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Abstract

In recent years, new software and automated instruments have enabled us to imagine autonomous or “self-

driving” laboratories of the future. However, ways to design new scientific studies remain unexplored due to

challenges such as minimizing associated time, labor, and expense of sample preparation and data acquisition.

In the field of protein biophysics, computational simulations such as molecular dynamics and spectroscopy-

based experiments such as double electron-electron resonance and Fluorescence resonance energy transfer

techniques have emerged as critical experimental tools to capture protein dynamic behavior, a change in

protein structure as a function of time which is important for their cellular functions. These techniques can

lead to the characterization of key protein conformations and can capture protein motions over a diverse

range of timescales.

This work addresses the problem of the choice of probe positions in a protein, which residue-pairs should

experimentalists choose for spectroscopy experiments. For this purpose, molecular dynamics simulations

and Markov state models of protein conformational dynamics are utilized to rank sets of labeled residue-

pairs in terms of their ability to capture the conformational dynamics of the protein. The applications of our

experimental study design methodology called OptimalProbes on different types of proteins and experimental

techniques are examined.

In order to utilize this method for a previously uncharacterized protein, atomistic molecular dynamics

simulations are performed to study a bacterial di/tri-peptide transporter a typical representative of the

Major Facilitator Superfamily of membrane proteins. This was followed by ideal double electron-electron

resonance experimental choice predictions based on the simulation data. The predicted choices are superior

to the residue-pair choices made by experimentalists which failed to capture the slowest dynamical processes

in the conformational ensemble obtained from our long timescale simulations.

For molecular dynamics simulations based design of experimental studies to succeed both ensembles

need to be comparable. Since this has not been the case for double electron-electron resonance distance

distributions and molecular simulations, we explore possible reasons that can lead to mismatches in order

to reconcile simulated ensembles with experimentally obtained distance traces.
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This work is one of the first studies towards integrating spectroscopy experiment design into a computa-

tional method systematically based on molecular simulations.
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Chapter 1

Introduction

Proteins and their dynamics are crucial for all biological functions in cells [1]. Folding of proteins from large

amino acid chains post-translation populating intermediate states and finally into their native structure that

enables their cellular function is an example of protein dynamics. Protein mis-folding or malfunctions are

culprits for onset of most diseases such as cancers, Alzheimer’s disease, Parkinson’s disease, Huntington’s

disease, cystic fibrosis among other degenerative disorders and metabolic disorders such as type 1 and type

2 diabetes [2, 3]. As a result, proteins are targets for typical drug-discovery efforts, specifically membrane

proteins such as transporters that can carry drug molecules through cellular membranes into their acting

sites inside cells or G-protein coupled receptors (GPCRs) that carry information into the cell about drug

binding through their active and inactive conformations [4]. Membrane protein dynamics involve proteins

to undergo conformational changes, that are more subtle as compared to protein folding but equivalently

important, that enable proteins to open or close gates, allow alternate access to a substrate on either side

of the cellular membrane, or binding of membrane-peripheral protein partners.

X-ray crystallography has led to tremendous advance in our understanding of proteins since 1958 when the

first three-dimensional structure of sperm whale myoglobin was described [5]. In conjunction with X-ray

crystallography, nuclear magnetic resonance (NMR) spectroscopy has also allowed researchers to visualize

3D protein structure. Unlike X-ray experiments, NMR is not limited by a crystal lattice, allowing researchers

to capture some semblance of the dynamic regions of proteins. X-ray crystallography structures can only

provide a window into a single conformation of the protein, sometimes where dynamic regions of proteins

remain unresolved or the captured conformation is sparsely populated in solution. A downside with NMR

is it’s limited use for large proteins, especially membrane proteins which form a major focus of this work.

Irrespective of the experimental method, membrane protein structures are sparse in the Protein Data Bank.

Only 2% of all protein structures are those of membrane proteins and most of which have been resolved only

recently. In the past few years, time-resolved serial femtosecond crystallography has allowed researchers to

capture multiple snapshots of protein dynamics in the fs to ms timescale [6]. Recent methodological advances

have also led to a membrane protein structure determination using cryo-electron microscopy (cryoEM) [7,8],
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although at a lower resolution than X-ray crystallography structures.

While the above mentioned three-dimensional structure determinations techniques advance further, another

source of unprecedented insights into membrane proteins has been through spectroscopy which provide an

indirect measurement of the protein’s structure as well as it’s conformational dynamics and kinetics. For

example, Fourier transform Infrared (FTIR) spectroscopy can be used to determine the secondary structure

of proteins through the different hydrogen bonding patterns formed by α-helices, β-sheets, β-turns, or coils.

The absorption of infrared radiation excites vibrational transitions of molecules, different hydrogen bonding

patterns yield different vibration frequencies which can then be assigned to secondary structure content of

the protein. In this work we refer to spectroscopy techniques such as electron paramagnetic resonance (EPR),

double electron-electron resonance (DEER), triplet-triplet energy transfer (TTET), Förster resonance energy

transfer or fluorescence resonance energy transfer (FRET), luminescence resonance energy transfer (LRET),

bioluminescence resonance energy transfer (BRET) which are commonly used to measure distances and

interactions in biomolecular systems including proteins.

These techniques are a mechanism to describe energy transfer or coupling between two probe molecules

strategically placed on the proteins. The energy transfer or coupling is measured via a technique specific

signal and it’s strength or efficiency is dependent on the distance between the probe molecules. Signal

obtained is typically sensitive to the changes in the distance between probes and hence, allows researchers

to capture multiple distances between residue-pairs or secondary structure pairs in a protein. For example,

in FRET experiments, two light sensitive molecules are attached to two residues of a protein. When the

donor molecule is excited, it may transfer energy to the acceptor molecule and the energy transfer, E is

related to the distance between donor and acceptor molecule, r as E ∝ 1
r6 . Each technique differs in it’s

theoretical basis, practical implementation by using different probe molecules, and analysis of the obtained

energy transfer efficiency.

On the computational methods side, molecular dynamics (MD) simulations are a powerful tool to study

biological systems, specifically proteins, and have been widely employed for understanding their dynamics in

folding, ligand perception and binding, conformational changes, and disorder. Given the functional relevance

of protein dynamics in both health and disease, in our works, we use unbiased MD simulations to sample

the conformational dynamics of proteins and propose the use of MD simulation datasets as a predictive tool

for the study of biological systems in conjunction with biophysical spectroscopy experiments. In particular,

we employ MD simulations as a resource to design biophysical experiments to aid researchers in their choice

of residue-pairs for energy transfer spectroscopy experiments. We use kinetic network models called Markov

state models as a framework for experiment design to choose residue-pairs that maximize the number of
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slow dynamical processes from experiments on a given protein.

The remainder of this chapter will introduce these methods which form the basis of our computational

method to design experiments. First, MD simulations, challenges and recent advancements in the use of MD

simulations for protein conformational changes. Second, Markov state models, a key idea to draw insights

from MD simulations such as thermodynamic stability of different protein conformations and kinetics of

transitions among protein conformations. Third, Generalized matrix Rayleigh quotient, a property derived

based on the eigenvalues of an Markov state model’s transitional probability matrix.

1.1 Molecular dynamics simulations: Challenges and advances1

Generally, an MD simulation investigation of proteins involves the following steps: (1) Setting up the MD sys-

tem where the atomic coordinates are derived from experimental structural studies and sometimes homology-

based computational models [9–12]. (2) Performing energy minimization and equilibration, followed by large

time production runs, also referred to as sampling, using available MD engines such as NAMD [13], AM-

BER [14], GROMACS [15], OpenMM [16]. Typically, MD programs employ molecular mechanics force-fields

parameterized based on previously evaluated and benchmarked datasets. Sampling can be performed in an

unbiased manner without changing the underlying Hamiltonian or with a modified Hamiltonian, either with

the aim to increase probability of exploring rare conformations or with a fixed end goal to discover the path

from the starting to the end conformation [17–28]. (3) Analyzing the trajectory data obtained from sampling

the conformational landscape, such as monitoring the fluctuations in the protein’s observable over time, or

more complex calculations. Atomistic MD simulations enable researchers to draw conclusions regarding the

nanoscopic structural changes associated with the protein and the necessity of the structural changes for

the physiological function of the protein. Often, results obtained from MD simulations are accompanied by

validation with biophysical and biochemical experiments.

Recently, there has been considerable progress in bioinformatics based methods to predict contacts between

co-evolving residues and using these evolutionary coupled residues to determine the structural model of

proteins [29–34]. Tang et al. have proposed the combination of contacts inferred from evolutionary couplings

and sparse NMR to build verifiable structural models [35]. Methods to use evolutionary couplings to predict

structures have contributed to the pool of protein structures and in theory can also be employed for MD

studies in the absence of alternatives.

MD simulations are heavily dependent upon the force field used while performing simulations. Various

1This section is adapted with permission from Mittal S and Shukla D. Molecular Simulation. 2018; 44(11):891-904. Copyright
2018 Taylor & Francis.
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studies have determined that thermodynamic behavior of folded protein can be described with accuracy but

the force fields can also be biased towards the folded structural states only [36–39]. The choice of force field

is often subjective and MD studies may require simulations to be performed in multiple force-fields resulting

in similar or contesting observations from the resulting datasets.

Moreover, sampling the conformational landscape for biologically relevant time periods, requires intense

computations on specialized hardware [40, 41], distributed computing resources [42] or high performance

machines [43]. An often exploited solution to prevent excessive exploration in low-energy regions is to provide

the protein an opportunity to access the higher energy conformations via accelerated MD, replica exchange

MD, self guided molecular/langevin dynamics [20,21,25,28] or perform simulations to drive sampling in a pre-

chosen direction such as adaptive biasing force method, temperature accelerated MD, umbrella sampling and

metadynamics [17,22,24,26]. Pathway generation methods such as string method, transition path sampling,

steered MD, targeted MD [18,19,23,27] and others attempt to mitigate the problem of inefficient sampling

of the transitions across high energy barriers. These ‘biased’ sampling techniques have been instrumental in

studying a diverse variety of proteins. Despite increasing thermodynamic accuracy, these techniques have

limitations on account of losing out on kinetics information.

Once the simulation dataset is obtained, using the researcher’s preferred choice of the sampling technique

depending on the scientific purpose, simulation observables are matched with experimental results [44].

Simulations which are performed on distributed computing resources have mostly been in the form of short

simulations [45–51], where iterative rounds are seeded from structures or conformational regions on the

landscape which are deemed to be less sampled in the previously obtained data. The analysis of this data

demands a sophisticated statistical method called Markov state models [52]. MSMs can also be employed to

analyze simulation data obtained as single or few long trajectories and MSM based calculations have been

employed to validate results from kinetic experiments [53,54].

1.2 Markov state models

Markov state models (MSMs) are kinetic network models of protein conformations. An MSM consists of the

state decomposition, their equilibrium populations and the transition probabilities among the states. The

transition probability matrix (Tij) described the probability of transitioning from discrete conformational

state i to state j in some lag time τ . An MSM must ensure that that the timescale τ chosen for state transition

determinations is approximately Markovian. This implies that the transitional probabilities should depend

only on the last state visited, and not on the states visited before that. An MSM built in a memoryless
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manner provides a skeleton upon which calculations such as mean first passage time, free-energy calculations

and pathway determination of the protein’s conformational changes can be performed. Steps involved in

MSM construction are explored in this section.

Featurization

The state decomposition is obtained by clustering the trajectories into distinct states based on a structural

metric called features as calculated for every frame in the collected simulation data. Some examples of these

features include root mean squared deviation (RMSD) of the entire protein or certain dynamic regions of

the protein, amino acid dihedral angles of which ones typically used are phi (φ), psi (ψ), and chi (χ), one

or more distances between various entities in the simulation system. The choice of features has consequence

on the conclusions and the significance of the results from the resulting MSM. Features are chosen based

on the type of simulation system, such as in the case of ligand or drug binding studies to a protein, it is

common practice to use distance between ligand atoms and atoms in the ligand binding pocket. In a recent

study on abscisic acid binding to PYL receptor proteins, researchers used 4 distances between ligand and

final binding site residues as well as 4 distances between ligand and residues in the binding pathway to

capture the recognition and binding mechanism using MSMs [51]. Structural regions of the protein that are

known to play an important role in it’s function or activation are also included in the choice of features. For

example, Shukla et al. included root mean squared fluctuations (RMSF) of heavy atoms from the N-terminal

lobe residues and A-loop residues of c-src tyrosine kinase as features for the MSM since the flip of a DFG

motif at the N-terminal end of the A-loop play is a known indicator of activation in kinases [45]. While

the activation mechanism of kinases had been studied previously, studies of new proteins requires agnostic

choice of features in order to capture the slowest physical processes involved in it’s dynamics.

Dimensionality reduction2

Construction of MSMs can also be aided by dimensionality reduction, as it provides a reduced subspace to

perform clustering and decompose the trajectory data into states which are geometrically and kinetically

distinct from others, by weeding out statistical noise [52, 55]. The aim of dimensionality reduction is to

transform a large set of features to a different basis set which maximizes a measurable quantity such as

variance [56, 57] or Shannon information [58]. A statistical method called principal component analysis

(PCA) attempts to transform the large dimension dataset, obtained after converting the trajectory snapshots

to features, into a new basis set or a coordinate system which has the maximum uncorrelated variance values.

2This section is adapted with permission from Mittal S and Shukla D. Molecular Simulation. 2018; 44(11):891-904. Copyright
2018 Taylor & Francis.
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However, the MD data have time stamps associated with them, which cannot be ignored at the risk of losing

information and studies on the kinetics of the protein’s dynamic processes; similar to the field of signal

processing. Hence, time-structure based Independent Component Analysis (tICA) [59,60] is a better suited

dimensionality reduction method in MD simulations than PCA. tICA is inherently similar to PCA but takes

into account the time progression of the MD simulation datasets. The use of tICA for MD simulation data

analysis is indeed borrowed from signal processing [61,62].

In tICA, the features are transformed to find linear combinations of them resulting in a Z matrix where the

column vectors are the weights of the feature in the linear combination. Each transformed coordinate has

two properties: (1) maximal autocorrelation to obtain the slow motions as observed in the data, and (2)

uncorrelated to the previous linear combinations to ensure each vector describes an orthogonal slow process.

The covariance matrix for a multidimensional time series, r(t), with N snapshots or frames is given as,

Cr(0)ij =
1

(N − 1)

N∑
t=1

ri(t)rj(t) (1.1)

and the time-lagged covariance matrix, after a lag of ∆N snapshots,

Cr(∆N)ij =
1

(N −∆N − 1)

N−∆N∑
t=1

ri(t)rj(t+ ∆N) (1.2)

The covariance and the time-lagged covariance matrices can be transformed to the new transformation, Z, as

CZ(0) = ZTCr(0)Z and CZ(∆N) = ZTCr(∆N)Z, respectively. The time-lagged independent components

(tICs) are then determined by solving the eigenvectors of the generalized eigenvalue problem, Cr(∆N)Z =

ΛCr(0)Z where Λ is a diagonal matrix of the eigenvalues, λi, corresponding to the auto-correlations. If the

solutions to this equation are ordered in the decreasing order of the eigenvalues such that λ0 > λ1 > · · · > λd,

then Z0 is the slowest time-structure based Independent Component (tIC) and so on.

In recent years, tICs have been regularly used for post simulation analysis in order to determine the slowest

modes of a protein’s conformational dynamics [63–68]. tICA can be performed within python packages used

to build MSMs, MSMBuilder [69] and pyEMMA [70].

State decomposition via clustering

Once these structural quantities are calculated for each frame, we cluster or combine different frames into

microstates via standard clustering algorithms such as k-means, mini-batch k-means [71], k-mediods [72],

k-centers [73] or hierarchical methods [74]. Protein conformations with similar values for the slowest tICs or

features if tICA is not performed will be combined together leading to distinct states. Clustering is an ideal
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choice as it enables researchers to define states without any bias. In our work we use mini-batch k-means to

obtain microstates for all MSMs. The mini-batch k-means algorithm works as follows:

1. Assign a number of clusters, k. Randomly choose k observations from the dataset and use these as the

initial means.

2. Randomly choose b datapoints, where b is a pre-decided batch size. Assign these chosen data points

to one of the k clusters by associating every datapoint with the nearest mean. A common way to

determine distances in high-dimensional data is Euclidean distance.

3. The centroid of each of the k clusters becomes the new mean.

4. Steps 2 and 3 are repeated until convergence has been reached.

This method is computationally less expensive since Step 2 is only performed on a random sample of data

as opposed to all data in a typical k-means implementation.

Transition matrix estimation

Next, the transitions between the clustered states are determined at a chosen lagtime τ to enforce the

Markovian property. The Markovian property ensures that the probability of future states/conformations

are dependent entirely on the present state of the protein and not on the states/conformations that preceded

it. At the chosen τ a count matrix C(τ) can be defined from the data, where Cij(τ) represents the number

of transitions from state i to state j. T (τ) is the transition probability matrix, Tij(τ) being the probability

of transition between state i and state j. For an N state MSM, both C(τ) and T (τ) are N ×N matrices,

related as,

Tij(τ) =
Cij(τ)

Ciτ
(1.3)

where Ci(τ) =
∑
j

Cij(τ) (1.4)

Rather than T (τ), it is often more useful to determine K, an N × N rate matrix for a continuous-time

Markov process, which enables one to estimate decay or rates of conformational changes from one state to

another. K can be estimated from discrete-time observations that is, T (τ) using a maximum likelihood

estimator approach [75,76] or observable operator models [77]. At this stage microscopic reversibility among

the states according to detail balance can also be introduced. A Markov process is reversible when the rate

matrix, K, or the transition probability matrix, T (τ) satisfies the detailed balance condition with respect to
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a stationary distribution, π, towards which the process relaxes over time,

πK = 0 or πT (τ) = 0 (1.5)

πiKij = πjKji or πiTij(τ) = πjTji(τ),∀i 6= j (1.6)

It follows that for an N state Markov state model,

pi(t+ τ) =

N∑
j=1

pj(t)pji(τ) (1.7)

where pi(t) is the probability that the protein is in state i at time t. To determine the state of the protein

at time t+ τ , p(t+ τ) which is a vector of probabilities of occupying all of the N states at time t+ τ can be

obtained using equation (1.8),

p(t+ τ) = p(t)T (τ) (1.8)

The transition probability matrix T(τ) can be decomposed into its eigenfunctions and eigenvalues as,

φiT (τ) = λiT (τ) (1.9)

If the eigenvalues, λi, are arranged in a descending order, the first (also the largest) eigenvalue, λ1=1 and is

the sum of the equilibrium probabilities of N states. The rest of the eigenvalues λi>1 < 1 correspond to the

relaxation time scales, ti as follows,

ti = − τ

lnλi
(1.10)

The top m-eigenvalues provide the best estimate of the m-slowest timescales for the protein’s dynamics.

A more detailed mathematical description of MSMs can be accessed from the referenced literature articles

[52,78,79].

MSMs are now widely used frameworks for the analysis of MD datasets and multiple software suites provide

MSM construction as well as analysis capabilities [69,70].

1.3 Generalized matrix Rayleigh quotient

A Generalized matrix Rayleigh quotient (GMRQ) score is used to choose the best parameters for MSM

construction during the many steps discussed in the previous section. Some of these parameters are the

choice of featurization scheme, number of features used, number of dimensionality reduced components [80],
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clustering algorithm and number of clusters among others. Once the simulation dataset is obtained, GMRQ

scores for multiple MSMs with different hyper-parameters are determined and the set of hyper-parameters

which maximize GMRQ are chosen to build the final MSM for analysis. This approach has been used by

some of the recent protein conformational dynamics studies to choose the best parameters to build an MSM

for analysis of MD simulation datasets [55,65,66,81–83].

Before the construction of MSM, we do not know the best parameters which would provide an estimate

of the slowest timescale dynamic modes of the protein. Thus, the true eigenfunctions of the transition

probability matrix, T (τ), of the MSM are not known a priori. A trial MSM is built to obtain a guess and

based on the variational principle of conformational dynamics [84, 85] a quantitative estimate (GMRQ) of

the m-slow processes captured by the first m-eigenfunctions of the trial MSM is obtained. The GMRQ score

is the sum of the m largest eigenvalues, λ̂i, GMRQ =
∑m
i=1 λ̂i. It has been proven that the upper limit for

GMRQ is the score for MSM with the true eigenfunctions. In other words, the sum of the true eigenvalues

GMRQ ≤
∑m
i=1 λi [86, 87] is the upper limit of the GMRQ score.

