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ABSTRACT 

 Ceramic materials offer a variety of useful properties that make them desirable for a wide 

range of engineering applications, however, ceramics are limited in their utility by low 

toughness. Ferroelastic deformation provides a mechanism through which ceramics are 

intrinsically toughened, but the effect of microstructure on the deformation behavior has yet to 

be fully understood. In this present examination, the behavior of ferroelastic deformation was 

evaluated on a range of length scales, specifically highlighting the influence of several variables 

on the domain nucleation behavior.  

 Ferroelastic domain nucleation was first evaluated in micro-scale single crystals. The 

stress required for domain nucleation was measured while crystal orientation was tracked. 

Domain nucleation was observed to not follow a critical resolved shear stress criterion, 

suggesting that orientation alone cannot be used to predict the deformation behavior. 

Furthermore, multiple types of deformation were observed to act in concert with ferroelastic 

deformation. This suggests that domain nucleation is a complex process that may involve 

multiple potential mechanisms of deformation. 

 Domain nucleation in bulk polycrystals was also examined. Statistics collected on grain 

sizes that more frequently contain mechanically nucleated domains show that larger grains in 

close proximity to finer grains more frequently deform. The deformation behavior in polycrystals 

was contrasted against the domain nucleation behavior in single crystal nanopillars. The 

nanopillars exhibited high deformation stress, while prolific domain nucleation without fracture 

was observed in polycrystals. These results suggest that local constraints imposed by 

microstructure play a key role in locally increasing shear stresses responsible for domain 

nucleation.  

 To design microstructures with specific characteristics, ceramic processing routes must 

also be developed to control microstructural development during fabrication. To this end, spark 

plasma sintering (SPS) offers a promising processing route for fabricating dense nanostructured 

ceramics. The densification mechanisms associated with ceramic processing using SPS have also 

been investigated in the present work. Results collected on many samples that were processed 

under identical processing control conditions convey significant variability in the resulting 

material properties between and within individually produced samples. Furthermore, the results 
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indicate that electric current plays an important role in densifying ionic conducting ceramics 

during sintering using SPS.  

 Overall, the research presented in this dissertation shows that ferroelastic domain 

nucleation is a complex process involving several competing and cooperating mechanisms, and 

that domain nucleation is affected by different microstructural variables. Domain nucleation 

cannot be predicted based solely on crystal orientation, however, other microstructural variables 

including grain size do significantly impact the ferroelastic deformation behavior. 

Microstructures with large ferroelastic grains embedded in a more finely grained matrix promote 

ferroelastic deformation even without fracture, and the deformation is sensitive to the stress state 

being applied. Several processing routes presented here result in these favorable bimodal grain 

size distributions and may be tested more thoroughly in the future to explore the effect that such 

microstructures have on the intrinsic toughness.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

 Ceramic materials offer a variety of useful properties for many types of engineering 

applications. For instance, ceramics often have excellent chemical and thermal stability, making 

them useful for thermal barrier coatings with resistance to degradation through oxidation and 

corrosion [1–4]. Ceramics also often have exceptional strength compared to other engineering 

materials such as metals and polymers, making them desirable for use in structural applications. 

Electrical properties such as high dielectric constants [5], piezoelectricity [6], ferroelectricity [7], 

and superconductivity [8,9] also greatly expand ceramics desired application range into a wide 

variety of electrical devices such as capacitors, actuators, and sensors of many varieties. 

 Unfortunately, despite their high strength, ceramics typically are hindered by considerably 

low toughness due to their limited ability to deform prior to fracture [10]. This low toughness is 

often a significant limiting factor in designing ceramics into their desired applications, therefore, 

many efforts have been made to toughen ceramics [11]. Some conventional methods used to 

toughen ceramics include modifying chemistry and thermodynamic stability giving the material 

the ability to increase toughness through stress induced phase transformations, which has proved 

to be very effective [12–14]. Engineers have also modified microstructures to increase toughness 

through the addition of second phase fibers, or by creating high aspect ratio grains that must be 

pulled out of a crack during fracture [15–18]. Unfortunately, many of these existing toughening 

strategies begin to fail in extreme environments. For instance, at high temperatures, phase 

transformation toughening impossible because there is no longer a thermodynamic driving formce 

for transformation [3]. Adding second phases to materials such as piezoelectrics generally 

deteriorates their desired properties as well [15,19].  

 This means that there is strong motivation to develop toughening mechanisms that do not 

rely on these external modifications of the material, but rather are active in a stable single phase 

material. It is even more beneficial if toughening can be active before a crack is introduced into 

the material since crack initiation is often failure itself. Such toughening mechanisms are termed 

“intrinsic toughening” mechanisms and will be discussed in detail in the next section. Ferroelastic 
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deformation in ceramics provides this type of toughening and may be active in many types of 

structural and electrical ceramics, making it particularly interesting and important to understand 

[20–27]. The aim of the research discussed in this dissertation was to determine how different 

microstructural variables impact ferroelastic deformation with the goal of developing an improved 

understanding of how microstructures may be designed to best take advantage of the intrinsic 

toughening that ferroelasticity provides.  

 This study was done by evaluating ferroelastic deformation on a range of scales. First, 

ferroelastic deformation was studied in single crystals, so that the fundamental domain nucleation 

and motion behaviors can be understood. Then, ferroelastic deformation was evaluated in more 

realistic polycrystalline microstructures. By comparing what was learned about ferroelastic 

deformation in single crystals to the behavior observed in polycrystals, the effect that 

microstructure has on this type of deformation was highlighted. This improved understanding of 

ferroelastic deformation in ceramics will ultimately allow us to bridge our understanding of how 

deformation behaves from the microscale to bulk materials, allowing for informed design of 

toughened ceramics.  

 The merit of understanding ferroelastic deformation is not limited to the context of 

toughening mechanisms since understanding ferroelasticity also furthers our fundamental 

knowledge of deformation mechanisms in ceramics. Expanding fundamental knowledge of 

materials behavior serves as a worthy scientific motivation, particularly when the unknown nature 

of future engineering endeavors is considered. Therefore, the motivations of this study may be 

considered to have merit in improving both the basic scientific understanding of ceramic 

deformation, as well as in improving the understanding of how to better engineer ceramics for 

improved toughness. However, toughening serves as a primary cohesive motivation for the 

engineering focus of this study, and therefore will be discussed in more detail in this dissertation.  

 This chapter introduces ferroelastic deformation as an intrinsic toughening mechanism and 

puts into context the reasons that currently exist for studying the nature of ferroelastic deformation 

for the purpose of toughening ceramic materials. Toughness will be described, as will the current 

state of the literature on ferroelastic deformation. Other mechanisms involved in deformation of 

ceramics will then be discussed. Finally, the specific objectives and hypotheses that motivate this 

research will be outlined.  
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1.2 Toughness and Toughening Mechanisms 

 Generally speaking, toughness is defined as a material’s ability to absorb energy during 

deformation rather than releasing strain energy through the creation of new surfaces by fracturing. 

This energy absorption often takes place through deformation mechanisms such as dislocation 

motion, deformation twinning, and stress induced phase transformations. The toughness of a 

material is often described as the total energy absorbed (excluding elastic energy) during failure 

which can be found by integrating the area under the corresponding stress-strain curve. The 

extensive field of fracture mechanics has been developed in order to understand how materials fail 

through crack initiation and propagation, such that their failure behavior may be better predicted 

and designed against. The term fracture toughness refers more specifically to the definition of 

conditions that cause the extension of a crack from an existing flaw. Fracture toughness is also 

associated with quantification of material parameters such as a critical stress intensity factor, 𝐾𝐾𝑐𝑐, 

or critical strain energy release rate, 𝐺𝐺𝑐𝑐, that define those conditions for fracture [28]. Here, fracture 

toughness and toughening will be discussed in the context of defining and understanding intrinsic 

and extrinsic mechanisms, since it is important to distinguish and understand these different 

mechanisms to understand and motivate the study of ferroelastic deformation.  

 Fracture toughness is often defined in a few different ways. Several simplified and 

generalized fracture toughness parameters will be described here. One of the first ways of thinking 

about a crack propagation criterion is often attributed to Griffith, who used an energy-based 

criterion to define when a crack propagates [29]. The Griffith criterion may be written as 

 
𝐺𝐺𝑐𝑐 =

𝜎𝜎𝑓𝑓2𝜋𝜋𝜋𝜋
𝐸𝐸

 
Equation 1.1 

where 𝐺𝐺𝑐𝑐 is the critical energy release rate (fracture toughness), 𝜎𝜎𝑓𝑓 is the stress for failure, 𝜋𝜋 is the 

crack length, and 𝐸𝐸 is the elastic modulus. The energy terms within 𝐺𝐺𝑐𝑐 contain the surface energy 

associated with creating two new surfaces as a crack advances as well as energy from plastic 

deformation.  

 The Griffith criterion does not explicitly account for the actual crack tip geometry and 

stress concentration that occurs there. Because of this, alternative fracture toughness criteria using 
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stress intensity factors have been developed, first proposed by Irwin [30]. A generalized critical 

stress intensity factor for crack opening geometries can be expressed as  

𝐾𝐾𝑐𝑐 = 𝜎𝜎𝑓𝑓√𝜋𝜋𝜋𝜋 Equation 1.2 

where 𝐾𝐾𝑐𝑐 is the critical stress intensity factor (fracture toughness), and the other variables are the 

same as they were for 𝐺𝐺𝑐𝑐. For purely elastic cracks, 𝐺𝐺𝑐𝑐 and 𝐾𝐾𝑐𝑐 are equivalent and can be related 

through 

𝐺𝐺𝑐𝑐 =
𝐾𝐾𝑐𝑐2

𝐸𝐸
Equation 1.3 

However, materials are rarely purely elastic. There are numerous other parameters used to 

define crack propagation behavior including the J-integral [31] and crack tip opening displacement 

(CTOD) [32]. Along with these parameters, many different experimental techniques for measuring 

fracture toughness have been developed that use a variety of sample geometries and crack 

conditions to quantify material toughness [28]. In the research presented in this dissertation, no 

quantification of toughness was done, however, it is important to appreciate the concepts involved 

in toughness and toughening to appreciate the motivation for this work. The key takeaway from 

this perspective on fracture toughness is that cracks propagate when the strain energy or stress 

intensity surrounding a crack reaches a critical point, therefore, methods that increase the energy 

stored in the material before fracture or that can dissipate stress around a crack will increase 

toughness.  

Toughness and toughening mechanisms can be broken into two categories: intrinsic and 

extrinsic. Here intrinsic mechanisms will be defined as any processes taking place ahead of (or in 

absence of) a crack tip, whereas extrinsic mechanisms are active behind a crack tip. A schematic 

crack growth resistance curve (R-curve) for a material exhibiting increased resistance to crack 

growth with increasing crack length is shown in Figure 1.1. Intrinsic mechanisms increase 

toughness before a crack advances, as shown by ΔΓint (Γ is another variable often used to define 

energy-based toughness and is the same as 𝐺𝐺) indicating an increase in toughness with zero crack 

extension Δa. ΔΓex shows increase in toughness due to extrinsic mechanisms. It can be seen that 

the fracture toughness increases as the crack extension proceeds and the extrinsic process zone 

increases in size until a maximum steady state fracture toughness is reached.  
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Figure 1.1: Schematic crack growth resistance curve showing changes in toughness due to intrinsic 
and extrinsic toughening. 

Ferroelastic deformation actually provides both intrinsic and extrinsic toughening. A 

schematic of a ferroelastic process zone can be seen in Figure 1.2. The specifics of ferroelastic 

deformation will be discussed in the next section, however, from the schematic it can be seen that 

any ferroelastic deformation that takes place due to stresses acting ahead of the crack tip will 

contribute to intrinsic toughening, while the deformation that results from ferroelastic switching 

(a term used for ferroelastic domain reorientations) also acts to impose crack closure stresses in 

the crack wake, also contributing to extrinsic toughening. The increase in toughness due to the 

ferroelastic contribution toughening, ∆𝛤𝛤, has been described using the following relationship: 

∆𝛤𝛤 = 2ℎ𝜏𝜏𝑇𝑇𝛾𝛾𝑇𝑇𝑓𝑓 Equation 1.4 

where ℎ is the width of the process zone, 𝜏𝜏𝑇𝑇 and 𝛾𝛾𝑇𝑇 are the coercive shear stress and shear strain 

for domain switching, and 𝑓𝑓 is the volume fraction of material within the process zone 

experiencing the coercive strain [11]. Essentially, this toughening equation states that the increase 

in toughness due to ferroelastic deformation comes from the sum of the energy absorbed by 

material experiencing ferroelastic deformation (with its associated critical stress and resulting 

strain) in the process zone. The primary contribution to toughness that the work in this dissertation 

is concerned with is the intrinsic toughening contribution, and the work that is presented in 

following chapters focuses on types of ferroelastic deformation that are relevant to deformation 

ahead of or in absence of a crack.  
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Figure 1.2: Schematic of a ferroelastic process zone around an advancing crack in a polycrystal. 
The orientation of domains has been shown by arrows within grains, for which only some of the 
grains will favorably reorient. Domains that reorient are aligned in the crack wake. 

1.3 Ferroelasticity 

A ferroic material is defined as a material which has two or more orientation states in the 

absence of an external stimulus (i.e. stress, electric field, magnetic field) that can be shifted in 

response to an external stimulus. Ferroic materials exhibit reversible switchability between these 

orientation states, resulting in hysteresis [33,34]. Ferroelasticity, like the other primary ferroic 

behaviors (ferroelectricity and ferromagnetism) shows this hysteretic behavior, specifically 

between stress and strain. An example of this hysteresis is shown in Figure 1.3.  

Figure 1.3: Stress-strain hysteresis in a ferroelastic alloy, showing the reversibility of deformation 
from ferroelasticity, adapted from Wadhawan [35]. 
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This hysteresis relies on the nucleation of domains which differ in orientation states. The 

requirement of having multiple different orientation states available means that ferroic materials 

must have some degree of crystallographic anisotropy. In ferroelastic materials, this anisotropy is 

found in the crystal structures. Ferroelastic domains have different crystallographic orientation and 

are bounded by twins. The specific orientation relationships between ferroelastic domains, 

therefore, depends on crystal structure. Here, the tetragonal crystal structure will be discussed since 

it is relevant to many different ferroelastic ceramics and it is relatively easy to visualize the 

differences in orientation states. The work presented in this dissertation also primarily was 

performed on materials with tetragonal crystal structures. In tetragonal crystals, three different 

relative orientation states exist and are based on the direction of the elongated c-axis of the 

tetragonal unit cell. The three orientation states are shown schematically in Figure 1.4.  

Figure 1.4: Three unique orientation states defining different domains in a tetragonal crystal. The 
c-axis can align along any of the three principle parent axes, represented as substrate axes here,
adapted from Lee [36].

Another consequence of the definition of ferroelasticity is the specification of stresses and 

strains associated with the domain reorientations. Following the conventional terminology used 

for ferroics, these characteristic stresses and strains are termed the coercive stress and coercive 

strain. In this dissertation, the value of coercive stress in particular will be considered. It is 

important to distinguish between stresses necessary for domain nucleation, and for domain motion. 

Idealized stress-strain curves showing the difference between domain nucleation and motion are 

shown in Figure 1.5. Here, the positive stress and strain axes represent a compressive stress, as 

shown being applied to the representative tetragonal crystal below. It has been previously proposed 
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that domain nucleation requires higher stress (or additional energy input) than domain motion or 

propagation [37]. Consequently, domain nucleation may be more effective than domain motion 

for toughening purposes.  

Figure 1.5: Idealized compressive stress-strain curves showing domain nucleation and propagation 
by a 90° reorientation of the tetragonal c-axis by twinning across the {011} family of planes. Each 
crystal represents an idealized domain configuration present when the associated stress and strain 
levels are reached, which are marked by red dots on the corresponding stress-strain curves. The 
shape of the stress-strain curve has been adapted from Mercer [24]. 

Ferroelastic domains form in order to the minimize elastic energy in crystals via the 

formation of twin boundaries in the material. When considering energies associated with domain 

formation (not including magnetic or electric contributions), the total energy, 𝜔𝜔𝑡𝑡𝑡𝑡𝑡𝑡, in a material 

can be expressed as  

𝜔𝜔𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜔𝜔𝐸𝐸 + 𝜔𝜔𝑊𝑊 + 𝜔𝜔𝑆𝑆 Equation 1.5 

where 𝜔𝜔𝐸𝐸 represents elastic energy, 𝜔𝜔𝑊𝑊 represents domain wall energy, and 𝜔𝜔𝑆𝑆 represents surface 

energy [38]. Nucleation of these domains to minimize energy often occurs during structural phase 

transitions that occur when a material cools from a higher symmetry paraelastic phase to a lower 

symmetry ferroelastic phase. Domain nucleation may also occur during external mechanical 

deformation, which is beneficial for the case when toughening is desired. Domain nucleation and 

motion under stress absorbs energy as described by Equation 1.4. Domains may form into various 

energy minimizing structures examples of which are provided in Figure 1.6. To fulfill mechanical 

compatibility requirements, the particular type and arrangement of twins depends on the crystal 
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structure of the material as well as microstructural factors, including grain size and relative crystal 

orientations [39]. 

Figure 1.6: Schematic representations of lamellar (left) and banded (right) twin structures that form 
as a result of elastic energy minimization, adapted from Arlt [38]. Each domain differs in 
orientation relative to its surrounding domains. 

In ferroelastics, the crystallographic anisotropy often leads to anisotropy in other properties 

such as elastic modulus, which affects locally how elastic energy is stored and released according 

to Equation 1.5. Even amongst materials with the same crystal symmetry, degrees of elastic 

anisotropy can differ, which will influence how the materials domain structures evolve. For 

instance, tetragonal yttria stabilized zirconia and tetragonal barium titanate have the same crystal 

symmetry, however, they have highly different elastic moduli and elastic anisotropy. Figure 1.7 

shows the tetragonal crystal structures for both of these materials along with their elasticity tensors 

from Lunt and Wang, respectively [40,41]. Figure 1.8 then shows how the elastic modulus of each 

of these materials varies with crystal direction, calculated using the elasticity tensors from Figure 

1.7. It can be seen that the modulus values as well as how they differ with orientation are not the 

same for these materials despite having the same crystal symmetry. Differences such as these 

influence how the stress-strain relationships that develop within microstructures during ferroelastic 

deformation.  
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Figure 1.7: Crystal structures and elastic tensors for yttria stabilized zirconia and barium titanate. 
The yttria stabilized zirconia structure is shown without distinction between yttrium and zirconium 
cations (no vacancies are shown either) since they are disordered, while the barium and titanium 
atoms are distinguished in the tetragonal barium titanate structure.  

 

Figure 1.8: Pole figures showing elastic moduli for yttria stabilized zirconia and barium titanate. 
The projections along the (001), (100/(010) and (110) plane normal are shown. The color indicates 
the modulus value for a given direction and is indicated by the color gradient legends for each 
material.  
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1.4 Previous Characterization of Ferroelastics 

Previous studies have done extensive work to characterize ferroelastic deformation and the 

impact it has on toughening in a wide variety of ceramic materials. Here, a section of that work 

with emphasis on materials and structures relevant to the present study will be discussed.  

Much of the previous work that has been done on ferroelastics has focused on describing 

the toughening that results from ferroelastic deformation, and the effect that it has on the bulk 

deformation behavior. Previous studies have used macroscopic measurements to show that 

nonlinear, ferroelastic deformation in ceramics can increase the toughness by approximately 40-

100% [42–44]. Many studies have shown that tetragonal ferroelastic materials such as lead 

zirconate titanate (PZT) [45,46], barium titanate (BTO) [25,47], and yttria and ceria stabilized 

zirconias (YSZ and CSZ) [48–50], exhibit R-curve toughening behavior as well as macroscopic 

hysteresis in their stress-strain response. This behavior has also been seen in other crystal structures 

such as orthorhombic ceramics such as lanthanum cobaltite (LCO) [51,52], lead niobite, and 

bismuth titanate [46], as well as monoclinic structures like bismuth vanadate [53]. However, in 

these previous studies. it has been difficult to deconvolute the contribution to the toughening that 

ferroelasticity provides from other toughening mechanisms such as crack bridging.  

These macroscopic measurements do not consider the local mechanical compatibility 

requirements that may lead to incomplete or inefficient minimization of elastic energy by domain 

formation. Local deviations from bulk behavior often occur as a result of microscale heterogeneity 

in materials. Because of this, more recent work has focused on developing microscale 

understanding of how ferroelastic domains develop. Techniques such as x-ray and neutron 

diffraction have been used to measure domain reorientation during straining [45,54,55], while 

others have used more local measurements by piezoresponse force microscopy to observe local 

domain structures within grains directly [39]. Scanning and transmission electron microscopy is 

also commonly used to observe domain structures at the microscale as well as the nanoscale [56–

59]. 

In many of these previous studies, there has been a focus on characterizing the domain 

conformations and morphology that results either from nucleation during phase transformations or 

from propagation and rearrangement of domains during deformation. For example, studies have 

characterized the geometries of domain colonies that form in tetragonal zirconia and barium 
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titanate during phase transformations [38,56–58]. Domains may form complex arrangements 

within single crystals, an example of which is shown in Figure 1.9. 

Figure 1.9: Schematic adapted from Baither et al. [56] showing the colony structure of domains in 
tetragonal YSZ. Domains align along the <111> axis and consist of multiple layers of {110} twins. 
It is also shown that the different colonies C1, C2, and C3 are bounded by {110} planes, however, 
specific domains between colonies are equivalently oriented such that domains may be shared 
across colonies.  

The twins/domains form on multiple scales, with hierarchical structuring. It has also been shown 

that the boundary conditions imposed by the clamping of the surrounding microstructures have a 

significant impact on the morphology of domains that form during cooling [38]. Furthermore, in 

situ studies of the domain evolution during straining show that domain structures can progress 

through energetically unfavorable conformations due to the constraints of microstructure [39]. 

This highlights a need to understand the effect that specific microstructural features are having on 

the deformation processes.  

Work has also been done to characterize domains that mechanically nucleate within 

fracture process zones, and to measure the coercive stresses associated with domain switching. 

Mercer characterized the width of the ferroelastic process zone in YSZ, and used Equation 1.4 to 

infer the coercive stress to be approximately 580 MPa [37]. Baither also characterized the coercive 

stress for YSZ, and found it to range from approximately 285-750 MPa with dependence on 

temperature and strain rate [58]. It will be interesting to compare these coercive stress values to 

those found for ceria-titania stabilized zirconia discussed later in this dissertation.   
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Coercive stress values have also been measured for a variety of other ferroelastic materials. 

