly for ethanol production, U.S. soybean and wheat markets are more dependent on 

exports as more than 40% of U.S. soybeans and wheat are exported during most of the time in 

the sample period.  

Consistent with the differences in impulse responses across regimes, dynamic percentage 

changes in export prices are higher in the low stocks-to-use ratio regime. Within each market, on 

balance, real export prices are more responsive to importer exchange rates than exporter 

exchange rates. In particular, while exporter exchange rates are associated with percentage 

changes that are less one in all cases, greater-than-unit percentage changes in response to 

importer exchange rates are found in the low stocks-to-use ratio regime in soybean and wheat 

markets. 

4.5.2 Export Sales Responses 

While both importer and exporter exchange rates have significant impacts on real commodity 

prices in all markets, they do not always affect export sales. Responses of export sales to one 

standard deviation positive shocks to the importer and exporter exchange rate changes are 

presented in the left and right panels in figure 4.4, respectively. 

As shown in the right panels in figure 4.4, importer exchange rate changes have statistically 

significant effects on export sales in soybean and wheat markets, but not in the corn market. 

Specifically, in both soybean and wheat markets, an increase in the importer exchange rate leads 

to a small initial decline in export sales in both regimes. While initially the decline has a small 
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magnitude, in the second month the magnitude is larger, especially in the low stocks-to-use ratio 

regime. Then, the response of export sales declines and becomes insignificant after about 4 

months in both regimes. 

Higher responses of export sales for future delivery are found in the low stocks-to-use ratio 

regime at longer horizons are likely due to the differences in market participants’ expectations 

under different stocks-to-use and price conditions, and the ability of importers to cancel export 

contracts. As shown in figure 4.1, importer exchange rates present strong cyclic behavior. When 

stocks-to-use ratios are low and prices are more responsive to exchange rate changes, importers 

may anticipate higher import costs in the future and search for alternative sources. Export 

contracts provide importers this flexibility.  In contrast, when stocks-to-use ratios are high, 

export prices (import costs) are low. Export sales are less affected by exchange rate changes 

because exchange rates have limited impacts on export prices at longer horizons as we show in 

figure 4.3. 

In contrast to importer exchange rate effects, exporter exchange rate shocks only show 

significant influence on export sales in the corn market, but not in soybean and wheat markets. In 

the soybean market, major exporters, namely Brazil, Argentina, and Paraguay, have different 

marketing seasons than the U.S. During the U.S. soybean export seasons, U.S. soybean export 

sales are not likely to be affected by an appreciation of the dollar because south American 

soybean supplies are limited. For wheat, as we discussed, the effects of exporter exchange rates 

are limited by the relatively low degree of substitutability between the U.S. wheat and wheat 

produced in other exporting countries. For example, lower quality feed grade wheat typically 

makes up a large proportion of export sales for Russia and Ukraine which account for about 45% 
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of the trade weights in the exporter exchange index, while U.S. wheat exports are mostly high-

quality milling grade (O’Brien and Olson 2014).  

Compared to soybeans and wheat, corn exports are more substitutable between the U.S. and 

other major corn exporters in terms of quality and marketing seasons. The two Northern 

Hemisphere corn exporters Russia and Ukraine have similar marketing seasons with the U.S. 

Also, the largest U.S. corn export competitor – Brazil –has second-crop corn exported from 

September to January which overlaps with the U.S. marketing seasons. As shown in Allen and 

Valdes (2016), corn exports from Brazil are greater in September-January than in the prior May-

July period in recent years because of increased second-crop corn. Hence, as shown in the upper 

right panel in figure 4.4, an increase in the value of the dollar relative to currencies of other 

major corn exporting countries will result in a significant decrease in the U.S. corn export sales. 

In addition, the responsiveness of U.S. corn export sales is higher in the low stocks-to-use ratio 

regime compared to the high stocks-to-use ratio regime, which is consistent with the threshold 

effects found in the corn export price-exchange rate relationship.  