In order to avoid over-fitting to the MD simulation dataset, a k-fold cross-validation approach is used. The

dataset is split into the training and testing dataset. The GMRQ is first maximized on the training dataset

by building an MSM on only this data, called the training score and then the coefficients are used to obtain

the test GMRQ score over the testing data. This is repeated k times and a mean is reported as the final

score. The hyper-parameters which yield the highest mean of k-fold cross validated testing data score can

be chosen to construct the MSM. Usually, 5-fold cross validation is used and the dataset is split equally into

training and testing data. For all future purposes, the mean of the 5-fold cross validated test data score is

referred to as the GMRQ score for a given set of hyper-parameters.

Overall, a high GMRQ indicates an better model to describe the dynamics of the protein from the underlying

conformational landscape.

1.4 Dissertation overview

The overarching objective of this work is to use MD simulations as a predictive and validation technique

alongside biophysical spectroscopy experiments, especially DEER spectroscopy of membrane proteins.

• Chapter 2 describes the development of a methodology we call OptimalProbes for the prediction of

ideal residue-pairs to probe in DEER experiments. This work was published in The Journal of Physical

Chemistry B [88].

• Chapter 3 demonstrates how OptimalProbes can be extended to related experimental techniques such
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LRET, TTET and Trp-Tyr fluorescence quenching experiments. Work presented in this chapter is

published in The Journal of Physical Chemistry B [89].

• Chapter 4 utilizesOptimalProbes for predicting the conformational dynamics of a novel Multi-Facilitator

Superfamily membrane protein, PepTSo, a bacterial di/tri-peptide transporter. This work was pub-

lished in ACS Central Science [90].

• Chapter 5 examines many reasons for a mismatch between residue-pair distance distributions from

MD simulations and DEER experiments, which might limit the integration of computational and

experimental studies for the study of protein dynamics.

• Chapter 6 discusses some of the remaining challenges and opportunities in integrative modeling of

protein conformational heterogeneity and our thoughts on the necessity for tools and platforms for

scientists to share data and build models.
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Chapter 2

Predicting Optimal DEER Label
Positions to Study Protein
Conformational Heterogeneity1

2.1 Overview

Double electron-electron resonance (DEER) spectroscopy is a powerful experimental technique for under-

standing the conformational heterogeneity of proteins. It involves attaching nitroxide spin labels to two

residues in the protein to obtain a distance distribution between them. However, the choice of residue-pairs

to label in the protein, requires cautious thought and experimentalists are required to pick label positions

from a large set of all possible residue-pair combinations in the protein. In this paper, we address the prob-

lem of the choice of DEER spin label positions in a protein. For this purpose, we utilize all-atom molecular

dynamics simulations of protein dynamics, to rank the sets of labeled residues pairs in terms of their ability

to capture the conformational dynamics of the protein. Our design methodology is based on the following

two criteria: 1) an ideal set of DEER spin label positions should capture the slowest conformational change

processes observed in the protein dynamics and 2) any two sets of residue-pairs should describe orthogonal

conformational change processes to maximize the overall information gain and reduce the number of labeled

residues pairs. We utilize Markov state models of protein dynamics to identify slow dynamical processes and

a genetic algorithm based approach to predict the optimal residue-pair choices with limited computational

time requirement. We predict the optimal residue-pairs for DEER spectroscopy in β2 Adrenergic Receptor,

C-terminal domain of calmodulin and peptide transporter PepTSo. We find that our choices are ranked

higher than those used to perform DEER experiments on the proteins investigated in this study. Hence,

the predicted DEER residue-pair choices determined from our method provide maximum insight into the

conformational heterogeneity of the protein while using the minimum number of labeled residues.

1This chapter is reproduced with permission from Mittal S, Shukla D. Journal of Physical Chemistry B. 2017; 121(42):9761-
9770. Copyright 2017 American Chemical Society.
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2.2 Introduction

Double Electron-Electron Resonance (DEER) is an experimental technique based on electron paramagnetic

resonance (EPR) which has become a crucial resource for protein structure determination [91, 92]. Using

Site-Directed Spin Labeling (SDSL) [93, 94], two nitroxide spin labels are attached to two cysteine mu-

tated residues. These spin labels include 1-oxyl-2,2,5,5-tetramethyl-pyrroline-3-methyl)methanethiosulfonate

(MTSSL), iodoacetamide-PROXYL (IA-PROXYL), unnatural amino acids p-acetyl-L-phenylalanine and

2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxylic acid [92] and a spin labeled lysine (SLK-1) [95,96],

all of which possess an unpaired electron leading to the formation of a magnetic dipole to allow for dipole

coupling measurements. The DEER experiment measures the decay of the dipolar coupling between the

unpaired electrons of the attached spin labels, which is then processed to obtain the distance distributions

between the labeled residues on the protein. Alexander et al. proposed that the spin label distances could

be converted to the distance between the Cβ-Cβ atoms of the residues using a motion-on-a-code model [97].

These distances were then incorporated into the structure prediction suite Rosetta to generate low-RMSD

protein structure predictions for T4-lysozyme and other proteins [98]. Roux and Islam have developed a

restrained-ensemble molecular dynamics (MD) simulations method that incorporates DEER distance distri-

butions to refine the structural predictions of proteins, with T4-lysozyme as the benchmark protein [99–101].

Hence, EPR/DEER has been a popular choice of technique to study a variety of biological processes such as

folding of T4 lysozyme [91], conformational heterogeneity of enzyme HIV-1 protease [102], transitions in the

intrinsically disordered protein IA3 [103], allosteric affects in Hsp70 chaperone [104] and nucleic acids [105].

Since the technique is not limited by the size of the protein, it has also been employed to study confor-

mational dynamics of membrane proteins [106] such as a lipid flippase from Escherichia coli MsbA [107],

lactose permease LacY [108], GPCRs Rhodopsin [109] and β2 Adrenergic Receptor [110], a peptide trans-

porter PepTSo [111], an ABC transporter [112] among others.

Prior to performing the DEER experiment, key challenges faced by the experimentalists include 1) the effect

of the conformational dynamics of the spin labels on the obtained distance distributions and 2) the choice

of residues for labeling or the residue-pair distances to measure. The introduction of spin labels makes

the obtained distance distributions dependent on both the dynamics of the spin labels and the protein

backbone [92]. Several studies have reported approaches that include a comprehensive rotamer orientation

search of the spin label to incorporate the effect of the spin label conformations from the protein structural

studies [108,113]. However, the question - which residue-pairs to label with the nitroxide molecules to obtain

DEER distributions from the experiment - is not trivial. If we consider a protein of size R residues, there are

R(R− 1)/2 residues pair distances to choose from. This product is the number of all possible residue-pairs

12



in the protein. Further, DEER experiments usually entail measurement of multiple distance pairs, say k

residue-pairs. This leads to R(R−1)/2Ck possibilities to choose k pairs from R residues. This number is

usually too large for any protein of biological interest. Given the constraints of time and resources, it is

not possible to try all possibilities. Thus, multiple residue-pairs have to be chosen before the experiment is

performed. Additionally, an optimal choice of residue-pairs is one where the number of pairs are minimum

and each pair captures structural transitions of the proteins which are different from others.

MD simulations have been used extensively to capture the long timescale conformational dynamics associated

with protein folding [114,115] and conformational change [45,55,63,110,116–122]. MD Simulation datasets

could be used to extract residue-pair distances which provide insight into distinct conformational states of

the protein and identify residue-pairs that play a critical role in the conformational transitions of proteins.

These residue-pairs are associated with the slow dynamical processes or the high free energy barriers observed

in the conformational free energy landscape of the protein. Here, we hypothesize that residue-pairs involved

in the slow functional dynamics could also be used to perform EPR/DEER experiments. The purpose of

DEER spectroscopy or any other biophysical experiment is to describe the structural changes (such as the

breaking and forming of residue contacts) associated with the protein function and these residue-pairs are

associated with the functional dynamics of the protein. Therefore, MD simulations could be utilized to

solve the problem experimentalists face before the DEER experiment is performed. It is also possible to

use MD simulation datasets obtained via accelerated MD [25], steered MD [19], umbrella sampling [17],

metadynamics [22] or replica exchange [21] techniques for this purpose.

However, the task of choosing spin label positions is not as simple as measuring the relaxation rate for

all residue-pairs using simulation datasets and identifying the optimal set based on the residue-pairs with

slowest relaxation kinetics. Imagine a scenario, where two chosen residue-pairs describe the same dynamical

process (such as rocking of a membrane helix in a protein) or their motion is highly correlated. In this case,

the information provided by the two DEER measurements would not be independent of each other and lead

to redundancy. Therefore, the ideal set of residue-pairs for spin labeling should not only describe the slowest

dynamical processes but also provide orthogonal information. In this paper, we have reported a protocol to

predict optimal pair wise EPR/DEER experimental label positions from the MD simulation datasets using

these two criteria.

Markov state models (MSMs) provide a natural framework for identifying the minimal set of orthogonal

residue-pairs associated with slowest dynamical processes observed in simulation datasets. MSMs coarse

grain the conformational dynamics of a protein by eliminating the fast conformational dynamics and retaining

only the slowest dynamical processes. [55,79] The protocol constructs an MSM from the simulation dataset
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using the distances between a set of residue-pairs as the geometric metric for state decomposition. Multiple

such MSMs are constructed using different sets of residue-pairs as their metric. Then we assign a generalized

matrix Rayleigh quotient (GMRQ) score [84,85] to each MSM. A higher GMRQ score for an MSM indicates

that the MSM is able to capture the slow timescale processes of the underlying protein dynamics. residue-

pairs used to construct the MSM with high GMRQ score are chosen to be the optimal residue-pairs to

perform DEER experiments. In addition to an exhaustive residue-pairs search protocol, a genetic algorithm

based improvement over the exhaustive search method is demonstrated. This improved approach reduces the

computation time requirement. A detailed description of the implementations are discussed in the Theory

and Methods section.

2.3 Methods

Optimal DEER label positions prediction method

First, we need to determine whether a residue-pair distance can be measured using DEER spectroscopy, the

simulation data is perused to determine if two residues are always within a predetermined range. The range

can be obtained based on the instrumentation available to perform the DEER experiments. Measurement in

the range of 18-60 Å for membrane proteins and upto 100 Å in cytoplasmic proteins is possible [92]. We use

the Cα distances between two residues for all distance calculations. This may not be the best estimate of the

distances obtained from DEER experiments as we neglect the effect of spin probe size on the measurement

but it presents a rational choice for obtaining inter-residue distances from the simulation datasets. The

distance distributions estimated from experiments depend on the choice of spin label, dynamics of the many

dihedral angles in the spin label and the choice of the lipid bilayer mimetic viz. detergent micelles, lipid

bicelles, nanodiscs or liposomes [92, 123, 124]. Simulations on the other hand are free from bias due to

inclusion of spin labels or the bilayer mimetic. The datasets employed in this study represent simulations

of membrane proteins embedded in a lipid layer or cytoplasmic protein in a water box. Hence, the Cα-Cα

distances from the simulation datasets are a measure of the true dynamics of the protein.

Consider G(V,E), an undirected graph with vertex set V and edge set E. V comprises of vertices vi where

1 ≤ i ≤ R (R is the number of residues in the protein of interest) and an edge eij indicates the residue-pair

distance between vi and vj is measurable through EPR/DEER experiment technique. If the Cα-Cα distance

of the residue-pair i and j is within the specified range, an edge is added between vertices vi and vj in the

graph G. This graph is stored as an R×R adjacency matrix, A whose elements Aij are 1 if there is an edge

between vi and vj ; 0 otherwise. A is a symmetric matrix and only the upper-triangular or alternatively the
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Figure 2.1: (A) Workflow for the optimal EPR/DEER label positions prediction protocol. (B) An improved workflow following the
scheme of a genetic algorithm for optimal label positions prediction.
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lower-triangular matrix is needed. At this stage the matrix A is densely populated and would yield too many

residue-pair possibilities if scanned. Hence, we attempt to make A sparse by including topology information

of the protein and some DEER experiment constraints.

1. Each immovable secondary structural element in the protein is allowed only one label position; for instance

if vi and vj residues are part of the same coil, eij = 0.

2. Non-solvent exposed regions in the protein are usually inaccessible for spin label modification as they

will introduce steric clashes with nearby residues and greatly alter the structural dynamics of the protein.

Accordingly, edges which involve inaccessible residues are removed from the graph.

3. Edges corresponding to the residue-pairs in a membrane protein with one residue on the extracellular

side of the protein and other on the intracellular side of the protein are eliminated from the graph G due to

the large distances between them [111].

On the basis of above constraints, the adjacency matrix is then parsed to obtain M feasible sets, S1 · · ·SM ,

of positions which allow DEER distance measurements among them. If S1 = {v1, v2 · · · vn}, it indicates

that n(n− 1)/2 DEER distance measurements occur, between (v1, v2) · · · (v1, vn), (v2, v3) · · · (vn−1, vn). The

number of residue-pairs in each set S1 · · ·SM differs.

Finally, an MSM is constructed for each set of residue-pairs. The MD dataset is clustered into 200 states

based on the Cα-Cα distances of the residue-pairs in the set. Hyper-parameters other than the choice of

residue-pair distances for clustering are not varied to keep the dimensionality of the problem small. The

choice of hyper-parameters are provided in Supplementary Table 2.1 for the proteins investigated in this

paper. The MSMs are constructed using the MSMBuilder3.4 [69] package and GMRQ scores are obtained

using the Osprey package [125]. When arranged in a descending order of the GMRQ score for each set,

the set Sm (1 ≤ m ≤ M), corresponding to the highest score provides the optimal choice of DEER label

positions on the protein (Figure 2.1A).

This method has been demonstrated on three biological proteins, β2 Adrenergic Receptor (β2AR), C-

terminal domain of calmodulin and bacterial peptide transporter PepTSo. MD simulation datasets for these

three proteins are available and experimental observations are available for β2AR [110] and PepTSo [111].

The predicted residue-pair choices are reported in the Results and Discussion section.

Genetic algorithm for obtaining the optimal set

Observations from the above protocol indicate that MD simulation datasets can serve as a good resource

to predict optimal DEER label positions. However, the protocol relies on an exhaustive search. It involves
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extracting all possible sets of residue-pairs, building an MSM for each set and assigning a GMRQ score

to each of the MSMs. In most cases, the number of predicted sets will be large. Therefore, significant

computational resources are required to build MSMs for each set while identifying the hyper-parameters

that maximize the GMRQ. The computational time requirement could be circumvented by using a genetic

algorithm scheme.

Genetic algorithms are well established and widely used algorithms with multitude of applications. [126,127]

A standard genetic algorithm scheme mimics the evolution of a species with the aim of maximizing its

‘fitness’ or survival probability. The scheme starts with an initial population of species. Each member of

the population has an associated ‘fitness score’ which decides whether it will survive ‘natural selection’ to

continue onto the next generation or perish. It is based on a pre-decided metric which is the desired trait

in the resulting population. It is not necessary that all members of the population are propagated. A small

number also undergo ‘mutations’ which introduce upward or downward change in the surviving capability of

the species. In the ‘crossover’ step, a few selected members are joined with each other to finally obtain the

new generation. During the evaluation step, each member of the present generation is assigned a new fitness

score. Once the species have been assigned a fitness score the next iteration begins from ‘natural selection’

again. These steps are followed until a termination condition is reached.

The key idea is to begin with only a small number of sets of residue-pairs to construct MSMs. Based on the

GMRQ scores for these MSMs, new sets are chosen for subsequent iterations. Here, we describe the series

of steps of the improved method to predict the optimal residue-pairs for DEER experiments, via a genetic

algorithm scheme (Figure 2.1B).

1. Identify the set of all feasible residue-pairs Q, from the MD simulation dataset, using the constraints

listed in the previous section. Elements of set Q are Qi = (vx, vy) where 1 ≤ i ≤| Q |, vx and vy are residue

numbers with 1 ≤ x 6= y ≤ R, R is the number of residues in the protein.

2. Assign each element of Q a fitness score, fi = 0 where 1 ≤ i ≤| Q | for the first iteration.

3. Initial Population: Choose populationSize (a number chosen in advance) elements from Q randomly.

This is the current generation set G0, where G0,i = (vx, vy) and 1 ≤ i ≤ populationSize. Build MSMs

featurized on the Cα distance of the residue-pairs in each element of G0 and assign a GMRQ score to these

MSMs. The GMRQ score is now the fitness score assigned to the elements of G0.

4. Natural Selection: For the new iteration ITER, choose populationSize elements from G proportional

to their newly assigned fitness scores, for the new generation set GITER.
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5. Mutation: Change (mutationPercent ∗ populationSize)/100 items from set GITER and replace them

with randomly chosen residue-pairs from Q not already present in GITER.

6. Crossover: Choose (crossoverPercent∗populationSize)/100 pairs from the set GITER to combine with

each other and add them to the current population. Crossovers are responsible for increasing the number of

residue-pairs in the predicted sets.

7. Evaluation: Build MSMs featurized on the Cα distance of the elements of GITER and assign a GMRQ

score (aka fitness score) to these MSMs. This step is the same as steps two and three in the exhaustive

search method. Further, obtain a scaled fitness score based on the number of residue-pairs in each element.

This allows to lower rank choices which predict larger number of distance measurements. This is required

since one of the goals of the method is to minimize the number of distance measurements required in DEER

experiments.

8. Stop: This process is continued starting from natural selection again, until the maximum number of

iterations, N ITERATIONS are achieved.

The algorithm parameters populationSize, mutationPercent, crossoverPercent and N ITERATIONS are

user defined quantities which will have impacts on the running time as well as convergence of the algorithm.

Population size of 20, mutation and crossover rates of 50% and 20%, respectively, were found to converge

faster and have been used in this study. The genetic algorithm approach is a heurestic based optimization,

which means whether the global optimum is reached cannot be guaranteed and the program may make

choices during its run which will cause it to retreat from an approaching optimal solution. If it is an unlucky

choice, then a good solution may be reached after a large number of iterations.

These algorithms have been implemented in the Python language and use Numpy [128], MDTraj [129],

MSMBuilder3.4 [69] and Osprey package [125] as dependencies. Various user inputs such as protein topol-

ogy information, inaccessible residues, undesired residue-pairs, DEER distance measurement constraints

based on the instrument and technique, lower and upper bound on number of measurements, genetic algo-

rithm parameters and MSM construction hyper-parameters can be specified in the user’s input data to the

program. These details are provided along with the program source code and also included in the Supporting

Information. The implemented program can run MSM construction in parallel, if multiple processors are

available. Combined with automatic parallelization, the genetic algorithm is considerably fast in predicting

optimal residue-pairs for DEER experiments.
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2.4 Results

Predicting optimal label positions for β2 Adrenergic Receptor

Previously published all-atom MD simulation dataset of β2AR [130] was used for analysis in the current

work. Specifically, twenty-four simulations of agonist-bound protein with the Nb80 nanobody removed

initiated from the active crystal structure (PDB: 3P0G [131]) with protonated residue Asp 130 were used.

The individual simulation time range from 2 µs up to 11.4 µs, with the cumulative dataset used being ∼127

µs.

Figure 2.2: (A) GMRQ scores corresponding to MSMs constructed with the predicted sets of residue-pairs for DEER experiments
in β2AR. The first column indicates scores for 868 MSMs. The second and third columns indicate the MSM scores which have only
intracellular distances (ID) and extracellular distances (ED), respectively. The horizontal red line is the GMRQ score referring to the
MSM constructed using the contact distance of residues Asp149 and Leu266; the residue-pair for which DEER experimental distance
distribution is available [110]. The horizontal black lines correspond to a reference MSM constructed using inter-residue contacts on
both intracellular and extracellular, or either domains of the protein. (B) GMRQ scores of the 868 predicted sets of residue-pairs
differentiating the number of residue-pairs (or distances) measured in the set. (C) A cartoon representation of β2AR showing the set
of residue-pairs ranked highest by our method.

First, we constructed and scored 868 MSMs and the obtained scores range between 1.09 and 4.92 (Figure

2.2A) for all possible probe sets. An MSM based on the distance chosen by Manglik et al. for DEER exper-

iments on the β2AR [110] was built and scored (red line in Figure 2.2A,B). The experimental residue-pair

choice was optimal in choosing a single distance to measure. However, it can be seen in Figure 2.2B that

several residue-pair sets that involve three distances as opposed to one distance measured in the DEER ex-

periment have a higher score than the experimental residue-pair. We also built an MSM with all intracellular

and extracellular distances as metric and its score (black line in Figure 2.2A) was used as a reference, it

captures the maximum possible conformational heterogeneity in β2AR among all possible residue-pairs ac-

cessible for DEER experiments. The maximum score for the three distances was comparable to the reference

MSM indicating that additional distance measurements will not lead to an information gain.