For example, Jones measured coercive stress values in tension and compression of a number of 

materials including niobium doped PZT, strontium doped PZT, bismuth titanate, lead niobite, and 

lead titanate which had compressive coercive stress values of 11, 20, 40, 26, and 38 MPa 

respectively [46]. However, Jones also noted that these coercive stress values actually represent a 

median or mode of a distribution of coercive stress values found in the many grains of a 

polycrystal. This highlights the need to evaluate the effect that microstructure is having on domain 

dynamics in polycrystals, and to relate that to what is known about the behavior in single crystals. 

Finally, it is important to discuss the modelling and simulation work that has been done on 

ferroelasticity. Authors have used techniques such as phase field modelling to predict domain 

evolution during fracture processes [60]. Constitutive models have also been developed to 

investigate the contribution to toughening from ferroelastic domain switching as well as strain 

saturation conditions in crack wakes through finite element modelling that take into account the 

anisotropy of ferroelastic deformation [61,62]. However, these models still do not take into 

account local heterogeneity present in polycrystalline ceramic microstructures, but rather 

determine stress fields using far field fracture mechanics descriptors.  

What is clear from this previous work is that understanding must be developed connecting 

the microscale understanding of ferroelastic deformation to the macroscale response. In order to 

intelligently design microstructures to take advantage of ferroelastic deformation for toughening, 

specific microstructural features that influence ferroelasticity, and how they influence the 

deformation must be known. The experiments presented in this dissertation were designed with 

this in mind and seek to bridge our understanding of ferroelasticity across length scales.  

1.5 Alternative Deformation Mechanisms in Ceramics 

Despite not typically being thought of as deformable, ceramics can at times exhibit other 

types of deformation besides ferroelastic deformation. Here, several types of alternative 

deformation mechanisms found in ceramics will be outlined, with emphasis on mechanisms and 

types of defects found in tetragonal zirconia and ceramics similar to the zirconia-based materials 

primarily being studied here.  
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As has been mentioned previously, ceramics such as zirconia typically fail through brittle 

fracture, however, at conditions such as high temperature or small size scale, it is possible to 

activate dislocation plasticity. There are relatively few studies that have explicitly characterized 

dislocations in zirconia, but some previous studies of dislocations do exist on yttria stabilized 

zirconia (YSZ). Dislocations in YSZ have been observed to form on {100}, {110}, and {111} 

planes [63,64], but dislocations will only be complete if the burgers vector lies in the (001) basal 

plane [63]. That means that any dislocations outside of the (001) basal plane will be partial 

dislocations, which can dissociate and form stacking faults. In tetragonal (t’) YSZ, this dislocation 

activity is almost always preceded by ferroelastic deformation at temperatures up to 1000°C, 

however, the ferroelastic deformation may be accompanied by dislocation motion at high stress 

[63].  

Different dislocation types that are active in zirconia will interact differently with the 

microstructures that are present. For example, complete (basal) dislocations behave as fairly 

standard dislocations and can interact with precipitates and other dislocations to form jogs, kinks, 

and locks. Alternatively, for example, when dislocations with 1/2 <110> Burgers vectors, which 

are partial dislocations, are found to be active, as they pass through multiple domains of tetragonal 

zirconia with different orientations, they create stacking faults and antiphase boundaries on the 

oxygen sublattice between the domains [63]. These additional defects may then affect the 

subsequent deformation behavior. Furthermore, partially stabilized zirconia, which contains both 

cubic and tetragonal phases after ageing, exhibits precipitation hardening due to the tetragonal 

phase precipitates interacting with active dislocations [63].  

Size scale can also influence the plastic deformation of zirconia. At high temperatures and 

small grain sizes, zirconia has been shown to exhibit superplastic deformation, however, this 

deformation is attributed to diffusional creep rather than dislocation plasticity [65]. Reductions in 

overall sample volumes also lead to increased plasticity due to decreased likelihood of fracture 

due to critically sixed flaws [66].  Very high strength as well as very high strains at failure have 

been observed for small scale zirconia samples relative to bulk samples. Size dependent plasticity 

in zirconia may occur through both dislocation plasticity as well as phase transformations, the 

mechanisms for which may compete within samples [64,66,67]. Samples with high surface area 

to volume ratios can accommodate significantly higher strains compared to their bulk counterparts. 
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Increasing surface area to volume ratios not only increases dislocation plasticity before fracture, 

but reduces mismatch stresses that form during phase transformation, allowing for much higher 

strain due to phase transformations [68,69]. Deformation by phase transformations will now be 

discussed.  

At ambient temperatures, dislocation plasticity is rare, so phase transformations are often 

used as an alternative deformation mechanism. To activate stress induced phase transformations, 

it is important to control the thermodynamic stability of the phases in the material, such that 

metastable phases are able to transform without application of heat. Stabilization of the tetragonal 

and/or cubic phases of zirconia can be done using a variety of cation dopants [70]. The grain size 

or particle size of zirconia also affects the overall phase stability as well as the phase transformation 

behavior [71–73]. Once materials are able to release energy through phase transformations, they 

experience deformations due to the volume change associated with the phase transformation as 

well as the change in shape that results from the change in symmetry. Both of these contributions 

to the deformation can combine leading to significant deformation, as well as significant 

contributions to toughening as discussed previously.  

1.6 Objectives and Hypotheses 

Overall, the objective of this study was to develop a fundamental understanding of the 

relationship between local microstructure and the activation of ferroelastic deformation to 

contextualize how microstructure may be tuned to design durable ceramic materials. To 

accomplish this, ferroelastic deformation was evaluated on a range of length scales. The specific 

hypotheses being evaluated in this dissertation include: 

• Ferroelastic domain nucleation is governed by a critical resolved shear stress criterion.

Shear stresses in single crystals may be resolved onto specific planes and related to a

critical value as is done for slip in Schmid’s law.

• Local microstructural features such as grain size and orientation influence the probability

and extent of ferroelastic deformation in ceramics due to mechanical compatibility

requirements and elastic energy minimization.

To test these hypotheses, several research tasks were identified, and include: 
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• Fabricate a range of microstructures using ceramic processing techniques to characterize

the influence of various microstructural features on ferroelastic deformation.

• Evaluate the effect that crystal orientation has on domain nucleation using electron

backscatter diffraction combined with micropillar compression. Measure the coercive

stress for domain nucleation for a range of crystal orientations.

• Evaluate the mechanisms associated with ferroelastic deformation in small scale single

crystals using micropillar compression and nanoscale in situ TEM deformation.

• Deform polycrystalline samples using microindentation to determine whether variables

such as grain size and grain conformation have an effect on ferroelastic domain nucleation.

Preliminary work has also been done to evaluate additional relationships between microstructure 

and ferroelastic deformation that have not yet been completed. The methods used and developed 

to perform these tasks will be discussed in Chapter 2, and some future directions that may be taken 

will be discussed in Chapter 6. These include: 

• Characterize orientations favorable for ferroelastic deformation using micro-indentation

coupled with electron backscatter diffraction (EBSD).

• Characterize local strain heterogeneity developed during ferroelastic deformation of

specific grains in a polycrystalline sample using digital image correlation (DIC) and in situ

scanning electron microscopy (SEM).

• Correlate local strain heterogeneity to the local microstructure using EBSD before and after

in situ SEM deformation.

There is a secondary objective that will also be discussed in this dissertation that relates specifically 

to developing advanced ceramic processing techniques through improving our understanding of 

densification behavior of ionic conducting ceramics processed by spark plasma sintering (SPS). 

The hypothesis being tested for this objective is: 

• Electric current plays a role in the densification of ionic conduction ceramics processed by

spark plasma sintering.

To test this hypothesis the following research task is identified: 
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• Sinter a number of yttria stabilized zirconia samples with different conformations inside of 

an SPS die such that statistics on the variability in the resulting properties can be measured.  

These two objectives focus on testing different fundamental hypothesis, however, they are linked 

by the fact that each study at its core is designed to evaluate the processing-microstructure-property 

relationships that are so important to understand when designing materials for all kinds of 

engineering applications.  
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CHAPTER 2 

EXPERIMENTAL METHODS 

This chapter outlines the experimental methods and techniques used in this dissertation to 

study the behavior of ferroelastic ceramics. It also outlines techniques that were developed and 

used during the process of carrying out this research that are not directly discussed in the results 

in the following chapters but may be valuable for future studies. Therefore, some preliminary 

results associated with several of the methods will also be briefly discussed in this chapter. This 

section will begin with a discussion of the synthesis and processing of ceramic materials. Electron 

backscatter diffraction techniques used for microstructural analysis will then be outlined, followed 

by discussion of techniques used for deforming ferroelastic single crystals and polycrystals.  

2.1 Ceramic Synthesis 

There are many techniques that may be used to synthesize ceramics with a wide range of 

compositions. Here, synthesis techniques used for fabrication of materials used in this dissertation 

will be discussed. This discussion primarily focuses on liquid solution-based synthesis techniques. 

2.1.1 Ceria-Titania-Zirconia (CTZ) Synthesis 

Throughout this dissertation, the primary ferroelastic ceramic of interest is a zirconia-based 

(ZrO2) material stabilized into the tetragonal phase with 10 mol% ceria (CeO2) and 10mol% titania 

(TiO2). The molar ratios of the various components can be changed to alter the phase stability of 

the material [1], but the 10CeO2-10TiO2-80CZrO2 composition will be discussed here since the 

tetragonal phase of interest is stable with these molar ratios. A schematic phase diagram adapted 

from Krogstad et al. is shown in Figure 2.1, which shows the composition used here sitting within 

the tetragonal phase field [1]. This material will be referred to as CTZ. This material was prepared 

using a liquid solution processing technique called reverse coprecipitation. This technique, 

pioneered by Mayo for fabrication of nanopowders, allows for synthesis of relatively large 

quantities of nanopowders that can then be used to process bulk samples with finer control of the 

resulting microstructure [2]. This synthesis technique is not limited to CTZ and has been used to 

synthesize other ceramics as well, but the focus here will be on the process used for CTZ 

nanopowder synthesis. 
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Figure 2.1: Partial schematic phase diagram or CTZ adapted from Krogstad [1] showing 
the 10CeO2-10TiO2-80CZrO2  composition used for this study. 

To synthesize nanopowders of CTZ, precursors containing the three cations of interest were 

dissolved into solution in the correct stoichiometry. Synthesis ideally should be done without the 

use of water since water is known to contribute to undesirable agglomeration of zirconia 

nanopowders. Therefore, precursors that are all soluble in ethanol were selected (although a variety 

of alternative precursors with appropriate solubility can be used). The cerium precursor was cerium 

nitrate hexahydrate (Ce(NO3)3•6H2O), the titanium precursor was titanium isopropoxide 

(C12H28O4Ti), and the zirconium precursor was zirconium n-butoxide (C16H36O4Zr).  

In order to achieve the correct molar ratios of cations in the final oxide, the precursors all 

were calibrated to determine the molar yield of cations from a given mass of the precursors. This 

was particularly important since these precursors are hygroscopic and may accumulate water 

weight over time that decreases the cation yield for a given mass of precursor. This calibration was 

done using the same precipitation, drying, and calcination procedure that will be outlined shortly, 

but was done separately for each cation precursor. The mass of the resulting oxide was weighed 

and used to determine how many moles of the cation were produced using the initial mass of each 

precursor. It is important to note that the oxygen stoichiometry of the resulting oxides must be 

known in order to accurately calculate the moles of cation present from the oxide mass.  
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Once each of the precursors were calibrated, they were weighed and the mass of each that 

were needed to achieve the desired moles of cations in the final powder was dissolved into ethanol. 

This dissolution was done separately for each precursor to ensure that they were completely 

dissolved before mixing. The three precursor solutions were then slowly mixed together and added 

to a separatory funnel. This separatory funnel was placed above a large beaker containing 

ammonium hydroxide (NH4OH) solution, and the precursor solution was slowly dripped into the 

ammonium hydroxide while constantly stirring. Metal hydroxides (Ce(OH)4, Ti(OH)4, and 

Zr(OH)4) immediately precipitated. The pH of the solution was checked throughout the 

precipitation process and maintained above 10.5, since higher pH results in faster precipitation and 

reduced particle size [3].  

Once the precipitation of hydroxide powders was finished, the powders may be separated 

from the liquid by filtration or centrifuging. The method used for CTZ synthesis in this dissertation 

was centrifuging. Once the powders were separated from the liquid, they were washed twice with 

200 proof ethanol. It was important to resuspend and mix the powders well within the ethanol to 

ensure that the entire volume of powder is well washed. The powders were then centrifuged out of 

the ethanol again (repeated twice, once for each ethanol wash). After washing, the powders were 

dried in a drying oven at 80°C for at least 12 hours until completely dry. The powders were then 

finely ground in an agate mortar and pestle before calcining in air at 600°C for 4 hours. The 

powders were then be composed of the desired oxide and contain only the tetragonal phase of 

interest, which was confirmed using x-ray diffraction. Powders were then compacted using dry 

pressing and sintered using conventional sintering techniques that will be described in section 2.2. 

The microstructure that resulted from ranges of processing parameters used with these powders 

will also be described in detail in later chapters of this document. 

2.1.2 Barium Titanate (BTO) Synthesis 

Barium titanate (BaTiO3 or BTO) is a very common ceramic material used in a variety of 

applications. It is commonly used as a dielectric in capacitors due to its high dielectric constant 

and is also often used as a piezoelectric material [4]. The tetragonal phase is ferroelectric and also 

exhibits a ferroelastic response [5,6]. Here, barium titanate was synthesized as a ferroelastic 

material, however, results of mechanical tests done on BTO will not be directly discussed in the 
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following chapters of this document. Nevertheless, BTO synthesis and microstructures will be 

briefly outlined here. 

Barium titanate was synthesized here using the organic-steric entrapment synthesis 

according to Kriven [7]. This synthesis route can utilize a variety of organics such as polyvinyl 

alcohol, ethylene glycol, and polyethylene glycol to interact with dissolved cations in solution to 

homogeneously distribute the cations on the nanoscale. Here, ethylene glycol was used to 

synthesize the barium titanate following Lee [8]. For this synthesis Barium nitrate (Ba(NO3)2) and 

titanium isopropoxide (C12H28O4Ti) were dissolved into liquid ethylene glycol (EG) in a molar 

ratio of 1:4 moles of cations to moles of EG. This mixture was dried and then calcined at 600°C. 

The powders were then pressed into pellets and sintered at 1200°C and 1350°C.  

The microstructures that resulted from sintering at 1200°C were highly porous as can be 

seen in Figure 2.2(d). Sintering at 1350°C resulted in increased density, however, samples showed 

abnormal grain growth.  Some grains increased in size up to millimeter scale and sometimes grew 

across the entire thickness of the pellet, while other grains remained much smaller (on the order of 

tens of microns). The samples with abnormal grain growth also exhibited unusual grain shapes, 

with cavities present on the surface of many grains. Other samples contained spherical bubbles 

throughout the cross section which could indicate liquid or gas phase evolution during sintering. 

Examples of these microstructures can be seen in Figure 2.2. Furthermore, a mixture of the 

tetragonal barium titanate phase as well as the orthorhombic orthotitantate phase were sometimes 

observed in x-ray diffraction patterns after sintering. 
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Figure 2.2: (a-c) SEM images of BTO sintered at 1350°C that show abnormal grain growth. (a) 
Several large grains embedded in a much finer grained matrix are visible. (b) The surface of a large 
grain interfacing many smaller grains shows that the surface of the large grain is rough but is 
smoother than the cratered surface of the smaller grains. (c) The morphology of the smaller BTO 
grains shows that some are faceted while most exhibit a concavity on the surface, that often takes 
up much of the grain surface. (d) BTO sintered at 1200°C showing high porosity and incomplete 
sintering.  

2.1.3 Lanthanum Cobalt Oxide (LCO) Synthesis 

Not only tetragonal ferroelastics can be synthesized. Other structures, such as 

rhombohedral perovskites also can exhibit ferroelasticity. Lanthanum cobaltite (LaCoO3 or LCO) 

based ceramics have this rhombohedral perovskite structure and exhibit a ferroelastic response 

[9,10]. This material is often doped with other cations such as strontium or calcium in order to 

modify its electrical and optical properties [11], and is useful in applications such as lasers, solid 

oxide fuel cells, oxygen separation membranes, and catalysts [12–15].  Here, LCO was synthesized 

as a ferroelastic material, however, it was not used in any of the subsequent mechanical 

evaluations. Nevertheless, its synthesis and resulting microstructure will also be briefly outlined 

here.  

Lanthanum cobalt oxide perovskite was synthesized according to the process outlined by 

Chen [16]. In this procedure, equimolar ratios of lanthanum nitrate hexahydrate (La(NO3)3•6H2O) 
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and cobalt nitrate hexahydrate (Co(NO3)3•6H2O), both having been calibrated for cation yield, 

were dissolved into water. This solution was then mixed with three times the molar ratio of 

ethylenediaminetetraacetic acid (EDTA) which was dissolved in water and ammonia. The mixture 

of these solutions was heated on a hot plate until viscous then dried and ground. The dried 

gel/powder was then calcined at 900°C in air for 16 hours. These oxidized powders were then 

pressed into pellets and sintered at 1200°C for 2 hours. 

Figure 2.3: (a) Scanning electron micrograph of LCO after sintering where many grains contain 
twins. (b) Scanning electron micrograph of LCO after sintering where fewer grains contain twins. 
A large area of porosity is also visible in the upper right corner of the image. (c,d) Image and 
corresponding inverse pole figure orientation plot collected using electron backscatter diffraction 
indexed to a rhombohedral lanthanum cobalt oxide phase. Residual porosity is visible in all 
images.  

The synthesis resulted in a heterogeneous microstructure. Some regions were heavily 

twinned as can be seen by close inspection of Figure 2.3(a), while other regions contained 

significantly fewer twins, as seen in Figure 2.3(b). The microstructure may have been a result of 
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heterogeneous chemistry throughout the samples. The grain size distribution was also bimodal, 

with some grains growing much larger than others during sintering, and there was significant 

residual porosity in some regions of the pellets. It is interesting to note that the smaller grains 

tended to be clustered. EBSD was also performed on LCO samples. Figure 2.3 shows a region 

from which EBSD was collected in (c) and the corresponding orientation map in (d). The indexing 

rate was very high (99.09%), however, there was clear misindexing, as evidenced by may grains 

containing roughly equal, random, distributions of several orientations, due to pseudosymmetry 

and other sources of error, which will be discussed in detail in section 2.3.   

2.2 Ceramic Processing 

There are many ways to form and process ceramics. Specific techniques are often chosen 

to achieve a desired final form and microstructure. For instance, if the final goal is to create a 

ceramic film for use as a capacitor sheet, tape casting followed by debinding and sintering may be 

used [17]. Whereas to create a high temperature thermal barrier coating, plasma spraying may be 

a more useful technique. Controlling microstructure through processing was highly important for 

this research since evaluating the influence of microstructure on the ferroelastic response in 

materials was a key aim for the projects discussed in this dissertation. In this section, the specific 

processing routes used to create dense, monolithic ceramic bodies, while having control over the 

grain size will be discussed.   

2.2.1 Conventional Ceramic Processing 

Typically, ceramic processing follows the following steps: synthesis of powders, mixing 

(may involve binders, plasticizers, or other additives), forming, drying (may include debinding), 

and sintering. The final microstructure that is achieved relies on the starting materials used as well 

as the specific processing parameters that are employed. In this section, the conventional 

processing techniques to fabricate samples in this dissertation are outlined. This focuses primarily 

on dry pressing and conventional sintering methods.  

The method used to consolidate powders into green body (not yet sintered) pellets was dry 

pressing. This forming method relies on applying pressure to the powder while confined inside a 

cylindrical die. While the addition of lubricants to decrease friction within the dies, and binders 

such as PVA along with plasticizers such as water or stearic acid is common for increasing the 
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strength of green bodies, they were not used here. This was mostly because the nanoscale size of 

the powders being pressed here lead to good compaction of the powders even without binders. 

However, there are several flaws that commonly occurred due to friction and heterogeneous stress 

distribution in the pellets during compaction. Possible flaws include vertical cracking, ring 

capping, end capping, and delamination. Schematics of these flaws can be seen in Figure 2.4.  

Figure 2.4: Schematics of flaws that form during compaction of dry powders including 
delamination, end capping, ring capping and vertical cracking.  

Pellets pressed in this way were then densified using conventional sintering techniques. 

Conventional sintering has driving forces and mechanisms associated with it. The driving force 

for sintering is the powder body decreasing its total energy. The powders have high surface energy 

in the green body state. Sintering enables the reduction of surface area and surface curvature which 

reduces the overall energy of the pellet. The mechanism though which this densification occurs is 

solid state diffusion. By applying heat to the compacted powder body, the mobility and diffusivity 

of the atoms/ions in the particles is greatly increased, and diffusion enables the compacted powder 

to transform into a dense polycrystalline pellet with mostly planar grain boundaries. The drawback 

of this conventional sintering process, however, is that during densification, coarsening of the 

microstructure also occurs, causing the grains (and often pores) in the final microstructure to grow 

significantly compared to the crystal size in the initial powder. Furthermore, depending on the 

shape of pores that form, stable pores can be left within the microstructure that cannot be 

completely removed using conventional pressureless sintering. Grain growth was an advantage for 

several aspects of this study, as discussed in later chapters, however, maintaining a small grain 

size is also valuable in many instances and is difficult to achieve using conventional sintering 

techniques.  

2.2.2 Spark Plasma Sintering 

Conventional ceramic processing methods have limitations. For instance, sintering ceramic 

bodies often takes long periods of time (hours to days) and high temperatures, which leads to high 
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energy consumption. It is also difficult or impossible to achieve high densities while maintaining 

nanoscale microstructural features using conventional processing. Spark plasma sintering (SPS) is 

an alternative processing route that has generated significant interest in the past few decades for 

its ability to process dense, bulk nanostructured materials [18,19]. Conventional sintering 

techniques typically rely on external application of heat to compacted powder samples to form a 

densified body. SPS achieves densification through the application of mechanical pressure to the 

material while rapidly heating the sample directly using high electric currents. A schematic of an 

SPS machine with the range of parameters available for processing in this work is shown in Figure 

2.5. The model used in this research is the Fuji SPS-615 Dr. Sinter.  

Figure 2.5: Schematic of a spark plasma sintering machine. The values shown for parameters 
including voltage, current, pressure and temperature are given for the range of parameters used in 
this research. 

However, there currently exists little discussion of the variability in properties (including 

physical and electrical properties) achieved by processing ceramic materials using SPS. 