Again, to quantify the economic values of these responses, we also present a dynamic 

percentage change of export sales to a shock to exchange rates as well as their 3-month 

cumulative economic impacts (in million metric tons) in table 4.6. The dynamic percentage 

change of export sales (𝑚𝑡
𝑆𝐸) at time horizon t is computed as 

𝑚𝑡
𝑆𝐸 =

∆𝑆ℎ

∆𝐸ℎ
∙

�̅�

�̅�
.              (4.5) 

As export sales are in levels, ∆𝑆ℎ is the corresponding impulse response of export sales 

(figure 4.5) at horizon h and 𝑆̅ is the sample mean of export sales. The cumulative economic 
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impact of the exchange rate change is computed multiplying the 3-month percentage change by 

the sample mean of export sales (i.e. 
∆𝑆3∙�̅�

∆𝐸3
 ). 

Consistent with findings in table 4.5, dynamic percentage changes in export sales are smaller 

in the corn market than the other two markets. In particular, the cumulative economic impacts of 

both importer and exporter exchange rates are only marginal in the corn market. The limited 

impacts of exchange rates on corn export sales reflect the relatively small size of U.S. corn 

exports. In soybean and wheat markets where impulse responses of export sales to exporter 

exchange rate shocks are not significant, the 3-month cumulative economic values of exporter 

exchange rate impacts are close to zero. However, importer exchange rates in soybean and wheat 

markets are associated with greater dynamic percentage changes and cumulative economic 

impacts, particularly in the low stocks-to-use ratio regime. Consistent with impulse responses, in 

both soybean and wheat markets, the dynamic importer exchange rate-export sales effect has a 

small initial value that peaks in the second period. However, the impact quickly dies out after the 

peak. This pronounced shorter-term importer exchange rate impact on export sales may be 

related to large order cancelations as the cost to importers is heighted with an increase in the 

value of the dollar. Notice that an exchange rate shock in the low-stock period can often occur 

when prices are already high and availability is limited. The three-month cumulative economic 

impact indicates that on average a 1% increase in the importer exchange rate causes a reduction 

of 0.17 and 0.07 million metric tons (or 6.25 and 2.57 million bushels) in soybean and wheat 

export sales under low stocks-to-use conditions, respectively.  

4.6 Conclusions 

This paper studies for the first time the impact of the level of grain stocks on the responsiveness 

of export sales and prices to changes in the exchange rates in the U.S. corn, soybean and wheat 
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markets. The theory of agricultural commodity excess supply-demand model (Kost, 1976; 

Chambers and Just, 1979; Hatzenbuehler, Abbott and Foster, 2016) predicts that the elasticity of 

price with respect to the exchange rate increases when the domestic demand becomes more 

inelastic. Given that market demand is more inelastic in low stocks-to-use conditions in storable 

commodity markets (Wright, 2011), we expect that the responsiveness of real agricultural export 

prices to exchange rates is greater when the stock-to-use ratio is low, particularly in the short run. 

When the stocks-to-use ratio is low, export sales which reflect future delivery are more likely 

affected by exchange rates at longer horizons as importers adjust their purchases in response to 

higher costs. 

For the first time, we investigate and show nonlinear responses of real commodity export 

prices and sales to exchange rate shocks using TVARs where the stocks-to-use ratio is used as 

the endogenous threshold variable. In addition to the import-weighted exchange rates that are 

commonly considered in the literature, we investigate the effects of major global exporters’ 

currencies on U.S. export prices and sales by building export-weighted exchange rate indices 

based on U.S. export competitors’ export shares for each commodity.  

Overall, consistent with Chamber and Just (1981), our results suggest that the dynamic 

exchange rate impacts on agricultural exports are complex. In particular, we show that the effects 

of exchange rates differ across markets as well as between the import and export exchange rates 

within each market. Primarily, the magnitudes of exchange rate effects on real agricultural 

commodity export prices and sales are determined by the market dependence on exports. During 

the sample period of 1990 to 2019, effects of both importer and exporter exchange rates on real 

price and export sales are either insignificant or small in their economic values in the corn 

market where export share of production is relatively small.  
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In soybean and wheat markets that are more exports-dependent, both importer and exporter 

exchange rates have significant and negative impacts on real export prices. However, export 

sales are only significantly affected by importer exchange rates. The effects of exporting 

countries’ currencies on U.S. export sales in soybean and wheat markets are likely limited by the 

differences in marketing seasons and crop classes between the U.S. and other major exporters. 

This paper demonstrates that changes in the responsiveness of export prices and sales to 

exchange rates can be explained by the changes in the underlying market fundamental 

conditions. The results help to explain the mixed evidence on the effects of exchange rates on 

export prices and quantities in the literature. Failure to account for nonlinear threshold effects 

may be part of the explanation. We show that when the stocks-to-use ratio is low exchange rate 

effects on export prices and sales is be more pronounced in exports-orientated grain markets. 