Predicted choices with residue-pair distances on the intracellular side or the extracellular side, are shown

separately in the second and third column of Figure 2.2A. It can be seen that the highest set of residue-pairs

is on the extracellular side of the protein and comprises of 3 distances. These distances involve residues on
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Figure 2.3: (A) GMRQ scores corresponding to MSMs corresponding to MSMs constructed with the predicted sets of residue-pairs
for DEER experiments in β2AR using the genetic algorithm approach. (B) Violin plot demonstrates the increase in GMRQ scores over
20 iterations of the genetic algorithm based method. The vertical red lines indicate the range of the GMRQ scores within each iteration
and the horizontal mark in the middle is the mean of the GMRQ scores for the current iteration.

helices 4, 6 and on the loop joining helices 2 and 3 (Figure 2.2C). It has been reported by Kohlhoff et al. and

Shukla et al. the activation of the protein occurs initially with helix 6 moving away from helix 3 [47, 119].

Further, since the experimental DEER residues are on the intracellular side of the protein (on helices 4 and

6 [110]), we extracted the highest ranked intracellular choice. This choice of residue-pairs involves residues

on helices 3, 4 and 7 (Supplementary Figure 2.2). As reported in literature, these are the helices which are

involved in the activation of β2AR. RMSD of the NPxxY region on helix 7 is a distinct characteristic in the

inactive and intermediate states [47,119,130]. Thus, the residue-pairs chosen from our method are involved

in slow processes in the protein which is its functional switching between active and inactive states.

The exhaustive search method requires construction of 868 MSMs. The limiting step in this method is

the MSM construction process that can take large amounts of computation time for long timescale MD

simulation datasets. For the genetic algorithm scheme, we used a population size 20, 50% mutation rate and

20% crossover rate. Commensurate GMRQ scores were obtained with smaller number of MSM constructions

(Figure 2.3A) and the scores obtained show consistent increase with each iteration. The maximum score

converges over 20 iterations as shown via a violin plot in Figure 2.3B. The red vertical lines indicate the range

of the score in the current iteration. As expected, some of the higher iterations have MSMs that are scored

low, but they are eliminated as the number of iterations progress. We conclude that the genetic algorithm
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based approach was an improvement over the previous method as it required 480 MSMs as opposed to 868

MSMs. This improved method is sufficient to predict the optimal set of residue-pairs.

Predicting optimal label positions for calmodulin

We have used the previously published MD simulation dataset from Shukla et al. on conformational dynamics

of apo and holo C-terminal domain of calmodulin [63]. A similar analysis as for β2AR in the previous section

was performed for the apo-CaM dataset using 455 µs of simulation data. No residues were indicated as

inaccessible regions. The lower limit of DEER distance measurements was kept at 5 Å. This value may be

too close to perform an actual DEER experiment. This was done because there is no experimental data

already available for CaM and we chose this example to demonstrate that our method can be generalized.

The results with actual parameters 18-100 Å are provided in the Supplementary Figure 2.5. Thus, the

developed protocol can point future experiments to identify structural changes and possible folding pathways

of cytoplasmic proteins.

Figure 2.4: (A) GMRQ scores corresponding to MSMs constructed with the predicted sets of residue-pairs for DEER experiments
in apo C-terminal domain of calmodulin. The horizontal black line corresponds to a reference MSM constructed using all inter-residue
contacts of the protein. (B) GMRQ scores of the 1440 predicted sets of residue-pairs differentiating the number of residue-pairs (or
distances) measured in the set. (C) A cartoon representation of the apo (green, PDB: 1CFD [132]) showing the set of residue-pairs
ranked highest by our method. The holo (purple, PDB: 1CLL [133]) C-terminal domain of calmodulin is shown for comparison.

Figure 2.4A and Figure 2.4B show the scores for the MSMs based on the 1440 sets of residue-pairs identified

using the exhaustive search method. The highest ranked choice of residue-pairs is shown in Figure 2.4C

which involves residues Glu120, Gln135 and Gln143. Gln135 is close to one of the Calcium ion ligating

residue Asp133 [63], and it may not be suitable for spin label placement due to steric clashes with other ion

ligating residues. If due to experimental constraints, it is not possible to insert a spin label on some residues,

then these residues can be eliminated appropriately. Our top predicted choice of residue-pairs is widely

different from residues involved in the conformational dynamics. However, our second and fourth choices,
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Figure 2.5: (A) GMRQ scores corresponding to MSMs corresponding to MSMs constructed with the predicted sets of residue-pairs
for DEER experiments in the apo C-terminal domain of calmodulin using the genetic algorithm approach. (B) Violin plot demonstrates
the increase in GMRQ scores over 15 iterations of the genetic algorithm based method. The vertical red lines indicate the range of the
GMRQ scores within each iteration and the horizontal mark in the middle is the mean of the GMRQ scores for the current iteration.

including many others in the top rank choices, pick residues on the helix G which is distorted. Residue in

its vicinity have been used by Shukla et al. to study the local unfolding of helix G in apo-C-CaM [63]. The

genetic algorithm based approach was also used on the apo-C-CaM dataset with the same parameters as for

β2AR - population size 20, 50% mutation rate and 20% crossover rate. Here the GMRQ scores converge in

only 15 rounds (Figure 2.5A,B) and required construction of only 360 MSMs.

Predicting optimal label positions for PepTSo

In this section, we apply our method on the bacterial peptide transporter PepTSo. In our work discussed

in Chapter 4 we performed MD simulations on the protein for ∼55 µs using the inward facing crystal

structure (PDB: 4UVM [111]) as the starting structure. Multiple conformational intermediate states which

are involved in the transition from the inward facing to outward facing state were obtained.

Figure 2.6A shows the result of our exhaustive search method for 2023 MSMs. These residue sets include

1,3 or 6 residue-pairs on either the extracellular or the intracellular side the protein (Figure 2.6B). The top

choice is on the intracellular side and is shown on the protein in Figure 2.6C. Proteins belonging to the MFS

family have a common conformational change characteristic which is the alternating access mechanism of the

protein involving helix motions on both sides of the protein [134, 135]. Hence, we performed a preliminary
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analysis to obtain 2325 more sets of residue-pairs. These new sets include label positions on both intracellular

and extracellular sides of PepTSo. This was done by combining the best choice on the intracellular side with

all extracellular choices and vice versa. As expected, we observe that all of the mixed choices (Figure 2.7A,B)

are usually higher ranked. The highest ranked choice is indicated on the protein from both intracellular and

extracellular views in Figure 2.7C.

Figure 2.6: (A) GMRQ scores corresponding to MSMs constructed with the predicted sets of residue-pairs for DEER experiments
in PepTSo. The first column indicates scores for 2023 MSMs. The second and third columns indicate the MSM scores which have
only intracellular distances (ID) and extracellular distances (ED), respectively. The horizontal red lines are the GMRQ score referring
to the MSM constructed using the 8 residue-pairs distances; the residue-pairs for which DEER experimental distance distribution is
available [111]. The horizontal black lines correspond to a reference MSM constructed using inter-residue contacts on both intracellular
and extracellular, or either domains of the protein. (B) GMRQ scores of the 2023 predicted sets of residue-pairs differentiating the
number of residue-pairs (or distances) measured in the set. (C) A cartoon representation of PepTSo (PDB: 4UVM [111]) showing the
set of residue-pairs ranked highest by our method.

Figure 2.7: (A) GMRQ scores corresponding to MSMs constructed with the predicted sets of residue-pairs for DEER experiments in
PepTSo. The first column indicates scores for 4348 MSMs. The second column indicates the MSM scores which have both intracellular
distances and extracellular distances. The horizontal red lines are the GMRQ score referring to the MSM constructed using the 8
residue-pairs distances; the residue-pairs for which DEER experimental distance distribution is available [111]. The horizontal black
lines correspond to a reference MSM constructed using inter-residue contacts on both intracellular and extracellular, or either domains
of the protein. (B) GMRQ scores of the 4348 predicted sets of residue-pairs differentiating the number of residue-pairs (or distances)
measured in the set. (C) A cartoon representation of PepTSo (PDB: 4UVM [111]) showing the set of residue-pairs ranked highest by
our method on both, extracellular (left) and intracellular (right) sides of the protein.

In Chapter 4 we determine that transmembrane helices 1, 2, 4, 7, 8, and 10 are involved in the transition from

inward facing to outward facing states. As shown in Figure 2.7C, the probe positions identified are on helix 4,

10 and 11 on the extracellular side and helix 4, 9 and 11 on the intracellular side of the protein. A comparison

of an inward facing structure (PDB: 4UVM [111]) and outward facing structure in Supplementary Figure

2.6 clearly illustrates how the predicted residues are on the crucial helices. It has also been reported that
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2 helices in PepTSo, helix A and B are not present in other MFS family of proteins and do not contribute

during the alternating access mechanism of conformational change. We too observe that none of our highly

ranked choices predict residues on these two helices.

Figure 2.8: (A) GMRQ scores corresponding to MSMs corresponding to MSMs constructed with the predicted sets of residue-pairs
for DEER experiments in PepTSo using the genetic algorithm approach. (B) Violin plot demonstrates the increase in GMRQ scores
over 10 iterations of the genetic algorithm based method. The vertical red lines indicate the range of the GMRQ scores within each
iteration and the horizontal mark in the middle is the mean of the GMRQ scores for the current iteration.

The experimental DEER spectroscopy data for PepTSo measures eight residue-pair distances. [111] The MSM

corresponding to these 8 inter-residue distances is ranked high (red line in Figure 2.6A,B and Figure 2.7A,B).

These eight residue contacts together can capture the slow timescale dynamics of the protein. However, the

experimental choice involves many redundant residue-pairs which do not contribute any new information as

compared to that captured by another distance measurement. Using our method, we have predicted sets

of residue-pairs which are ranked higher than the experimental residue-pairs’ MSM. The potential of our

method is demonstrated by the fact that some of these higher ranked choices involve less than 8 inter-residue

distances. Clearly, our choices are optimal and provide a comprehensive picture of the protein’s structural

changes with a minimal set of experimental spin labels. Finally, the DEER distance distribution for our

top choice were obtained using RotamerConvolveMD [108] python library and the resulting histograms

are included in the Supplementary Figure 2.7. We have also looked at some of the lowest ranked choices

(Supplementary Figure 2.8); the lowest ranking choices on the extracellular and intracellular side of the

protein pick a pair of residues only on the 6 helices which are part of the N-bundle of the protein. Hence,
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they do not capture the relative motions of the helices from the C-bundle and the N-bundle that allow

substrate transport in the MFS family of proteins.

The genetic algorithm based approach was also used on the PepTSo dataset with the same parameters as for

β2AR and apo-C-CaM - population size 20, 50% mutation rate and 20% crossover rate. Here the GMRQ

scores converge in 10 rounds and involves construction of only 240 MSMs (Figure 2.8A,B).

2.5 Discussion

The exhaustive search method is a proof of concept of the idea that residue-pairs involved in the slow

functional dynamics can be used to perform DEER experiments. We have shown that the reported method

is an effective way to not only choose DEER experiment label positions but also minimize resource utilization

as it predicts the least number of distances to be measured. Our protocol is not specific to any protein

and can be used to study conformational heterogeneity in different types of proteins and also provides

experimentalists with multiple good choices. Thus, if a certain point mutation leads to loss of function of

the protein, another choice can be used for DEER experiments. Furthermore, we have demonstrated that

the genetic algorithm based optimization is efficient in picking residue-pairs for experiments.

The novelty of our method is the use of a large amount of dynamic information as compared to the previous

prediction methods based on static structure and sequence information [136]. In essence, MD simulation

datasets provide us with the information of pairwise residue motions that describe the structural rearrange-

ments observed during the conformational dynamics of the protein for the informed design of experiments.

Our method relies on simulation datasets that explore such structural transitions in proteins. A future

direction for our method is to include structural, thermodynamic or kinetic information available from other

experimental techniques. In such cases, experiments which provide orthogonal information would enhance

our understanding of protein dynamics. In this manner, the algorithm can be used as a tool to design ex-

periments that would capture conformations which have not been observed so far - thus, determine the best

set of experiments for a comprehensive study of protein conformational dynamics. Finally, the algorithm

could also be combined with methods that provide microscopic kinetics from stationary state distributions

to utilize simulation data from accelerated sampling methods which lack accurate kinetic information.
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2.6 Supplementary Information

MSM construction. Hyper-parameters chosen for MSM construction for the three biological proteins

analysis in the current work are mentioned in Supplementary Table 2.1. Parameters that are not indicated

have the default values as implemented in MSMBuilder3.4 [69].

Supplementary Table 2.1: MSM hyper-parameters

β2AR Apo-C-CaM PepTSo

Clustering mini-batch k-means [71] mini-batch k-means mini-batch k-means
Clusters 200 200 200
MSM timescales 5 5 5
MSM lag time 50 ns (Supplementary Figure 2.1) 50 ns [63] 24 ns (see Chapter 4)

26



Supplementary Figure 2.1: Implied timescales plot from transition probability matrix of the MSM for β2AR. Eigenvalues of the
transition probability matrix correspond to the dominant rates of transition in the MSM. The top 5 eigenvalues for the MSM shown here
converged at a lag time of ∼50 ns. The MSM was featurized based on all inter-residue contacts on the intracellular and extracellular
sides of the protein and decomposed into 200 states.

Supplementary Figure 2.2: Cartoon representation of β2AR where the residues that were ranked highest on the intracellular side
by our algorithm are indicated. The residues identified were on helix 3,4 and 6. The protein structure was obtained from the MD
simulation data set [130].
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Supplementary Figure 2.3: A comparative analysis of two runs of the genetic-algorithm-based method on the protein β2AR with
different crossover rates. The scores converge and reach higher GMRQ scores by iteration 20 in the top plot, however the bottom case
would require more number of iterations for the scores to converge.

Supplementary Figure 2.4: Violin plot demonstrating the increase in the GMRQ score over 20 iterations of the genetic-algorithm-
based method, with crossover rate of 10% on the protein β2AR. The vertical red lines indicate the ranges of the GMRQ scores within
the various iterations, and the horizontal mark in the middle of each line is the mean of the GMRQ scores for that iteration.
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Supplementary Figure 2.5: (A) GMRQ scores corresponding to MSMs constructed with the predicted sets of residue-pairs for
DEER experiments in the apo C-terminal domain of calmodulin using a DEER measurement range of 18-100 Å. The horizontal black
line corresponds to a reference MSM constructed using all inter-residue contacts of the protein. (B) GMRQ scores of the predicted sets
of residue-pairs differentiating the number of residue-pairs (or distances) measured in the set.

Supplementary Figure 2.6: Comparative analysis of the inward facing (green) and outward facing (pink) conformation of PepTSo.
The top ranked residue-pairs chosen are shown on the (A) extracellular and (B) intracellular side of the protein.
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Supplementary Figure 2.7: DEER distance distributions for the highest ranking choices in PepTSo. Inward-facing, occluded
and outward-facing plots are represented in yellow, violet and blue, respectively. The distance distributions were obtained using
RotamerConvolveMD [108].

Supplementary Figure 2.8: Low ranked choices are shown on the (A) extracellular and (B) intracellular side of PepTSo.
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Chapter 3

Maximizing Kinetic Information Gain
of Markov State Models for Optimal
Design of Spectroscopy Experiments1

3.1 Overview

Spectroscopic techniques such as Trp-Tyr quenching, luminescence resonance energy transfer, and triplet-

triplet energy transfer are widely used for understanding the dynamic behavior of proteins. These experi-

ments measure relaxation of a particular labeled set of residue-pairs and the choice of residue-pairs requires

careful thought. As a result, experimentalists must pick residue-pairs from a large pool of possibilities. In

the current work, we show that molecular simulation datasets of protein dynamics can be used to system-

atically select an optimal set of residue positions to place probes for conducting spectroscopic experiments.

The method described in this work, called Optimal Probes, can be used to rank trial sets of residue-pairs

in terms of their ability to capture the conformational dynamics of the protein. Optimal Probes ensures

two conditions, residue-pairs capture the slow dynamics of the protein and their dynamics is not corre-

lated for maximum information gain, to score each trial set. Eventually, the highest scored set can be

used for biophysical experiments to study kinetics of the protein. The scoring methodology is based on

kinetic network models of protein dynamics and a variational principle for molecular kinetics to optimize

the hyper-parameters used for the model. We also discuss that the scoring strategy used by Optimal Probes

is the best possible way to ensure the ideal choice of residue-pairs for experiments. We predict the best

experimental probe positions for proteins λ-repressor, β2 Adrenergic Receptor, and villin headpiece domain.

These proteins have been well-studied and allow for a rigorous comparison of Optimal Probes predictions

with already available experiments. Additionally, we also illustrate that our method can be used to predict

the best choice for experiments, by including any previous experiment choices available from other studies

on the same protein. We consistently find that the best choice cannot be based on intuition or structural

information such as distance difference between few known stable structures of the protein. Therefore, we

show that incorporating protein dynamics could be used to maximize the information gain from experiments.

1This chapter is reproduced with permission from Mittal S, Shukla D. Journal of Physical Chemistry B. 2018; 122(48):10793-
10805. Copyright 2018 American Chemical Society.
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3.2 Introduction

Proteins’ conformational diversity is important for the wide variety of functions they perform [1, 55]. This

diversity is due to their dynamic behavior, a change in their structure as a function of time. It is yet not

possible to directly look at the dynamics of a protein via structural experiments. Instead spectroscopy-based

methods such as electron paramagnetic resonance (DEER/EPR) [106], fluorescence-quenching, Förster reso-

nance energy transfer (FRET) and other energy transfer techniques [137,138] have emerged as critical tools

to capture conformational plasticity. Experiments can lead to characterization of key protein conformations

and capturing protein motions over a diverse range of timescales [1]. However, spectroscopy-based meth-

ods are only able to characterize few inter-atomic or inter-residue distances in a protein. Most techniques

involve labeling the target protein with a donor and an acceptor molecule at two chosen positions. Donor

and acceptors are chemical entities that can act as probes for the local/global conformational change in

the protein. The probes can be two different molecules fused to two residues in the protein. For instance,

donor xanthone (Xan) and the acceptor naphthylalanine (Nal) for Triplet-Triplet Energy Transfer (TTET)

experiments [139]; fluorophores Alexa Fluor 350, Alexa Fluor 488, Alexa Fluor 594 and others in the series

are commonly used as donor and acceptor probes for FRET [140]. Sometimes, intrinsically fluorescent amino

acids such as tryptophan is paired with a tyrosine or a cysteine, or other organic dye molecules, by generating

a mutant protein, which will participate in proton or electron transfer due to close contact [140–142]. On

the other hand, techniques such as DEER/EPR use chemically identical probes, most commonly a param-

agnetic spin label MTSSL, on two residues of the protein [92]. This site specific labeling step is followed

by monitoring the emitted fluorescence in FRET, luminescence in LRET, quenching or triplet absorbance

in TTET and interspin dipolar interaction in DEER/EPR. Since a single distance probe on the protein will

not be sufficient to characterize a protein’s dynamics or kinetics via the experimental technique, multiple

pairwise measurements need to be gathered. Multiple measurements can lead to a reliable observation of

the overall dynamics of the protein [143,144].

How do experimentalists choose the multiple residue-pairs to label in a protein? For a protein of R residues

there are R(R−1)/2 residue-pairs. If one chooses to measure distances between all residues, it would require

expressing and purifying huge quantities of the protein. This would also need large number of site specific

mutations to introduce individual probe molecules. Clearly, it is impossible to probe all residue-pairs via

an experimental technique due to resource and time limitations. If not all, but k residue-pairs are labeled

there are R(R−1)/2Ck possible ways in which k pairs can be chosen for a protein with R residues. For a 100

residue protein (R = 100) with k = 2, this accounts to almost 12 million options. Without a systematic

approach, it is unimaginable to sift through each possibility to determine the one that will be most useful
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to characterize the protein’s dynamics. As a result, experimentalists often choose residue-pairs based on

human intuition from prior structural information such as few protein structures only. Such choices may

work well for proteins which have been studied previously, but it is of no value in case the protein under

investigation is novel.

In Chapter 2, we have proposed the use of MD simulation datasets to methodically pick residue-pairs

for DEER/EPR spectroscopy measurements. DEER/EPR measures the dipolar interaction between two

paramagnetic loci in the protein and provides a distance distribution. Hence, it is a rich source for structural

information of proteins. In the current work, we extend the earlier method for MD simulation guided

prediction of residue-pair choices for kinetics experiments. A rationally chosen set of residue-pairs for

biophysical experiments should, firstly be able to characterize the dynamics that occur at a slow timescale.