Furthermore, there is no consensus on the mechanisms that may be responsible for densification 

of various materials during SPS. Sometimes, this incomplete understanding of SPS results in 

unpredictable and undesirable behavior in sintered samples. For this reason, SPS was not used in 

processing ferroelastic samples used for the mechanical characterizations discussed in later 

chapters of this dissertation. Rather, studies using SPS were specifically designed to evaluate the 

variability within and between samples prepared by SPS and will be discussed separately in 
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Chapter 5. Furthermore, many smaller research projects that will not be directly discussed in the 

results presented in this document were performed using SPS during the course of the research 

associated with this dissertation. Therefore, this section will outline the procedures used and 

developed to process a variety of materials using the SPS technique.  

Most SPS samples were prepared using cylindrical graphite dies with inner diameters of 

20 or 20.5mm. 20mm dies were primarily used for low temperature sintering (<1000°C) when the 

sample reacting with the die is limited. During low temperature sintering, boron nitride spray was 

applied to the punches prior to sintering as a release agent. 20.5mm dies were used for higher 

temperature sintering (>1000°C). During high temperature sintering graphite foil was wrapped 

around the sample and the punches to prevent the sample reacting with the die, thus the extra 

0.5mm diameter is needed for the foil layer to snugly fit between the punches and inner die wall. 

Graphite foil disks were also used between the sample and punches to ensure a clean release. When 

sintering was done below 1000°C, a K-type thermocouple was placed into a small hole in the die 

wall to monitor and control temperature. When sintering was done above 1000°C, temperature 

was monitored and controlled using an optical pyrometer. These dies were used to sinter materials 

including nickel, nickel chromium, aluminum, titanium-silicon carbide composites, alumina, yttria 

stabilized zirconia, tungsten, and tungsten-transition metal carbide composites. Typically, 

materials were sintered with temperatures ranging from 500°C-1800°C and applied pressures of 

10-60MPa using these standard graphite dies. When sintering using temperatures below

approximately 1400°C, the chamber was held under vacuum, while for higher temperature

sintering, inert argon gas was used to fill the chamber to slightly below atmospheric pressure.

Sintering was nearly always performed using automatic programs to control the temperature and

applied pressure to ensure as much consistency between samples as possible.

One way to improve the density of samples produced by SPS while maintaining very fine 

grain size is to greatly increase the applied pressure while sintering, while applying relatively 

moderate to low temperatures. Maintaining fine grain sizes has been used by other researchers to 

fabricate bulk transparent ceramics, as well as ceramics with vastly increased hardness. Recently, 

a high pressure deformable punch SPS (DP-SPS) technique has been introduced  by Muche et al. 

to process transparent samples with sub 10nm grain sizes and very high hardness [20]. In the 

research discussed here, this high pressure SPS technique was used to fabricate samples with 
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several compositions in order to maintain fine grain sizes and avoid thermal degradation of certain 

phases. To reach pressures up to 2 GPa, a modified die setup was needed. This die setup consisted 

of a graphite inner die with 5mm inner diameter. The inner die had punches made of cemented 

tungsten carbide (WC) that were finely polished before sintering. This inner die is placed into a 

large graphite outer die, in which a series of medium sized and large sized punches are used to 

increase the pressure applied to the innermost WC punches. Details about this setup can be found 

in the supplemental information provided in Muche et al. [20]. The only difference in the die 

configuration used in this work is that the silicon carbide spacers were replaced with additional 

tungsten carbide spacers.  

This high pressure SPS die configuration was used to process materials including alumina, 

tungsten, and CTZ. Since the thermal mass of this die setup was larger than the standard graphite 

dies, automatic control programs were not suited for accurately controlling the heating when this 

die was used. Therefore, manual monitoring and control of the temperature and pressure was used. 

This also helped prevent catastrophic failure of the die since any misalignment of the punches 

resulted in dies fracturing at moderate applied loads. Preliminary samples prepared using this 

method ranged in quality, with many fracturing upon removal from the die due to residual stresses 

or incomplete sintering. For instance, CTZ powder was sintered using 500MPa applied pressure 

and a maximum temperature of 700°C held for 0 minutes. Upon removal from the die, the sample 

was significantly reduced (indicated by blackening of the material) and fractured into many pieces. 

The fractured pieces contained density gradients that can be seen in Figure 2.6. Some regions 

exhibited significant porosity as shown in Figure 2.6(c), while other areas were much denser as 

seen in Figure 2.6(d). Despite the failure of this sample, it did remain nanocrystalline with 

approximately 60-80nm grains.  Because of this technique’s current inability to effectively densify 

CTZ into bulk samples, it was not used to produce any samples for mechanical testing.  
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Figure 2.6: (a,b) Fracture surfaces showing the cross-section of a CTZ pellet prepared using high 
pressure SPS. Gradients in color are caused by gradients in densification throughout the sample. 
(c,d) Images of a less dense and more-dense region of the pellet respectively. 

2.3 Electron Backscatter Diffraction 

Electron backscatter diffraction (EBSD) is a technique used primarily for determining the 

orientation of crystals using a scanning electron microscope (SEM). EBSD can also be used for 

other applications such as phase mapping, measuring strain in crystals, and measurement of grain 

boundary character. In this dissertation it has been used to determine the orientation of singe crystal 

pillars, as well as for determining orientations of crystals in polycrystalline microstructures. In this 

section, the fundamentals of how EBSD works, and how orientation is currently determined using 

the diffraction patterns will be outlined.  

EBSD works using a type of diffraction called Kikuchi diffraction, which involves 

electrons going through a sequence of scattering/diffraction events. During Kikuchi diffraction, 

electrons from the electron beam source first undergo incoherent scattering events within the 

material being imaged, which results in diffusely scattered electrons travelling in all directions 

(although mostly backward for thick samples, thus most are backscattered). This diffuse cloud of 
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electrons contains electrons with ranges of energies since the initial incoherent scattering event 

may be elastic or inelastic, however, the majority of EBSD signals come from electrons that have 

lost little energy. In crystalline materials, these diffusely scattered electrons may then be Bragg 

diffracted. Since electrons are incident on the atomic planes from all directions they diffract as two 

cones at the Bragg angle to the crystal planes. These cones are called Kossel cones and are emitted 

from the sample surface to create diffraction patterns unique to the crystal they are emitted from, 

with each pair of cones corresponding to a particular crystallographic plane [21]. The orientation 

of these cones depends on the orientation of the crystal forming the diffraction pattern, meaning 

they can be used to determine the crystallographic orientation of the area they are emitted from 

[22–24]. A schematic of Kossel cones diffracting from a crystal plane is shown in Figure 2.7.   

Figure 2.7: Schematic showing cones of diffracted electrons generated by Bragg diffraction off of 
a particular crystallographic plane. As the crystal rotates, the orientation of the cones changes with 
it [25].  

In order to image these diffraction patterns, EBSD detectors are inserted near the samples 

emitting the diffracted electrons. These detectors consist of a phosphor screen that fluoresces when 

the diffracted electrons hit it, and a high-speed digital camera that images the phosphor screen. 

Pairs of Kossel cones incident on the phosphor screen appear as bright bands that correspond to 

crystallographic planes, many of which will intersect on the detector screen, as can be seen in 

Figure 2.8 which shows an Kikuchi pattern and an overlaid indexing solution for tetragonal 

zirconia.   
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Figure 2.8: EBSD diffraction patterns of tetragonal CTZ. The left is the diffraction pattern after 
subtracting a background, and the right shows the indexing solution overlaid on the Kikuchi bands. 

The width of the bands depends on the interplanar spacing for the given plane, while the angle 

between the bands corresponds to the angle between planes in the crystal. As the incident electron 

beam scans across the sample, the Kikuchi diffraction patterns are collected and correlated to the 

location they have been emitted from at the sample surface. The orientation of the crystal at 

specific locations where the diffraction patterns have been emitted from can then be determined 

by indexing the diffraction patterns using the band widths and angles. This indexing can be done 

in several different ways and is very sensitive the geometry of the sample and EBSD detector. 

Specification of sample and detector geometries will not be discussed in detail here, but several 

examples of how the diffraction patterns are indexed to determine orientation will be discussed in 

the following sections. 

2.3.1 Current Indexing Methods and Limitations 

In order to determine the orientation of the crystals in the sample, the geometry of the 

Kikuchi bands must be determined and correlated to known geometries of a crystal structure that 

is being indexed. Most software currently available that are used to index EBSD patterns rely on 

a feature extraction technique called a Hough transform to identify Kikuchi bands. Once the bands 

are identified, their widths and angles must be measured and matched against known structures 

[22,26].  
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The full image of a Kikuchi diffraction pattern is complex and contains a large amount of 

information. Indexing the diffraction patterns very rapidly in an automated fashion relies on an 

analysis computer identifying Kikuchi bands. This is necessary so that data collection can be done 

in a reasonable amount of time since many thousands of patterns are collected during orientation 

mapping. To identify bands on a noisy background, Hough transforms (or more generally, Radon 

transforms) are used. The Hough transform converts lines in a coordinate system (x,y) to points in 

Hough space (𝜌𝜌,𝛳𝛳) through the relation:  

𝜌𝜌 = x cos𝛳𝛳 + 𝑦𝑦 sin𝛳𝛳 Equation 2.1 

where 𝜌𝜌 is the perpendicular distance from the line to the origin and 𝛳𝛳 is the angle of the line with 

respect to the x-axis. This relationship is shown schematically in Figure 2.9.  

Figure 2.9: Schematic showing how a Hough transform converts Kikuchi lines in a diffraction 
pattern to points in Hough space. Each line in the (x,y) coordinate system corresponds to a point 
in Hough space depending on its perpendicular distance, 𝜌𝜌, from the origin and the angle, 𝛳𝛳, form 
the x-axis.  

The Hough peaks are then identified and used to determine a series of angles between Kikuchi 

bands which are compared to known angles between planes for a given crystal structure. This is 

done for a number of bands (for most software 4-8 bands is ideal) in the Kikuchi pattern, and is 

used to determine the crystal orientation.  

This method of indexing is very useful due to its very fast data processing speeds. However, 

Hough based indexing discards most of the information contained in each diffraction pattern. This 
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means that there is opportunity for artifacts in the data to cause errors in indexing, and also means 

that a lot of the information about the material being analyzed is lost. In low symmetry materials, 

there is a more continuous spectrum of angles between planes, which means that indexing to a low 

number of bands has a higher probability of matching to an incorrect orientation solution. For 

higher symmetry materials, some orientations that are crystallographically distinct become 

impossible to differentiate using the Hough transform, leading to systematic misindexing of certain 

orientations. This error is known as pseudosymmetry. Tetragonal crystal structures such as 

tetragonal zirconia have been difficult to index reliably due to pseudosymmetry caused 

misindexing that is impossible to resolve using Hough based indexing [27–30].  

The data presented in this dissertation was all analyzed using standard Hough based 

indexing. Software packages including Oxford Instruments HKL Channel 5 and EDAX OIM 

Analysis have been used to analyze the EBSD data. Pseudosymmetry was a source of misindexing 

errors for all of the data presented here, however, all of the single crystal EBSD data was manually 

checked during indexing to ensure that the solution found using Hough indexing actually matched 

the experimental diffraction patterns. This manual checking cannot be performed for large 

orientation maps. There are several techniques commonly used for smoothing and reprocessing 

data in EBSD maps, however, these have been avoided here since data smoothing relies on 

interpolation and extrapolation of data that can produce false results when pseudosymmetry is 

involved.  

2.3.2 Advanced Indexing Methods 

Due to the limitations in current indexing techniques, there has been a need for new 

methods of indexing Kikuchi patterns that are better suited to dealing with issues such as noise in 

the patterns and misindexing due to pseudosymmetry. To avoid eliminating data as is done in 

Hough based indexing, several techniques have been developed that compare the full diffraction 

pattern image to diffraction patterns that have been simulated for the material of interest, 

accounting for all of the intensity information [30–35]. Here, a dictionary indexing method and 

associated software package, EMsoft, developed by Marc De Graef and his group will be briefly 

outlined.  

The principle of dictionary indexing relies around accurately simulating diffraction 

patterns for a material that are then compared against experimentally collected diffraction patterns 
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for that material to determine the orientation of the experimental patterns. These simulated patterns 

become the “dictionary” that the indexing of experimental patterns is based on. To develop this 

dictionary, several simulation steps are involved. First, the spatial, energy, and depth distribution 

of backscattered electrons is simulated using a Monte Carlo simulation. This step requires the input 

of the energy of the incident electrons used experimentally as well as the specification of the 

material being measured. Secondly, the dynamical diffraction is modelled for the crystal structure 

of the material being measured. After this is done, a three-dimensional Kikuchi diffraction pattern 

will have been simulated. Finally, the detector geometry must be modelled so that the section of 

the full diffraction pattern that intersects the detector for a given orientation and detector geometry 

can be modelled and compared to the experimental patterns. This requires specification of detector 

geometry parameters such as scintillator pixel size, sample and detector tilt angles, and pattern 

center coordinates. Once all three simulation steps are complete, the experimental patterns are 

compared to simulated patterns by turning the intensity in pattern images into column vectors. Dot 

products of experimental and simulated vectors are calculated, with the maximum dot product 

being found for the closest matching patterns [36].  

This dictionary indexing technique has been shown to much more reliably index patterns 

for EBSD but is currently much more computationally expensive than traditional Hough based 

indexing. However, it still relies on accurate simulation of diffraction patterns for the microscope 

system that has been used for data collection, as well as collection of appropriate patterns to use 

for the indexing. In this research, the EBSD camera that was used to collect patterns for dictionary 

indexing was not centered with respect to the phosphor screen. This misalignment in the detector 

hardware led to cropping of experimentally collected patterns that could not be resolved with 

software calibrations of the pattern cropping. Patterns were cropped with a non-circular mask 

resulting in artifacts that were saved into each experimentally collected pattern, as seen in Figure 

2.10. Since non-centered circular masks are not yet supported in the EMsoft programs, this resulted 

in difficulty simulating detector geometries using these experimental patterns as well as difficulty 

indexing data collected on this particular EBSD system. Nevertheless, dictionary indexing should 

be utilized more fully in the future since it eliminates many of the issues currently experienced 

during EBSD data collection for CTZ. 
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Figure 2.10: Images of Kikuchi patterns captured from a circular phosphor screen on a rectangular 
CCD camera. The image on the left shows proper circular cropping of an EBSD pattern while the 
image on the right shows a pattern that was saved during EBSD map collection where the circular 
pattern is cut off at the top and sides. This introduces artifacts into each experimental diffraction 
pattern. The image on the right is also noisier due to increased pixel binning used to increase the 
data collection speed.  

2.4 Single Crystal Deformation 

Deformation of single crystals has often been used as an important method for observing 

and determining the deformation mechanisms active in different materials. In this dissertation, 

single crystal deformation is used to observe the deformation mechanisms active in single crystals 

of ferroelastic CTZ. This is done to determine the mechanisms responsible for and associated with 

ferroelastic deformation as well as to measure the effect that variables such as crystal size and 

crystal orientation have on the deformation behavior. In this section, the methods used to deform 

samples at the micro-scale and nano-scale will be outlined.  

2.4.1 Micropillar Compression 

The micropillar compression test methodology was developed by Uchic et al. [37] to 

measure size effects in mechanical properties. For ceramic materials, reducing the size of samples 

is highly beneficial in reducing the volume of materials that may contain flaws that lead to fracture. 

For this reason, micropillar compression of ceramics has become advantageous for evaluating 

deformation mechanisms other than fracture for brittle ceramic materials [38–42]. Here, 
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micropillar compression of CTZ single crystals with a range of known orientations was used to 

determine the effect of orientation on ferroelastic domain nucleation stress. Specifically, these tests 

were used to evaluate whether domain nucleation follows a critical resolved shear stress criterion, 

the results of which are discussed in detail in Chapter 3.  

 To fabricate single crystal pillars at the micron scale, milling with a focused ion beam (FIB) 

was used. This technique allowed for site specific pillar fabrication with control of the dimensions 

down to the nanometer scale. For this study, the diameter of the pillars was selected such that 

approximately 10GPa of stress could be reached using a Hysitron Pi-85 Picoindeneter with a 

maximum load of 30mN. This size of pillar was small enough to suppress fracture while still being 

a large enough sample volume to represent a crystal size that may be found in many polycrystalline 

ceramic samples. Orientations of grains were determined using EBSD prior to pillar fabrication.  

 Pillars were milled using a four-step procedure optimized to reduce the taper angle of the 

pillars and to enable control of the dimensions of each pillar. Before any pillars could be milled, 

the milling ratio (ratio of actual trench depth to specified trench depth in the FIB software) for 

CTZ was determined. The milling ratio was found to be 2.2, meaning that for every 1 μm of milling 

depth specified for the milling step, 2.2μm depth of material was actually removed. This number 

was then used to determine the depths set for each subsequent milling step.  First, rough 5μm 

diameter, 3μm length pillars were formed by milling with a 9.3nA FIB current to create a 25μm 

diameter annular trench large enough to accommodate the indenter tip during loading. The FIB 

current was then reduced to 790pA and the pillar diameter was decreased to 3μm through annular 

milling using reduced outer diameter of 6μm. Finally, the FIB current was reduced to 80pA and 

the pillar diameter was reduced to 2μm in two steps, one with an outer diameter of 4μm, and a 

second with an outer diameter of 2.4μm. The final height of each pillar was approximately 6.2μm. 

This milling procedure resulted in pillar geometries with very uniform dimensions and little taper, 

as shown in Figure 2.11, which shows a micropillar with a taper angle of 1.1°.  
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Figure 2.11: Image of a representative micropillar with measurements overlaid. The taper angle is 
1.1°.

The locations of pillars were tracked using fiducial marks on the surface of the pellet such 

that the location of known orientations for each pillar could be tracked while indenting was done. 

The pellet was kept on the same stub while moving between the microscope in which EBSD was 

done and the FIB in which the pillars were fabricated so that the alignment did not change. That 

same stub was then loaded into the Hysitron PI-85 for deformation, again so that alignment was 

maintained between FIB milling and deformation steps.      

2.4.2 In Situ TEM Deformation 

Micropillar compression is extremely useful, however, it does not allow for direct 

observation of the microstructure (other than the pillar shape) or of defects during deformation. In 

order to observe the deformation events in greater detail, in situ transmission electron microscopy 

(TEM) deformation was used. TEM allows for direct observation of defects such as dislocations 

and twins, and when combined with in situ deformation, the nucleation and motion of those defects 

can be studied while quantitative stresses are simultaneous measured.  

In situ TEM deformation tests were performed using a Hysitron PI-95 TEM Picoindenter 

inside of a JEOL 2010 TEM. Experiments were performed on samples in different geometries, 

including pillar compression and three-point notched beam bending. These geometries allowed for 

evaluation of the materials response under different loading conditions and stress states, each with 
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their own advantages and disadvantages.  Samples consisted of single crystals or in some cases 

bicrystals.  

Pillars were fabricated from grains with random orientations as well as in some cases from 

grains with known orientations. In cases where the orientation was known, careful tracking of the 

grain location was done between measuring the orientation using EBSD and lifting the grain out 

for nanopillar fabrication. A series of images showing the process for fabricating a pillar with 

known orientation is shown in Figure 2.12. In order to track the location of specific grains while 

moving them between microscopes, areas marked with various shapes were milled into polished 

and thermally etched pellets. EBSD was then done on the marked areas to collect orientation 

information for a large number of grains. Several grains with specific orientation were then marked 

using platinum deposition in the FIB. The selected grains were then lifted out using standard TEM 

sample preparation procedures, with the excess material cut away. Here, the samples were 

mounted on the top of a post on a copper TEM grid. Annular milling was then used to thin the 

pillars to diameters ranging from 250-600nm. The top of the pillar and any remaining platinum is 

removed by milling perpendicular to the pillar loading axis. In situ deformation of these pillars 

allowed for quantification of stresses associated with deformation events. However, since the 

pillars were still relatively thick for TEM samples, imaging of the deformation events had limited 

effectiveness.   
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Figure 2.12: Images taken at various stages of fabricating a nanopillar with known orientation. (a) 
Areas are marked out on a polished polycrystalline surface where EBSD is performed. (b) A grain 
with known orientation is marked for FIB liftout. (c) The marked grain is lifted out using standard 
TEM sample preparation procedures. (d-e) The grain is milled into a pillar shape using a series of 
annular milling steps. (f) The top of the pillar is cut off perpendicular to the pillar loading axis to 
ensure a flat contact with the indenter tip. Typically pillars are several hundred nanometers in 
diameter and over a micron in length as shown by the overlaid measurements. 

The three-point bending geometry was based off work done by Hu et al. [43]. This 

geometry allows for direct observation of crack growth. The same liftout steps were used to 

fabricate beam samples that were used for pillar samples, however, instead of annular milling, a 

standard TEM sample thinning procedure was used to thin the sample on top of the copper grid, 

and rectangular boxes the same as used by Hu et al. were milled through the samples. The crack 

growth in samples with this geometry was stable due to the clamped beam geometry, which 

prevents catastrophic crack growth. The goal of observing the region around the notch during 

bending was to image the nucleation of domains near a stress concentrator. The notch created a 

location with high tensile stress, making the presumed location of domain nucleation predictable. 

However, the stress state that forms around a notch in a sample with this geometry is complex, so 

correlating a coercive stress to any domain nucleation observed was difficult and has not yet been 

done.  

Examples of a single crystal and a bicrystal beam being deformed are shown in Figure 

2.13. The fracture process can be observed in real time for these samples. There is no obvious 
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dislocation plasticity or twinning visible during bending and crack propagation. In both cases the 

cracks arrest due to the compressive stress field induced by the cube corner indenter and the double 

cantilever beam geometry applying crack closure stresses.  

Figure 2.13: (a-c) Frames captured from video taken during the bending and fracture of a single 
crystal notched beam. The crack initiating and propagating from the notch is visible. Out of plane 
bending occurred resulting in incomplete closure of the crack after the load is removed. (d-e) 
Frames captured from video taken during the bending and fracture of a bicrystal beam. A planar 
grain boundary is visible traversing the beam along the right side of the images. Contrast from 
strain and bending can be seen during deformation. There appears to be some discontinuity in the 
strain at the grain boundary evidenced by the change in contrast at the boundary, and is likely 
caused by changes in the elastic properties of the material in the different grains. The crack closes 
entirely after the load is removed. Note: the scalebars in each image may be incorrect due to 
magnification changes not reflected in the scalebar during video collection.  

Post-mortem diffraction done on the beam shown in Figure 2.13(a-c) is shown in Figure 2.14. 