Specifically, the responsiveness of real export prices and sales to importer exchange rate changes 

are greater in the low stocks-to-use ratio regime in soybean and wheat markets. Similar threshold 

effects are also present in the effects of corn exporter exchange rates on real corn prices and 

export sales, albeit the economic values in different regimes of stocks-to-use ratio do not seem to 

be largely different. In contrast, in periods of high stocks-to-use ratios the effects of changing 

exchange rates are non-existent or sharply muted. Failure to consider these changing responses 

likely masked the relevant exchange rate effect.   

While our analysis shows the importance of storage in grain markets in determining price and 

export sales responses to exchange rates fluctuations, it is also possible that other factors like the 

Renewable Fuel Standard (RFS), China’s Soybean reserve policy, economic recession and 

quantitative easing also affect the exchange rate-export relationship. However, much of these 

events overlap with periods of low stocks. Additionally, storable commodity markets are more 
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vulnerable to issues like extreme weather, increased biofuel and export demand when stocks are 

low (Wright, 2011). Due to multicollinearity and degrees of freedoms, it is always difficult to 

incorporate multiple factors to model exchange rate effects on agricultural exports (Chambers 

and Just, 1981). Further research may consider modeling these factors in a structural framework 

to clearly disentangle their effects. Alternatively, one may consider using time-varying parameter 

models to capture the exchange rate influence on agricultural exports under different market 

conditions.     

The results provide important implications for policy makers who intend to use a weak dollar 

policy to boost agricultural exports and increase farmers’ welfare. Considering stocks-to-use 

ratios for major U.S. grain and oil seed markets are at a relatively high level in recent years, a 

weak dollar policy may not be able to dramatically boost export prices and sales, at least for the 

markets studied in this article. 
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4.7 Tables and Figures  

Table 4.1 Monthly Summary Statistics, January 1990-December 2019 

  Importer Exchange Rate Exporter Exchange Rate 

Price  

($/Metric Ton) 

Export Sales  

(Million Metric Tons) Stocks-to-Use Ratio 

 Corn 

Min 90.47 53.00 43.46 -0.75 0.04 

Max 120.98 282.57 145.68 10.03 0.27 

Median 103.66 172.39 70.42 3.27 0.14 

Mean 104.03 159.00 75.70 3.33 0.14 

Standard Deviation 6.85 57.56 22.74 1.74 0.05 

 Soybeans 

Min 91.92 78.95 103.78 -0.61 0.04 

Max 130.51 266.49 297.50 9.51 0.25 

Median 106.93 124.95 168.87 1.60 0.11 

Mean 107.59 127.07 173.35 2.08 0.11 

Standard Deviation 9.06 34.11 40.61 1.77 0.05 

 Wheat 

Min 87.33 69.97 50.61 -0.19 0.10 

Max 121.90 174.55 189.19 6.67 0.56 

Median 104.15 117.69 85.74 1.94 0.29 

Mean 102.95 116.85 89.24 2.02 0.31 

Standard Deviation 9.41 21.69 26.14 1.03 0.10 

Note: The importer (exporter) exchange rate is the trade-weighted exchange rate.  Prices and export sales are measured at NOLA.  Stocks-to-use 

Ratio are USDA’s national estimate.
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Table 4.2 Augmented Dickey–Fuller Tests, January 1990-December 2019 

  

Importer Exchange  

Rate 

Exporter Exchange 

 Rate Price Export Sales Stocks-to-Use Ratio 

Corn -1.76 -2.70 -2.51 -6.44** -4.21** 

 (0.68) (0.28) (0.36) (0.00) (0.00) 

Soybeans -2.42 -2.11 -2.52 -12.16** -2.98** 

 (0.40) (0.53) (0.36) (0.00) (0.04) 

Wheat -1.70 -3.21* -2.84 -9.22** -3.27* 

 (0.70) (0.08) (0.22) (0.00) (0.06) 

Note: ADF tests are all specified with a constant and lags are selected based on the Akaike information 

criterion (AIC). P-values for the ADF tests are presented in parentheses. * and ** indicate significance at 

the 10% and 5% level, respectively. 
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Table 4.3 Sup-LR Linearity Tests, January 1990-December 2019 
  Lags   Delay Parameter Sup-LR test 