Slow kinetics between conformations of the proteins indicates regions on the protein’s energy landscape that

are stable and require a high energy barrier to transition. These are often the pathways that are critical for

the biological function of proteins, such as for a protein to fold into its native state. Secondly, the choice

of residue-pairs must be such it captures conformations that have not been observed by other residue-pair

measurements. In such a manner, we aim to maximize information about protein dynamics with minimum

distance measurements. We have already demonstrated such a prediction is possible for DEER spectroscopy

experiments.

In this paper, we demonstrate the technique for three separate kinetics experiments, Trp-Tyr fluorescence

quenching [138, 141, 145, 146], luminescence resonance energy transfer (LRET) [147–151] and triplet-triplet

energy transfer (TTET) [53, 139, 152, 153]. For each experiment, we adapt the method depending on the

experimental constraints and features, and demonstrate the method’s applicability to pick ideal residue-pairs

on a protein for which prior MD dataset is available. Starting with thousands of trial sets of residue-pairs,

for each trial, we featurize the MD dataset based on the distances among those residues, decompose the

data into clusters, and build a Markov state model (MSM) [55, 154] for the protein’s dynamics. Using the

variational principle of conformational dynamics [84, 85], a generalized matrix Rayleigh quotient (GMRQ)

score is attributed to the MSM. A higher GMRQ score indicates an MSM that can estimate the slow modes

in the protein’s dynamic behavior, indicating a better MSM as opposed to another which may have a lower

GMRQ score. Hence, the high GMRQ score can also indicate a better choice of residue-pair distances used

to characterize the protein’s underlying dynamics. After scoring every trial set, we propose the highest

scoring choice of residue-pairs for experiments. MSMs provide a statistical network model to estimate the

processes which exhibit the slow dynamics in the protein and the GMRQ score is a theoretical framework to

score the extent of metastability of individual conformations discretized in the MSM. For each experimental
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technique, we compare our predicted choice with residue-pairs picked by experimentalists from literature. We

consistently find that our predicted choices are scored higher and capture the key processes in the dynamics

of the protein.

We describe our results for the experimental technique Trp-Tyr fluorescence quenching and TTET using

the folding trajectories of lambda (λ) repressor protein [155] and villin headpiece (double-norleucine HP35

mutant) [53, 156], respectively, and LRET via the activation conformational dynamics dataset for a GPCR

β2 Adrenergic Receptor (β2AR) [130]. Although it is still challenging to sample the dynamics of proteins,

long timescale MD simulations can now be performed routinely because of recent advance in computational

resources [40, 42, 43]. For each case, we also identified experiments that have previously been done on the

same protein to compare our results [146,150,153]. Since it is useful to make avail of all previous information

accessible for a protein when designing future studies, we also demonstrate inclusion of prior experiment

choices while predicting next best set of residue-pairs for kinetics experiments. An asset of our method is

that we repurpose already generated MD simulation datasets to predict the optimal residue-pair choices

for a range of experiments. Our proposed method is not restricted to a particular experimental technique.

Despite the wealth of information available in MD simulations, their use for biophysical experiment design

is not yet mainstream.

3.3 Methods

There are a large number of possibilities for choosing a set of k distances to measure using either of the three

biophysical kinetics experimental techniques; Trp-Tyr fluorescence quenching, LRET or TTET. The goal of

our method is to narrow down this search space and assign a score to each possibility. Once such a score is

assigned, the highest scoring choice of residue-pairs is picked for experiments. In this section, we discuss the

role of MD simulations, MSMs, and the variational principle in our proposed method. This is followed by

experiment technique specific features in our algorithm and a step-by-step recipe for optimal residue-pairs

prediction.

Using MD simulation datasets to obtain residue-pair distances. MD simulations of proteins can

successfully capture the atomistic detail into a protein’s conformational change [82,157] or folding mechanism

[45,47,83,155,158]. Computational simulations can validate or strengthen the experimental observations and

vice versa. MD simulations with complementary biophysical experiments, such as CryoEM [159], NMR [160,

161], small-angle X-ray scattering (SAXS) [162], DEER [110], single-molecule FRET [163], and hydrogen-

deuterium exchange coupled with mass spectrometry [164] are typical. These studies focus on different
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biomolecules and aim to address varied scientific questions. Physical observables for biophysical experiments

can be approximated either by direct or indirect order parameters calculated from simulation datasets, albeit

with many limitations [165]. For example, deuterium exchange can be estimated via a function of the amide

contacts and hydrogen bonds in the protein [164]. Distance between amino acid side chains can be used

to approximate the effect of a Tyr quenching a Trp residue [146]. Similarly, the observable for fluorescence

quenching as well as LRET and TTET can be estimated via residue-residue distances (proxy for inter-probe

distances) in the protein. These residue-pair distances are computed for every frame in the simulation data.

For example, given a set of residues {r1, r2, r3, r4}, the simulation dataset can be “featurized” using the

set all residue-pair distances{dr1,r2 , dr1,r3 , dr1,r4 , dr2,r3 , dr2,r4 , dr3,r4}. Hence, we achieve a “dimensionality

reduced” dataset where each observed conformation of the protein is represented by a 6 element vector

of inter-residue distance values, which can be used to approximate the experimental observables from the

simulation dataset.

Building Markov state models based on residue-pair distances. Once this featurization is achieved,

the conformational landscape can be decomposed into states or clusters using standard clustering algorithms.

This conformational decomposition is based on a structural characteristic which in our example case were

the 6 distances among the chosen residues of the protein. Next, transitions between the clustered states

can be recorded every τ ns where τ is called the lag time for an MSM. Given a state decomposition, we

construct an MSM by ensuring that the transition probability matrix at the given lag time (T (τ)) follows

the Markovian property and reversibility among states. MSMs obtained this way are kinetic network models

over the conformational landscape of the protein and provide an estimate of the relaxation timescales of the

protein’s dynamics via a master equation formalism [154]. The transition probability matrix T (τ) can also

be decomposed into its eigenvectors and eigenvalues, λi. The largest eigenvalue is 1 and the eigenvector

gives the equilibrium population of states in the MSM. The rest of the largest m eigenvalues correspond

to the m slowest relaxation timescales, ti, for the protein’s dynamics as ti = − τ
lnλi

. If an MSM estimates

slower relaxation times, clearly it is a better MSM. The reader must note that, any MSM we construct is

dependent on the chosen distances, such as {dr1,r2 , dr1,r3 , dr1,r4 , dr2,r3 , dr2,r4 , dr3,r4}, for featurization.

Using the variational principle to obtain GMRQ score. There are various hyper-parameters that

have to be selected when building an MSM, (i) featurization metric, (ii) number of features, (iii) use of

dimensionality reduction method, (iv) number of tICA dimensions or tICs, (v) tICA lagtime, (vi) number of

clusters, and (vii) clustering algorithm. For a given set of residues, their associated residue-residue distances

are fixed as the MSM featurization metric in our case. Thus, the number of distances is the size of the

feature vector or the number of features. Since the number of experimental measurements that can be
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performed cannot be large, our number of features are usually small. Hence, we do not use tICA or any

other dimensionality reduction protocol. For every protein, we use a lag time pre-determined using the

convergence of implied timescales criteria. We also fix the number of clusters to 200 and use mini-batch

k-means clustering algorithm. Thus, the only hyper-parameter that varies is the choice of residue-pairs.

Using a variational principle approach, the hyper-parameters used for MSM building can be optimized in

order to reach a “good” MSM which provides a reasonable estimate of the slow kinetic processes with large

relaxation times [84,85]. Osprey [125] implements the variational principle, provides a GMRQ score for given

hyper-parameters and has recently been used for MSM construction from MD simulation datasets [87,166].

Since the GMRQ score indicates how well an MSM estimates the slow relaxation times for the protein’s

dynamics, it can be used as a measure of how good the choice of the given residue-pairs is for featurization.

The GMRQ score calculation is based on k-fold cross-validation [86] of the featurized MD simulation data.

We perform a five fold cross-validation, k = 5, where the simulation data is equally split into training and

testing dataset. The eigenvectors of the MSM are estimated based on the training data, these eigenvectors

are then used to estimate the eigenvalues on the testing data. The sum of the top m eigenvalues is essentially

the score, i.e. GMRQ =
∑m
i=1 λi. The mean of 5 independent runs on the test data is the final GMRQ

score. In this manner we can determine a GMRQ score for every set of residue-pairs. However, first we need

to enumerate all possible sets of residues and the associated residue-pairs.

Reducing the number of feasible sets of residue-pairs

Residue-pair selection is dependent on experimental technique and protein dynamics. Each specific exper-

iment has its instrument and technique related constraints. We take these into account when selecting a

residue in the optimal set of residue-pairs for kinetics experiments. In addition, protein topology and protein

dynamics can provide significant insight into optimal choices for experiments. Once the first residue choice

is made, the choice for the second residue to probe can be informed based on the technique constraints and

the protein dynamics. However, if protein dynamics information from MD simulations is not available, the

probability of a good choice for the second residue will be low simply based on putative dynamic regions

judged based on a single structure. Sometimes, experimentalists may choose label positions based on large

change in a residue-pair distance between an active an inactive structure, or some other order parameter

between two stable structures. However, this is insufficient to account for the protein’s dynamics, and the

procedure described below is quintessential in systematically listing feasible sets of residue-pairs.

Trp-Tyr fluorescence quenching. To pick the first residue for probing protein dynamics appears to be

an easy choice. However, the choice of the first residue also determines the subsequent choices. Hence, it is
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Figure 3.1: Possible residue-pairs and sets of residue-pair decrease exponentially as experimental technique and MD simulation
dependent masks are incorporated in Optimal Probes. (A) In protein λ-repressor, once residue Lys26 (Cα atom shown in black) is
chosen for site-directed fluorescence labeling, there are 79 possible ways to choose another residue to probe the corresponding distance
pair. (B) Adding a constraint, to not probe residues within 2 residues of each other, the number of choices reduces to 75. Residues
shown in white are now inaccessible. (C) Excluding the disordered helix 5 of λ-repressor decreases choices to 60. (D) Based on MD
simulation data, Optimal Probes determines the residues which come within 7 Å of Lys26 to ensure fluorescence quenching. The residues
highlighted in red are only for demonstration, not based on actual distance constraints. (E) Once the possibilities are narrowed down
to 34 contacts, the second choice is easier, say Ser45 (Cα atom shown in black). (F) As the masks are added, the possible residue-pairs
drop significantly (black line). Multiple residue-pair measurements, denoted by k = 2 (purple), k = 3 (red), and k = 4 (yellow), also
decrease exponentially.

important to look at all possibilities rather than randomly choose few residue-pairs for experiments. Figure

3.1 demonstrates that upon selection of one residue, the options for the second, and further next choices

decrease, using the protein λ-repressor. Similar masking concepts can be used for any cytoplasmic protein

of interest to computational or experimental biophysicists.

In Figure 3.1A, we choose residue Lys26 on λ-repressor protein to demonstrate this concept. The Cα atom

of Lys26 is shown using VDW representation in black. At this stage it appears that there are 79 possible

choices for a residue-pair contact. To probe the slow dynamic modes in the protein, it is ideal not to probe

two residues extremely close to each other, Thus, all residues within c positions, say c = 2 of Lys26 are

removed (Figure 3.1B). The parameter c can be modified by the user in the user data provided to Optimal

Probes. If the user can give secondary structure information, our method can exclude residues which are on

the same secondary structure element. We also provide the user an option to exclude certain residues or a

range of residues, which will not be chosen while predicting optimal residue-pair sets (Figure 3.1C). As an

example, Prigozhin et al. avoided probe mutations on helix 5 (residues 71 to 86) of λ-repressor since it was

previously shown to be unstructured in solution [146]. Other reasons for elimination could be low solvent

exposure for residues within the protein core, conserved residue positions whose mutation will disrupt protein

function or charged residue positions which form salt-bridge interactions with other residues important for

the conformational switching mechanism. Further, we know that the distance between the amino acid side

chains must be smaller than 7 Å for quenching of Trp fluorescence by Tyr [146]. Based on 647.1 µs MD

simulation dataset [155] already available, the Optimal Probes algorithm masks residues which never come

within 7 Å of Lys26 and chooses only those which can definitely lead to quenching. This is shown via the

residues highlighted in red in Figure 3.1D. Reader must note that the residues shown for this masking step

are only for visual example and not based on the actual distance value. Once the possibilities are narrowed
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down to 34 contacts, the second choice is made, such as Ser45 in Figure 3.1E. This second choice is followed

by similar masks as shown in Figure 3.1A-D, and so on for the subsequent residue choices. Thus, any residue

choice made also affects the next residue choice that gets included for the trial set distances.

Figure 3.2: Possible residue-pairs and sets of residue-pair decrease exponentially as experimental technique and MD simulation
dependent masks are incorporated in Optimal Probes for a membrane protein. (A) In protein β2AR, once residue Met171 (Cα atom
shown in black) is chosen for labeling, there are 283 possible ways to choose another residue to probe the corresponding distance pair.
(B) TM region residues are susceptible to steric clashes and hence cannot be chosen for labeling, reducing the choices to 110 residues.
Residues shown in white are now inaccessible. (C) Since the chosen residue Met171 is on the extracellular end of β2AR there are 64
inter-residue contacts possible on this side. (D) Adding a constraint, to not probe residues within 2 residues of each other, the number
of choices reduces to 60. (E) Once the possibilities are narrowed down, the second choice is made, say Ile94 (Cα atom shown in black).
(F) As the masks are added, the possible residue-pairs drop significantly (black line). Multiple residue-pair measurements, denoted by
k = 2 (purple), k = 3 (red), and k = 4 (yellow), also decrease exponentially.

We use this to our advantage in the proposed method. By reducing the number of pairs, we exponentially

decrease the number of residue sets that need to be scored and can still provide the best possible choice for

experimentalists. λ-repressor, an 80 residue protein, has 3160 residue-pairs; if we can reduce this to 1000

(black line in Figure 3.1F), k = 2 experimental measurements would lead to 1000C2=499,500 residue sets, a

decrease of 90% (purple line in Figure 3.1F). With k = 3 and k = 4, this drop is 97% and 99%, respectively.

Further by introducing secondary structure information, we can decrease the set of possible residue-pairs

significantly.

LRET. In addition to the residue masks discussed for Trp-Tyr fluorescence quenching, we add additional

masks for LRET experiment choices on β2AR originating from it being a membrane protein. In Figure 3.2A

and Figure 3.2B, for demonstration, we pick residue Met171 among the 284 protein residues, followed by

masking all residues in the transmembrane (TM) region. For β2AR, 174 residues are embedded in the lipid

bilayer, leaving 110 residues on either extracellular or intracellular end of the protein as potential candidates

for attaching probes. Due to steric hindrance of bulky lipid molecules in membrane protein experiments, it

is difficult to attach long FRET or LRET fluorophore probes in the TM region. However, experimentalists

can perform Trp-Tyr fluorescence spectroscopy experiments using the inherent fluorescence of Tryptophans

already present in the TM region [167]. Here we focus on describing the masks associated with the LRET

experimental technique only. Next, since Met171 is on the extracellular side of β2AR, we restrict the second

probe choice only to the extracellular residues as well. This leaves us with 64 possible contacts with Met171

(Figure 3.2C). The other 46 residues are on the intracellular end of the protein. As discussed above, we
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mask residues within c positions of Met171, here c = 2 residues are hidden (Figure 3.2D).

In LRET, the residue-pair to which acceptor and donor fluorophores are attached must show a distance

change within the range of 10-100 Å [168]. We used 137 µs MD simulation dataset [130] to determine the

pairs which lie within the experimental range. This is followed by making the second residue choice (Ile94

in Figure 3.2E). Also, it is useful to probe the motion of helixes with respect to each other, and hence, we

can ensure the algorithm picks at most one residue on each helix while enumerating a list of all possible

residue-pair sets. The number of pairs decrease from 40186 to 2835 (92% decrease) without incorporating

any dynamics information to account for the distance change of 10-100 Å (black line in Figure 3.2F). Thus,

once this information is also included, it will lead to a further drop in the possible residue-pair possibilities.

The purple, red and yellow lines in Figure 3.2F indicate a huge decrease when listing combinations with

k = 2, k = 3, and k = 4 among these residue-pairs.

TTET. In this experimental technique, the acceptor and donor are two different chemical moieties and

they must come within the interaction range of their van der Waals radius for energy transfer to occur

between the donor and acceptor. The typical value of the interacting range is 6 Å [53], which is dependent

on the experimental instrument available. We demonstrate the predictions for TTET on a 35 residue protein

fragment of villin. Since this is a cytoplasmic protein, we use the same masks as discussed for fluorescence

quenching to reduce the subset of residues-pairs.

We have included the information necessary to incorporate the above described residue masks as user pro-

vided parameters. This can be fed to our program via an intuitive text file. A sample of this file is provided

in the Supporting Information.

Prediction of a best residue-pair set to capture slow protein motions via

experiments

In practice, we employ experimental technique constraints, protein topology information, and MD simulation

dataset to construct a list of residue-pair sets. Each of these residue-pair sets can be viably measured by

the experimental technique of choice. We refer to each set of residue-pairs listed so far as a “trial set”. In

the same example as before {r1, r2, r3, r4} is a set of residues and the corresponding trial set {dr1,r2 , dr1,r3 ,

dr1,r4 , dr2,r3 , dr2,r4 , dr3,r4} where dr1,r2 is the inter-residue distance between residues r1 and r2. Another

potential choice could be {r1, r3, r4}, leading to residue-pairs {dr1,r3 , dr1,r4 , dr3,r4} as another trial set and

so on. Accordingly, the residue-pairs among the residues will be different for every trial set.

In order to check which among the trials is the optimal residue-pair set, we use the exhaustive search strategy

for all the discussed experimental techniques. In practice optimization techniques such as a genetic algorithm
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approach can also be used to accelerate the search for the best choice. Finding an optimal set of residue-pairs

for an experiment measurement requires the following steps for every trial set of distances.

1. Featurize the MD simulation dataset using distances among the residues pairs in the trial set. In our

previous work, we use Cα-Cα distances since there is no consensus on which distance can ideally represent

the interspin distance of the MTSSL spin labels. However, for kinetics experiments, the closest heavy atom

distance is ideal as it is expected that the fluorescence, energy transfer or luminescence are primarily due to

the side chain and not the backbone interaction. However, this can be trivially altered to calculate Cα-Cα

distances or any closest atom distance. For instance, hydrogens atom distances may be the best choice for

contact calculation in proton transfer experiments. This is a subjective choice, since probes can be variable

in length, flexible and lead to some bias in the obtained experimental measurement [169].

2. Cluster the featurized data into 200 clusters using mini-batch k-means. Since our MD simulation data are

in the range of hundreds of microseconds, 200 clusters will avoid fine partitions of the conformational space

and not introduce any statistical error. Further, a smaller number of states can ensure that they correspond

to suitably populated regions on the conformational landscape or free energy minima [170].

3. Determine a GMRQ score for the MSM corresponding to the state decomposition and the transitions

among the states. We use the top 5 timescales to estimate the GMRQ score. As a result, the theoretical

maximum is 6 [86,87,166], and the GMRQ scores can range between 0 and this upper limit.

Once all trial sets are scored, the one with the highest GMRQ score is chosen as the optimal set of residue-

pairs for experiments. Details for MD simulation data, hyper-parameters for MSM construction and GMRQ

score calculation are listed in Supplementary Table 3.1, Supplementary Table 3.2, and Supplementary Table

3.3. All codes have been implemented in Python, using Numpy, MDTraj 1.7.2 [129], MSMBuilder3.4 [171]

and Osprey 1.0.0.dev0 [125] packages for specific functionalities. We use the Tcl scripting interface in VMD

1.9.3 [172] to visualize the predicted set of residue-pair choices.

Incorporating previous experiment choices when predicting next set of

residue-pairs for experiments

In order to include any previous inter-residue relaxation kinetics measurements done beforehand, we include

the corresponding residue-pairs in our trial set. If the distances available from a previous set of experiments

involved residues {ra, rb} and {rc, rd}, the trial set of distances would be, {dr1,r2 , dr1,r3 , dr1,r4 , dr2,r3 , dr2,r4 ,

dr3,r4 , dra,rb , drc,rd}. Similarly, we add the distances dra,rb and drc,rd to every trial set. Now the same

procedure as described above is followed to score the trial sets. Finally the one with the highest GMRQ
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score is chosen. The residue-pairs for which experimental information is available can be indicated in the

user’s input data. In this manner, we can still ensure that the proposed set of residue-pairs capture the slow

processes in the underlying dynamics of the protein as well as ensure maximum overall information gain.

Checking for residue solvent exposure before predicting optimal residue-pairs

for experiments

In the procedure described so far we used MD simulations to check whether the distance exhibited by the

residue-pair is within the range necessary for an experimental technique and to build MSMs. Moving on,

we can also use the dataset to check the extent of residue side chain accessibility for attaching probes.