Selected area diffraction patterns show that although no clear domain nucleation could be observed 

around the notch during the deformation, permanent deformation and domain nucleation indeed 

did take place, although it was not clear whether this occurred during the fracture process or due 

to out of plane bending of the sample due to misalignment with the indenter tip.    
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Figure 2.14: (a) TEM bright field image of a beam after deformation and fracture. The locations 
of two selected area diffraction patterns are shown in red and blue circles. (b) Selected area 
diffraction pattern showing the (110) zone axis diffraction pattern taken from the left side of the 
crack. The diffraction pattern shows a single crystal diffraction pattern with no evidence of 
twinning. (c) Selected area diffraction pattern showing the (110) zone axis diffraction pattern from 
the right side of the crack. The presence of additional spots, several of which are marked by arrows, 
is evidence of twinning and permanent deformation in this region.  

2.5 Polycrystal Deformation 

One of the main goals of the work done in this dissertation is to determine the effect that 

microstructure has on ferroelastic deformation. Because of this, it is necessary to study 

deformation in real ceramic microstructures. This section will focus on describing the methods 

used to deform polycrystalline ferroelastic samples such that the behavior of ferroelastic grains 

can be studied within the mechanical constraints imposed by the polycrystalline microstructure.  

2.5.1 Microindentation 

Microindentation techniques are useful for measuring a variety of material properties such 

as hardness, modulus, strength, and toughness. There are a number of different indenter geometries 
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commonly used for microindentation testing and different scales that properties such as hardness 

are measured on. For example, Knoop and Vickers indenters both use sharp pyramidal shaped 

indenter tips, however, Vickers indenters have a square base while Knoop indenters have an 

elongated base, and the indenter faces are at different angles. These differences result in different 

trends in hardness values being measured for various materials using the different indenter 

geometries [44]. In this work, the primary indentation methods used were Vickers indentation and 

spherical Hertzian indentation.  

Vickers indentation is a common method for measuring hardness and fracture toughness 

for ceramics. One of the most common uses for Vickers indentation is to measure the hardness of 

materials. Hardness is measured using the equation:  

𝐻𝐻 =
1.8544𝑃𝑃

𝑑𝑑2
Equation 2.2 

where P is the applied force and d is the diagonal length of the indent. Vickers indentation also 

commonly results in cracks radiating form the sharp corners of the indentation. Despite some 

controversy over the validity of comparing indentation fracture toughness measurements to other 

standard toughness evaluation techniques [45], measurement of these cracks is used to quantify 

toughness using the equation:  

𝛤𝛤 = 2𝜉𝜉2𝑃𝑃 �𝑑𝑑
2

𝑐𝑐2� � Equation 2.3 

where 𝜉𝜉 is a geometrical factor equal to 0.016, P is the load, 2d is the diagonal dimension of the 

indent, and c is the crack length [46,47]. The stress state involved in deformation beneath and 

around a Vickers indent is complex, and significant residual stresses typically remain in the 

material after indentation. In this work, Vickers indentation was used for hardness measurements 

and to induce domain nucleation in polycrystals prepared with varying grain sizes. 

Another method of indentation used was Hertzian indention where a spherical contact 

geometry is used. This contact geometry has the advantage that the stresses associated with the 

indentation process can be analytically determined using the following equations: 
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8
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3
 

Equation 2.4 

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 =
3𝐹𝐹

2𝜋𝜋𝑎𝑎2
Equation 2.5 

𝜎𝜎𝑚𝑚 = 𝜎𝜎𝑦𝑦 = −𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ��1 − �
𝑧𝑧
𝑎𝑎
� tan−1

1
|𝑧𝑧 𝑎𝑎⁄ |

(1 + 𝜈𝜈) −
1

2 �1 + 𝑧𝑧2
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�� Equation 2.6 

𝜎𝜎𝑧𝑧 =
−𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

1 + 𝑧𝑧2
𝑎𝑎2

Equation 2.7 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝜎𝜎𝑚𝑚 − 𝜎𝜎𝑧𝑧

2
=
𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑧𝑧

2
 Equation 2.8

where F is the applied force, 𝜈𝜈1 and 𝜈𝜈2 are the Poisson ratios of the indenter and substrate, 𝐸𝐸1and 

𝐸𝐸2 are the elastic moduli of the indenter and substrate, 𝑑𝑑1 and 𝑑𝑑2 are the diameters of the indenter 

and substrate (𝑑𝑑2 becomes infinite for a flat substrate), z is the depth below the surface, a is the 

contact radius, −𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum contact pressure, and  𝜎𝜎𝑚𝑚, 𝜎𝜎𝑦𝑦, 𝜎𝜎𝑚𝑚 and 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 are principle 

stresses and maximum shear stress. These expressions make it possible to calculate and correlate 

stresses associated with Hertzian indentation to any deformation or fracture observed. Both 

Vickers and Hertzian indentation geometries were used to locally deform polycrystalline 

ferroelastic ceramics, however, Hertzian contact stresses were not yet able to be correlated to 

domain nucleation events. This will be discussed in more detail in Chapter 4. 

2.5.2 In Situ SEM Deformation 

Microindentation provides a route for evaluating the local response of ferroelastic ceramics 

to a heterogeneous, triaxial stress state, however, these measurements have only been done ex situ. 

To evaluate the local mechanical response of polycrystals to globally applied uniaxial 

compression, in situ SEM deformation coupled with digital image correlation (DIC) was used. 

Digital image correlation allows for full-field measurement of displacements and strains by 

tracking features in a series of images. Combining DIC with high resolution SEM imaging has 

been developed to allow for characterization of mechanical responses at increasingly small length 

scales [48–51]. These techniques were used for in situ evaluation of strain that develops in 

ferroelastic polycrystals during deformation. 
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To perform SEM-DIC, compression specimens were prepared to meet several 

requirements. First, the samples were fabricated into a geometry and with dimensions such that a 

uniaxial compressive load could reach stresses of several hundred megapascals. The load frame 

used inside the SEM that was used to compress the samples had a loadcell capable of reading 200N 

of maximum load. This severely limited the sample size, since high stresses were needed to deform 

CTZ samples. Because of this, samples were cut into millimeter scale beams with rectangular 

cross-sections from polished pellets. Samples were cut so that the cross-sectional area ranged from 

0.5-1.0mm2, enabling stresses of 200-400MPa to be applied at 200N. Customized compression 

platens were machined with a cutout for the beams to rest on, which are shown in Figure 2.15. The 

cutout was used to align samples during loading to ensure uniaxial compression, as well as to set 

a fixed height for imaging the samples during deformation. If samples were recessed too far 

beneath the surface of the platens, the SEM signal from the sample was reduced and imaging 

became impossible. Spacers cut from a 0.3mm thick Ti-6Al4V sheet were used to ensure that 

samples extended beyond the edge of the cutout surface, such that the sample bore all of the load 

during compression testing.  

Figure 2.15: Photograph showing custom machined compression platens with a rectangular beam 
compression sample loaded. The cutout onto which samples were placed as well as the titanium 
spacers are shown.  
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Secondly, samples had to be coated with an appropriately sized speckle pattern for the digital 

image correlation analysis. This was done by sputtering layers of Au, Ti, and Ag onto the polished 

surface of each sample and using an NaCl solution to reconfigure the layers into DIC-appropriate 

speckle patterns using a process developed by Montgomery [52]. Images were then captured 

during loading. An image was taken after every 10N increase in load after waiting at least 60 

seconds for drift to settle after each increase in load.  

Even with the relatively small samples sizes used, no ferroelastic domain nucleation was 

observed in the fields of view measured using this technique so far. An example of a strain map 

collected during compression of a CTZ sample is shown in Figure 2.16. The speckle pattern 

produced well correlated images, however, the measured strains are very small and nothing except 

for elastic deformation and noise was measured. 

Figure 2.16: Digital image correlation strain map overlaid on an SEM image of a speckle patterned 
CTZ sample. Arrows show the direction of the applied compressive load. The sample was 
thermally etched, so that grain interiors and grain boundaries could be visually identified. 

To further increase the local stress, and to increase the probability of observing ferroelastic 

deformation within the field of view, stress concentrators were milled into sample surfaces to 

locally increase stresses. Several diamond shaped trenches were milled into sample surfaces using 

FIB, examples of which can be seen in Figure 2.17. Unfortunately, even around stress 

concentrators, no ferroelastic domain nucleation was yet observed using this SEM-DIC technique. 
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Also, charging of the sample at the edges of the diamond trenches led to image distortions and 

artifacts in the DIC measurements as can be seen in Figure 2.17 (c). To mitigate this issue in the 

future, measurements near stress concentrators should be done such that sharp edges are not 

contained within the imaging field of view.  

Figure 2.17: (a) Diamond trenches milled into a polished CTZ surface designed to act as local 
stress concentrators during compressive loading. (b) The sample was then speckle patterned for 
DIC measurements. (c) DIC strain map showing shear (xy) strain near a milled diamond trench 
during deformation. The deviations in strain from zero that appear as horizontal bands emanating 
from the diamond are caused by charging during imaging of the diamond edges, and the resulting 
images distortions.
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CHAPTER 3 

EVALUATING A CRITICAL RESOLVED SHEAR STRESS CRITERION FOR 

DOMAIN NUCLEATION IN FERROELASTIC CERAMICS 

In this chapter, the microscale behavior of domain nucleation in ferroelastic single crystals 

will be discussed. Here, the first hypothesis outlined in section 1.6 will be evaluated, testing 

whether ferroelastic domain nucleation is governed by a critical resolved shear stress criterion 

similar to Schmid’s law. Tests were performed using single crystal micropillars such that the effect 

of crystal orientation on the domain nucleation behavior could be isolated. The effect that 

orientation has on the deformation behavior will be discussed, followed by discussion of the 

mechanisms responsible for and associated with domain nucleation. The results detailed in this 

chapter will give context to the domain nucleation behavior observed in bulk polycrystalline 

samples discussed in chapter 4. These results provide insight into the microscale processes 

involved in ferroelastic deformation that must be connected to the deformation behavior in bulk 

microstructures for informed design of intrinsically toughened ceramics.  

3.1 Introduction 

Ferroelastic deformation provides a mechanism by which typically brittle ceramics may be 

intrinsically toughened. This toughness is achieved through the stress induced nucleation and 

motion of domains with differing orientation, but identical structure, within a crystal [1]. The 

nucleation of these domains occurs by twinning across specific planes for a given crystal structure. 

Domains may then grow and reconfigure during continued application of stress. Ferroelastic 

toughening is present in a wide variety of structural and electrical ceramics. For instance, the high 

toughness seen in single phase tetragonal t’ zirconia has been ascribed to ferroelastic toughening 

[2–4],  while increased toughness in tetragonal lead zirconate titanate [3,5] and barium titanate 

[6,7] has also been reported due to nucleation and motion of ferroelastic domains. 

The conformation and evolution of ferroelastic domains under stress has been well 

characterized in a variety of ceramic systems [4,8–11]. However, most studies of domain 

evolution, to date, have investigated polydomain materials—meaning that the ferroelastic domain 

boundaries exist in the material before an external load is applied, often as a result of processing. 

It has been postulated in previous studies of t’ zirconia, that ferroelastic domain nucleation may 
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contribute greater increases in toughness relative to that arising from the motion of existing domain 

boundaries [2]. For this reason, the present investigation focuses the mechanical nucleation of 

domains in initially single-domain crystals of tetragonal zirconia.  

In tetragonal ferroelastic ceramics, domains have been observed to form by twinning on 

the {110} family of planes [9,10,12]. Typically, the c-axis of the tetragonal unit cell reorients to 

align perpendicular to compressive stress and parallel to a tensile stress. The deformation and 

realignment of domains occurs through shear stresses acting on the given deformation plane [13]. 

Conventionally, a given ferroelastic material is described as having a critical value of shear stress 

necessary to nucleate or move domain walls or twins. Following the terminology adopted for other 

ferroic systems, this critical value is termed the coercive stress. Because most studies have been 

performed on polydomain samples, most values of coercive stress that have been reported are for 

domain motion rather than nucleation. Here, the authors seek to evaluate the coercive stress for 

domain nucleation and have hypothesized that domain nucleation in single crystals is governed by 

a critical resolved shear stress criterion. A critical resolved shear stress criterion like Schmid’s 

Law is evaluated as 

𝜏𝜏𝑐𝑐 = 𝜎𝜎𝑛𝑛 cos𝜙𝜙 cos 𝜆𝜆    Equation 3.1 

where 𝜏𝜏𝑐𝑐 is the critical resolved shear stress for domain nucleation, 𝜎𝜎𝑛𝑛 is the normal stress causing 

the deformation, 𝜙𝜙 is the angle of the twin plane normal with respect to the loading axis, and 𝜆𝜆 is 

the angle of the propagation of domain reorientation with respect to the loading axis. A similar 

approach has been taken previously to evaluate critical resolved shear stress for twinning in FCC 

crystals, finding that twinning follows Schmid’s Law [14]. Critical shear stress criteria have also 

been used to analyze domain switching mechanics in relaxor ferroelectrics, and have found good 

agreement with resulting domain morphologies [15].  

To test this hypothesis, single-domain crystals with a range of known orientations must be 

deformed to the point that domains are nucleated. Tetragonal zirconia stabilized with 10 mol% 

ceria and 10 mol% titania (CTZ) was selected on the basis that it can be synthesized and processed 

entirely in the tetragonal phase (such that it remains single-domain prior to application of stress), 

has a relatively high tetragonality (c/a = 1.026), and is known to exhibit a ferroelastic response 

under stress [16]. Successful evaluation also requires that fracture can be suppressed. Small scale 

micropillar compression provides a useful route for this, and has been used for similar evaluation 

of other deformation mechanisms in ceramics [17–21].  
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3.2  Experimental Methods  

3.2.1 Materials and Sample Preparation 

Tetragonal phase CTZ powders were prepared using reverse-coprecipitation synthesis [22]. 

Cerium nitrate, zirconium butoxide, and titanium isopropoxide precursors were dissolved into 200 

proof ethanol to achieve the desired molar ratio (10Ce-10Ti-80Zr) of cations. The solution was 

then slowly added to an excess of ammonium hydroxide with pH maintained above 10.5 to 

facilitate rapid precipitation. The precipitates were then centrifuged, washed with ethanol several 

times, and dried. After drying, the precipitates were ground and calcined at 600°C for 4 hours. The 

powders were then pressed into a 10 mm pellet and sintered in several stages at 1350°C for a total 

of 231 hours in a box furnace to densify the sample and grow the grains such that single crystal 

micropillars could be fabricated within them.  

X-ray diffraction was used to confirm that the pellet was in the desired tetragonal phase

using a Bruker D5000. The pellet was then polished using diamond lapping films and alumina 

slurries followed by a thermal etch at 1350°C for one hour to enhance grain boundary contrast. 

The thermally etched sample was mounted onto a stub used for orientation indexing, pillar milling, 

and pillar deformation. The sample remained on the stub between pillar fabrication and 

deformation sessions to eliminate opportunity for misalignment of the pillar loading axis.  

The orientations of various grains at the sample surface were determined using electron 

backscatter (EBSD). Patterns were indexed to a tetragonal zirconia phase using six Kikuchi bands. 

Orientation solutions were accepted only if the mean angular distribution (MAD) was below 1.2°. 

EBSD was performed in a JEOL 7000F SEM using an Oxford HKL EBSD system. Micropillars 

were milled into grains with known orientation using an FEI Helios focused ion beam. For this 

study, all pillars were milled into a single pellet, to reduce the chance of heterogeneity between 

samples influencing the results. pillars were milled using a four-step procedure optimized to reduce 

the taper angle of the pillars and to enable control of the dimensions of each pillar. First, rough 

5μm diameter, 3μm length pillars were formed by milling with a 9.3nA FIB current to create a 

25μm diameter annular trench large enough to accommodate the indenter tip during loading. The 

FIB current was then reduced to 790pA and the pillar diameter was decreased to 3μm by annular 

milling. Finally, the FIB current was reduced to 80pA and the pillar diameter was reduced to 2μm 

in two milling steps. The final height of each pillar was approximately 6.2μm and had taper angles 
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of less than 2°.  These dimensions were selected to ensure uniform compression without buckling, 

but it can also be noted that the pillar volumes were on par with the volume of an individual grain 

within a conventionally processed polycrystalline ceramic.      

Each pillar was deformed by uniaxial compression inside the FEI Helios FIB using a 

Hysitron PI-85 indenter equipped with a 12μm diameter diamond flat punch indenter, which was 

coated with Au/Pd to reduce charging while imaging. The electron beam imaging in the FIB was 

used to align the indenter tip with each pillar. Deformation was done at a rate of 4nm/sec under 

displacement control. The load vs displacement curve was continually monitored during 

deformation. In some cases, the load function was stopped quickly once the first deformation event 

for a pillar was observed, while in other cases, the deformation was allowed to progress to the end 

of the 600nm total displacement of the load function before the pillar was unloaded at a rate of 

8nm/sec. In some cases, pillars were loaded and deformed several consecutive times. After 

deformation, several pillars were lifted out and thinned for transmission electron microscopy 

imaging and diffraction in a JEOL 2010 TEM and a JEOL 2100 CRYO TEM. 

3.2.2 Shear Stress Analysis Procedure  

In order to evaluate a critical resolved shear stress criterion, several comparisons of 

orientation and deformation stress were used. As noted in the introduction, the c-axis of the 

tetragonal crystals tend to align perpendicular to an applied compressive stress through 90° 

reorientations. Therefore, a first approximation for a resolved shear stress criterion compares the 

observed normal stress at the onset of deformation to the crystallographic misorientation of the 

pillar from the (001) plane normal. This approximation evaluates the assumption that pillars with 

(001) orientation will twin most easily since the shear stress resolved onto the favorable (011) twin

plane will be maximized in this orientation. As the (001) plane becomes misoriented further from

the loading axis, the resolved shear stress on the (011) plane decreases. Angles of planes relative

to the loading axis have been determined using the equation

cos∅ =
1
𝑎𝑎2

(ℎ1ℎ2+𝑘𝑘1𝑘𝑘2)+ 1
𝑐𝑐2
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Equation 3.2 

which accounts for the tetragonal structure of CTZ [23]. Equation 3.2 can then be used as a 

reasonable proxy for twinning probability—that is, as a route to test whether orientations closer to 
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(001) orientations are indeed more favorable for twinning, and orientations further from (001) are

less favorable.

The above first order analysis ignores the direction angle found in the conventional 

formulation of Schmid’s Law given in Eq. 3.1. A more complete analysis requires that both a twin 

plane and shear direction are determined. Several assumptions are necessary to do this, the first of 

which pertains to the twin plane determination. Twins may nucleate on any of 12 {110}-type 

planes in the tetragonal crystal structure. Here, the analysis has been performed assuming that the 

most likely plane for domain nucleation will be the {110}-type twin plane that is closest to 45° in 

angle to the loading axis (maximum resolved shear stress). This is further complicated by the fact 

that not all {110} twin planes represent reorientations of the tetragonal c-axis and therefore a 

proper ferroelastic transition. Of the {110} family of planes, planes where {h≠0, k≠0, l=0) will not 

involve c-axis reorientations. Rather, they would correspond to a-b reorientations and are 

considered separately. Here, two cases are considered: one where all {110} planes are included in 

the calculations (regardless of whether c-axis reorientations are possible), and another where 

{110} planes corresponding to a-b reorientations are excluded. In the case where the planes are

excluded, the next closest {110} plane that does include c-axis reorientations is assumed to activate

first. The direction of twin shear must then also be assumed. Based on previous in situ straining

studies performed on t’ zirconia, it is assumed that domain reorientation propagates in <110>

directions [10].

3.3 Results

3.3.1 Phase and Initial Microstructure 

Isolating ferroelastic domain nucleation requires a single tetragonal phase throughout the 

ceramic and that only a single domain variant is present within each grain of the polycrystalline 

body. The as prepared ceramic pellets were confirmed to be single phase via X-ray diffraction as 

shown in Figure 1.  The XRD data was fit to a tetragonal zirconia phase with lattice parameters of 

a=b=3.608 Å, c=5.232 Å., giving a relatively large tetragonality ratio of 1.026, were the ratio is 

defined as c/(a√2) assuming a pseudocubic crystal unit cell according to convention [24]. The 

phase of each pillar was again confirmed during orientation indexing by EBSD since any poor fit 

to the tetragonal zirconia phase was rejected for pillar fabrication. The initial microstructure found 
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to be free of twins at the surface as is expected since the pellets were densified below the estimated 

Curie temperature for the ferroelastic/paraelastic transition [25].  

Figure 3.1: XRD of sintered CTZ. 

3.3.2 Pillar Compression 

Significant deformation events during micropillar compression can be characterized by the 

magnitude of the displacement discontinuity and the normal stress at which the event occurred, 

henceforth referred to as the deformation stress. The magnitude of the deformation events varied 

significantly from pillar to pillar, with the smallest single event producing a jump of less than 1 

nm in displacement (Pillar 22) and the largest single event producing a 721 nm jump in 

displacement (Pillar 7). Initial deformation stresses ranging from 94 MPa (Pillar 18) to 5082 MPa 

(Pillar 25) were observed. Several representative stress-displacement curves are provided in Figure 

3.2, from which it is clear that unloading behavior also varied dramatically. Stress has been plotted 

against displacement rather than strain due to the fact that the precise gauge length of each pillar 

could not be directly measured. 

For example, Pillars 25 and 11 (Figure 3.2(a) and 3.2(b)) both exhibited a single 

deformation event before unloading. Pillar 25 was permanently deformed, as is evident from the 

residual displacement at zero stress and the visible changes in the shape of the Pillar. Similar 

permanent deformation behavior was found for other pillars as well, specifically pillars 1, 2, 3, 5, 

6, 7, 10, 12, 16, 19, 22, 23, and 24.  However, Pillar 11 recovered almost completely upon 

unloading, through the course of several smaller reverse displacement jumps. This was also the 
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case for pillars 4, 8, 14, 15, 17, 18, 20, and 21. In other cases, like pillars 9 and 13, the recovery 

occurred all at once or in large reverse displacement jumps, similar to those observed during 

loading. 

Post deformation Pillar morphologies can be classified as those that exhibited (i) no 

apparent change in shape, Pillars 4, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, and 21; (ii) shear 

distortions, Pillars 7, 14, 15, 19, 20, 23, 24, and 25;  (iii) surface striations, Pillars 1, 2, and 7; or 

(iv) fracture, Pillars 3, and 22. Figure 3.2(a,e,f) provide examples of shear distortions and changes

in shape. The top surface of the pillars remains flat and parallel to the sample surface indicating

that the shear and change in shape is not due to off axis loading or sample bending. Surface

striations, characteristic of slip, are apparent on Pillar 2 in Figure 3.2(c), while Figure 3.2(d)

illustrates the fourth class of deformed pillar morphology.