  (q)  (d) 1 Threshold  2 Thresholds 

Importer Exchange Rate     
Corn 1 1 28.544  57.338  

   (0.370) (0.410) 

Soybeans 1 1 36.591*  71.374**  

   (0.096) (0.046) 

Wheat 1 1 39.669*  71.572**  

   (0.068) (0.046)      
Exporter Exchange Rate     
Corn 1 1 35.442*  69.764***  

   (0.100) (0.000) 

Soybeans 1 1 39.473  76.108  

   (0.112) (0.260) 

Wheat 1 1 40.208*  82.947***  

      (0.073)  (0.013)  

Note: The null hypothesis states that the relationship is linear. P-values are presented in parentheses. *, ** 

and *** indicate significance at the 10%, 5% and 1% level, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

122 

 

Table 4.4. VAR and TVAR Model Specifications, January 1990-December 2019 

  Model 

Lags 

(q) Threshold 

Number of Observations 

(Low/High Regime for TVAR) 

Importer Exchange Rate     
Corn VAR 1 none 359 

Soybeans TVAR 1 0.07 94/265 

Wheat TVAR 1 0.22 122/237 

     
 

Exporter Exchange Rate  

 

  
Corn TVAR 1 0.13 150/209 

Soybeans VAR 2 none 359 

Wheat VAR 1 none 359 

Note: none indicates no threshold and a linear VAR is estimated.  
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Table 4.5 Dynamic Price-Exchange Rate Responses, January 1990-December 2019 
     Dynamic Response  Cumulative Impact 

(cents/metric ton) Model   Exchange Rate 1-Month 2-Month 3-Month 

  Corn 

VAR   Importer Exchange Rate -0.45 -0.54† -0.61† -0.46 

TVAR   Exporter Exchange Rate -0.06/-0.00 -0.16/-0.04 -0.20/-0.05 -0.15/-0.04 

  Soybeans 

TVAR   Importer Exchange Rate -1.75/0.32 -2.13/-0.40 -2.35†/-0.39† -4.08/-0.67 

VAR   Exporter Exchange Rate -0.08 -0.09† -0.10† -0.18 

  Wheat 

TVAR   Importer Exchange Rate -0.38/-0.55 -1.25/-0.4† -1.76/-0.37† -1.57/-0.33 

VAR   Exporter Exchange Rate -0.44 -0.83† -0.97† -0.86 

Note: The dynamic responses are in percentages, except for the cumulative impact. The dynamic 

responses and cumulative impacts for low and high regimes are presented before and after the slash, 

respectively. † indicates the computation involves using insignificant impulse response(s) of real price 

changes.   
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Table 4.6 Dynamic Export Sales-Exchange Rate Responses, January 1990-December 2019 
   Dynamic Responses  Cumulative Impact 

(million metric tons) Model Exchange Rate 1-Month 2-Month 3-Month 

Corn 

VAR Importer Exchange Rate 1.83† -0.52† -0.51† -0.02 

TVAR Exporter Exchange Rate -2.78/-1.26 -0.53/-0.34 -0.15/-0.08 -0.00/0.00 

Soybeans 

TVAR Importer Exchange Rate -0.93/-1.08 -10.11/-3.75 -8.35/-2.07 -0.17/-0.04 

VAR Exporter Exchange Rate 0.57† 0.580† 0.60† 0.01 

Wheat 

TVAR Importer Exchange Rate -1.23†/0.41 -7.54/-3.84 -3.47/-1.40 -0.07/-0.03 

VAR Exporter Exchange Rate 1.40† 1.18† 1.14† 0.02 

Note: The dynamic responses are in percentages, except for the cumulative impact. The dynamic 

responses and cumulative impacts for low and high regimes are presented before and after the 

slash, respectively. † indicates the computation involves using insignificant impulse response(s) of 

export sales. 
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Figure 4.1 Importer and Exporter Real Exchange Rates, Real Commodity Prices, and Net Export 

Sales for Corn, Soybeans, and Wheat, January 1990-December 2019 

 

Note: Horizontal dash lines indicate sample means. 
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Figure 4.2 Stocks-to-Use Ratios, January 1990-December 2019 

 