Accessibility is a required condition for site-directed fluorescence labeling, as well as to ensure that the

probe will not introduce steric clashes and not alter the structural fold of the protein of interest. Previously,

experimentalists may sometimes check the accessibility in two known states of a protein, such as an inactive

and active conformation, or in protein homologs, and only within the native state dynamics of the folded

state of the protein [173]. However, in a solution ensemble where proteins can undergo large scale dynamics,

assuming native state dynamics or two state behavior can be grossly incorrect. Thus, it may be useful

to consider the solvent exposure of a residue throughout the conformational landscape sampled via MD

simulations. Readers will note that this might not be a concern in the case of Trp-Tyr fluorescence if no

mutants are needed and these residues are already present in the sequence of the protein.

We used a solvent accessible surface area (SASA) implementation from MDTraj [129] to determine the SASA

of each residue in the protein for every frame in the MD dataset. The algorithm provides the users with

a list of residues that manifest large SASA values over the entire MD sampled conformational landscape.

Tien et al. derived the amino acid solvent accessibility for all 20 residues and we used their theoretically

derived values as the benchmark amino-acid solvent accessibility (Supplementary Table 3.4) [174]. Further,

we used a cutoff of 80%, for example, the solvent accessibility upper bound for cysteine residue is 167 Å
2

and we check that the cysteine residue has at least 134 Å
2

SASA. If this condition is achieved, we can use

this specific cysteine to attach kinetic probe molecules. The amino acid SASA benchmark values and the

cutoff percentage can be modified by users via a text file provided as input to the code.

Computing decay rates from MD simulation for estimating kinetics experiment

observables

There is often a disagreement while making quantitative comparison between experimentally derived ob-

servables and simulation [175]. This is expected since there are key differences between simulations and
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experiments such as lipid or membrane composition, no fluorophores or probes or sequence mutations when

the proteins are simulated using MD, force-field accuracy, and buffer solution conditions. There are vari-

ous methods proposed which bias the simulation data to match with experiments, via ensemble reweight-

ing [176–179] or by using biased MD [99, 180, 181]. However, our goal in this paper is to estimate the

experimentally obtained observable from MD simulation data as accurately as possible. If we can estimate

the experimental observable, we can compare whether the Optimal Probes predicted residue-pairs for the

chosen experimental technique can indeed capture the slow dynamics of the protein. We want to make

sure that that the experimental observable we predict must be a proxy for the kinetics as observed from

fluorescence quenching, LRET or TTET experiments.

Fluorescence observable. In order to predict the relaxation time constant of distance pairs, we use a

procedure similar to that used by Prigozhin et al. for comparing Trp-Tyr quenching kinetics traces with

MD simulations [146]. For a chosen residue-pair (ri,rj), we compute the distance between the closest heavy

atom of the residues as dri,rj . This value is scaled to obtain the Dexter energy transfer efficiency [141, 146]

as,

δri,rj = e
−dri,rj

0.5 (3.1)

when the computed distances are in nanometers. We then calculate autocorrelation of δri,rj as a function

of time using Numpy function correlate and fit the resulting autocorrelation curves values with exponential

functions using scipy’s optimization function curve fit. The 4 different functions used in this paper are

summarized in Table 3.1.

Table 3.1: Fitting Functions for Decay Rates from MD Dataset

Fit Fitted parameters Equation
(Number: Variables)

Single exponential 2 : A, τ y(t) = Ae(−t/τ)

Double exponential 4 : A1, τ1, A2, τ2 y(t) = A1e
(−t/τ1) +A2e

(−t/τ2)

Stretched single exponential 3 : A, τ , β y(t) = Ae(−t/τ)β

Stretched double exponential 6 : A1, τ1, β1, A2, τ2, β2 y(t) = A1e
(−t/τ1)β1 +A2e

(−t/τ2)β2

TTET observable. For predicting TTET physical observables from MD simulations, we use an MSM based

prediction model [53]. TTET is also based on Dexter transfer mechanism and thus, in principle the method

discussed for fluorescence could also be used to estimate the TTET relaxation timescales for a protein. For

the MSM based TTET prediction model, first an MSM is constructed based on a geometric criterion. We

build our MSM based on the φ, ψ, and χ1 dihedral angles of each residue in the protein. The featurized

dataset is decomposed into 200 clusters and the transition probability matrix is determined using 1 ns lag
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time. This is followed by splitting each state into two, a “light” and a “dark” state. There is population

in the light state before quenching occurs and in the dark state post quenching. Next, transfer coefficients

and transition rates are estimated based on the contact distances. We used Cβ distance among residues for

contact calculation, except glycine for which the Cα atom was used. A cut-off of 4.4 Å for each residue was

used to estimate the TTET active boundary in order to determine whether quenching occurred [182].

3.4 Results

Optimal Probes predictions for fluorescence (Trp-Tyr) quenching spectroscopy

Figure 3.3: Optimal Probes predictions for Trp-Tyr fluorescence quenching on λ-repressor. (A) GMRQ scores for MSMs corresponding
to 3,639 trial residue sets for λ-repressor. The experimental choice MSM score is shown in dashed black line. (B) Best and lowest
GMRQ score with different number of residue-pairs (or distances) in the trial set, 10 (cyan), 6 (red), 3 (green) or 1 (blue). (C) GMRQ
scores for the trial sets of residue-pairs differentiating the number of residue-pairs (or distances) measured in the set. (D) Comparing
top 10 implied timescales for the experimental distances MSM (black) and Optimal Probes best choice distances MSM (orange) at lag
time 60 ns. (E) Cartoon representation of λ-repressor showing the experimental choice residue-pairs. (F) Cartoon representation of
λ-repressor showing the Optimal Probes predicted best set of residue-pairs.

We used Optimal Probes to predict residue-pairs for fluorescence quenching experiments. In this work,

we focus on fluorescence quenching between two naturally occurring amino acids, Trp and Tyr. We use a

primarily α-helical 80 residue fragment of λ-repressor protein to demonstrate the design of optimal fluores-

cence quenching experiments using MD simulation. We utilized 647.1 µs MD simulation dataset reported

by LindorffLarsen et al. to observe folding and unfolding events of the protein [155].

Using the masks relevant to Trp-Tyr fluorescence quenching, we scored 3,639 trial sets. Scores for these
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sets of residue-pairs range from 2.21 to 4.35 as shown in Figure 3.3A. The possible residue sets consist of

1 to 10 residue-pairs shown with different colors in Figure 3.3B,C. The highest scoring choice consists of 6

pairs with residues Glu10, Gly41, Ser45, and Tyr60. We also used the residue-pairs used by Prigozhin et al.

for Trp-Tyr experiments on λ-repressor, Trp22-Tyr33, Trp22-Phe51, Tyr33-Phe51, and Phe51-Leu69 [146]

to featurize the MD dataset, followed by assigning a GMRQ score for the corresponding MSM. We used

the same hyper-parameters to score the experimental choice of residue-pairs. The GMRQ score associated

with the experimental choice is 3.726 (dashed black line in Figure 3.3A,B and C). Many of the choices

scored by our method ranked higher than the experimental choice. This indicates that the choice made by

experimentalists may not always represent the optimal residue-pairs. Looking at the implied timescales for

the MSMs, we see that not only the slowest timescale is larger for the highest ranking predicted choice,

but the other timescales also correspond to kinetically slower processes in the protein (Figure 3.3D and

Supplementary Figure 3.1). The experimental choice distances and Optimal Probes best choice distance are

visualized in Figure 3.3E,F on the folded structure of the protein and in Supplementary Figure 3.2 on an

unfolded snapshot.

Although the experimental MSM GMRQ score is lower than the Optimal Probes best choice, the latter also

has 6 distances as opposed to 4 in the other. Hence, we also looked at the highest scoring choice with 3

distances (upper green line in Figure 3.3B), this choice has a GMRQ score of 4.23 and is still higher than

the experimental choice score. Even the top choice with a single residue-pair, Ala15-Ala66, has a score 3.71

which is very close to the four residue-pair experimental choice score of 3.726. But we also see that not all

choices with 10, 6 or 3 distances lie in the higher range and the lowest scoring choice, has a single distance,

scores at 2.21 (Supplementary Figure 3.3).

Optimal Probes predictions for fluorescence spectroscopy with prior

experimental choices

We demonstrate the inclusion of previously probed residue-pairs when predicting next set of residue-pairs

for experiments using λ-repressor as an example protein. The experiment of choice is Fluorescence (Trp-

Tyr) quenching spectroscopy, and thus, the residue masks are same as used in the previous section. Since

λ-repressor protein is a well-studied system, the experimentalists were able to make informed choices for

probe positions. This could be a possible reason for the high score associated with their choice. For optimal

residue-pairs predictions with prior experiment choices, we chose two among those four residue-pairs used by

experimentalists. We used residue-pairs Trp22-Tyr33 and Trp22-Phe51 as previously available information

(see inset in Figure 3.4A). The score for an MSM constructed using these choices is 4.428 (dashed black line
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in Figure 3.4A). Optimal Probes predictions for GMRQ scores range from 3.56 to 4.97. The Optimal Probes

predicted highest scoring choice has 6 distances, shown on the λ-repressor folded structure in Figure 3.4B

and unfolded structure in Supplementary Figure 3.4. The top choice with 3 distances and 2 distances yield a

GMRQ score of 4.89 and 4.48, respectively. In all, 897 sets of residue-pairs were scored to obtain the optimal

choice which improved the score associated with a two residue-pair choice used as previous information. In

this manner, Optimal Probes can design experiments on proteins studied using the same or other kinetics

experimental techniques that can generate incremental knowledge into the protein’s dynamics.

Figure 3.4: Optimal Probes predictions for fluorescence quenching experiments with previous information on λ-repressor. (A) residue-
pairs Trp22-Tyr33 and Trp22-Phe51, used as previous experiment choices for predictions using Optimal Probes, are shown on the folded
structure of the protein. The corresponding GMRQ score is 4.428 (dashed black line). Optimal Probes predicted sets with different
number of residue-pairs (or distances) in the trial sets are shown separately for 1, 3, and 6 distances. (B) Cartoon representation of
λ-repressor showing the Optimal Probes predicted best choice of distances. Residues are labeled in Supplementary Figure 3.4.

Optimal Probes predictions for LRET spectroscopy

In this section, we demonstrate that Optimal Probes successfully predicts residue-pairs for LRET experi-

ments. In LRET, the probes are a lanthanide series cation (Terbium or Europium) and a fluorophore which

are fused to two residues in the protein, followed by measuring the luminescence energy transfer from the

donor to the acceptor. We show our results on the β2AR protein, a G-protein coupled receptor (GPCR).

The activation mechanism of this GPCR was extensively studied via long timescale MD simulations by Dror

et al. of which we used 137 µs spread over 24 trajectories ranging from 2 to 15.42 µs [130]. To prepare

viable sets of residue-pairs before GMRQ scoring, we use the residue masks as discussed before and shown

in Figure 3.2A-D.

LRET experiments have only been recently used to study conformational changes in membrane proteins.

Thus, this experimental technique has not yet been used on β2AR. However, DEER and FRET experiments
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have been performed on β2AR previously [110, 163] and it is a well-characterized protein. Another similar

GPCR protein, arginine-vasopressin type 2 receptor (V2R) was studied using LRET experiments [150].

Activation mechanism of V2R was observed to be consistent with observation for β2AR and rhodopsin

GPCRs. Rahmeh et al. used two residue-pairs in V2R to probe using LRET with donor fluorophore

Fluorescein Arsenical Helix binder (FlAsH) and the acceptor Lumi4-terbium maleimide (Lumi4-Tb) [150].

Luminescence emission between the probes was monitored to estimate the decay rates timescales associated

with inter-residue contact formation. Since we want to be able to use transferable insights between similar

proteins, we use equivalent positions on the β2AR protein Leu266-Arg344 and Ser329-Arg344 as a proxy for

LRET experiments on V2R (see Supporting Information for details). In this work, all further references to

experiment choices on β2AR protein refer to these two residue-pairs.

Scores for 13,323 sets of residue-pairs range from 1.08 to 5.52 (Figure 3.5A). We can also look at the choices

separately on either the intracellular or extracellular side of the protein. The possible residue sets consist of

either 1, 3, 6, 10, or 15 residue-pairs (Figure 3.5B,C). The highest scoring choice consists of 10 residue-pairs.

The experimental choice MSM scored at 3.726 and has residues pairs on the intracellular end (dashed black

line in Figure 3.5A,B and C). The implied timescale plots (Figure 3.5D, Supplementary Figure 3.5) show

that the Optimal Probes predicted best choice is able to capture slowest modes of the protein by a difference

of greater than an order of magnitude. The experimental choice distances and Optimal Probes best choice

distance are visualized in Figure 3.5E,F. The Optimal Probes predicted top choices with 10 and 6 distances

(Figure 3.5G) have very similar scores. Thus the choice with 6 distances would be sufficient.

In order to obtain optimal residue-pairs for LRET experiments on both the intracellular and extracellular

side of the β2AR protein together, we generated a list of mixed trial sets of residue-pairs. We chose the

highest scoring set each with 1, 3, 6, 10, and 15 residue-pairs. If the highest choice was on the intracellular

side, we combined it with all possible choices on the extracellular side and vice-versa. We then ranked the

mixed trial sets using the same Optimal Probes protocol. The scores ranging from 2.69 to 5.66 are shown

in Supplementary Figure 3.6. The scored choices consist of a minimum of 2 residue-pairs to a maximum of

25 residue-pairs. The highest scoring choice consists of 13 residue-pairs, 10 on the extracellular side and 3

on the intracellular side (Supplementary Figure 3.7).

Optimal probes predictions for TTET

In this section, we demonstrate that Optimal Probes can successfully predict residue-pairs for TTET exper-

iments. We use 354.9 µs simulations of villin headpiece double-norleucine HP35 mutant protein [53, 156].

The MD dataset consists of large number of small trajectories for this α-helical 35 residue protein fragment.
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Figure 3.5: Optimal Probes predictions for LRET on β2AR. (A) GMRQ scores for MSMs corresponding to 13,323 trial residue
sets for β2AR. The second and third columns indicate the GMRQ scores for trial sets that have only intracellular side distances and
extracellular side distances, respectively. The experimental choice MSM score is shown in dashed black line. (B) Best and lowest
GMRQ score with different number of residue-pairs (or distances) in the trial set, 15 (magenta), 10 (cyan), 6 (red), 3 (green) or 1
(blue). (C) GMRQ scores for the trial sets of residue-pairs differentiating the number of residue-pairs (or distances) measured in the
set. (D) Comparing top 10 implied timescales for the experimental distances MSM (black) and Optimal Probes best choice distances
MSM (skyblue) at lag time 50.4 ns. (E) Cartoon representation of β2AR showing the experimental choice residue-pairs. (F) Cartoon
representation of β2AR showing the Optimal Probes predicted best set of residue-pairs with 10 distances. (G) Cartoon representation
of β2AR showing the Optimal Probes predicted best set of residue-pairs with 6 distances.

The masks used to reduce the initial set of choice are similar to fluorescence quenching. We use closest heavy

atom scheme to calculate all distances to featurize the MD simulations.

Upon scoring, 10,964 trials sets in all, we obtained scores for these sets ranging from 0.997 to 5.91 as shown

in Figure 3.6A. The possible residue sets consist of 1, 3, 6 or 10 residue-pairs as shown in different colors

in Figure 3.6B,C and the highest scoring choice consists of 10 residue-pairs (cyan). TTET experiments are

available for the residue-pairs Lys6-Trp22, Leu0-Trp22, Trp22-Phe34, and Leu0-Phe24 [153]. An MSM was

constructed using these inter-residue distances and the GMRQ score for the same was 5.39 (dashed black

line in Figure 3.6A,B and C). As in the previous examples for λ-repressor and β2AR, we see that there are

many choices scored higher than the experimental choice. Although, the experimental choice is not optimal,

but it can be called a good choice. Any randomly chosen set of residue-pairs would not have ranked as high.

We postulate that the experimentalists were able to make a good choice because villin has been studied

extensively in literature as a model protein for folding studies.

Moreover, we observe that Optimal Probes scored all of the trial set choices with 10 or 6 residue-pairs higher

than the experimental choice which had 4 residue-pairs (cyan and red line in Figure 3.6B). Infact, of all

the trial sets, 38% of the choices included 5 residues and the 10 distances among them. Only some of the

47



Figure 3.6: Optimal Probes predictions for TTET on villin. (A) GMRQ scores for MSMs corresponding to 10,964 trial residue
sets for villin. The experimental choice MSM score is shown in dashed black line. (B) Best and lowest GMRQ score with different
number of residue-pairs (or distances) in the trial set, 10 (cyan), 6 (red), 3 (green) or 1 (blue). (C) GMRQ scores for the trial sets of
residue-pairs differentiating the number of residue-pairs (or distances) measured in the set. (D) Comparing top 10 implied timescales
for the experimental distances MSM (black) and Optimal Probes best choice distances MSM (yellow) at lag time 1 ns. (E) Cartoon
representation of villin showing the experimental choice residue-pairs. (F) Cartoon representation of villin showing the Optimal Probes
predicted best set of residue-pairs with 10 distances.

choices with 3 residues pairs are lower ranked than the experimental choice. But, all choices with a single

residue-pair are considerably lower ranked, the highest one scoring at 5.32. Just by a difference of one residue

Leu21 instead of Pro20, the score changed drastically to 2.89. Beauchamp et al. also observe significant

differences in the kinetics of residue-pairs just by changing a single residue in villin [53]. The implied

timescales plot (Figure 3.6D and Supplementary Figure 3.8) show the top 10 timescales for the experimental

distances MSM and Optimal Probes best choice distances MSM in black and yellow, respectively. Most

of the estimated timescales for the protein’s dynamics are larger for the Optimal Probes highest ranked

choice. The experimental choice distances and Optimal Probes best choice distance are visualized in Figure

3.6E,F on the folded structure of the protein and in Supplementary Figure 3.9 on an unfolded snapshot.

The highest ranking choice with 6 distances scored at 5.86 (Supplementary Figure 3.10), which is very close

to the highest scoring choice overall at 5.91.

We also looked at the distance distribution of residue-pairs in the experimental set (Supplementary Figure

3.11) which usually showed a single peak. But, this is not seen in the distance distribution for the best

ranking choices with 10 or 6 distances. This bodes well since, Optimal Probes is able to pick residue-pairs

which have different values in metastable states because of structural differences and hence important in
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the protein’s unfolding/folding. Atleast in the experimental choice for TTET, the distances in the native

state span over 1 nm (dotted lines in Supplementary Figure 3.11A). However, for λ-repressor, most distances

picked by experimentalists have native state values which are <5 Å, whereas the distance choices picked

by Optimal Probes have varying values (dotted lines in Supplementary Figure 3.12 and Supplementary

Figure 3.13). TTET relaxation times are obtained using the methodology proposed by Beauchamp et al.

as described in the Methods section and is shown in Supplementary Figure 3.14 [53]. The residue-pairs

which are dark either cannot exhibit TTET (as derived from the constructed MSM) or have extremely slow

relaxation times. We also highlight the experimental residue-pairs in the lower triangle and the Optimal

Probes predicted best choice residue-pairs (in the upper triangle) through yellow stars.

3.5 Discussion

In common practice, it can seem obvious to assume that distances that show most change between the folded

and the unfolded structure would be a good choice for experiments. A distance difference plot, between the

folded and unfolded structures of λ-repressor (Supplementary Figure 3.15) can show the residue-pairs that

undergo large distance changes. Similarly, we can obtain the distance difference plots for villin (Supple-

mentary Figure 3.16) and between the active and inactive structures of β2AR (Supplementary Figure 3.17).

But, based on these plots it appears that many residue-pair possibilities can be chosen. Potentially, acces-

sibility or solvent exposure of residues could be used to narrow down choices. We observe that accessibility

of residues cannot help experimentalists choose the optimal residues for experiments, it can only reduce the

possible choices. This functionality is included in Optimal Probes as discussed in the Methods section. Also,

some choices that appear to be non-optimal from these criterion may be kinetically important and hence

provide information about the slow dynamics of the protein. This is evident from the distance difference

maps where the distances picked by experimentalists and by Optimal Probes are highlighted with yellow

stars. The choices that are found kinetically relevant by experimentalists and by Optimal Probes do not

necessarily show a large distance change in the structures compared.

In order to take the kinetics into account, can experimentalists use decay rates for each individual distance?