Careful inspection of pillars in the second class suggests the presence of multiple twins—

consider Figure 3.2(a) and Figure 3.6(a,c,e).  These pillars, 25 and 7 respectively, both experienced 

just one observable deformation event. While Pillar 15 (Figure 3.2(e)), exhibits multiple 

deformation events in the loading curve, but visually contains what appears to be only a single, 

large shear distortion.   

Several pillars were loaded several times to evaluate the effect of defects introduced during 

previous loading cycles on subsequent deformation. Pillars were loaded up to three times, with the 

load being completely removed before the next load was applied. Here again, the behavior of the 

pillars varied. Some pillars exhibited a reduction in the stress required for a deformation event to 

occur with subsequent loading cycles, as can be seen in Figure 3.2(e), whereas others experienced 

an increase in stress required for subsequent deformation events, as is seen in Figure 3.2(f). 

Repeated loading also gave rise to changes in the loading curve slopes.   

After deformation, several representative pillars exhibiting the range of behaviors observed 

in this study were sectioned and evaluated using TEM. Figure 3.3 shows examples from the 

interiors of Pillars 9, 2, and 1. Pillar 9 experienced a deformation event that recovered almost 

completely during unloading. No residual defects were observed in the interior of this pillar. In 

contrast to pillar 9, pillars 2 and 1 experienced permanent deformation. The interior of pillar 2 

exhibited evidence of shearing from dislocation plasticity consistent with the striations observed 

on the exterior of this pillar, but no evidence of residual twins. Pillar 1 contained residual twins as 

well as evidence of dislocation plasticity. Figure 3.6 also shows the interior of pillar 7 which 
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contained a substantial number of nucleated defects, which appear to be multiple twins, as well as 

microcracks and dislocation activity.  

Figure 3.2: Examples of deformed pillars with their respective deformation curves. (a) SEM image 
of Pillar 25 showing visible shape change corresponding to the large permanent deformation seen 
in the loading curve. (b) SEM image of Pillar 11 showing no visible shape change, while the 
loading curve shows recovery of nearly all strain during unloading. (c) SEM image of Pillar 2 for 
which deformation continued after the initial deformation event shows striations consistent with 
dislocation plasticity. The loading curve shows numerous large and small deformation events 
throughout loading. (d) SEM image of Pillar 3 which fractured after exhibiting several relatively 
small deformation events as seen in the deformation curve. (e) SEM image of Pillar 15 showing 
shear distortion after three consecutive loadings. The loading curves show a decrease in the normal 
stress for deformation events during subsequent loading cycles and a decrease in stiffness. (f) SEM 
image of pillar 20 showing shear distortions after three consecutive loadings. The loading curves 
show an increase in stress for deformation events during subsequent loadings, and an increase in 
stiffness.  
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Figure 3.3: TEM images and diffraction patterns of deformed pillars. (a,d)  Shows Pillar 9 that 
experienced nearly complete recovery of deformation upon unloading. The cross-section of the 
pillar reveals no evidence of remaining twins within the pillar, and the (112) zone axis diffraction 
pattern shows no spot splitting that would indicate twinning. (b) Stress-displacement curve 
corresponding to pillar 9 showing that it recovered completely. (c,f) Bright field and selected area 
diffraction of pillar 2, which exhibited slip traces and permanent deformation. The shearing of the 
pillar from dislocations can be seen, but the (112) zone axis diffraction pattern again shows no 
evidence of twinning. (e,g) Bright field and selected area diffraction of pillar 1 which shows 
evidence of dislocation plasticity as well as twinning.  
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3.3.3 Resolved Shear Stress and Orientation Dependence 

The normal stress at the first deformation event of the first loading cycle for each pillar is 

tabulated in Table 3.1, along with the out of plane orientation of each pillar (determined via 

EBSD).  

Table 3.1: Compilation of pillar orientation, deformation stress, twin system, Schmid factor, and 
resolved shear stresses. 

Pillar 
Number 

Orientation 
(hkl) 

Deformation 
Normal 
Stress 
(MPa) 

Twin System 
*with a-b
excluded

Schmid 
Factor 

Resolved 
Shear 
(MPa) 

1 (455�) 1150 (101�)[101] 0.133 153 
2 (132) 277 (110)[ 1�10] 0.462 128 

*(011�)[011] 0.336 93.1 
3 (161�) 3115 (011)[011�] 0.647 2016 
4 (322) 2516 (011)[011�] 0.141 355 
5 (522�) 964 (101)[101�] 0.529 510 
6 (151�) 2332 (011)[011�] 0.634 1480 
7 (413) 4547 (110)[ 1�10] 0.445 2025 

*(101�)[101] 0.352 1602 
8 (122�) 441 (101�)[101] 0.010 4.28 
9 (456) 820 (101)[101�] 0.092 75.5 
10 (651�) 2216 (101�)[101] 0.334 721 
11 (221) 1756 (011)[011�] 0.302 530 
12 (423�) 3437 (011�)[011] 0.055 189 
13 (100) 973 (110)[ 1�10] 0.678 660 

*(101)[101�] 0.500 487 
14 (216�) 767 (011�)[01�1�] 0.218 167 
15 (113) 3522 (011)[01�1] 0.111 392 
16 (014) 4209 (011)[01�1] 0.526 865 
17 (136) 1445 (101)[ 1�01] 0.178 257 
18 (100) 94 (110)[ 1�10] 0.678 64.0 

*(101)[101�] 0.500 47.0 
19 (124) 768 (101)[ 1�01] 0.140 108 
20 (126) 686 (101)[ 1�01] 0.218 150 
21 (216�) 375 (011�)[01�1�] 0.218 82.0 
22 (013) 1108 (101)[ 1�01] 0.261 289 
23 (116) 748 (101)[ 1�01] 0.253 189 
24 (106�) 3224 (101�)[1�01�] 0.267 860 
25 (116�) 5082 (101�)[1�01�] 0.253 1284 
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It will be assumed that these normal stress values correspond to the initial domain nucleation 

event for the purposes of the subsequent calculations. The angle of the (001) plane (the direction 

of the c-axis) with respect to the loading direction was found for each pillar and then the normal 

stress measured for the initial deformation event in each pillar was then plotted against this 

misorientation from (001) in Figure 3.5(a). Pillars that recovered are distinguished from those 

that were permanently deformed. No quantifiable trend can be extracted from the data plotted in 

Figure 3.5(a) for either of these subsets. 

A more thorough analysis, testing a critical resolved shear stress criterion analogous to 

Schmid’s law for domain nucleation has also been performed using the assumptions outlined in 

Section 2.2. The calculated twin systems, Schmid factors, and resulting resolved shear stresses on 

those twin systems are given in Table 3.1. It is important to note that several values of Schmid 

Factor exceed 0.5. This is due to the high tetragonality of this crystal structure leading to angles 

between planes and crystal directions that are significantly larger than they would be for a cubic 

crystal structure or even a lower tetragonality ratio. The normal stress for deformation is plotted 

against these Schmid factors in Figure 3.5(b), again with recovered and permanently deformed 

pillars being distinguished. Despite the more rigorous analysis, the data in Figure 3.5(a) and Figure 

3.5(b) are similarly stochastic. If domain nucleation indeed follows a critical resolved shear stress 

criterion, the normal stress for nucleation should decrease with increasing Schmid factor, and the 

calculated resolved shear values should converge to a single value. It is clear from the plots In 

Figure 3.5 and from the tabulated resolved shear values, that the deformation does not follow a 

trend with the Schmid factors, nor do the resolved shear stresses converge to a critical value.  
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Figure 3.4: Normal stress of deformation plotted against (a) misorientation from the (001) plane 
normal and (b) Schmid Factor. Schmid factor has been calculated both allowing and disallowing 
a-b domain transitions.

3.4 Discussion

There are no apparent relationships between misorientation, critical resolved shear stress 

and the measured normal stress at the onset of deformation.  This warrants further discussion of 

the assumptions underlying the original hypothesis and demands closer evaluation of the active 

deformation mechanisms at the root of this behavior. Several different modes of deformation have 

been observed in this study, each of which have implications for the mechanisms associated with 

single crystal deformation and ferroelastic domain nucleation.  
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3.4.1 Observed Modes of Deformation 

The hypothesis that ferroelastic domain nucleation would follow a critical resolved shear 

stress criterion was derived from the presiding definition of the coercive stress associated with 

ferroelasticity. With the exception of Kreher [26] and more recently Landis [27,28], most models 

describing ferroelastic switching assume that (i) ferroelastic switching occurs at a well-defined 

stress, e.g. the coercive stress; (ii) that the switching process is discrete (no partial transformations 

are allowed); and (iii) that once switched, the irreversible strain cannot be reoriented.  Landis [28] 

initially argued and has since demonstrated, e.g. [29], that domain switching may occur over a 

range of stress levels, incremental transformations are possible and that strain reorientations can 

take place.  These arguments have received greater attention within ferroelectrics, wherein 180º 

domain switching is commonplace, e.g. [30,31].  Some of these micro-mechanical models have 

established a direct analog to single crystal metal plasticity and critical resolved shear stress 

criterion to more accurately describe domain switching [30].   

However, even within metallic systems, Schmid’s law does not always hold true. Non-

Schmid behavior has been identified in several materials for dislocation plasticity as well as for 

twinning deformation. Notably, non-Schmid behavior of dislocations has been observed in BCC 

and HCP metals, as well as in intermetallics [32–36]. Non-Schmid twinning behavior has also 

been seen in HCP materials [37,38]. Often times, such behavior has been attributed to anisotropic 

dislocation core spreading or other similar mechanisms focused on the nature and behavior of 

specific dislocation types within a given crystal structure [34–36].  In the current study, such 

considerations may also be made, but more practically there are likely several interacting or 

competing factors that give rise to this non-Schmid behavior in ferroelastic CTZ.  

First the size of the micropillars and the compressive loading configuration must be 

considered.  Without the constraint and interfaces provided by neighboring grains, the small size 

of the micropillars imposes a natural cap on the size and distribution of defects within each pillar.  

The mode I toughness of CTZ is on the order of 53 J/m2  based on previous characterization [16]. 

If Griffith’s criterion is then used to approximate failure by fracture, assuming a conservative 

stiffness of 200GPa, the critical flaw size for fracture of CTZ may be approximated as 1.3 μm.  

Given that all pillars had a diameter of 2µm, such large internal or surface flaws are not possible, 
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and as a result fracture is suppressed. The probability of fracture is further reduced when 

considering that the pillars were loaded in compression. Zirconia-based materials typically 

undergo ferroelastic deformation or fracture before dislocation plasticity at room temperature [39].  

However, with fracture largely suppressed on the basis of the length scale, significantly higher 

stresses can be realized on slip planes as well as the twinning planes. As a result, both dislocation-

mediated deformation and twin-mediated deformation are possible, and may be simultaneously (or 

sequentially) active in a single pillar.    

Multiple types of deformation, and combinations thereof, were indeed observed in the pillars 

compressed in this study. 14 of the 25 pillars in this study maintained some sort of permanent 

deformation upon unloading. These pillars exhibited evidence of dislocation plasticity, 

microcracking, as well twinning based deformation and combinations thereof. Some of these 

pillars experienced partial recovery, such as is seen at the end of the stress-displacement curve for 

Pillar 2 shown in Figure 3.2(c). In these cases, a combination of twins and dislocations were always 

observed, but it is assumed that some twins were able to reverse during unloading. Most pillars in 

this subset did not experience any strain recovery.  Several pillars, such as the one shown in Figure 

3.2(c) exhibit slip traces characteristic of dislocation plasticity. This indicates that the yield stress 

was surpassed for that orientation. It is not possible to determine whether such exclusive 

dislocation-mediated deformation followed Schmid-like behavior without more isolated 

observations.  In many other pillars, such as Pillar 1 shown in Fig 3(e), some combination of 

dislocation and twin activity was found. Another example of this behavior is seen in Figure 3.6  

showing Pillar 7 which contains multiple twins remaining within the pillar after unloading, and no 

evidence of recovery in the deformation curve. Pillar 7 also exhibits microcracking along with the 

previously mentioned twinning and dislocation plasticity.  The sequence by which these different 

deformation modes are activated cannot be extracted from post mortem analysis of the 

microstructure.  This greatly obscures any potential relationships between the applied stress and 

deformation events.  

The second subset consists of those pillars that fully recovered following a significant 

deformation event—cf. Figure 3.3(a,b). Twinning deformation has been shown to be reversible in 

a variety of materials. For example, ferroelastic domain twins in yttria stabilized zirconia are 

reversible by application of appropriate hysteretic stresses [40] while domains in PZT may be 

introduced and removed by electrical and mechanical hysteresis [8]. Back switching of ferroelastic 
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domains simply upon unloading (without negative applied stress) has been documented in 

ferroelastic ceramics such as La-Sr-Co-Fe oxides [41] and, while not formally ferroelastic, many 

other so called elastic twinning systems like calcite [42]. Detwinning in HCP, FCC, and BCC 

metals has also been observed [43–46]. All pillars in this subset exhibited a significant deformation 

event, eliminating the possibility of a fully elastic process, and dislocation activity would result in 

permanent strain. Therefore, the complete recovery of strain upon unloading indicates that 

ferroelastic twinning (and subsequent detwinning) was the dominant deformation mode in this 

subset. A representative cross-section of a pillar that recovered—cf. Figure 3.3(a)—shows no 

evidence of residual defects within the pillar after recovery. In this study, 11 of the 25 pillars tested 

experienced full recovery following their initial loading cycle. This subset is differentiated in 

Figure 3.4, wherein it is clear that there is no relationship between deformation stress, crystal 

orientation or Schmid factor. This would suggest that twin nucleation exhibits non-Schmid 

behavior even without competing dislocation plasticity.   

3.4.2 Mechanisms of Deformation 

Ferroelastic domains often form during a paraelastic to ferroelastic (cubic to tetragonal 

phase transition for zirconia) phase transition [47,48], which is often discussed as a diffusionless, 

displacive transition, and results in the complex colony domain structure often observed in 

polydomain ferroelastic ceramics. Many examples of these domain morphologies have been 

summarized by Salje [49]. In the case of mechanically nucleated domains, the mechanisms by 

which the domains nucleate and grow may be different than the displacive mechanism responsible 

for their formation during a phase transition. Mechanical twin nucleation in metals has been 

discussed to take place through complex dislocation interactions involving partial dislocations 

[34,46,50]. There have also been observations of twin nucleation in ionic ceramic structures such 

as sapphire, which require partial dislocation separation and cross slip [51]. The observations in 

the current work are not sufficiently exhaustive to precisely determine the mechanism of twin 

nucleation and growth. Nonetheless, the different morphologies and behaviors during deformation 

can give some insight on these underlying phenomena.   

It is possible that a displacive mechanism is responsible for the deformation twinning that 

is occurring in these samples. Deformation twinning in ceramics has been described as resulting 

in abrupt and collective movements of atoms within the entire twin, analogous to displacive 
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deformation during martensitic transformations [15,52,53]. This type of mechanisms does not 

distinguish between the nucleation and growth processes for the twins. Previous observations of 

mechanically nucleated domains in CTZ polycrystals show a modulated ordering of the oxygen 

sublattice that likely resulted from strain accommodation during large scale twinning [16]. These 

distortions may be indicative of a displacive mechanical twinning mechanism active in larger scale 

twins and could result in a pillar deformation morphology schematically depicted as “Mechanism 

1” in Figure 3.5. The pillars shown in Figure 3.2(e,f) are characteristic of this morphology. 

However, for the limited number of pillars with “Mechanism 1” type morphologies, no supporting 

evidence of the modulated oxygen sublattice could found within the microstructure.  Alternatively, 

if a displacive twinning mechanism occurs, it is assumed to take place without associated 

dislocation activity.  This would result in reversibility with no residual defects unless the domain 

is otherwise pinned by an intersection with the pillar surface [54]. This type of mechanism may 

therefore be active in samples that detwin upon unloading and exhibit no residual evidence of 

dislocation activity.   

Figure 3.5: Schematic showing morphologies resulting from possible deformation mechanisms 
including displacive twinning, dislocation mediated twinning, and dislocation slip. Combinations 
of these mechanisms may be active within the deformed pillars in this study.  

Twin nucleation and growth may also take place by a dislocation mediated mechanism, as 

has been previously described for metals and a handful of ceramics. There have been numerous 

experimental, theoretical, and simulation-based studies that have illuminated the role of partial 
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dislocations in twin nucleation. For example, simulations of twin nucleation in FCC aluminum 

have suggested a partial dislocation interaction mechanism [50], while twinning in HCP metals 

such as magnesium and titanium has been shown to occur through dislocation interactions at grain 

boundaries [55,56]. In these ceramic micropillars it is possible that twins nucleate at the pillar 

surfaces* and then propagate via a dislocation mediated mechanism. Many of the domains that 

have nucleated in this study exhibit a needle-like morphology, schematically depicted as 

“Mechanism 2” in Figure 3.5. This needle-like morphology has been previously associated with 

arrays of dislocations and elastic anisotropy [57–59]. In some instances, this type of domain has 

been reported to detwin [60,61]. Many instances of needle-like domains do however, remain in 

the pillar microstructure after unloading—cf Figure 3.6(a) and (b).  These examples are likely the 

consequence of domain pinning arising from domain interactions with surfaces, neighboring 

domains, or other defects such as dislocations. It is also possible that when such needle-like 

domains intersect with a free surface while being subject to a continuously increasing load, the 

twin boundaries will further separate becoming more parallel and emulating the morphological 

signature of “Mechanism 1” [62,63].   

It is clear that dislocation slip has taken place in some samples in this study, cf.  Figure 

3.2(c) and Figure 3.6. These pillars exhibit distinct slip bands, schematically depicted as 

“Mechanism 3” in Figure 3.5. Dislocations in YSZ have been observed to form on {100}, (110}, 

and {111} planes [39,64], but dislocations will only be complete if the Burgers vector lies in the 

(001) basal plane [39]. Dislocations active outside of the (001) basal plane will be partials, which

result in stacking faults in the oxygen sublattice, and may sometimes result in antiphase boundary-

like contrast in bright field transmission electron micrographs [4,39].  As noted above, twinning

may also arise through the separation of partial dislocation.  It is therefore possible that stacking

faults generated by partial dislocations on {110} planes may be related to the nucleation

mechanism for twinning on these planes. However, the present observations were insufficient to

fully deconvolve those complex microstructures containing both significant twinning and

dislocation activity such that the full character of dislocations present could be determined.

* It cannot be ignored that surface nucleation may be impacted by the pillar preparation via focused ion beam milling.
The impact of surface implantation has been widely studied for metallic micropillars.  It is, unfortunately, difficult to
directly translate these lessons for application in ceramic systems on the basis that radiation damage accumulation in
ceramics is highly sensitive to chemistry, crystal structure, and ion energy.
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Figure 3.6: Images and diffraction patterns showing deformation of Pillar 7. This Pillar exhibits 
twinning, dislocation plasticity as well as microcracking. (a,c,e,g) bright field images of the 
deformed region of Pillar 7. (a) Overview of the deformed Pillar showing large scale twinning, 
plasticity and microcracking. (b) Stress-displacement curve showing that the deformation occurred 
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Figure 3.6 (continued): during a single large jump in displacement and no recovery occurred. (c) 
Needle-like domain nucleated near the top of the deformed region of the Pillar. Contrast within 
and without the domains indicated high dislocation density. Microcracking is also visible and 
appears to have dislocations emanating from the tip. (e) Needle-like domains near the bottom of 
the deformed region.  Another “wing crack” shaped microcrack is visible. Domains appear to start 
and end within the Pillar. (g) Curved boundaries that may indicate antiphase boundaries resulting 
from dislocation plasticity. Shear steps where dislocations have exited the Pillar are visible. (d, h) 
Diffraction patterns taken outside the deformed region in the top and bottom of the Pillar, 
respectively, showing its single crystal, undeformed state. Slight streaking of diffracted spots in 
(h) indicates plasticity, but not twinning in the Pillar base (f) Diffraction pattern taken within the
deformed region showing the presence of multiple additional spots resulting from multiple twins
as well as streaking resulting from strain and possible stacking faults.

The potential mechanisms depicted in Figure 3.5 are neither exhaustive nor exclusive. 

Coexistence, competition or even synergy between these mechanisms are possible in such confined 

volumes and thus relatively large stresses.  The deformation and resulting morphology of Pillar 7, 

shown in detail in Fig 6, is a good example of this. TEM bright field images of Pillar 7 show that 

there are multiple needle-like domains of various size nucleated within the Pillar. There is also 

evidence of significant dislocation plasticity. Diffraction patterns from the center of the Pillar show 

smearing of the reflections as well as the presence of multiple twin reflections. These 

characteristics are indicative of lattice distortion arising from the dislocation density and the 

possible presence of stacking faults in the deformed regions. Microcracks, with the signature wing 

crack configuration, have formed at the top and bottom interfaces of the deformed region. These 

wing cracks are likely to have formed during the single large deformation event experienced by 

Pillar 7 (along with the domain nucleation and dislocation plasticity that occurred). Wing cracks 

typically form from tensile stress development along inclined defects such as cracks and grain 

boundaries pre-existing withing a material during compression [65–67]. In this case, however, 

those defects did not pre-exist but are presumed to have nucleated just prior to the wing crack 

development. The presence of these cracks illustrates that complex triaxial stresses may develop 

within even these single crystals during deformation. Evidence of complex, localized stress within 

such a confined volume also illuminates the potential of path dependent behavior, wherein 

nucleation of initial defects may strongly influence the development of additional defect features 

with continued or repeated loading.   

Defects, like dislocation or twin boundaries, are expected to accumulate with repeated 

loading and unloading cycles, thereby providing an additional perspective on the interaction of 
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these defects. There are several possible scenarios that may arise through such repeated 

deformation cycles. In one scenario, it would be reasonable to expect that once a ferroelastic 

domain boundary has been nucleated, the stress necessary to propagate that boundary upon 

successive loading should be reduced—i.e. the nucleation barrier need only be surpassed once.  