Note: Horizontal solid lines indicate threshold values identified using a threshold vector 

autoregression (TVAR) model. The threshold value in the corn market is determined by the corn 

exporter exchange rate, and threshold values in soybean and wheat markets are determined by 

the corresponding importer exchange rates. Horizontal dashed lines indicate sample means. 
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Figure 4.3 Responses of Real Commodity Price Changes to Importer and Exporter Exchange 

Rate Shocks 

 

Note: Linear IRFs are represented by black lines. GIRFs for high and low stocks-to-use regimes 

are represented by the blue and red lines, respectively. 95% confidence bands are indicated by 

dashed lines. 
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Figure 4.4 Responses of Export Sales to Importer and Exporter Exchange Rate Shocks 

 

Note: Linear IRFs are represented by black lines. GIRFs for high and low stocks-to-use regimes 

are represented by blue and red lines, respectively. 95% confidence bands are indicated by 

dashed lines. 

 

 

 

 

 



 

129 

 

4.8 Supplementary Results 

Supplementary Result 1  

 

Pearson Correlations, January 1990-December 2019  

 

Supplemental Table 4.1 Corn Market 

  Importer Exchange Rate Exporter Exchange Rate Price Sales Stocks-to-Use Ratio 

Importer Exchange Rate 1.000 0.401 -0.562 0.112 0.205 

Exporter Exchange Rate 0.401 1.000 -0.003 -0.051 -0.255 

Price -0.562 -0.003 1.000 -0.253 -0.673 

Sales 0.112 -0.051 -0.253 1.000 0.197 

Stocks-to-Use Ratio 0.205 -0.255 -0.673 0.197 1.000 

 

Supplemental Table 4.2 Soybean Market 

  Importer Exchange Rate Exporter Exchange Rate Price Sales Stocks-to-Use Ratio 

Importer Exchange Rate 1.000 0.077 -0.058 -0.011 -0.013 

Exporter Exchange Rate 0.077 1.000 -0.127 0.024 -0.002 

Price -0.058 -0.127 1.000 0.068 -0.018 

Sales -0.011 0.024 0.068 1.000 -0.017 

Stocks-to-Use Ratio -0.013 -0.002 -0.018 -0.017 1.000 

 

Supplemental Table 4.3 Wheat Market 

  Importer Exchange Rate Exporter Exchange Rate Price Sales Stocks-to-Use Ratio 

Importer Exchange Rate 1.000 0.326 -0.649 -0.018 0.155 

Exporter Exchange Rate 0.326 1.000 -0.450 -0.104 0.526 

Price -0.649 -0.450 1.000 0.085 -0.613 

Sales -0.018 -0.104 0.085 1.000 -0.099 

Stocks-to-Use Ratio 0.155 0.526 -0.613 -0.099 1.000 
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CHAPTER 5: 

CONCLUSIONS 

 

In recent years, agricultural commodity markets have been affected by several large changes. In 

agricultural commodity futures markets, the move to electronic trading has reshaped the market 

in many aspects including the way that fundamental information is being reflected, new trading 

technologies being used by high frequency traders, and changes in the interactions between 

traditional commercial traders and high frequency traders. While the transition to electronic 

trading has caused a dramatic change in agricultural commodity markets, the important role of 

market fundamentals is not weakened. In this context, we investigate three aspects of agricultural 

commodity markets to improve our understanding of how modern agricultural commodity 

markets are affected by market microstructure and market fundamentals.  

In the first essay, we measure the relative importance of nearby and deferred contracts in price 

discovery. The analysis is performed in the corn and live cattle futures markets using intraday 

data for the 2008-2015 period. The results show that price discovery is dominated by the nearby 

contract in the storable corn market than the non-storable live cattle market, which provides the 

empirical support for Working’s theory of price of storage. Nevertheless, deferred contracts still 

play a significant role in the price discovery process. This demonstrates the importance of 

futures’ forward pricing role in price discovery as argued by Tomek (1997). In both the corn and 

live cattle markets, the nearby contract loses its leadership in price discovery when its volume 

share dips below 50%. In the corn market, this typically occurs one week before the maturity 

month. In the live cattle market, it is about two weeks before the maturity month. Based on these 

findings, we recommend rolling to the next nearby contract when it achieves more than 50% of 
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the volume share. The regression analysis shows that the share of price discovery along the 

forward curve is strongly correlated with trading volume and nonlinearly correlated with time to 

expiration in both markets. In the corn market, USDA announcements, inverted markets, price 

declines and commodity index rolls also are statistically related to the relative importance that 

nearby and deferred contracts play in price discovery. However, they do not have significant 

effects in the live cattle market, which likely reflects differences in liquidity and commodity 

storability between corn and live cattle futures.  