We can estimate the kinetic decay rates for each of the distance pairs from the MD simulation data using

the procedure detailed in Methods. The τslow values from residue-pair autocorrelation for λ-repressor and

β2AR residue-pairs are shown in the Supporting Information (Supplementary Figure 3.18, Supplementary

Figure 3.19, and Supplementary Figure 3.20). The estimated TTET relaxation times for villin are shown

in Supplementary Figure 3.14. In Supplementary Figure 3.18A, among the four distances, only three dis-
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tances could be fit using the double exponential fit function in Table 3.1. This is consistent with previous

observations [146]. Supplementary Table 3.5 and Supplementary Table 3.6 list the functions used to fit

autocorrelation curves for every distance referenced in this work. As seen from the autocorrelation decay

curve figures not all distances could be fit, but it appears (visually) that some of these distances correspond

to the slow dynamics of the protein. If we can determine the decay rates from MD datasets, why are the

estimated slow timescale values not a sufficient condition for optimal experiment choice? This is because

orthogonality among residue-pairs is also necessary. If the dynamics of two residue-pairs are correlated, then

the protein dynamics information captured by one among the chosen pairs is redundant and does not add

any new information.

One way to look at the correlation among residue-pairs (or distances) in MD simulations is through the

dynamic cross correlation (DCC). The procedure for DCC calculation is described in the Supporting In-

formation. As seen in the DCC maps in Supplementary Figure 3.21, Supplementary Figure 3.22, and

Supplementary Figure 3.23 for λ-repressor, β2AR, and villin, respectively, many of the pairwise distances

show no correlation (DCC values close to 0). In Supplementary Figure 3.21A, the 4 experimental choice

distances of λ-repressor show high correlation values which means they do not capture most of the processes

that are necessary in the folding of the protein. We also observe the DCC values for residue-pairs on the

intracellular side and the ones on the extracellular side of protein β2AR show less correlation as compared

to residue-pairs on the same side. This is seen by the formation of a distinct pattern of two squares, a

10 × 10 and another of 3 × 3, in Supplementary Figure 3.20C for 10 extracellular distances and 3 intra-

cellular distances. However, DCC values do not seem to provide a clear cut-off that can indicate a good

set of residue-pairs. This leaves out correlation as a bad measure for choosing optimal residue-pair choices.

Moreover, pairwise DCC calculations are non-trivial to perform for long timescale simulation datasets.

Previously, in Chapter 2 we had shown that MD simulations can aid in experiment design for DEER

spectroscopy by maximizing the information gain from the experimental observations. Recently, Hays et

al. iteratively performed DEER restrained simulations for DEER experiment design [183]. They maximize

mutual information among residue-pairs to ensure maximal information gain. The iterative scheme only

guarantees that the chosen residue-pairs will lie on the parts of the protein that do not undergo simultaneous

conformational change. It is expected that the initial rounds of iterative design will select for fast moving

but likely functionally irrelevant conformational change processes in the protein. Finally, DEER or other

EPR spectroscopy methods are primarily focused towards structural information. In this work, we argue

that Optimal Probes is the method of choice for simulation guided design of kinetics experiments. Searching

for the best choices based on τslow and DCC is not straightforward, and will require some trade-offs on both
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ends. In contrast, GMRQ provides a framework which assigns a high score to an MSM that can capture the

kinetically slowest motions in the protein, as well as motions that are independent or not-correlated to each

other. Evidently a scoring method based on GMRQ, as used in Optimal Probes is necessary for the design

of spectroscopy experiments.

Through the application of Optimal Probes on three different experimental techniques and different proteins,

we illustrate that the method can be used for most types of energy transfer spectroscopy methods. Depending

on the natural amino acids used as acceptor or quencher, or use of external fluorophores, the user can

modify the distance constraint for quenching and adapt the Optimal Probes for their choice of fluorescence

spectroscopy. For example, recently Watson et al. have proposed the use of selenomethionine (MSe) for

Trp quenching to probe protein dynamics. This technique requires a van der Waals interaction between

the Se-atom and the Trp residue for quenching to occur via electron transfer [184]. Instead of a mask

of 7 Å for Trp-Tyr quenching, a value of 3-4 Å can be used to ensure that the residues will be in the

van der Waals contact range. Thus, optimal residue-pairs can be chosen for experiments employing MSe

quenching of Trp Fluorescence. We also propose that Optimal Probes can help design experiments for live

cells or in vivo studies. A direct application is to employ some of the recently collected crowding simulation

datasets [185,186] to predict residue-pairs for fast relaxation imaging (FReI) [187] experiments to understand

the protein dynamics in vivo. This can also be key to understand the difference in protein kinetics in vitro

versus in vivo.

As readers would note, extensive MD simulations datasets are the basis for probes prediction using our

method to determine the inter-residue distances in the dynamics datasets. Moreover, the experimentally

obtained measurement is between the chemical probes and hence not exactly between the protein’s back-

bone residues or amino acid side chains. Oftentimes, the sequence of the protein on which experiments

are performed are not exactly the same as for MD, since site-specific mutations are required to perform

quenching experiments. Thus, all conclusions drawn provide a qualitative and global picture for the folding

or conformational change of proteins. For instance, the predictions for TTET relaxation times of distances

can also be dependent on the hyper-parameters used for MSM construction among other factors [53]. These

differences exist in most interpretations that combine experiments and simulation based studies. Moreover,

prior to spectroscopic experiments, it may be necessary to test that the function of the protein is not lost

entirely. This is not yet possible using computational predictions. If a potential method can predict func-

tional loss from mutagenesis, it can be included within the framework of Optimal Probes such that those

residues are not selected for optimal residue-pair predictions. Web servers such as DynaMut [188], Site

Directed Mutator [189], and I-Mutant 2 [190] can predict the effects of point mutations on protein stability
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which could be used to asses protein function. We report the difference in free energy values (∆∆G) upon

site-specific mutations in Supplementary Table 3.7, Supplementary Table 3.8, and Supplementary Table 3.9

using the recent web server DynaMut.

Further, we also made predictions for LRET experiments on β2AR using two residue-pair choices as previous

information (data not shown). Since V2R is a considerably less studied protein, these positions can be

mapped back onto V2R residue choices for future experiments. Hence, our method can potentially also be

used for making residue-pair predictions for kinetic experiments on a protein whose X-ray/NMR/Cryo-EM

structure is not available by using MD simulation dataset of a structurally similar protein.

Atomistic simulations have been a means to rationalize conclusions post experiments and to enhance low-

resolution experimental information [191]. However, to the best of our knowledge Optimal Probes protocol

is the first method to utilize detailed atomistic simulation data to design experiments in a standardized

manner. In our work, we have provided the first steps towards a feedback like cascade for simulations and

experiments, where information can flow both ways. We envision a situation where both simulations and

experiments stimulate each other and enable scientists to understand protein dynamics.
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3.6 Supplementary Information

Calculating dynamic cross correlation. Dynamic cross correlation (DCC) is defined as

DCC(dr1,r2 , dr3,r4) =
〈∆dr1,r2(t) ·∆dr3,r4(t)〉t√

〈||∆dr1,r2(t)||2〉t
√
〈||∆dr3,r4(t)||2〉t

(3.2)

∆dr1,r2(t) = dr1,r2(t)− 〈dr1,r2(t)〉t

∆dr3,r4(t) = dr3,r4(t)− 〈dr3,r4(t)〉t

where 〈A〉t means the ensemble average of the quantity A. This formulation of DCC among distances is

based on the DCC analysis for the motions between atoms from MD simulations [192]. DCC values for

residues pairs with themselves are expected to show correlation value of 1.

Extracting unfolded structures from MD simulation dataset. The unfolded structure chosen for

visualization is the MD simulation data frame with the highest radius of gyration. For λ-repressor, the data

frame with Rg = 24.71 Å is chosen. In contrast, the Rg for the folded structure is ∼12 Å. The unfolded

structure chosen for villin is the MD simulation data frame with ∼22 Å, whereas the Rg for the folded

structure is ∼10.02 Å. All Rg values are determined using MDTraj [129].

Choosing equivalent positions for LRET experiment residues on β2AR. Rahmeh et al. used

residue-pairs Ala267-Cys358 and Ser330-Cys358 in V2R for LRET probes [150]. In both distance measure-

ments, Cys358 was labeled with the donor Fluorescein Arsenical Helix binder (FlAsH). Ala267 is the last

residue on TM helix 6 in V2R at the intracellular side, the corresponding residue in β2AR is Leu266 on TM

helix 6. Similarly, Ser330 is the last residue on TM helix 7 in V2R at the intracellular side, corresponding to

residue Ser329 for β2AR. A sequence alignment for the two proteins, human V2R and β2AR, was generated

using T-Coffee web server [193] and is shown in Supplementary Figure 3.24. Experimentalists chose Cys358

as a probe for the TM helix 8 in V2R. For this, we use the last residue on TM helix 8 of β2AR which is

Arg344. Thus, the equivalent residue-pairs on β2AR are Leu266-Arg344 and Ser329-Arg344.

Using stretched exponential fitting functions. As listed in Supplementary Table 3.5 and Supplemen-

tary Table 3.6, some of the distances are fitted to a single or double stretched exponential function. The

physical consequence of this choice could be that there are multiple pathways adopted by the protein for

the given distance choice. As a result, the β, β1 or β2 factors in the stretched exponential can distribute the

timescales of all the pathways in order to obtain the final distance decay rate. Stretched exponentials for

proteins motions have been used previously [194] and in particular for luminescence emission decay rates.
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Supplementary Table 3.1: Simulation datasets and MSM hyper-parameters (λ-repressor)

Experiment Trp-Tyr fluorescence spectroscopy

Protein λ-repressor, λ6−85

Residues 80
Dataset 647.1 µs from LindorffLarsen et al. [155]
Trajectory frames timestep 200 ps
Analysis stride 10 frames

Clustering algorithm mini-batch k-means
Number of clusters 200
MSM timescales 5
MSM lag time 60 ns, 30 ns #1

Number of MSMs scored 3,639 & 897 #1

Experiments previously reported Yes [146]

#1: Only for residue-pair predictions with previous available information.

Supplementary Table 3.2: Simulation datasets and MSM hyper-parameters (β2AR)

Experiment Luminescence resonance energy transfer

Protein β2 Adrenergic Receptor, β2AR
Residues 284#1

Dataset 137 µs from Dror et al. [130] #2

Trajectory frames timestep 180 ps
Analysis stride 10 frames

Clustering algorithm mini-batch k-means
Number of clusters 200
MSM timescales 5
MSM lag time 50.4
Number of MSMs scored 13,323 (one-side) & 1963 (two-side)
Experiments previously reported Yes [150] #3

#1: β2AR actual protein is larger but 41 residues on the intracellular side, between TM helixes 6 and
7, are missing from the crystal structure (PDB: 3P0G [131]) and in the MD simulations [130].

#2: Only protein backbone coordinates of system A are extracted from the published dataset for the
current analysis.

#3: Available experiments are for a different GPCR, V2R.

Supplementary Table 3.3: Simulation datasets and MSM hyper-parameters (villin)

Experiment Triplet-triplet energy transfer

Protein Villin headpiece double-norleucine HP35 mutant
Residues 35
Dataset 354.9 µs from Beauchamp et al. [53, 156]
Trajectory frames timestep 250 ps
Analysis stride 4 frames

Clustering algorithm mini-batch k-means
Number of clusters 200
MSM timescales 5
MSM lag time 1 ns
Number of MSMs scored 10,964
Experiments previously reported Yes [153]
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Supplementary Table 3.4: Solvent accessibility of protein residues

Residue (3 Letter code) Solvent accessibility (Å
2
) #1

Ala 129
Arg 274
Asn 195
Asp 193
Cys 167
Glu 223
Gln 225
Gly 104
His 224
Ile 197
Leu 201
Lys 236
Met 224
Phe 240
Pro 159
Ser 155
Thr 172
Trp 285
Tyr 263
Val 174

#1: From Tien et al. [174]

Supplementary Table 3.5: Fitting function for residue-pair choices (λ-repressor)

Experiment Choice residue-pair Fit

Fluorescence spectroscopy Experiment 22, 33 Double exponential
22, 51 Double exponential
33, 51 Double exponential
51, 69 None

Optimal Probes Best 10, 41 Stretched double exponential
10, 45 Double exponential
10, 60 Double exponential
41, 45 Double exponential
41, 60 Stretched single exponential
45, 60 Stretched single exponential
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Supplementary Table 3.6: Fitting function for residue-pair choices (β2AR)

Experiment Choice residue-pair Fit

LRET Experiment 266, 344 Stretched single exponential
329, 344 Stretched single exponential

Optimal Probes Best 105, 171 Stretched double exponential
(10 distances) 105, 183 Stretched double exponential

105, 297 Stretched double exponential
105, 306 Stretched single exponential
171, 183 Stretched double exponential
171, 297 None
171, 306 Stretched double exponential
183, 297 Stretched single exponential
183, 306 Stretched single exponential
297, 306 Stretched single exponential

Optimal Probes Best 102, 171 None
(6 distances) 102, 297 Double exponential

102, 306 Stretched single exponential
171, 297 None
171, 306 Stretched double exponential
297, 306 Stretched single exponential

Optimal Probes Best 105, 172 None
(Two-sided) 105, 183 Stretched double exponential

(13 distances) 105 297 Stretched double exponential
105, 306 Stretched single exponential
172, 183 Stretched double exponential
172, 297 Stretched single exponential
172, 306 Single exponential
183, 297 Stretched single exponential
183, 306 Stretched single exponential
297, 306 Stretched single exponential
147, 268 Stretched double exponential
147, 333 Double exponential
268, 333 None
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Supplementary Table 3.7: Effect on protein stability (β2AR)

Residue positions choice Mutation ∆∆G (kcal/mol)

Optimal Probes Best W105C 1.841
(5 residues) M171C 1.366

N183C 1.733
V297C 1.451
E306C 1.872

M171W 1.493
N183W 1.574
V297W 1.464
E306W 1.85

W105Y 1.887
M171Y 1.529
N183Y 1.536
V297Y 1.438
E306Y 1.872

Experiments N148C 1.745
(Manglik et al. [110]) L266C 1.225

Supplementary Table 3.8: Effect on protein stability (λ-repressor)

Residue positions choice Mutation ∆∆G (kcal/mol)

Optimal Probes Best E10C -0.144
(4 residues) G41C -0.677

S45C -0.043
Y60C -0.03

E10W 0.913
G41W -0.131
S45W 0.097
Y60W 0.699

E10Y 0.179
G41Y -0.865
S45Y 0.051

Experiments F51Y -0.391
(Prigozhin et al. [146]) L69W 0.75
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Supplementary Table 3.9: Effect on protein stability (villin)

Residue positions choice Mutation ∆∆G (kcal/mol)

Optimal Probes Best K6C -0.716
(5 residues) G10C 0.916

S14C 0.101
L21C -0.011
H26C 0.515

K6W 0.575
G10W -0.314
S14W 0.967
L21W -0.268
H26W 0.827

K6Y 0.089
G10Y 1.347
S14Y 0.055
L21Y -0.202
H26Y 2.751

58



Supplementary Figure 3.1: Comparing top 10 implied timescales for the experimental distances MSM and Optimal Probes best
choice distances MSM as a function of lag time on λ-repressor MD simulation dataset.

Supplementary Figure 3.2: (A) Cartoon representation of λ-repressor (unfolded structure) showing the experimental choice residue-
pairs. (B) Cartoon representation of λ-repressor (unfolded structure) showing the Optimal Probes predicted best set of residue-pairs.
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Supplementary Figure 3.3: Cartoon representation of λ-repressor showing the Optimal Probes predicted lowest scoring choice
residue-pairs.

Supplementary Figure 3.4: Optimal Probes predictions for fluorescence quenching experiments with previous information on
λ-repressor. (A) residue-pairs Trp22-Tyr33 and Trp22-Phe51 are used as previous experiment choices for predictions using Optimal
Probes. (B) Predicted best choice of experiments includes 6 distances, among residues Ala15, Gly53, Ala56, and Tyr60.
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Supplementary Figure 3.5: Comparing top 10 implied timescales for the experimental distances MSM and Optimal Probes best
choice distances MSM as a function of lag time on β2AR MD simulation dataset.

Supplementary Figure 3.6: Optimal Probes predictions for LRET on both, extracellular and intracellular sides of β2AR. (A)
GMRQ scores for MSMs corresponding to 1963 trial residue sets for β2AR. The experimental choice MSM score is shown in dashed
black line. (B) GMRQ scores for the trial sets of residue-pairs differentiating the number of residue-pairs (or distances) measured in
the set.
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Supplementary Figure 3.7: Cartoon representation of β2AR showing the Optimal Probes predicted best and lowest choice residue-
pairs, for probes on both extracellular and intracellular side.
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Supplementary Figure 3.8: Comparing top 10 implied timescales for the experimental distances MSM and Optimal Probes best
choice distances MSM as a function of lag time on villin MD simulation dataset.

Supplementary Figure 3.9: (A) Cartoon representation of villin (unfolded structure) showing the experimental choice residue-pairs.
(B) Cartoon representation of villin (unfolded structure) showing the Optimal Probes predicted best set of residue-pairs.
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Supplementary Figure 3.10: Cartoon representation of villin showing the Optimal Probes predicted best set of residue-pairs with
6 distances.
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Supplementary Figure 3.11: Distance distribution for villin (A) experimental choice, (B) Optimal Probes predicted best choice
(10 distances), and (C) Optimal Probes predicted best choice (6 distances) residue-pairs. The dotted lines are the distance values are
observed in the native (folded) structure.
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Supplementary Figure 3.12: Equilibrium population distribution of states in the λ-repressor MSMs. First eigenvector of the
transition probability matrix shows the equilibrium population of all conformational states. Plot of the equilibrium populations
projected onto distances in the experimental residue-pairs MSM (left) and Optimal Probes predicted best choice residue-pairs MSM
(right). Blue dots are individual states. Histogram in gray is the binned sum of all states with a particular value of distance (x-axis).
The dotted lines are the distance values are oberved in the native (folded) structure.

Supplementary Figure 3.13: Slowest dynamical process in the λ-repressor MSMs. Second eigenvector of the transition probability
matrix shows the slowest process in the protein’s dynamics. Plot of the second eigenvector projected onto distances in the experimental
residue-pairs MSM (left) and Optimal Probes predicted best choice residue-pairs MSM (right). Blue dots are individual states. His-
togram in gray is the binned sum of all states with a particular value of distance (x-axis). The dotted lines are the distance values are
observed in the native (folded) structure.
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Supplementary Figure 3.14: TTET relaxation times for villin residue-pairs. The experimental residue-pairs in the lower triangle
and the Optimal Probes predicted best choice residue-pairs (in the upper triangle) through yellow stars

Supplementary Figure 3.15: Distance difference plot between λ-repressor folded and unfolded structure. Yellow stars marked on
the distance difference plot on the right show the distances picked by experimentalists [146] and by Optimal Probes’ best choice in the
lower triangle (also shown in green boxes) and upper triangle (also shown in gray boxes), respectively.
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Supplementary Figure 3.16: Distance difference plot between villin folded and unfolded structure. Yellow stars marked on the
distance difference plot show the distances picked by experimentalists [153] in the lower triangle (also shown in green boxes). The
Optimal Probes’ best choice is shown in the upper triangle (also marked in gray boxes) of the center color-map. The Optimal Probes’
best choice with 6 distances is shown in the upper triangle (also marked in yellow boxes) of the right color-map.

Supplementary Figure 3.17: Distance difference plot between β2AR active and inactive structure. Yellow stars marked on the
distance difference plot on the right show the distances picked by Optimal Probes’ best choice (upper triangle) and Optimal Probes’
best choice with 6 distances (lower triangle).
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Supplementary Figure 3.18: Kinetic decay rates of residue-pairs for fluorescence experiments on λ-repressor. Autocorrelations
from MD data (dashed lines) and the fits (solid lines) of the Dexter-weighted distance for residue-pairs in (A) experimental choice,
and (B) Optimal Probes predicted best choice. τslow obtained using the fit of the Dexter-weighted distance for residue-pairs in (C)
experimental choice, and (D) Optimal Probes predicted best choice.
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Supplementary Figure 3.19: Kinetic decay rates of residue-pairs for LRET experiments on β2AR. Autocorrelations from MD
data (dashed lines) and the fits (solid lines) of the Dexter-weighted distance for residue-pairs in (A) experimental choice, (B) Optimal
Probes predicted best choice (overall), and (C) Optimal Probes predicted best choice with 6 distances. τslow obtained using the fit of
the Dexter-weighted distance for residue-pairs in (D) experimental choice, (E) Optimal Probes predicted best choice (overall), and (C)
Optimal Probes predicted best choice with 6 distances.