Pillar 15 in Figure 3.3 seemingly follows this “softening” pathway.  The first deformation event 

occurred above 3.5 GPa, then around 3.0 GPa and finally around 1.5 GPa during the final 

compression.  It is also relevant to note that the Pillar recovers completely, albeit incrementally, 

after compression #1, but only partially following compression #2.  It is reasonable to expect that 

the domain walls, whether formed via Mechanism #1 or #2, extended across the full diameter of 

the Pillar during the second cycle, thereby pinning them.  As a result, not only is the normal stress 

much lower for the deformation event during the third cycle, the magnitude of the deformation 

event is also much smaller.  In this case domain-defect(surface) interactions stabilized the domain 

structure, thereby reducing the backstress for detwinning upon unloading and eliminating the 

necessity to nucleate the domain boundary in future loading cycles.  If, however, different defects 

are present or accumulated, an alternative “hardening” scenario is possible.  In Pillar 20, Figure 

3.3(b), the deformation stress increases from just over 2 GPa to nearly 4 GPa in three compression 

cycles and only incomplete, if any, recovery was observed between each of these.  The density of 

residual defects, whether dislocations, stacking faults, anti-phase boundaries or some form of 

nanodomains, likely increases with subsequent compressions.  Any mobile defect would be 

increasingly likely to interact with these defects, thereby increasing the applied stress necessary 

for further deformation. 

It is evident that a critical resolved shear stress criterion is insufficient to fully describe the 

nucleation of ferroelastic domains within such small, unconfined volumes.  This is especially true 

when the nucleation stresses are comparable to those necessary for dislocation activity.  As a result, 

it remains quite difficult to discern any meaningful relationship between single crystal orientation, 

applied load and deformation behavior in the absence of preexisting ferroelastic domain 

boundaries.  This outcome only emphasizes the need for greater understanding of the role played 

by highly localized stress fields and the rigid constraint of neighboring grains during deformation.  

Completely describing and predicting ferroelastic deformation for efficient ferroelastic toughening 

clearly requires a more complete and complex description of the stress distribution within 
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polycrystalline ferroelastic ceramics. The first steps towards this goal will be addressed in 

forthcoming publications.  

3.5 Conclusion 

A critical resolved shear stress criterion for domain/twin nucleation in ferroelastic CTZ 

was evaluated within single crystal micropillars. Micropillars of different orientations exhibited 

drastically different deformation stresses and revealed multiple active types of deformation 

including ferroelastic domain nucleation, dislocation plasticity, and microcracking. No correlation 

was found between Pillar crystallographic orientation and the stress at which they deformed, 

regardless of the deformation types they exhibited. Underlying this non-Schmid deformation 

behavior, these observations suggest that domain nucleation may occur through different 

mechanisms such as large scale displacive twinning or dislocation mediated twin nucleation and 

propagation. Furthermore, domain nucleation may compete more closely with dislocation 

plasticity at small size scales than previously expected. These results show that ferroelastic domain 

nucleation is a complex process involving multiple types of potential deformation, and that crystal 

orientation alone cannot predict ferroelastic deformation behavior, within small, unconstrained 

volumes.  
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CHAPTER 4 

INFLUENCE OF GRAIN SIZE AND MICROSTRUCTURAL CONSTRAINT ON 

FERROELASTIC DOMAIN NUCLEATION 

A focus of this research was to evaluate the influence of microstructure on ferroelastic 

deformation in ceramics. This evaluation was done not only in isolated single crystals but also in 

polycrystalline microstructures that are more similar to those used in engineering applications. In 

this chapter, the effect of several variables on ferroelastic domain nucleation in bulk 

polycrystalline microstructures was examined, and work done to evaluate the second main 

hypothesis outlined in section 1.6 of this dissertation will be discussed. This chapter will focus on 

crystal size, microstructural constraint, and stress state as variables influencing domain nucleation. 

Statistics were collected on the influence of grain size on ferroelastic domain nucleation in 

polycrystals. The behavior observed in polycrystals can then be combined with the insight gained 

about mechanisms active in single crystals to connect microscale and macroscale understanding 

of ferroelastic deformation.  

4.1 Introduction 

Ceramic materials such as tetragonal zirconia have been shown to exhibit increased 

toughness due to ferroelastic domain nucleation and motion. Ferroelasticity provides an 

opportunity for increasing the intrinsic toughness of ceramics used in a variety of structural and 

electrical applications [1–8]. However, it is not yet fully understood how different microstructural 

features influence this deformation, especially in regard to the domain nucleation behavior. To 

fully take advantage of the intrinsic toughening that ferroelastic deformation provides, 

microstructural features that promote significant ferroelastic deformation rather than fracture must 

be identified and controlled.  

To design toughened microstructures, it is important to understand how the microscale 

behavior of ferroelastic deformation influences the bulk deformation and toughening behavior. At 

the microscale, the colony structure of domains and how domains evolve in single crystals has 

been well studied, as has the development of ferroelastic domains within fracture process zones 

[5,9–12]. However, there has been less discussion about domain nucleation behavior in 

polycrystals outside of fracture process zone formation. Many analyses have also been done 
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evaluating the bulk mechanical response and toughness of ferroelastic polycrystals [6,13–18]. 

Several studies that have characterized the fracture of ferroelastics have even noted the effect that 

microstructure has on the toughness, but it has been difficult to deconvolute the effect that the 

microstructure has on the increased toughness from other toughening mechanisms such crack 

bridging and crack deflection [3,6,19]. The effect that specific microstructural variables have on 

the extent of ferroelastic deformation must first be isolated in order to control them when designing 

microstructures.  

In this study, the effect that grain size has on domain nucleation behavior was examined in 

polycrystals. The intent was not to characterize the toughness or the characteristics of a fracture 

process zone, but rather to highlight the specific effect that grain size has on the domain nucleation 

behavior. The conformation of domains that nucleate within grains was also examined. The 

domain nucleation behavior was also observed using in situ TEM nanopillar compression such 

that stresses associated with domain nucleation at small scales could be evaluated.  

4.2 Experimental Methods 

Tetragonal phase CTZ nanopowders were synthesized using a reverse-coprecipitation 

synthesis procedure outlined in previous literature [8,20]. The crystalline powders were pressed 

into green body pellets with 10 mm diameters. The pellets were then sintered in a box furnace at 

1350°C for times ranging from 1 hour to 231 hours to control final grain size. Pellets were polished 

using diamond lapping films and colloidal alumina to a surface finish of 20nm. The pellets were 

then thermally etched such that grain boundaries could be distinguished.  

Microindentation was used to locally deform the polycrystals and induce domain 

nucleation in grains surrounding the indents. Both spherical Hertzian and pyramidal Vickers 

indentation were used. Images of the indents and surrounding microstructure were collected using 

a JEOL 7000F scanning electron microscope. A Keyence VK-X1000 3D laser scanning confocal 

microscope was used to collect area profilometry data of the sample surface surrounding the 

indents. An FEI Helios focused ion beam was used to lift out samples from the deformed regions 

surround the Vickers indents for transmission electron microscopy, which done in a JEOL 2010 

TEM. Single crystal nanopillars all having approximately the same orientation were also fabricated 

in the FEI Helios FIB and deformed inside the JEOL 2010 TEM using a Hysitron PI-95 TEM 

Picoindenter equipped with a 1 μm diamond flat punch indenter. The orientation of the grains from 
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which the pillars were fabricated was determined using an Oxford HKL EBSD system prior to FIB 

milling.  

To collect meaningful statistics on grain sizes associated with domain nucleation, a 

trainable Weka segmentation plugin for FIJI (imagej) was used to identify grains and grain 

boundaries in the SEM micrographs. The segmentation was then used to threshold images for grain 

size analysis such that a very large number of grains in multiple images could be analyzed to 

determine grain size distributions for the undeformed grains, twinned grains, and nearest neighbors 

to twin grains. The “analyze particles” feature in imagej was used to measure Feret diameters for 

all these subsets of grains. Furthermore, for grains that twinned, two Feret diameters were 

measured. One diameter was measured parallel to twin boundaries that formed while the other 

diameter was measured perpendicular to the twin boundaries. This was done such that the effect 

of the grain shape on twin nucleation could be evaluated. 

4.3 Results 

Pellets with two different grain size distributions were indented to nucleate twins within 

the polycrystals. Initially both spherical Hertzian indentation as well as pyramidal Vickers 

indentations were used. The surfaces of pellets that were indented by each type of contact were 

examined using SEM and can be seen in Figure 4.1. It was found that only Vickers indents resulted 

in twin nucleation at the surface. Therefore, Vickers indentation was the method selected to deform 

the samples for grain size analysis.  
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Figure 4.1: SEM images of spherical Hertzian indents which did not induce twinning at the surface, 
and Vickers indentation which did produce twinning at the surface. 

4.3.1 Grain Size Distributions 

For each sample, the grain size distribution was measured in three ways: once for the 

overall grain size distribution, another for the subset of grains that had twins nucleate within then, 

and another time for grains that neighbored grains with twins, but did not themselves have twins. 

These subsets are called the grain size, twinned grain size, and nearest neighbor size, respectively. 

Using the particle size analysis tool built into imagej, large numbers of grains were measured to 

generate distributions of grain sizes for these subsets. For sample 1, 3045 grains were analyzed, 

while 14658 were analyzed for the finer grained sample 2. Histograms of each subset for the two 

different grain size samples have been overlaid in Figure 4.2, and the average and standard 

deviation for each distribution is given in Table 4.1. Two sample t-tests were performed showing 

that each subset was significantly different from the overall grain size for each sample, for which 

the p values are given in Table 4.1. Comparing the means of each distribution, sample 1 twinned 

grains were 8.75% larger on average than the overall mean, while nearest neighbors were 17.8% 

smaller than the overall mean. For sample 2 the differences are even greater, with twinned grains 

23.3% larger and nearest neighbors 25.2% smaller than the overall mean.  
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Figure 4.2: a) Histograms of the overall grains size distribution, the subset of grains that exhibited 
twinning, and the subset of grains that are nearest neighbors to twinned grains but did not contain 
twins. b) Same three distributions for sample 2 that had a smaller overall grain size distribution.  
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Table 4.1: Means for the different grain size distributions are displayed alongside the standard 
deviations in parentheses. To test whether each distribution is statistically different, t-test statistics 
for difference of means (equal variance assumed) are given for each sample. The p values for each 
t-test indicate that for both samples, the mean twinned grain size and mean nearest neighbor grain
sizes are statistically different from the overall mean grain size.

Sample Grain size 
(μm) 

Twinned 
grain size 

(μm) 

Nearest 
neighbor 
grain size 

(μm) 

t-test p value
Grain size vs.

twinned 
Significance level 

0.05 

t-test p value
Grain size vs.

neighbors 
Significance level 

0.05 
1 4.094(1.953) 4.469(1.226) 3.425(1.277) 5.9*10-4 3.5*10-18

2 1.340(0.550) 1.693(0.398) 1.036(0.481) 1.7*10-28 2.8*10-40

The Feret diameters of the twinned grains taken parallel and perpendicular to twin 

boundaries were also tracked. The distributions of parallel and perpendicular diameters are shown 

in Figure 4.3. The perpendicular Feret diameters are on average slightly larger than parallel Feret 

diameters. However, when performing a two sample t-test to determine if the distributions are 

significantly different, the resulting p-value indicates that the distributions are not significantly 

different.  

Figure 4.3: Feret diameters of all of the twinned grains in sample 1 measured perpendicular to twin 
boundaries and parallel to twin boundaries.  
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4.3.2 Characteristics of Deformation and Domain Conformations 

Profilometry data was collected surrounding the indents. Pileup can be observed 

surrounding the indents, primarily along the flat edges of the Vickers impression, as can be seen 

in the height map shown in Figure 4.4. The areas surrounding indents were segmented into regions 

along the flat faces and out from the corners of the indent, as shown in Figure 4.4(a), so that the 

twin density and maximum pileup heights in these regions may be compared. The twin densities 

in all the edge and corner regions for indents in sample 1 are compiled in Table 4.2. Table 4.2 also 

shows the average of the maximum pileup heights measured for both edge and corner regions 

across all the indents. The twin densities in edge and corner regions have been plotted against 

maximum pileup height in each individual region as shown in Figure 4.5 and are shown along with 

their Pearson’s r correlation linear trendlines. The Pearson’s r and p values for those correlations 

are also given in Table 4.2. The r and p values indicate that there is no trend between maximum 

pileup height and twin density for neither edge nor corner regions.  

Figure 4.4: (a) image of a Vickers indent showing the segmentation of regions surrounding the 
indent into edge and corner regions. (b) height map overlaid on an image of the same Vickers 
indent showing pileup along the indent edges. 
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Table 4.2: Average twin density, average maximum pileup height, and Pearson’s correlation 
parameters for edge and corner regions surrounding indents in sample 1. 

Quantity Edges Corners 
Average Twin Density 

(twins/μm2) 
0.016 0.007 

Average Maximum Pileup 
Height (μm) 

1.94 1.71 

Pearson’s r 0.40 0.02 

Correlation p value 0.12 0.93 

Figure 4.5: Plots showing the twin density calculated in each region plotted against the maximum 
pileup height observed in each region. Trendlines for both edge and corner regions show that there 
is no correlation between maximum pileup and twin density. 

SEM images of the conformation of the twins have also been collected. Representative 

images of some domain conformations are shown in Figure 4.6. In some cases, twins appear to 

propagate through grain boundaries or nucleate similarly oriented twins in the neighboring grain. 

A particularly common occurrence is that twins appear to propagate from triple junctions, where 

multiple grain boundaries meet. Larger grains may also exhibit multiple twins that propagate in 

different directions, often from multiple triple junctions. Twins frequently propagate entirely 

through the grain they nucleate within, however, there are also cases where twins appear to arrest 

mid grain (Figure 4.6(a)).  
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Figure 4.6: SEM images showing different conformations of twins observed. (a) lines highlight 
where twins appear to propagate through a grain boundary. (b) lines highlight twins that appear to 
propagate from triple junctions. (c) lines highlight multiple twin directions in a single grain, both 
of which appear to propagate from triple junctions.

Several grains from a twinned region were imaged in the TEM. Shown in Figure 4.7 is an 

example of a grain that contains a single large twin lamella. The twin lamella extends entirely 

through the grain with a uniform thickness. Diffraction from within the twin shows superlattice 

reflections consistent with previous observations of incommensurate modulation in large scale 

twinning. The twin intersects a grain boundary subsurface and appears to cause some local 

dislocation plasticity, microcracking, as well as possibly beginning to nucleate an additional twin 

in the neighboring grain. Overall dislocation content appears to be low.  
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Figure 4.7: TEM images and diffraction of twinned grains. (a) Overview of a twinned grain 
showing the lamellar structure of the twin. Several dislocations are also visible. (c) Image of where 
the twin intersects the neighboring grain. Dislocation activity, microcracking and possibly 
nucleation of additional twins is seen. Diffraction patterns in a [100] zone axis from outside (b) 
and inside (d) the twin are shown. Superlattice reflections from the twin are visible in (d). 

4.3.3 In Situ TEM 

Finally, the stresses associated with initial deformation of three nanopillars have been 

collected. Each of the nanopillars had approximately (112) plane normal orientation along the 

loading axis so that difference in orientation was not a variable. The normal stress associated with 

the initial deformation event for each pillar is summarized in Table 4.3 along with the resolved 

shear stress on the favorable (101) twinning plane. Stress-displacement curves for the pillars are 

shown in Figure 4.8, where deformation events were seen as evidenced by drops in the measured 

stress during loading. A bright field image of pillar 3 in Figure 4.8 collected during deformation 

shows shearing of the pillar along a 33° angle to the indenter. A diffraction pattern of the [111] 

zone axis collected after deformation is shown in Figure 4.8(b).  
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Table 4.3: Summary of normal and resolved shear stresses onto the (101) twinning plane for three 
(112) oriented nanopillars.

Pillar Normal Stress (GPa) Resolved Shear (GPa) 

1 2.38 1.47 

2 3.07 1.89 

3 6.16 3.80 

Figure 4.8: (a) image of a pillar during deformation shows shearing along a 33° angle to the 
indenter tip. (b) diffraction pattern of a pillar in a [111] zone axis shows slight intensity from all 
{112} reflections indicating the presence of multiple domains. The contrast has been inverted for
ease of viewing. (c,d) Stress-displacement curves from nanopillar deformation. Pillar 1 shows
multiple load drops indicative of multiple deformation events while pillar 2 shows a single load
drop before unloading. They exhibit deformation at different stress despite having similar
orientations.
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4.4 Discussion 

To begin discussing these results it is first important to acknowledge some of the 

assumptions and limitations involved in the methodologies described above. First it is important 

to discuss Vickers indentation as a method of deformation. Vickers indentation is often used to 

measure hardness, elastic modulus, yield strength, and fracture toughness for a material [21–23]. 

For ceramic materials, hardness and toughness are often measured by this microindentation 

technique. Although quantification of toughness using indentation is still somewhat controversial, 

toughness measurements using Vickers indentation are common [24–26]. To measure toughness, 

Vickers indents must have Palmqvist cracks radiating from the tips of the indent corners [21]. The 

indents used in this study are not suitable for these measurements since they often do not have the 

necessary radial cracking and also exhibit microcracking. However, hardness or toughness 

measurements are not the aim of this study, but rather the aim is to apply a stress state that is 

suitable for inducing twinning in a large enough area of a polycrystal to collect statistics on the 

grain sizes favored for twin nucleation. Vickers indentation serves this purpose. 

Another interesting feature of the indents is the pileup behavior. Pileup is another factor 

that makes measurement of properties such as hardness and elastic modulus difficult [27,28]. 

Pileup is typically reported for materials that deform plastically and that do not work harden 

significantly [28,29]. However, pileup has also been reported in ferroelastic ceramics and has been 

attributed primarily to ferroelastic deformation rather than other types of deformation [30]. Here, 

significant pileup is observed along the flat edges of the indents and is also attributed to ferroelastic 

deformation in these edge regions. However, the pileup height does not directly correlate to the 

density of twins observed at the surface of indents for either the edge or corner regions, as shown 

in in plots in Figure 4.5 and correlation statistics listed in Table 4.2. This lack of correlation is 

perhaps due to additional ferroelastic deformation subsurface, that was not accounted for in the 

twin density measurements at the surface. To understand why pileup and ferroelastic deformation 

is observed in these locations, the stress state surrounding a Vickers indent must be discussed.  

Vickers indentation results in elastic deformation, plastic deformation, as well as 

ferroelastic deformation, and fracture in this case, making analytical determination of the stresses 

associated with the deformation impossible. This complex stress state makes it difficult to correlate 

the observed deformation to a value of stress. Typically, Vickers indentation produces high tensile 
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stresses at the indent corners, which contributes to the cracking that is typically observed, while 

producing higher compressive and shear stresses along the indent edges and beneath the indent 

[31]. Hertzian indentation does not have this limitation, as the stresses resulting from Hertzian 

contacts before fracture are known. In this study it is observed that no twin nucleation at the surface 

results from Hertzian contacts, even when fracture occurs. It is concluded that this is a result of 

Herzian contact producing high shear stresses subsurface, rather than at the surface, and having 

only high compressive stress at the contact interface. Vickers indentation on the other hand causes 

twin nucleation at the surface, which seems to result from the higher localized shear stresses 

resulting from the pyramidal contact. Although the twin density did not correlate to pileup height, 

the regions along the indent edges did exhibit more than double the number of twins per unit area 

than the indent corners. This provides further evidence that twins preferentially nucleate in regions 

with high shear stress (edges) rather than regions with higher tensile stresses (corners). Similar 

observations of shear deformation localized along indent edges have been made previously in 

materials such as bulk metallic glasses that deform through shear banding [32]. Furthermore, many 

twins were observed in the absence of significant cracking. This suggests that high shear stress, 

even without fracture may result in significant ferroelastic deformation. Under the complex stress 

state that is responsible for nucleating twins, the effect that microstructure has on the probability 

of nucleating twins will now be discussed.  

 A large number of grains surrounding indents were analyzed to ensure that significant 

statistics could be gathered regarding grain sizes favorable for twin nucleation. As can be seen in 

Figure 4.2 and Table 4.1, samples with two different overall grain size distributions exhibited 

similar trends. For both samples, twinned grains were larger than the overall average grain size 

and nearest neighbors to twinned grains are smaller than the average grain size. The difference in 

size between grains that twinned and their nearest neighbors shows that for grains in close 

proximity, that should be experiencing similar levels of stress (assuming an isotropic homogenous 

body, which it is not), larger grains twin more easily. This makes sense when considering the 

energy dissipation involved in twinning. As grain size increases, the elastic energy stored within a 

larger crystal may be dissipated more efficiently by formation of twin boundaries than for smaller 

grain sizes since the volume of the grain (and thus the stored elastic energy) increases faster than 

the increase in energy due to the addition of planar twin boundaries [33]. This is illustrated 

schematically in Figure 4.9. The data shown here also suggests that microstructures composed of 
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large ferroelastic grains embedded in a fine grain matrix are favorable for ferroelastic deformation. 

Evidence of this has been seen before in toughening curves for ferroelastic materials with bimodal 

grain size distributions before [6].  

Figure 4.9: Schematic showing the increase in energy associated with elastic energy stored in the 
grain volume vs increase in energy from introduction of planar domain boundaries. 

The grain size alone does not dictate whether twins will nucleate or not. Some insight into 

other features that influence nucleation may be gained by observing the conformation of twins that 

are nucleating within the various grains. Figure 4.6(a) shows that there are sometimes twins that 

appear to propagate through grain boundaries. This could be evidence that an orientation 

relationship exists between those grains, or that the deformations from twins can act to nucleate 

additional twins in neighboring grains. The relationship between crystal orientation and domain 

nucleation stress has been previously examined, and it was shown that the stress required for 

domain nucleation within single crystals does not correlate to orientation [34]. This does not, 

however, preclude relative orientations within a polycrystal from influencing the deformation 

behavior.  

Twins are also often observed propagating from triple junctions or from contact areas with 

relatively smaller grains in the microstructure. This is likely the result of elastic anisotropy leading 

to the local heterogeneity in how stress is transferred between neighboring grains. Where two 

grains with different elastic properties meet, shear stress can be localized, promoting the nucleation 

of twins at the high shear stress interface. A consequence of this is that local stress intensity may 

be high enough to nucleate twins without a high globally applied stress, whereas in single crystals 
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under uniaxial compression, the applied stress must reach a high enough global value to cause 

domain nucleation.  

 Twins often propagate through entire grains, forming lamellae with parallel twin 

boundaries. This type of twin is observed in the TEM section of a deformed grain in Figure 4.7. 

However, twins also sometimes arrest mid grain, as is observed in Figure 4.6(a). This arresting 

behavior was observed in deformation of single crystals of this material previously [34]. This may 

be a consequence of a lower stress being applied to those grains, not supplying enough energy to 

propagate and grow the twin across the entirety of the grain, or it may be a consequence of the 

twins interacting with defects such as dislocations or other twins propagating in different 

directions, which may interact resulting in the twins arresting. Twinning in multiple directions is 

also observed in many of the grains, which may be a result of multiple sites of shear stress 

localization surrounding a single grain causing multiple twin orientation to nucleate. These 

observations demonstrate that the constraints imposed by the polycrystalline microstructure are 

important factors dictating the nucleation of twins.  