In the second essay, we investigate how algorithmic quotations (AQ) affect pricing efficiency, 

short-term volatility, and liquidity in corn, soybean, and live cattle futures markets using CME’s 

limit order book data. Overall, results show that more intensive AQ is beneficial to market 

quality as AQ improves the efficiency of prices, mitigates short-term volatility and reduces the 

costs of immediacy, although the influence can vary across the markets. In addition, by 

decomposing effective spreads into the realized spread and price impact components, we show 

lower costs of immediacy is mainly a result of reduced adverse selection costs. Additionally, in 

the corn market, liquidity provider revenues increase with heightened AQ activity. The increased 

liquidity provider revenue effect points to a tradeoff between the dimensions of market quality, 

and the need for continued monitoring of algorithmic trading activity in agricultural commodity 

futures markets.   

In the third essay, we use Threshold Vector Autoregressive (TVAR) models to investigate 

how the responses of export prices and sales to exchange rate movements are influenced by the 

level of the stocks-to-use ratio in the corn, soybean, and wheat export markets for the period of 

January 1990-December 2019. The results show that the dynamic exchange rate impacts on 

agricultural exports are complex as exchange rate effects differ across markets as well as 
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between the import and export exchange rates within each market. The effects of both importer 

and exporter exchange rates on corn export prices and sales are either insignificant or small in 

their economic value. In the more export-oriented soybean and wheat markets, both increases in 

the value of importer and exporter exchange rates have significant and negative impacts on 

export prices. However, soybean and wheat export sales are only significantly affected by 

importer exchange rates but not by exporter exchange rates. The effects of exporter exchange 

rates in soybean and wheat markets are likely limited by the differences in marketing seasons 

and crop classes between the U.S. and other exporters. In addition, the effects of importer 

exchange rates in soybean and wheat markets on real prices and export sales also differ across 

stocks-to-use ratio regimes. In both markets, the responses of real export prices and sales to 

importer exchange rate changes are greater in the low stocks-to-use ratio regime. Similar 

threshold effects are also found in the effects of corn exporter exchange rates on real corn prices 

and export sales, albeit the effects do not seem to be largely different in economic value. The 

results in this essay provide important implications for policymakers and market participants that 

the underlying market fundamental conditions need to be considered for accurate evaluations and 

forecasts on exchange rate effects in agricultural export markets.  

Overall, the three studies reveal the important message that the structural change caused by 

electronic high frequency trading has not changed the underlying economic logic of how 

agricultural commodity markets function, as market fundamentals still play a determinate role. In 

particular, the first essay shows price discovery between intraday prices along the forward curve 

can be affected by inverse carry charges, supply-demand information in USDA reports, and 

severe droughts. The second essay shows algorithmic trading activity improves market quality, 

but results also show pricing efficiency, volatility, and liquidity are affected by the underlying 
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market conditions. The third essay indicates market fundamentals in a nonlinear manner affect 

the exchange rate-export relationship, which has limited empirical evidence in the literature.  

This dissertation contributes to the understanding of agricultural commodity markets in 

several ways. First, it provides the first empirical evidence of the dynamic price discovery 

relationship along the futures forward curve. Second, it is the first study that provides directly 

identification of the effects of algorithmic quoting activity on agricultural commodity market 

quality. Third, it assesses for the first time how the level of the stocks-to-use ratio affect the 

impacts of exchange rates on both export prices and sales in major U.S. agricultural export 

markets.   

 Future research may consider to extent the analysis in this dissertation in several directions. 

First, this dissertation has focused on the aggregate effects of algorithmic activity. Future work 

could consider exploring the heterogeneity of the effects of different types of algorithms. 

Second, while the dissertation has explored the role of stocks-to-use ratio in the exchange rate 

effects on agricultural export prices and sales, other factors can influence the impacts of 

exchange rates as well. Further efforts could investigate how monetary and agricultural policy 

changes affect the influence of exchange rate movements on agricultural export markets.  
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