70



Supplementary Figure 3.20: Kinetic decay rates of residue-pairs and dynamic cross correlation among residue-pairs for LRET
experiments on both, extracellular and intracellular sides of β2AR. (A) Autocorrelations from MD data (dashed lines) and the fits
(solid lines) of the Dexter-weighted distance for residue-pairs in the Optimal Probes predicted best choice. (B) τslow obtained using
the fit of the Dexter-weighted distance for the 13 residue-pairs, 10 on extracellular side and 3 on intracellular side. (C) Pairwise DCC
among the 13 residue-pairs.

Supplementary Figure 3.21: Pairwise DCC among residue-pairs in (A) experimental choice, and (B) Optimal Probes best predicted
choice for λ-repressor.
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Supplementary Figure 3.22: Pairwise DCC among residue-pairs in (A) experimental choice, (B) Optimal Probes best predicted
choice (overall), and (C) Optimal Probes best predicted choice (6 distances) for β2AR.
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Supplementary Figure 3.23: Pairwise DCC among the residue-pairs in experiments, best predicted choice (overall), and best
predicted choice with 6 distances for villin.

Supplementary Figure 3.24: A sequence alignment of the human V2R and β2AR proteins obtained using T-Coffee [193].
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Chapter 4

Free Energy Landscape of the
Complete Transport Cycle in a Key
Bacterial Transporter1

4.1 Overview

PepTSo is a proton-coupled bacterial symporter, from the major facilitator superfamily (MFS), which trans-

ports di/tri-peptide molecules. Recently obtained crystal structure of PepTSo provides unprecedented op-

portunity to gain an understanding of functional insights of substrate transport mechanism. Binding of

proton and peptide molecule induces conformational changes into occluded (OC) and outward-facing (OF)

states, which we are able to characterize using molecular dynamics simulations. The structural knowledge of

OC and OF state are important to fully understand the major energy barrier associated with the transport

cycle. In order to gain functional insight into the interstate dynamics, we performed extensive all atom

molecular dynamics simulations. Markov state model (MSM) was constructed to identify the free energy

barriers between the states and kinetic information on intermediate pathways was obtained using transi-

tion path theory (TPT). TPT shows that OF state is obtained by the movement of TM1 and TM7 at the

periplasmic side approximately 12-16 Å away from each other and the inward movement of TM4 and TM10

at the cytoplasmic halves to 3-4 Å characterizes the OC state. Helix distances distributions obtained from

MD simulations were compared with experimental double electron-electron resonance (DEER) spectroscopy.

Our finding sheds light on the conformational cycle of this key membrane transporter and the functional

relationships between the multiple intermediate states.

4.2 Introduction

Understanding the exchange of biological molecules across the phospholipid bilayer is of fundamental interest

to the scientific community. The transport of a large variety of molecules is essential for the pathological

physiological functions of the cell. In particular, peptide transporter proteins act as carriers that facilitate

the transport of small groups amino acids across the cell membrane. These transporters belong to the peptide

1This chapter is adapted reproduced with permission from Selvam B, Mittal S, Shukla D. ACS Central Science. 2018;
4(9):1146-1154. Copyright 2018 American Chemical Society. BS and SM contributed equally to this work.
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transporter (PTR) family which are members of the major facilitator superfamily (MFS) of secondary active

membrane transporters [195]. To understand the functional mechanism of MFS transporters, Kaback et al.

proposed an alternate access model which involves alternate accessibility to either side of the membrane via

distinct inward facing (IF), occluded (OC) and outward facing (OF) conformational states [196]. Another

model is the rocker-switch model where the substrate is posited to bind to the center of the transporter,

causing rigid body motion of the N and C domains to alternate access between the intracellular and extra-

cellular sides [197]. The third hypothesis is the elevator-like model where the substrate binds to a single

domain, locks the pore channel, slides downwards and opens up to release the substrate [198–200]. Even with

progress in X-ray crystallographic techniques the atomic level structural information of the distinct states

and other intermediate states are still unknown. In humans, peptide transporters, PepT1 and PepT2 are ex-

pressed in the intestine and kidney and are actively involved in the uptake of dietary peptide molecules [201].

Hence, peptide transporters are considered as crucial targets for drug delivery and a means to improve the

pharmacokinetics of drug molecules [202]. Despite the known importance of peptide transporters, the struc-

tural changes involved in the overall functional dynamics have not been studied comprehensively. In this

work, we have chosen a bacterial peptide transporter from Shewanella oneidensis, PepTSo, to understand

the conformational dynamics and mechanistic transport in this peptide transporter and by extension of the

POT family.

PepTSo is a bacterial proton coupled oligopeptide transporter (POT) consisting of 12 transmembrane helices

(TMs) divided into N (TM1-TM6) and C (TM7-TM12) terminal domains each with six helices [111,203]. The

N and C domains are connected by two short helices (SHs) which are closely packed to the C-terminal domain.

PepTSo uses an inward electrochemical potential as the driving force to transport di/tri-peptide molecules

into the cell against their concentration gradient. PepTSo shares close sequence similarity and structural

homology with other peptide transporters PepTSt [204–206], GkPOT [207], PepTSo2 [208,209], YePEPT [210]

and PepTXc [211]. PepTSo and YePEPT were crystallized in the apo form (other peptide transporters were

crystallized as holo structures) in the IF state. Biochemical and biophysical experiments provide insights

into functional behavior of the transporter proteins, dynamics information on conformational transition

between different structural states is missing. The repeat swap method (RSM) was used as an alternative

protocol to obtain the OF conformational state of PepTSo [212]. The method involves swapping the N and

C domains to create a template, aligning the swaps to the template coordinate file and finally constructing

the homology model to obtain the RSM model. However, the some of the limitations of this technique

are that it requires careful assessment of the sequences for structural alignments of the internal repeats,

cannot provide an array of intermediate states and no information is gained regarding the dynamics of the
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process of peptide transport. Limited computational methods have been employed to study the functional

mechanisms and conformational dynamics of transporters [116, 213–215]. These methods contributed to

the investigation of substrate driven structural changes of transporters, but failed to obtain the kinetics

of the crucial conformational transitions which would be critical to identify the transitions among key

intermediates states which are essential to the functional mechanism. Evidently, these transporters exhibit

large conformational changes, which cannot be understood using the static snapshots provided by X-ray

crystallographic studies, and hence the mechanism of peptide transport is still unknown.

MD simulations are an appealing methodology to determine the conformational changes and a mechanistic

insight into PepTSo. In our study, we performed atomistic MD simulations over a duration of ∼54 µs using

an adaptive sampling approach (see Methods). Further we constructed a Markov state model (MSM), a

technique that has been used extensively to study conformational diversity in biological systems [45, 47,

55, 82, 216]. Using MSMs we were able to combine a large number of shorter simulations and perform

efficient analysis on the huge amount of the data. To estimate the timescales of the transitions between the

intermediates in the transport cycle, trajectories were reconstructed using the kinetic Monte Carlo approach.

MD simulations have unraveled the OC and OF states of PepTSo along with other intermediate states that

the protein can adopt to enable transport. We compared the helix distance distributions from our MD

simulation ensemble to the experimental double electron-electron resonance (DEER) spectroscopy results.

To our knowledge, this is the first long timescale MD simulations based thermodynamics and kinetics study

that captures key intermediate states and the functional landscape of PepTSo using unbiased computational

methods.

4.3 Methods

Molecular dynamics simulations

The crystal structure of PepTSo was used as a starting structure for MD simulation. The 3D coordinates

(PDB: 4UVM [111]) were obtained from Protein Data Bank. The tleap program in AmberTools14 [14]

was used to build the MD system. The protein was solvated in a phospholipid bilayer (POPC) in an

orthorhombic box containing TIP3P water molecules [217] in a periodic box size 98×98×119 Å3. A salt

(NaCl) concentration of 0.15M was used to neutralize the MD system. All chain termini were capped with

neutral acetyl and methylamide groups. The standard protonation states was used for the titratable groups

and the final MD system contained approximately 110,000 atoms. The MD system was energy minimized for

20,000 steps using the conjugate gradient method, slowly heated from 0 to 300 K and equilibrated for 40 ns.
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Figure 4.1: Conformational landscape of PepTSo. The conformational landscape is generated using the extracellular and intracel-
lular side distances measured between atom pairs Arg32-CZ (TM1)-Asp316-CG (TM7) and Ser131-CO (TM4)-Tyr431-OH (TM10),
respectively. The conformational states are depicted as IF (1), partial IF-OC (2), OC (3), partial OC-OF (4), OF (5) and wide open
states (6 and 7). The black dots indicate the PepTSo crystal structures available in the protein data bank.

The MD simulations were performed in constant NPT conditions at 300 K and 1 atm. The temperature was

controlled using a Berendsen thermostat and the pressure was maintained using Berendsen barostat [218].

Long range electrostatic interaction was treated with the Particle Mesh Ewald method [219] and bonds

involving hydrogens were constrained using the SHAKE algorithm [220]. The non-bonded distance cutoff

was set to 10 Å and an integration step of 2 fs was used. All simulations were performed using the AMBER

FF14SB force field [221].

An adaptive sampling approach was used to select the new starting structures for the subsequent MD runs

to enhance the conformational sampling of the free energy landscape. For each round, the previous sampled

data was clustered using the k-means algorithm based on the extracellular and intracellular experimental

DEER residue-pair distances, and the least populated states were chosen to conduct the next round of

simulations. The sampling bias introduced in the dataset from seeding new trajectories in this manner

is eliminated in the way an MSM (discussed below) is constructed on the data [222]. Adaptive sampling

is a widely used sampling methodology, and has been used to predict novel conformations of the proteins,

pathways of conformational change, protein folding, and even protein-protein association [45,47,82,223–225].

In addition to unbiased MD simulation data obtained as above, 5 µs of accelerated MD (aMD) simulation

were also performed also using the adaptive sampling protocol (Supplementary Table 4.1). For aMD, a boost
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potential (4 kcal/mol) was added to the dihedrals of the protein and a further boost potential (0.2 kcal/mol)

was added to the entire MD system. The integration step chosen is 3 fs [226]. The free energy landscape in

shown in Supplementary Figure 4.21. The aMD simulation data was clustered and the starting structures

were chosen for classical MD (cMD) to sample the conformational landscape efficiently (Supplementary

Table 4.2). The final cMD was performed for a total duration of ∼54 µs. Each individual MD trajectory is

of ∼34 ns.

Markov state models

The MSMBuilder3.4 Python package [69] was used to build the MSM on the PepTSo trajectory data. The

seven transmembrane helical distances and three extracellular and intracellular residue-pair distances were

chosen as featurization metrics to construct an MSM (Supplementary Figure 4.22). 24 ns was determined

to be a Markovian lag time from the implied time-scales plot (Supplementary Figure 4.23). The number of

clusters was chosen to be 200 as it yielded the highest generalized matrix Rayleigh quotient (GMRQ) score

while building multiple MSMs on varying this hyper-parameter (Supplementary Figure 4.24) [125]. TPT

analysis was performed to obtain the top flux pathway (Supplementary Figure 4.25 and Supplementary

Figure 4.26).

Kinetic Monte Carlo simulations

Kinetic Monte Carlo is a method for sampling from a kinetic model, which can be used to create trajectories

of state-to-state dynamics. For any chosen initial state i, a transition to any state j from the set of all states

in the MSM occurs with probability pij from the MSM’s reversible maximum-likelihood transition matrix.

This is implemented as, (1) generate a pseudo-random number between 0 and 1, (2) take a cumulative sum

of pij values over all possible j (Sn =
∑n
i pij), and if the pseudo-random number lies between Sn and Sn+1,

(3) transition to state j = n+ 1. This state, j, is added to the trajectory and the process is repeated for the

desired number of steps.

DEER distance distribution analysis

To validate our predicted structures with the DEER experiments, we constructed an augmented Markov state

model (AMM) [178] for each experimental DEER distribution as constraints using pyEMMA v2.4+936.g26d8e55

[70]. The list of constraints is provided in Supplementary Table 4.3. We extracted 50 structures from the

highest weighted clusters (in the MSM or the AMM) for each of the following conformations: IF, OC, OF, par-

tial IF-OC, partial OC-OF, and two wide-open states. Using the Python library RotamerConvolveMD [108],
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we calculate the distances between the MTSSL probe conformations, mapped onto the rotamer library, for

each pair of residues on all the structures. The raw distance information is then plotted as a histogram and

the distance range spanned by the distance distribution in order to compare to the experimental information.

4.4 Results

MD simulations reveal the conformational sub-states of PepTSo

The IF state crystal structure of PepTSo (PDB: 4UVM [111]) was used as the starting conformation for

simulations. The MD simulations were conducted using an adaptive sampling approach (see Methods).

From our simulation data, we were successfully able to identify the functionally important intermediate

states. The free energy landscape projected onto the extracellular and intracellular distances, weighted by

the MSM equilibrium probability distribution, reveals the energy minima corresponding to conformations

states, IF (1), partial IF-OC (2), OC (3), partial OC-OF (4), OF (5) and wide open intermediate states (6

and 7) (Figure 4.1). The extracellular and intracellular side distances determined between the residue-pairs

Arg32-CZ (TM1)-Asp316-CG (TM7) and Ser131-CO (TM4)-Tyr431-OH (TM10), respectively, show that

the helices of the N and C domains are ∼7.0 and ∼10.5 Å apart in the PepTSo crystallized IF state (PDB:

4UVM). We observe that the intracellular distance between TM4 and TM10 may increase up to ∼20 Å albeit

resulting in a high energy unstable state. PepTSo adopts a partial IF-OC state as the intracellular helical

distance between TM4-TM10 reduces to 5-6 Å by a movement of both helices inwards towards each other.

Further, this distance reduces to 3 Å leading to the OC state. The transition from OC to OF involves two

stages; first, the moving apart of TM1 and TM7 at the extracellular side to a distance of 7-8 Å by forming

an intermediate partial OC-OF state, and second, extending the distance of the extracellular vestibule of

TM1 and TM7 up to 12-16 Å (Supplementary Figure 4.1, Supplementary Figure 4.2). The IF, OC and OF

states can be distinguished by passing a spherical probe from one side of the protein to the other, calculated

using the HOLE program [227]. The probe radius through the different states is visualized in Figure 4.2 and

the residues used to determine intracellular and extracellular distances in our study are indicated, as they

constrict the IF, OC and OF states.

To determine the conformational exchange between these intermediate states, we performed transition path

theory (TPT) analysis on MSM (see Methods) [228]. All high-ranked paths undergo a transition from the

IF to OF via the OC state and other intermediate states. The free energy barrier for the transition from IF

to OC via the partial IF-OC state is ∼2-2.5 kcal/mol and for subsequent transition to OF through states

partial OC-OF or a wide open state is ∼1.5-2 kcal/mol. Hence, the total free energy barrier of ∼4 kcal/mol
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Figure 4.2: The distinct conformational states of PepTSo are visualized by passing a spherical probe from one side of the protein to
the other through (A) the crystal structure IF state, and for the MD simulations predicted structures for (B) OC and (C ) OF states,
calculated using the HOLE program [227]. The gating residues Arg32 (TM1)-Asp316 (TM7) and Ser131 (TM4)-Tyr431 (TM10) that
act as bottlenecks for the conformational transition are indicated. (D) The pore radius along the protein for the three conformational
states.

was determined for one complete cycle from IF to OF at equilibrium.

Structural characteristics of the OC state

The predicted OC state shows large deviations in the intracellular side of N and C domains as compared

to the IF state. The intracellular halves of the helices rearrange in several positions as compared to the

crystal structure - TM1 moves inwards and closely packs with TM3 and TM4; TM10 and TM11 undergo

inward movement and interact with TM2 and TM4, respectively; TM4 and TM5 are tilted ∼5◦ and ∼10◦,

respectively and move inwards closer to the center of the transporter. TM2 becomes more straight compared

to the kinked helix in the IF crystal structure. On the extracellular half - TM7 and TM8 are rotated by

∼15◦ and ∼8◦, respectively, and move closer to TM1; TM9 and TM10 move up to 6 Å and 11 Å outwards

and form extensive contacts with the loops joining TM7 and TM8 (Supplementary Figure 4.3).

The OC state is stabilized by extensive intramolecular hydrogen bonds between the N and C domains. At

the extracellular side, the residues Asn33 (TM1), Ser165 (TM5), Ser320 (TM7) and Gln341 (TM8) form

a hydrogen bond network that acts as the lid by packing the helices close to each other (Supplementary

Figure 4.4). The closure of the pore channel is further stabilized by Arg32 (TM1)-Asp316 (TM7) salt

bridge interaction on this end of the transporter. Asp316 of this ionic residue-pair is known to play a

major role in proton driven peptide transport [203, 205, 212, 229]. The Glu419 (TM10) interaction with

Lys318 (TM7), Thr416 (TM10) and Asn344 (TM8) stabilizes the conformation of TM7 and 8. The Glu419

(TM10) is conserved residue in POT family and its mutation to Gln results in loss of proton driven peptide

transport [205]. Another conserved motif, ExxERxxY on TM1 (Supplementary Figure 4.5) and its interaction

with Lys127 (TM4) plays a crucial role in peptide transport and its mutation abolishes the transport function
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[205].

On the intracellular side, the Pro127 (TM4) introduces helix kink which facilitates the inward movement

of TM4 and TM5. The glycine residues (Gly418 (TM10), Gly426 (TM10) and Gly440 (TM11)) increase

the structural flexibility allowing the helices to twist. The Tyr431-OH (TM10) establishes a hydrogen bond

contact with Ser131-CO (TM4) and stabilizes the OC state (Supplementary Figure 4.4). Our predictions

conform with the hypothesis of Stelzl et al. for the extracellular and intracellular gating residues that are

critical for the conformational switch and functional mechanism of transporters [108]. A comparison of the

predicted OC state has been made with the multidrug transporter EmrD (PDB: 2GFP [230], Supplementary

Figure 4.6, Supplementary Figure 4.7) and xylose transporter XylE (PDB: 4GBY [231], Supplementary

Figure 4.8, Supplementary Figure 4.9), MFS family OC structures in the protein data bank. The observed

gating residues Thr119 (TM4)-Phe311 (TM10) in EmrD OC and Met149 (TM4)-Ser396 (TM10) in XylE

OC state are comparable to PepTSo.

Structural characteristics of the OF state

The predicted OF structure reveals dramatic rearrangements at the extracellular side compared to IF (crystal

structure) and OC (predicted structure) whereas only subtle changes at the intracellular side compared to

OC (Supplementary Figure 4.10). TM7 rotates ∼7◦ as compared to IF and Asp316 (TM10) moves ∼12

Å away from Arg32 (TM1) forming a new contact with Asn454 (TM11) which then interacts with His61

(TM2). Our predictions are consistent with the structure proposed by Parker et al. [211]. His57 (His61 in

PepTSo) is involved in proton driven peptide transport in PepT1 [232–234]. Thus, the extracellular binding

partners move away from each other and increases the channel viability and hence adopts the OF state.

TM7 is stabilized by an interaction between Lys318 (TM7) and Glu419 (TM10) at the extracellular part

of PepTSo. The ExxERxxxY motif forms similar contacts to those seen in the OC state. The kink cause

by Pro71 in TM2 results in slight bending of the helix allowing Trp76-O (TM2) to form a contact with

Thr441 (TM11). The interaction of Tyr431-OH (TM10) with Ser131-CO and Gly135-O on TM4 stabilizes

the intracellular half of the OF state.

Our predicted OF structure from MD simulations shows good agreement with the fucose transporter (FucP,

PDB: 3O7Q), which was crystallized in OF state [235], with an RMSD of 2.9 Å (Supplementary Figure 4.11,

Supplementary Figure 4.12). The intermediate states 6 and 7 are predicted to be wide open states that

may also lead to transitions to OF state. The PepTSo OF state predicted using RSM [111] was compared

to predicted OF structure and has an RMSD of 3.6 Å (Supplementary Figure 4.13, Supplementary Figure

4.14).
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Figure 4.3: PepTSo is shown in the center with TM 1, 2, 4, 7, 8, 10 in green, magenta, blue, cyan, yellow, and orange respectively.
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open. (B) Inward movement of TM4 and TM10 determines the partial IF-OC state. (C ) Further inward movement leads to formation
of hydrogen bond interaction between Tyr431-Ser131 in OC state. (D) Gating residues at the cytoplasmic side weaken the extracellular
interaction to form partial OC-OF state. (E) Helices TM1 and TM7 move far away to 15 Å in OF state.