 Since the stress associated with domain nucleation in the polycrystals cannot easily be 

determined, single crystal nanopillars were deformed using in situ TEM. Uniaxial compression of 

pillars provides a stress state that can easily measure the stress required for domain nucleation. 

However, the stresses observed to deform the nanopillars are significantly higher than the coercive 

stress values reported previously for similar tetragonal zirconia materials, which range from 300-

700 MPa [5,35,36]. Nanopillars exhibited deformation stresses of 2.38, 3.07, and 6.16 GPa 

respectively with translate to 1.47, 1.89, 3.80 GPa in resolved shear stress on the (101) twin plane. 

Nanopillars exhibited nucleation of multiple domains, similar to what is observed for many grains 

in the polycrystals, as evidenced by the diffraction pattern shown in Figure 4.8(b). However, the 

intensity from the (112) spots indicating the presence of multiple domains is very low. This 

suggests that multiple domains do nucleate, but in very low volumes. It is possible that dislocation 

plasticity as well as domain nucleation is active, as was seen in previous evaluations of larger scale 

CTZ single crystals [34]. Deformation in one of the nanopillars was observed to act by shearing 

along a 33° angle to the indenter tip. This is very close to the 35° angle expected for deformation 

along the (101) twinning plane. However, the morphology of the shear may indicated that 

dislocation plasticity was also present. The large values of stress observed here likely are 
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influenced by size effects. The data on polycrystalline samples here clearly shows that smaller 

grains are less likely to twin, since the energy penalty for creating twin boundaries is relatively 

high compared to dissipation of elastic energy through other means such as plasticity or fracture.  

However, very high deformation stresses, as well as highly stochastic deformation stresses 

were also previously observed in micropillar deformation of this material, for which the deformed 

volume of material was orders of magnitude higher than the nanopillars tested here [34]. It is likely 

that the stress state as well as the difference in constraints surrounding the crystals is important 

here. For pillars deformed by uniaxial compression, shear stress responsible for twinning must be 

resolved onto the twin plane. The stress state is not one of simple shear. Whereas in a polycrystal, 

difference in elastic modulus between neighboring grains can lead to local shearing of crystals that 

creates a much more favorable condition for twin nucleation. Furthermore, once twins have 

nucleated, they may impinge on neighboring grains to assist in the nucleation of additional twins 

as is observed in Figure 4.7(c). The TEM observations also show that much lower dislocation 

density is observed in samples taken from the bulk polycrystal compared to the dislocation density 

observed in nano and micropillars that were deformed. This is further evidence that the size and 

constraint of the crystal greatly affects how energy is most effectively dissipated in these crystals, 

and how the favored deformation mechanisms can be controlled by changing the microstructure.  

Unfortunately, since the stress state surrounding the Vickers indents here is not known, it 

is impossible to compare the stresses associated with twin nucleation in the polycrystal to those 

observed in the single crystal pillars. Therefore, a valuable next step in studying the effect of 

microstructure on domain nucleation is to use techniques to deform the polycrystal where the stress 

state can be determined for a specific location where twinning occurs. One possible route to 

achieve this is to perform Hertzian indentation again, but to image cross sections of the indents 

such that the microstructure below the surface where high shear stress occurs may be observed. 

This will have the added benefit of not restricting observations to grains that twinned at the surface, 

where grains are not fully constrained as they are in real ceramic microstructures.  

4.5 Conclusion 

Polycrystalline ferroelastic CTZ was deformed using microindentation such that twins 

were nucleated within many grains. Vickers indentation produced high local shear stresses at the 

sample surface which resulted in prolific twin nucleation, while Hertzian indention does not 
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produce high shear stress at the surface, and therefore does not readily nucleate observable twins. 

Large numbers of grains were analyzed showing that twins more frequently nucleate in relatively 

large grains that are nearest neighbors with smaller undeformed grains. This suggests that 

microstructures containing large grains embedded in a fine-grained matrix favor increased 

ferroelastic deformation. Furthermore, twins were frequently observed to nucleate emanating from 

triple junctions in the microstructure. This further corroborates that high local shear stress that 

results from microstructural heterogeneity is important for promoting twin nucleation.  

Deformation stresses in single crystal CTZ nanopillars were measured using in situ TEM 

and were found to be much higher than coercive stress values previously reported in similar 

tetragonal zirconia materials. These observations combined with the results observed in 

polycrystals suggest that size scale as well as the stress state resulting from microstructural 

constraints plays an important role in ferroelastic deformation. 
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CHAPTER 5 

VARIATION IN DENSIFICATION BEHAVIOR OF IONIC CONDUCTING YSZ 

PROCESSED VIA SPARK PLASMA SINTERING 

So far in this dissertation, the relationship between microstructural features and ferroelastic 

deformation has been discussed, and an improved understanding linking microscale and 

macroscale deformation behavior has been developed. As mentioned in section 1.6, there was also 

a secondary objective associated with this dissertation focused on developing an improved 

understanding of the mechanisms associated with advanced ceramic processing done by spark 

plasma sintering (SPS). This chapter will discuss the research done to test the hypothesis that 

electric current plays a role in the densification behavior of ionic conducting ceramics processed 

by spark plasma sintering. The goal of reporting on variability in processing materials using the 

SPS technique will also be discussed. This secondary objective is distinct from the sections 

discussing ferroelastic deformation, however, understanding ceramic processing is still crucial to 

being able to design microstructures, and therefore is complementary to the overall goal of 

developing improved microstructural designs for intrinsically toughened ceramics.  

5.1 Introduction 

Although the use of large electric currents for the purpose of sintering is not a recent 

development, the commercialization of spark plasma sintering (SPS) or field assisted sintering 

techniques (FAST),  in the past few decades has generated significant interest in the field. This 

rise in popularity is, in large part, due to spark plasma sintering’s ability to both synthesize and 

process a wide range of materials including ceramics, metals, and composites to form 

exceptionally dense bulk nanostructured materials [1–3]. Spark plasma sintering is particularly 

remarkable in its ability to complete this processing using reduced temperatures and sintering times 

when compared to other sintering and consolidation techniques, such as hot pressing and 

conventional pressureless sintering [1].  

Despite the rapid increase in popularity of spark plasma sintering, there is still considerable 

debate surrounding the precise mechanisms driving densification. SPS relies on a combination of 

mechanical, thermal, and electrical driving forces, which may all influence the sintering behavior 

for various materials differently [4]. The role that the electric current plays in sintering has been 
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the subject of particular interest and debate. For electrically conductive samples, current has been 

proposed to influence sintering through mechanisms including current percolation and Joule 

heating [5], Peltier heating [6], and electromigration [1]. However, for electrically insulating 

samples the role of the current is even less clear, with some results suggesting that direct 

application of current does not affect densification mechanisms [7], while others suggest that 

electric fields and currents associated with SPS do improve sinterability for ceramics [8–10].  

In the absence of a mechanistic understanding of sintering under SPS conditions, an 

empirical approach is commonly employed to identify the appropriate SPS parameters specific to 

different materials. This is further complicated by the fact that it is difficult to directly measure 

and predict many key experimental parameters in the sample during SPS processing, such as 

powder temperature [11], heating rate [12], pressure gradients [4], and local current density. 

Because of the experimental challenges and mechanistic uncertainty, groups often report using 

wide ranges of experimental parameters to process similar materials, making comparisons of 

results difficult or impossible. For example processing temperatures ranging from 1275-1600°C 

have been reported to achieve full density for alumina when sintered using 50 MPa of applied 

pressure in the SPS [10]. Similarly, for tungsten carbide, temperatures ranging from 1425-1800°C 

while applied pressures of 50-126 MPa have been used to achieve densities >98% [13,14]. The 

wide range of parameters mentioned here serves to showcase that selection of appropriate 

parameters even for well-studied materials is often non-trivial, and the outcomes may still deviate 

significantly from those reported in literature.  

Here we will focus on the processing of yttria stabilized zirconia (YSZ), which has 

maintained consistent interest for SPS processing because of its ubiquity as a high toughness 

structural ceramic, and as an electrical ceramic often used in solid state electrolytes. YSZ’s 

function as an electrical ceramic is of particular interest here. The substitution of Y3+ ions for Zr4+ 

in YSZ creates oxygen vacancies, which leads to enhanced oxygen ion conductivity. Furthermore, 

YSZ may transition from an electrical insulator to either an ionic or electronic conductor at high 

temperature and low oxygen partial pressure [15]. This presents unique challenges in predicting 

its SPS processing behavior. YSZ is known to electrochemically reduce when sintered at elevated 

temperatures under the reducing conditions created during SPS processing [3,7,16]. Therefore, 

post-sintering re-oxidation steps are often required, further limiting control of the microstructure 

using this technique [16]. YSZ has been shown to develop drastically different electrical and 
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mechanical properties when sintered using different SPS parameters [16]. Because of this, 

selecting appropriate sintering conditions for YSZ and other ionic conductors becomes 

increasingly important to realize targeted properties for given applications.  

Because YSZ has been extensively studied within the spark plasma sintering community, 

a vast range of processing conditions for sintering YSZ have been reported in the current literature. 

Sintering temperatures of 800-1500°C have been commonly reported [17–19], while pressures 

ranging from 15 MPa to several hundreds of MPa have been used [17,20]. It is clear that different 

combinations of processing conditions can have a significant impact on the properties of the YSZ. 

For instance, if high density and nanocrystalline grain size are desired, high pressures with lower 

temperatures (1050-1200°C) relative to conventional sintering temperatures are preferred [20]. 

However, if high ionic conductivity is the desired property, using multiple SPS sintering cycles at 

even lower temperatures (1000°C) are preferred [18]. 

What has not been thoroughly discussed in the current literature, however, is the variability 

or experimental reproducibility between and even within samples prepared under the same 

sintering conditions. Transitioning SPS beyond laboratory scale testing and niche applications, 

will require highly reliable and reproduceable results. For materials such as YSZ, where physical 

and electrical properties are dynamic both during and after processing, open discussion of 

processing variability is of even greater importance as it may provide much needed insight on the 

underlying mechanisms. Thus, this study aims to systematically quantify the variability in 

properties between and within samples sintered under identical conditions and explore routes for 

reducing this variability through modified sample configuration and, therefore, current paths 

during sintering.   

5.2 Experimental Methods 

5.2.1 Materials and Equipment Used 

Two sample configurations were used during sintering in this study: (i) 8 wt% Y2O3-ZrO2 

yttria stabilized zirconia (YSZ) samples, which contacted the carbon of the die and punches 

directly during sintering (referred to as ‘bare’ samples), and (ii) YSZ samples, of the same 

composition and source, that were capped at the top and bottom by electrically conductive nickel 

(Ni) disks and electrically insulating alumina powder (referred to as ‘layered’ samples). 
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Schematics of each configuration can be viewed in Figure 5.1. The sintering procedures are 

described below.  

Figure 5.1: Schematics showing the position of the YSZ green body within a graphite die. The 
bare sample has the YSZ in contact with graphite foil and the punches of the die while the layered 
samples include Ni and Al2O3 layers on either side of the YSZ. Both bare and layered samples 
were designed so that the total sample heights were approximately the same prior to sintering.  

All sintering in this study was performed using a Fuji SPS-615 Dr. Sinter unit (Fuji 

Electronic Industrial Co., Saitama, Japan). Standard strength graphite dies with an inner diameter 

of 20 mm were used for sintering nickel samples that were later used in the layered configuration, 

while 20.5 mm inner diameter dies were used for all ceramic and layered samples (dies also 

supplied by Fuji Electronic Industrial Co., Saitama, Japan). Samples sintered in 20.5 mm diameter 

dies were wrapped in a single layer of carbon foil to ensure easy release from the die. The 8 wt% 

Y2O3-ZrO2 powders used were submicron in size and had a trace metals purity of 99.9% (Sigma 

Aldrich, St. Louis, MO, USA). Submicron Ni powders (Sigma Aldrich, St. Louis, MO, USA) were 

used to fabricate 1 mm thick disks with a 20 mm diameter, to ensure that they fit into the 20.5mm 

dies. These Ni disks were used as the conductive caps for the layered sample configuration. 1 μm 

alumina powder (Baikowski International Corporation, Charlotte, NC, USA) was used to separate 

the Ni disks from the punches and prevent undesirable reactions at the punch/sample interface in 

the layered configuration. 20 mm diameter binderless green body YSZ pellets were pressed under 

31 MPa pressure using a Carver press prior to loading into the graphite dies for sintering to ensure 

comparable particle packing prior to sintering.  
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5.2.2 Sintering 

The Ni disks were densified via SPS under vacuum at 750°C with a two-minute hold and 

an applied pressure of 30 MPa in order to create dense, conductive disks of the appropriate 

diameter for the layered samples. Heating rates of 100°C/min up to 700°C and 50°C/min up to 

750°C were used. Temperature was measured and controlled during sintering of the Ni disks using 

a K-type thermocouple placed into a small borehole on the outside of the graphite die. Several bare 

YSZ samples were initially sintered at temperatures ranging from 800°C-1200°C with an applied 

pressure of 33 MPa to develop baseline results for the hardness resulting from different sintering 

temperatures.  

All other sintering for both the bare and layered YSZ samples was done under vacuum 

using a maximum temperature of 1100°C, with a 10 minute hold and an applied pressure of 33 

MPa. Heating rates of 100°C/min from 600°C to 1100°C were used, with no temperature control 

below 573°C. Temperature was measured using a CHINO IR-AH digital radiation thermometer 

(CHINO Corporation, Tokyo, Japan) aimed at the same borehole on the outside of the die. Dies 

were wrapped in carbon wool to reduce heat loss during sintering.  

5.2.3 Sample Characterization 

The mechanical properties of the sintered samples were characterized using a Vickers 

hardness test. Indents were performed using a Zeiss Microhardness tester (Carl Zeiss AG, 

Oberkochen, Germany). Loads of 500g were used for all indents and at least 10 indents were 

performed on the cross section of each sintered sample. Indents were spaced at least 500μm apart 

to avoid any interaction between the indents.  Indent dimensions were measured using an optical 

microscope. The Vickers hardness number HV, was calculated and converted to MPa using the 

formula 

𝐻𝐻𝐻𝐻 = 1854.4𝐿𝐿/𝑑𝑑2    Equation 5.1 

where 𝑑𝑑 is the mean diagonal length for the indent and 𝐿𝐿 is the load in gram force according to 

ASTM standard C1327-15 [21]. Microstructural characterization was performed using a JEOL 

7000F scanning electron microscope and a JEOL 2100 CRYO transmission electron microscope 

(JEOL Ltd., Tokyo, Japan).  
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5.3 Results 

Initially, bare YSZ samples were sintered at temperatures ranging from 800°C-1200°C and 

hardness measurements were done, the preliminary results of which are shown in Figure 5.2. It 

can be seen that there is a steep increase in the hardness of YSZ samples when temperatures around 

1150°C are used. After 1150°C the hardness becomes very sensitive to the sintering temperature.  

Figure 5.2: Vickers hardness measured against sintering temperature for bare YSZ samples. 

During the densification of each bare and layered sample, several parameters—including 

the die temperature, applied current, and Z-axis displacement (distance the bottom SPS ram has 

moved up since starting the sintering program)—were recorded. Figure 5.3 reports Z-axis 

displacement, temperature, and current plots for samples prepared with both bare and layered 

configurations. It is important to note that temperatures below 573 °C cannot be measured using 

the digital radiation thermometer used in this system. Therefore, data collected before the 

temperature reached 573 °C, and the system began effectively reading the temperature has been 

excluded.  
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Figure 5.3: Temperature, Z-axis, and current profiles collected during sintering of bare (a, c, e) 
and layered (b, d, f) samples. Each plot shows the average profile collected for all ten samples in 
each configuration (black line) as well as the range of values at each time during sintering (shaded 
green) and the standard deviation of values at each time (shaded blue). 
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The plots in Figure 5.3 show the average current, temperature, and Z-axis displacement 

collected for all ten samples in each configuration with both the total range of values as well as the 

standard deviation of values at each time overlaid to show the variation in the SPS parameters and 

densification between different samples. It can be seen that for both bare and layered 

configurations, the temperature profiles during sintering have very narrow ranges, with only small 

deviations from the average occurring throughout the processing between all ten samples in each 

configuration. This is to be expected for a machine with properly tuned PID values operating in 

automatic temperature control. However, the current needed to achieve these temperatures, and 

the resulting Z-axis displacement due to densification had large ranges for both configurations. 

The average current profiles for bare and layered configurations are similar in shape and 

magnitude, however, the range of values at a given time was large, with some points having more 

than a 1000 Amp difference between samples to achieve the same temperature for the bare 

configuration. The Z-axis displacement profiles are similar in shape; however, the average 

displacement for bare samples is consistently larger in magnitude than for layered samples. 

Similarly, the range of displacement values for bare samples is larger than the range for the layered 

samples.  

Following sintering, each sample was sectioned, polished and mounted in epoxy for micro-

indentation. The micro-indentation serves as a localized measure of the materials hardness and can 

be taken as an analog to the densification that has occurred during sintering, with higher hardness 

corresponding to a greater degree of densification [22]. Micro-indentation has been used in this 

way because the density of a single layer of the layered samples cannot be accurately measured 

using other techniques such as the Archimedes method or gas pycnometry. It also provides an 

opportunity to reveal site-specific variations in density within a single layer/specimen. The Vickers 

hardness has been compiled for the YSZ in all ten samples for both bare and layered 

configurations. Hardness was also compiled for the Ni layers contained in the layered configiration 

samples. All hardness data collected for each configuration has been compiled and plotted on box-

and-whisker plots shown in Figure 5.4(a). The box-and-whisker plots show the means, medians, 

interquartile range (IQR), and 1.5 times the interquartile range (represented by the whiskers) of 

hardness values for both bare and layered configurations. Outliers were defined as datapoints that 

fell outside of 1.5 times the interquartile range. These outliers were excluded from calculations of 

the median and mean, and are shown on the plot as well. The outliers lie above the whiskers for 
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the bare samples and Ni layers in Figure 5.4(a). Figure 5.4(b) presents box-and-whisker plots for 

each individual YSZ sample. These illustrate the distribution in hardness within each unique 

sample that was prepared. Sample 10 of layered configuration fractured significantly during 

sectioning, allowing limited room for indentation, and resulting in only a single data point for that 

sample. It can be seen that the range of hardness values found in the bare samples is much larger 

than the range observed for layered samples.  

Figure 5.4: (a) Box-and-whisker plots of compiled Vickers hardness data for all YSZ samples 
produced in bare and layered configurations. Hardness values of the Ni layers in the layered 
configuration have also been compiled. (b) Box-and-whisker plots of Vickers hardness data for 
each individual YSZ sample. Each plot shows the mean, median, interquartile range, and outliers 
falling beyond 1.5 IQR for the data being considered. 
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The locations of indents done on sample cross-sections typically spanned nearly the full 

length of the cross-section. The hardness measurements from individual indents were tracked and 

plotted against indent number for several of the bare YSZ samples. This was done to determine if 

there were hardness gradients across samples. Figure 5.5 shows the hardness values measured 

across sample cross-sections for bare samples 1, 2, and 6, which each had different mean hardness 

values and different ranges in hardness. There appears to be no trend in the location of indents to 

hardness values measured across each of these samples. 

Figure 5.5: Hardness measurements from individual indents plotted against indent number for bare 
samples 1, 2, and 6 which exhibited different mean sample hardness. 

Photographs of the cross section of each sample were taken. The images of three examples 

of bare sample cross sections, as well as three representative images of layered cross sections, are 

shown in Figure 5.6. It is important to note that the samples shown have been specifically selected 

for imaging because of the variation in darkening across the sections for the bare samples, while 

the selected layered samples are representative of the degree of darkening seen in all layered 

samples. The darkening of the samples is indicative of reduction and oxygen deficiency in those 

regions of the YSZ [23]. 
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Figure 5.6 (a,b,c) Bare samples 7, 4 and 1, respectively. (a) Sample 7 exhibits no visible darkening 
or reduction through the sample cross section. (b) Sample 4 exhibits a slight reduction through the 
cross section as evidenced by the darkened region at the top surface of the sample. (c) Sample 1 
exhibits significant reduction through the cross section, and the ‘tongue shaped’ reduction front 
can clearly be seen. (d,e,f) Layered samples 9, 5 and 1, respectively. No reduction is seen in the 
cross section of any of the layered samples. The direction of current flow was from top to bottom 
in each of these images. 

Finally, the interface between the Ni and YSZ found in layered samples has been 

characterized by scanning electron and transmission electron microscopy. Figure 5.7 shows 

representative examples of the interface that forms during sintering. There is a notable lack of 

intermetallic or oxide reaction products at the Ni/YSZ interfaces that have been sampled. Figure 

5.7 also shows the significant porosity found in many samples, indicating incomplete sintering.  



120 

Figure 5.7: (a) Backscatter scanning electron micrograph of a Ni/YSZ interface showing the 
porous YSZ and the interface with the sintered Ni. Backscatter contrast does not show the presence 
of a third phase at the interface. (b) Transmission electron micrograph of the Ni/YSZ interface 
showing no evidence of oxide or intermetallic reaction products at the interface. The interface has 
been outlined for clarity. Large degrees of porosity indicative of incomplete sintering may again 
be seen in the YSZ. 
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5.4 Discussion 

Previous reports of SPS processing of YSZ have not included significant discussion of 

variability or homogeneity of samples prepared under identical instrument parameters. The data 

presented in this study and the following discussion highlight the need for consistent and 

transparent reporting of processing variability to both ease the transition of SPS techniques into 

broader application sectors and to provide new insight on the fundamental densification 

mechanisms associated with different material classes. Thus, the set of processing parameters used 

in this study were thoughtfully selected to fall within ranges that have previously been used in SPS 

processing of YSZ. Figure 5.2 shows that the temperature which was selected (1100°C) falls below 

a steep increase in hardness and densification that occurs around 1150°C. This means that samples 

processed at 1100°C should have densification behavior less sensitive to variations in temperature 

than if processing was done at higher temperatures. The variability in hardness (density) and 

reduction between and within these samples are further discussed herein, including potential 

extension to mechanistic underpinnings. 

5.4.1 Variability in Hardness 

Density of ceramic bodies is frequently measured using the Archimedes method or 

pycnometry. However, these techniques measure the global density of the material. Here, Vickers 

indentation has been used to measure hardness as an analog for the density of the material, such 

that local variation of the property can be recorded by indenting along a cross section of each pellet 

that has been sintered. The Vickers hardness of the pellet decreases as the density of the pellet 

decreases [22]. In this way, density variations between pellets as well as within single pellets may 

be quantified and compared.  

It is clear from Figure 5.4(a) that the median hardness achieved in the bare samples is 

greater than the median hardness observed for layered samples. In fact, the mean hardness of the 

bare set is greater than the maximum hardness for the layered set. The mean hardness for the bare 

samples was 2887 MPa compared to a mean of 1892 MPa for the layered samples. It is also notable 

that the range of properties observed in the bare samples (as denoted by the 1.5 IQR whiskers) is 

greater than that observed in the layered samples. The standard deviation in hardness for the bare 

samples was 1919 MPa whereas the standard deviation for the layered samples was only 874 MPa. 
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The variation in hardness for both configurations is significant, but it is clear that the bare 

samples exhibit much greater variation in hardness across all the samples measured. This suggests 

that under the selected processing conditions, the variability in the density is highest between 

different bare samples. The variation in hardness was also measured for the Ni layers in the layered 

configuration. The Ni exhibited much less variability in hardness than either of the sets of YSZ 

samples, indicating that the variability is increased in the YSZ layers compared to a metallic layer. 

The data represented in Figure 5.4(a) compares the range of hardness values between the two 

configurations in general. It is also important to explore the variability within individual samples 

of each set to gauge whether this variability arises solely from differences in hardness between the 

samples, or if heterogeneity in hardness within individual samples also contributes. Box-and-

whisker plots for each individual sample have also been plotted as shown in Figure 5.4(b).  

Careful inspection of Figure 5.4(b) reveals that bare samples 1, 2 and 3 exhibit a larger 

range in hardness than the other samples. It is interesting to note that bare samples 4-10 have 

hardness values much closer to those typical for the layered samples. Comparing Figures 5.4(a) 

and 5.4(b) it is noted that layered samples have much less scatter in their hardness individually as 

well as overall. It is also observed in Figure 5.4(b) that samples with high mean and median 

hardness have a wider distribution of hardness across the individual sample. This is not universally 

true, however, given that bare sample 5 exhibited a high mean and median hardness but also had 

a relatively small range in measured hardness. It can therefore be inferred that, under the selected 

processing conditions, samples that densify more are often doing so in a non-uniform manner. 

Uniform densification clearly remains possible; however, the specific conditions that lead to 

uniform densification of bare samples remain unclear. Other observable differences in the samples, 

e.g .color, may provide additional clues.

5.4.2 Variability in Reduction 

It is well documented that YSZ darkens due to reduction and loss of oxygen [23]. This 

process occurs when YSZ is exposed to reducing environments, but also occurs during ionic 

transport driven by electric potentials across the material [23]. In SPS, a reducing environment 

(carbon die at high temperature under vacuum) is combined with an electric potential and current 

that also can drive oxygen transport and reduction. Furthermore, both the electronic and ionic 

conductivity of YSZ changes as a function of temperature and oxygen vacancy concentration, 
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which means that the conductivity of YSZ will increase during the SPS consolidation process 

[15,24].  

 Of all the samples prepared in this study, only bare samples exhibited visible reduction 

(darkening), however, not all of the bare samples exhibited the same degree of reduction through 

the cross section. Figure 5.6 shows that in some cases bare samples exhibited no visible darkening 

while other samples showed reduction across much of the cross section. The layered samples, 

however, showed no visible darkening in any of the samples produced. Interestingly, the samples 

with the highest degree of visible reduction correlated to samples with the greatest variations in 

hardness (i.e. bare samples 1-3).  

 As mentioned previously, there are two likely driving forces for oxygen loss during 

sintering. The first probable cause of oxygen transport is the reducing atmosphere created by the 

carbon die and the vacuum in the SPS chamber. At high temperature, it is expected that this factor 

would cause oxygen transport out of the YSZ equally from all surfaces. This type of reduction has 

been observed during hot isostatic pressing of YSZ, since samples are exposed to high 

temperatures and reducing environments, but not to electric fields or currents [25]. Alternatively, 

an electric potential applied across YSZ is known to cause blackening starting at one side of the 

specimen and progressing to the other. Janek and Korte [23] described a characteristic “tongue-

shaped” reduction front that is observed in several of the reduced bare samples in this study, an 

example of which can be seen in Figure 5.6(e). The configuration of these reduced regions, where 

observed, would suggest that the reduction of the bare samples is largely electrically driven rather 

than thermally driven. Considering that the thermal diffusion distance of oxygen over only 10 

minutes at 1100ºC is expected to be quite small (on the order of 30 μm when calculated using bulk 

YSZ diffusion values [26]), such electrically driven reduction is reasonable via SPS. It follows 

then, that reduced samples experienced at least some direct current passage, while the current likely 

bypassed those samples with little or no evident reduction. This is contrary to reported simulated 

current distributions through YSZ during SPS. These models have described current passing 

exclusively around the sample, much like the simulated current path around an insulating sample 

such as alumina [27].  

 Samples exhibiting significant degrees of electrically-driven reduction during sintering 

correlate to samples with high hardness and high variability in hardness. Together, these 

observations suggest that high hardness (and similarly, high density) is achieved when current 
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passes through the sample itself, rather than through the die adjacent to the sample. However, it 

also suggests that for YSZ, when current passes through the sample, the microstructural 

homogeneity suffers. Furthermore, the heterogeneity does not appear to be a function of location 

within bare samples, suggesting that differences in hardness across samples is not a result of 

pressure gradients, but is more likely due to differences in electrical and ionic conduction. No 

reduction is observed in any of the layered samples, which is consistent with the original goal of 

the Ni layer—to intentionally reduce or eliminate current in the YSZ layer by providing a highly 

conductive alternate pathway. This seems to be corroborated by the lower hardness and lower 

variability in hardness observed in these samples. By adding a highly conductive capping layer to 

the YSZ, current passing through the sample can be avoided, resulting in less dense but also more 

homogeneous samples.  

The assumption that little or no current passes through the Ni into the YSZ is supported by 

the observation that there is no reaction between the two materials at either Ni/YSZ interface. 

Figure 5.7 shows representative scanning electron and transmission electron micrographs of the 

Ni/YSZ interface. The formation of intermetallics and Ni oxides are well known indicators of 

current flowing between Ni and YSZ [28,29].  However, no evidence of intermetallic formation 

or oxidation of the Ni was found, thus, the lack of these reaction products in the samples here 

suggests that current does not flow across this interface in the layered samples.  

5.4.3 Implications About Processing and Sintering Mechanisms 

In current SPS processing literature it is common to report properties such as hardness or 

density for a given processing condition without error bars. The data reported here demonstrate 

that such practices may, at least in some instances, be misleading. In the case of the processing 

conditions outlined herein, if only one sample in the bare configuration had been prepared, the 

hardness that may have been reported could have varied by nearly an order of magnitude. This is 

obviously concerning. Clearly, for the processing conditions used in this study, prediction of the 

resultant sample properties with any degree of certainty would have been impossible, especially if 

the bare sample configuration was used.  

The current body of literature also reports a wide range of possible mechanisms that may 

be responsible for densification during processing by SPS. However, there has been little 

conclusive evidence to show the precise role that the high current plays in densifying different 
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materials. It is generally accepted that the path of the electric current depends on the electrical 

conductivity of the material being processed, with conductive materials allowing more current to 

pass directly through the sample powder and insulators causing the current to pass through the 

surrounding die and heat the sample indirectly. However, in ionic conductors like YSZ, the current 

flow through the specimen may evolve with the onset and progress of densification. Once YSZ 

begins to reduce, much more current may pass through the sample, but may do so heterogeneously, 

making predicting the path of the current more complex.  

In this study, it is observed that the current path affects densification of YSZ significantly. 

Those samples exhibiting greater degrees of reduction over the cross-section correlate to samples 

with higher relative hardness, thereby suggesting that increased sample conductivity (associated 

with blackening and reduction) may be correlated with increased densification. Moreover, 

incomplete reduction translates to increased microstructural heterogeneity. A more comprehensive 

picture emerges from these two observations:  as a sample begins to reduce, more current passes 

through the portion of the sample that has reduced, causing increased densification in those 

regions, whereas, unreduced regions experience a current abatement, thus diminishing the rate of 

densification. For layered samples, the path of the current has been intentionally prevented from 

passing through the YSZ. The diminished hardness and absence of blackening/reduction in these 

samples further suggests that current flow through the samples plays a significant role in the rapid 

densification of YSZ specifically and possibly other mixed conductors. Beyond this, it is 

impossible to make more specific conclusions about the mechanisms responsible for the 

densification or lack thereof observed here.  

5.5 Conclusion 

Continued adoption and maturation of SPS processing methods requires significant 

advancements in reduction and control of processing related variability. This effort provides a case 

study to demonstrate the potential magnitude of such variations in a seemingly well studied 

materials system, yttria stabilized zirconia.  Using hardness measurements as a proxy for local 

density and microstructural heterogeneities, and visible evidence of reduction as an indicator of 

inhomogeneous ionic/electronic conductivity, a correlation between current pathways and 

enhanced densification has been inferred. This is corroborated through use of a layered sample 

configuration, in which the current was intentional routed around the YSZ layer. Little or no 
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reduction was observed in the layered samples. Likewise, the average hardness, thereby the 

density, was reduced but more uniform across and between the layered samples.  These 

conclusions were only afforded through systematic characterization of at least ten specimens in 

each configuration. Through consistent characterization and reporting of intrinsic property 

variations, along with more thorough, statistically derived descriptions of SPS processing 

parameters, it may be possible to provide greater insight on the fundamental mechanisms 

underlying SPS consolidation while simultaneously imparting greater confidence and 

reproducibility to the technique.  
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CHAPTER 6 

SUMMARY AND FUTURE DIRECTIONS 

This study has provided new insights into the relationship between microscale ferroelastic 

domain nucleation processes and the bulk deformation response of the material. Additional 

insights into the spark plasma sintering method used for processing ceramics have also been 

presented. The results outlined here have implications that improve the overall understanding of 

processing-microstructure-property relationships that exist for ferroelastic ceramics. In this 

chapter, the key results gained from this research will be concisely summarized. Utilizing this 

improved understanding of ferroelasticity will provide insight into methods that can be utilized for 

informed design of toughened ceramic microstructures in the future. Furthermore, several aspects 

of the research outlined here were preliminary, therefore, several continued and additional 

experiments that may expand upon this work will be outlined here.   

6.1 Summary 

This dissertation primarily discussed the multiscale characterization of ferroelastic 

deformation in ceramic materials, with the main objective focused on understanding the 

relationship between local microstructure and ferroelastic domain nucleation behavior. With 

improved understanding of how specific microstructural features influence ferroelastic domain 

nucleation, those features can be tuned when designing ceramic materials to improve their intrinsic 

toughness.   

Firstly, characterization of the domain nucleation process in single crystals of CTZ was 

discussed. This microscale aspect of this research revealed that domain nucleation in single crystal 

CTZ micropillars did not adhere to a critical resolved shear stress criterion, but rather exhibited 

non-Schmid behavior. Furthermore, this study indicated that several deformation mechanisms may 

be active in close competition or cooperation in single crystals. Dislocation plasticity, 

microcracking, as well as evidence of displacive and dislocation mediated twinning were all 

observed. This work specifically highlighted the effect of orientation on ferroelastic coercive 

stress. These results complement previous work which had largely characterized coercive stresses 

only as a bulk property or had focused on stresses required for domain motion rather than 

nucleation. Here, the data suggests that on a single crystal basis, quantifying coercive stress for 
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domain nucleation is more complex due to the convoluted mechanisms involved in the twin 

formation. 

 Secondly, domain nucleation in the same CTZ material was evaluated in bulk 

polycrystalline microstructures.  Microindentation was used to deform large numbers of grains in 

several samples with different overall grain size distributions. Analysis showed that larger grains 

within a given sample more frequently nucleated multiple domains than smaller grains in the same 

regions. Furthermore, undeformed nearest neighbor grains to grains that contained ferroelastic 

twins were significantly smaller than the average grain size. The nucleation of twins was also 

shown to be sensitive to the stress state applied to the samples. Therefore, twin nucleation was 

linked to high local shear stresses that develop in locally heterogenous microstructures such as 

polycrystals. The same shear stress localization does not occur in single crystal nanopillars, which 

deform at considerably higher stresses than have been reported as coercive stresses for similar 

tetragonal zirconia materials previously.  

 Finally, the variability in ionic conducting YSZ samples processed using spark plasma 

sintering was investigated. By processing multiple samples with different geometries using 

identical SPS parameters, significant variability between samples as well as within individual 

samples was shown. Inserting a conducive capping layer around the YSZ resulted in decreased 

overall densification as well as increased consistency in the resulting properties. Samples that did 

not have the conductive layers exhibited varyind degrees of electrochemical reduction resulting 

from electric current (or lack thereof) passing through the sample during densification. These 

results indicate that electric current plays an important role in the densification of YSZ processed 

by SPS. Furthermore, these results suggest that the properties of certain types of materials 

processed using this technique can be highly variable and that care should be taken in ensuring 

diligent reporting of processing conditions and validation of resulting material properties.  

 Together, these multiscale studies have indicated that domain nucleation processes in 

single crystals are complex, however, microstructural features such as grain size can still serve as 

indicators of how much ferroelastic deformation can be achieved in a material. Although 

individual crystal orientation may not predict domain nucleation within a grain, the local 

microstructural environment can still be tuned to increase the probability of deformation through 

domain nucleation rather than through fracture. This work also highlights that care should be taken 
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in determining appropriate processing conditions to achieve these desired microstructures for 

ceramics. These results also indicate a number of promising future directions that can be taken to 

further improve our understanding of ferroelastic deformation. The present results along with the 

additional experiments that will be proposed will enable a more informed design of intrinsically 

toughened microstructures in the future.  

6.2 Future Directions 

There were a number of experiments and techniques outlined in this dissertation that 

showed promising preliminary results for evaluating additional characteristics of ferroelastic 

deformation. Several future routes that may be taken to expand upon what has been learned here 

will be outlined.  

6.2.1 Additional Evaluations of Single Crystals 

One aspect of the domain nucleation process observed in this study that warrants further 

investigation is the presence of incommensurate modulations and ordering resulting from the 

domain nucleation.  This type of ordering has been previously observed in domains nucleated by 

deformations in coarse grained polycrystals [1] and was observed again in domains nucleated by 

Vickers indentation in this study, however, they have not been definitively observed in the domains 

that nucleate in small scale single crystal samples. To determine whether finer domains that 

nucleate in micropillars and nanopillars also exhibit similar incommensurate modulation, 

additional sections of pillars should be made. Selected area electron diffraction specifically 

targeting the [100] zone axis, should be collected to check for the presence of superlattice 

reflections that indicate the presence of the ordering. Determining whether fine domains that 

nucleate at small size scales exhibit ordering will lend insight into whether the mechanism 

responsible for domain nucleation is different in coarse grained polycrystals than in small scale 

crystals. Beyond this, high resolution STEM imaging can be used to image fine domains to 

determine the structure at the tip of needle-like domains, and characterization of the types of 

dislocations should be done. This may provide further insight into the dislocation mediated 

twinning mechanism compared to the bulk twinning mechanisms.   

Additional mechanical tests may also be used to measure any microplasticity present prior 

to domain nucleation. One method that may be useful in determining whether there is any 
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dislocation activity prior to large scale deformation in ferroelastic single crystals is using the Onset 

of Plasticity via Relaxation Analysis (OPRA) described by Pandy et al. [2]. OPRA was developed 

to more accurately determine yield points using small scale stress relaxation tests. This test 

methodology may be adapted to ceramic micropillar compression experiments to determine 

whether dislocation activity precedes domain nucleation in some or all cases of deformation 

observed in CTZ micropillars. To accomplish this, additional micropillar compression tests should 

be done but instead of using a constant displacement rate for the loading function, alternating steps 

of loading and holding should be used (similar to how the SEM-DIC tests are performed as outlined 

in Chapter 2). Any relaxation of the load during the holding segments are indicative of plastic 

deformation. Therefore, by using carefully incremented loading of CTZ micropillars, these tests 

may be used to further determine whether dislocation plasticity is associated with domain 

nucleation and to increase the distinction between different deformation mechanisms active in 

ferroelastic single crystals. 

Lastly, incorporating computational methods into future evaluations of ferroelastic 

deformation could provide additional insight into the domain nucleation mechanisms. If energy 

terms such as the twin boundary energy and surface energy can be computed for CTZ (or other 

ferroelastics), the relationship between crystal volume and energy minimization through twin 

boundary formation may be quantified. Molecular dynamics simulations, like those that have been 

performed by Zhang and Asle Zaeem [3] to study deformation in YSZ  nanopillars, could be 

performed to compare the simulated deformation to experimentally observed deformation 

mechanisms. Finite element analysis techniques, like those used by Hu [4], may also prove useful 

in quantifying stresses responsible for deformations observed in the various geometries used for 

in situ TEM deformation experiments described in Chapter 2. 

6.2.2 Additional Evaluations in Polycrystals 

Although grain size has been thoroughly evaluated as a variable affecting domain 

nucleation in polycrystalline microstructures in this work, there are other variables that warrant 

further examination. Preliminary results were collected on the orientations of grains that nucleated 

multiple domains within polycrystals, however, comprehensive statistics and additional analysis 

is still required. Figure 6.1 shows the orientations of grains that contained twins surrounding a 

Vickers indent like those indents used for the grain size analysis discussed in Chapter 4. However, 
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these results have so far been limited by poor indexing using traditional Hough based EBSD 

indexing techniques, and there are too few results to confidently determine whether favorable 

orientations for twinning in bulk exist.  

Figure 6.1: An inverse pole figure schematic for tetragonal zirconia showing the orientations of 
grains containing twins in a deformed polycrystalline microstructure. 

By collecting additional statistics on the orientations of grains that contain twins it will be 

possible to determine whether a favorable orientation exists within a polycrystalline microstructure 

for domain nucleation. To accomplish this, the advanced indexing methods using dictionary 

indexing described in Chapter 2 should be used. Dictionary indexing using EMsoft was attempted 

as outline in Chapter 2, however, additional work should be done to validate its utility in improving 

indexing of CTZ materials. If reliability of indexing can be improved, and misindexing due to 

pseudosymmetry eliminated, then many more maps of deformed microstructures can be 

confidently collected. Data processing using existing software such as EDAX OIM will then 

become significantly more useful for easily identifying grains and twin boundaries. Perhaps an 

even more promising aspect of collecting orientation maps of deformed regions will be evaluating 

whether specific orientation relationships exist between neighboring grains that twin, or grains that 

twin but whose neighbors do not. The results discussed in Chapter 4 indicate that domain 

conformations depend on the local microstructural environment, therefore evaluating the local 

orientations and misorientations associated with various conformations (such as when twins appear 

to transcend grain boundaries) will be highly insightful. Furthermore, using the elastic tensor 
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combined with orientation maps, relative stiffnesses of grains can be determined, and an improved 

picture of how elastic anisotropy affects domain nucleation can be developed.  

 Another variable that can be measured using techniques developed in this dissertation is 

the strain, and more specifically, the strain heterogeneity that develops within polycrystalline 

microstructures during ferroelastic deformation. Mechanical compatibility locally between grains 

within a polycrystal has been identified to contribute to the domain nucleation behavior, therefore, 

measuring the local stains that develop as the microstructure deforms will increase our 

understanding of how microstructure influences this process. SEM-DIC enables this measurement 

of the local strain associated with a domain nucleation events. The strain can be measured in the 

twinned grains along with residual elastic strains that remain in grains that did not twin. 

Furthermore, as Kammers and Daly [5] showed, strain mapping using SEM-DIC can be combined 

with information about the crystallography obtained using EBSD. The combination of these 

techniques enables overlaying Schmid factors or elastic stiffness maps with in situ observations of 

the deformation. A fruitful experiment for ferroelastic polycrystals could be performed using these 

techniques to measure local strain associated with individual grain nucleation events and compare 

that to the global strain applied by the load frame while simultaneously knowing crystallographic 

orientations associated with the deformation. Perhaps a similar analysis as that done by Daniels et 

al. [6] could be done to quantify the deviation in domain switching strain from the average strain.  

 These additional in situ tests may also be combined with further ex situ measurements 

utilizing techniques that enable correlation of local stresses to observe domain nucleation events. 

An example of this was briefly outlined in Chapter 4, and may utilize Hertzian indentation. Since 

shear stresses can be measured as function of depth beneath a spherical indent, cross-section 

created below Hertzian indents can be used to identify the shear stress at locations where twins are 

observed. This has the added benefit of observing microstructures that were fully three-

dimensionally constrained at the time of deformation, rather than surfaces which lack some of the 

constraints that may influence the deformation process.  

 This work may be extended to other materials compositions and other microstructures. For 

instance, by varying the composition of CTZ, the lattice parameters, tetragonality ratios, and phase 

fraction of the tetragonal phase can be controlled. Therefore, opportunity still exists to evaluate 

the influence these variables have on various aspects of ferroelastic deformation. Similarly, other 
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overall compositions such as barium titanate and lanthanum cobaltite that were mentioned in 

Chapter 2 could be used for similar mechanical testing that has been done on and proposed for 

existing CTZ materials. BTO and LCO both exhibit abnormal grain growth which may provide 

favorable microstructures for increased ferroelastic deformation. Therefore, mechanical and 

microstructural evaluation performed on these materials may be used to further validate 

microstructural conditions that are favorable for ferroelastic deformation. Composite 

microstructures consisting of relatively mechanically soft ferroelastics embedded in stiffer matrix 

grains may also be fabricated and evaluated. 

Finally, beyond the opportunity to test the effect of composition and phase on the 

deformation behavior, utilizing other compositions allows for the influence of temperature to also 

be incorporated. So far, all of the mechanical evaluations discussed in this dissertation were done 

at ambient temperature. By utilizing hot stages in conjunction with in situ mechanical tests, the 

effect that temperature has on the deformation can be combined with the other variables that have 

already been evaluated. This may prove particularly useful when testing materials such as barium 

titanate that have phase transitions temperatures (Curie temperatures) that are easily obtained using 

existing instrumentation.  

6.2.3 Final Remarks 

Overall, this dissertation represents the successful development of an improved 

understanding of the influence that local microstructure has on ferroelastic deformation in 

ceramics. The influence of crystal orientation and grain size have been thoroughly characterized, 

and their effects on domain nucleation behaviors have been quantified. Several additional 

promising routes of examination were also identified and outlined, paving the way for additional 

insight to be developed in the future. The insights gained by this work may be used to improve the 

fundamental understanding of deformation mechanisms in ceramics, and as a baseline for 

improved design of intrinsically toughened ceramics microstructures in the future.  
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