Switching of gating residues determines conformational changes in PepTSo

From TPT, we identified that the interaction between Arg32-CZ (TM1)-Asp316-CG (TM7) acts as the gating

bottleneck on the extracellular side of the transporter. In the IF crystal structure (PDB: 4UVM), the distance

between these atoms is 7.2 Å. However, our simulations reveal that these residues come closer and form a salt

bridge interaction locking TM1 and TM7 to characterize an IF state (Figure 4.3A). Previous studies have

also shown that the IF state is stabilized by the formation of this ionic-lock [205]. On the intracellular side,

Newstead et al. observe that the hydrophobic gate between Phe150-CB (TM5) and Met443-CB (TM11)

form the intracellular gate to characterize the OC state [203]. We find these residues determine only the

partial IF-OC state (Figure 4.3B), Supplementary Figure 4.15, Supplementary Figure 4.16). After PepTSo

adopts the partial IF-OC state, an additional hydrogen bond between Ser131-CO (TM4) and Tyr431-OH

(TM10) results in complete transition to OC state (Figure 4.3C).

Next, the partial OC-OF state is obtained as the distance between Arg32-CZ (TM1) and Asp316-CG (TM7)

increases up to 7-8 Å. The weakening of ionic interaction between Arg32 (TM1) and Asp316 (TM7) leads

Asp316 to form a new polar contact with Tyr68 (TM2). Further, it establishes a contact with Asn454

(TM11) which results in complete loss of interaction with Arg32 (Figure 4.3D). The periplasmic halves of
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the N and C terminal domains start moving further away from each other (on the extracellular side) and

results in loss of Tyr68 interaction with Asp316. His61 (TM2), Asn454 (TM11) and Asp316 (TM7) form a

hydrogen bond triad, thus adopting the final OF state (Figure 4.3E). The predicted OF state reveals that

the distance between the residue-pairs Arg32 (TM1) and Asp316 (TM7) may increase up to 12-16 Å to

recognize the substrate molecule and initiate the transport cycle.

Using a kinetic Monte Carlo reconstructed trajectory of length 25 µs from the constructed dataset, the mean

passage time for the transition from IF to OF, via OC was found to be ∼1 µs (Supplementary Figure 4.17).

This synthetic trajectory reveals that the rates of transitions between alternate opening of extracellular and

intracellular gates shows faster dynamics as compared to previous studies where they have obtained the

transition from IF to partial IF-OC and to OF in ∼0.6 µs [111,211].

Comparison of predicted OC and OF structures with experiments

DEER spectroscopy is a biophysical technique that allows to determine residue-pair distance distributions

between two cysteins that have been modified via site-directed spin labeling (SDSL). The technique has

been used for widely used for the study of membrane proteins [106] where multiple peaks in the distributions

indicate a diverse conformational composition of the protein during the experiment. Atom-pair distances

can also be obtained from the ensemble information from MD simulations and hence, provide an avenue for

comparison with DEER spectroscopy distance distributions.

We compared the helix distance distribution measurements obtained from our simulations with experimental

data (Figure 4.4, Supplementary Figure 4.18) by constructing augmented Markov models (AMMs) [70,178]

and the RotamerConvolveMD Python package [108] that maps a rotamer library of the spin labels on the

residues to estimate the distribution (see Methods). The overall distributions were found to be in good

agreement with SDSL DEER experiments [111]. For the residues pairs Ser141-Ser432, Ser141-Met438, Ile47-

Val330 and Arg201-Glu364 the distance distribution ranges are larger for the simulation data than the

experimental observations. This increase in distance distribution shows that the transporter may adopt

a wide range of flexibility in order to transport diverse substrate molecules. Further, we compared the

experimental data with distance distributions obtained from representative structures of IF, OC, and OF

states individually (Supplementary Figure 4.19) as well as other intermediate states (Supplementary Figure

4.20) in our simulations data, to characterize the distance ranges spanned by the predicted free energy

minima.

83



100 20 30 40 50 60 70

47-330

174-401

174-466

86-432

141-432

141-438

141-500

201-364

Experiment
Simulations

r (Å)
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4.5 Discussion

Our results reveal the conformational changes that characterize various states of PepTSo and transitions

between them. Our analysis indicates that hydrogen bonds, hydrophobic and aromatic interactions act

as gating mechanisms to stabilize the key functional conformation states. The residue-pair Arg32 (TM1)-

Asp316 (TM7) forms the salt bridge interaction at the extracellular side and locks the PepTSo in the IF

state. We show that the formation of OC state involves two steps, i) the helices involving residues Phe150

(TM5) and Met443 (TM11) come closer to ∼5-6 Å, and ii) the following residues from helices TM4 and

TM10 form additional hydrogen bond between Ser131-CO (TM4) and Tyr431-OH (TM10). The OF state is

obtained by breakage of ionic lock between Arg32 (TM1)-Asp316 (TM7) and movement of TM1 and TM7

to ∼12-16 Å away from each other.

Water molecules around the lipid bilayer and the transporter protein could also play an important role in the

conformational change. Supplementary Figure 4.27 shows that water molecules have a higher preference for

the phosphate group in the POPC lipid head groups as compared to the nitrogen due to the hydrophobicity

posed by 3 methyl groups around it [236]. Lipid bilayers properties in our simulations, area per lipid

and membrane thickness (Supplementary Figure 4.28) indicate that the lipid bilayer remains in the same

configuration throughout the simulation time. Overall, our predicted values agree well with experimental

studies [237] where area per lipid value is 68.3 ± 1.5 Å2 and membrane thickness value of 37 Å although a
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slight variation in the computed values compared to experimental observations could be due to differences

in temperature and physiological conditions. Moreover, there is usually atleast one water molecule between

the lipid molecules that prevents them from coming close to each other (Supplementary Figure 4.29) and

hence, stabilizing the lipid bilayer.

Water molecules are co-transported along with substrate molecules and this property has been well studied for

membrane transporters [238]. We calculated the hydration level in three states and observed the fluctuation

of number of permeating water molecules (Supplementary Figure 4.30). Large number of water molecules

were noticed for the OF state compared to OC and IF states. We also compared the water molecules in

the IF state with other available crystal structures from the POT transporter family (Supplementary Figure

4.31). The water permeation could also be associated with the transitions among the different conformational

states of the protein.

PepTSo and other POT family members PepTSt, PepTSo2, PepTXc and GkPOT have conserved sequence

motifs and structural folds suggesting that the mechanistic basis of substrate transport will be universal

in this family. We posit in the OF state, the binding of a proton and a peptide molecule should increase

the structural plasticity of the extracellular side of the transporter and initiate structural rearrangements of

helices. The movements of helices are driven through a network of hydrogen bonding interactions involving

TM1, TM2, TM7 and TM11 resulting in the OC state. Tyr68 (TM2) and Asn454 (TM11) act as a key

residues that drives Asp316 (TM7) to form a salt bridge with Arg32 (TM1). Biophysical studies also show

that Tyr68 is critical for affinity and specificity for peptides [205]. The closure of extracellular part results in

formation of the OC state and the peptide molecule move into the central cavity. The increase in strength of

the salt bridge at the extracellular side results in weakening of the intracellular gating residues. Helices TM4,

TM5, TM10 and TM11 increase in structural flexibility and thereby determine the functionally important

conformational states to allow substrate transport. The proton and substrate translocates to the conserved

ExxERxxxY motif and finally leaves the transporter into the cytoplasm of the cell.

Our study is a first large-scale simulation of a member of the POT family. It is a first extensive analysis of

the diversity of the conformational states of the protein and the many rare intermediate states. However,

our study is based on equilibrium simulations in the apo state of PepTSo. The varying dynamics in the

presence of the proton and peptide are yet to be demonstrated and understood in great detail. Our study

opens new dimensions to obtain a mechanistic understanding into the POT family of proteins and to enable

design and transport of peptido-mimetic drugs.
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4.6 Supplementary Information

Supplementary Table 4.1: Adaptive sampling rounds for accelerated MD simulations

Number of rounds Time (ns)
Round 1 135
Round 2 135
Round 3 108
Round 4 107
Round 5 97
Round 6 87
Round 7 66
Round 8 54
Round 9 135
Round 10 108
Round 11 81
Round 12 68
Round 13 95
Round 14 169
Round 15 164
Round 16 139
Round 17 90
Round 18 157
Round 19 136
Round 20 145
Round 21 118
Round 22 110
Round 23 2171

Supplementary Table 4.2: Adaptive sampling rounds for classical MD simulations

Number of rounds Time (µs)
Round 1 6.4
Round 2 6.8
Round 3 40.5

Supplementary Table 4.3: Constraints used for augmented Markov models (σ values are fixed at 0.1)

Distance (k) Residue numbers mk (Å)
1 47, 330 39.875078
2 174, 401 41.78273
3 174, 466 37.278798
4 86, 432 41.883655
5 141, 432 36.666667
6 141, 438 28.412256
7 141, 500 43.81818
8 201, 364 44.585633
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in brackets refer to the energy minima in the free-energy landscape.
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Supplementary Figure 4.4: MD predicted PepTSo OC state. Detailed description of residues involved in the interactions between
the helices that stabilize the OC state of PepTSo are shown. Asn33 (TM1), Ser320 (TM7), Gln341 (TM8), Arg32 (TM1), Asp310
(TM7), His61 (TM2) and Asn454 (TM11) form a hydrogen bond network and lock the extracellular side. The conserved residue Glu419
(TM10) form an extensive network of polar interaction and stabilize the conformation of C domain. The ExxERxxxY motif on TM1
forms ionic interaction with Lys127 and neighboring residues. The intracellular side of the transporter is locked by hydrogen bond
interaction between Ser131 (TM4)-Tyr431 (TM10). Pro71 (TM2)-Ser444 (TM11) and Gly75 (TM2)-Thr441 (TM11) interactions also
favor the conformation of the OC state.
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Supplementary Figure 4.6: Comparison of predicted PepTSo OC state (colored) with the EmrD OC crystal structure (PDB:
2GFP [230], black) viewed on the (A) extracellular and (B) intracellular side.
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Supplementary Figure 4.8: Comparison of predicted PepTSo OC state (colored) with the XylE OC crystal structure (PDB:
4GBY [231], black) viewed on the (A) extracellular and (B) intracellular side.
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Supplementary Figure 4.10: MD predicted PepTSo OF state. Detailed description of residues involved in the interaction between
the helices that stabilizes the OF state of PepTSo are shown. The residues His61 (TM2), Asn454 (TM11) and Asp316 form a hydrogen
bond network and stabilize the extracellular part of OF state. The conserved residues Gln419 (TM10) and ExxERxxxY (TM1) contacts
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form interactions that lock the OF state and close the pore channel on the intracellular side.
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Supplementary Figure 4.11: Comparison of FucP OF (PDB: 3O7P [235], black) with predicted OF structure viewed on the (A)
extracellular and (B) intracellular side.
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Supplementary Figure 4.13: Comparison of RSMPepTSo with OF predicted structure. The RSM modeled PepTSo [111] (black)
OF structure was compared with PepTSo OF MD predicted structure. Transmembrane helices 1, 2, 4, 7, 8 and 10 align well with RSM
modeled PepTSo structure at both (A) extracellular and (B) intracellular ends.
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Supplementary Figure 4.15: Raw MD simulation data was projected on the difference between the extracellular and intracellular
residue-pairs and the distance between the residue-pairs Phe150-CB (TM5)-Met443-CB (TM11).
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Supplementary Figure 4.16: (A) The residue-pair Arg32-CZ (TM1)-Asp310-CG (TM7) and Phe150-CB (TM5)-Met443-CB (TM11)
interactions are indicated, which characterize the partial IF-OC state. (B) The channel pore radius for the partial IF-OC state.
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Supplementary Figure 4.17: Kinetics of the conformational changes and their timescales. (A) The extracellular and (B) intracellular
distances are shown as a function of time. The color bar indicates the extent of opening and closing of the gating residues of PepTSo.
The distances in the crystal structure and the RSM model are indicated in black and dotted lines, respectively.
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Supplementary Figure 4.18: MD simulation predicted DEER distance distribution ranges (green and red) are compared to the
experimental DEER distance distribution range (blue). Red and green simulation predictions are based on Markov state model and
augmented Markov model, respectively.
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Supplementary Figure 4.19: MD simulation predicted DEER distance distribution ranges (green and red) are compared to the
experimental DEER distance distribution range (blue) for the (A) IF, (B) OC, and (C ) OF states from the PepTSo conformational
landscape. Red and green simulation predictions are based on Markov state model and augmented Markov model, respectively.
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Supplementary Figure 4.20: MD simulation predicted DEER distance distribution ranges (green and red) are compared to the
experimental DEER distance distribution range (blue) for the (A) partial IF-OC, (B) partial OC-OF, and (C,D) wide-open states from
the PepTSo conformational landscape. Red and green simulation predictions are based on Markov state model and augmented Markov
model, respectively.
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Supplementary Figure 4.21: PepTSo two dimensional free energy plot for the raw data obtained using 5 µs accelerated MD
simulations. The black dot indicates the crystal structure of PepTSo (PDB: 4UVM [111]) in the IF state.
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Supplementary Figure 4.22: Extracellular, transmembrane and intracellular residue-pair distances used for MSM construction.
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Supplementary Figure 4.23: Implied timescales from transition probability matrix of the MSM. Eigenvalues of the transition
probability matrix correspond to the dominant rates of transition in the 200 state model. The top 5 eigenvalues for the MSM are shown
here which converged at a lag time of 24 ns.
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Supplementary Figure 4.24: Comparison of the maximum GMRQ scores of MSM built using variable cluster numbers. 200 clusters
yields the highest GMRQ score and hence was used for all MSM construction and analysis. The black and pink dots correspond to the
scores for training and testing datasets to calculate GMRQ, respectively.
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Supplementary Figure 4.25: Sampled conformations from the IF and OF microstates from the MSM.
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Supplementary Figure 4.26: Normalized flux values for the top 200 reactive paths between IF and OF microstates in the MSM.
There are several paths with high flux and large number of pathways with lower flux values.

Supplementary Figure 4.27: (A) A single POPC lipid molecule indicating positions of nitrogen (blue), phosphorous (orange),
carbon (green), and oxygen (red) atoms. Radial distribution of water around lipid bilayer head group atoms in (B) OF, (C) OC, and
(D) IF state. The orientation of water molecules around the phosphate and nitrate groups are calculated using VMD 1.9.2.

100



Supplementary Figure 4.28: (A) Probability distribution of area per lipid. To obtain the probability distribution, a normal
distribution is fitted to the histogram obtained for 500 structures for each state, OF (µ=71.4;σ=0.83), OC (70.9;0.9) and IF (70.7;0.85).
(B) Probability distribution of membrane thickness of the POPC lipid bilayer for OF (green), OC (yellow), and IF (orange) states. A
normal distribution is fitted to the histogram obtained for 500 structures for each state, OF (µ=38.05;σ=0.42), OC (38.11;0.45) and
IF (38.18;0.46).

Supplementary Figure 4.29: (A) Lipid bilayer molecules in an MD snapshot shows water mediated lipid molecule stabilization. B)
The radial distribution plots of phosphate atoms distances in the head group of lipid molecules.
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Supplementary Figure 4.30: (A) Probability distribution of water molecules in the protein tunnel. To obtain the probability
distribution, a normal distribution is fitted to the histogram obtained for 500 structures for each state, OF (µ=89.7;σ=5.84), OC
(78.3;6.65) and IF (67.8;5.87). The water conducting channels are visualized for (B) OF, (C) OC, and (D) IF states.

Supplementary Figure 4.31: Comparison of water molecules inside the MD structure (red) protein pore channel with water
molecules in the crystal structures of (A) GkPOT [207], (B) PepTSt [204], (C) PepTXc [211] and (D) PepTSh [239].
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Chapter 5

Reconciling Membrane Protein
Simulations with Experimental DEER
Spectroscopy Data

5.1 Overview

Spectroscopy experiments are crucial to study membrane proteins for which traditional structure determina-

tion methods still prove challenging. Double electron-electron resonance (DEER) spectroscopy experiments

provide protein residue-pair distance distributions that are indicative of their conformational heterogene-

ity. Atomistic molecular dynamics (MD) simulations are another tool that have proved vital to study the

structural dynamics of membrane proteins such as to identify inward-open, occluded, and outward-open con-

formations of transporter membrane proteins, among other partially open/closed states of the protein. Yet,

studies have reported that there is no direct consensus between distributional data from DEER experiments

and MD simulations, which has challenged validation of structures obtained from long timescale simulations

and using simulations to design experiments. Current coping strategies for comparisons rely on heuristics,

such as mapping nearest matching peaks between two ensembles or biased simulations. Here we examine

the differences in residue-pair distance distributions arising due to choice of membrane around the protein

and covalent modification of a pair of residues to nitroxide spin labels in DEER experiments. Through

comparing MD simulations of two proteins, PepTSo and LeuT - both of which have been characterized using

DEER experiments previously - we show that the proteins’ dynamics are similar despite the choice of the

detergent micelle as a membrane mimetic in DEER experiments. On the other hand, covalently modified

residues show slight local differences in their dynamics and a huge divergence when the spin labels’ anointed

oxygen atom pair distances are measured rather than protein backbone distances. Given the computational

expense associated with pairwise MTSSL labeled MD simulations, we examine the use of biased simula-

tions to explore the conformational dynamics of the spin labels only to reveal that such simulations alter

the underlying protein dynamics. Our study identifies the main cause for the mismatch between DEER

experiments and MD simulations and will accelerate developing potential mitigation strategies to improve

simulation observables match with DEER spectroscopy experiments.
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5.2 Introduction

Double electron-electron resonance (DEER) spectroscopy has made incredible progress in the study of

biomolecules such as cytoplasmic and membrane proteins and nucleic acids [92, 240], including experiments

in vitro and in vivo [241–243]. In DEER experiments, a spin probe is covalently attached to two residues

on the biomolecules. Distances between these two spin probes can be determined by measuring the dipo-

lar coupling between an electron pair, one unpaired electron on each of the spin probes. The interaction

between electrons is measured in the time domain and then mathematically transformed to distance distri-

butions. Methodological developments have made it possible to obtain distance distributions upto 10 nm in

cytoplasmic proteins and 8 nm in membrane proteins [91,92,106,244].

DEER spectroscopy experiments are key for structural insights into membrane proteins for which structure

determination methods such as X-ray crystallography and NMR have proved challenging. Given the advance

in computational resources, there are numerous extensive MD simulation studies of membrane proteins in-

cluding GPCRs, transporters, ion channels, integrins, and transmembrane receptor kinases. The observable

from DEER experiments, residue pair distance distributions can be directly compared to dynamics infor-

mations from molecular dynamics (MD) simulations in order to characterize the structural consequences of

the obtained distance distributions. Yet, there is often no direct consensus between distributional data from

DEER experiments and MD simulations, which has challenged validation of structures obtained from long

timescale simulations. Several methods have been introduced to reconcile experimentally characterized dis-

tance distributions with simulations such as restrained ensemble MD (reMD) [100,245] and ensemble-biased

metadynamics (EBMetaD) [246] simulations, both methods employed the experimentally obtained distance

distribution to bias a simulation ensemble. Another method to syncretize unbiased MD simulations with

experiments is labeling a residue with a spin probe whose conformational orientations are sampled using

a spin probe rotamer library [108, 113]. This method is independent from any experiment data bias and

relatively computationally inexpensive since no additional simulations are required, but is unable to consider

the protein’s conformational dynamics.

Typically, we observe mis-matches in terms of relative peak heights when there are multiple peaks in the

experiment and unbiased simulated distributions, peak positions, and lower and higher extremes of the dis-

tance values. Commonly we observe that experimental distributions exhibit larger distance values, which

are not sampled in any of the MD simulation ensemble. These differences can be visualized in Supple-

mentary Figure 5.1A where we compare distance distributions from our previous PepTSo simulations with

experimental DEER distributional data. Most potential for mismatch between experiments and simulation

distance distributions stems from differences in experiment conditions and standard simulations protocols.
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Since membrane proteins are embedded in lipid bilayers in physiological conditions, simulations are typically

performed in lipid bilayers. These lipid bilayer can be homogeneous or heterogeneous with different types

of lipid molecules [247]. On the other hand, biophysical experiments are more amenable in bilayer mimet-

ics. While most of these bilayer mimetics such as nanodisc [248], lipodisq nanoparticles [249], bicelle [250],

liposome [251], micelle [111] have been used for DEER spectroscopy studies of membrane proteins, deter-

gent micelles are most commonly used. While there are many different detergents molecules that can form

micelles, the most popularly used is n-Dodecyl-β-D-Maltoside (BDDM) detergents.

Another significant basis for mismatch between observed peaks in experiments and simulations is the use of

spin probes in DEER experiments, which is absent in wild-type protein simulations. Using site-directed spin

labeling (SDSL), two nitroxide spin labels are attached to two cysteine mutated residues. These spin la-

bels can be of different types such as 1-oxyl-2,2,5,5-tetramethyl-pyrroline-3-methyl)methanethiosulfonate

(MTSSL), iodoacetamide-PROXYL (IA-PROXYL), unnatural amino acids p-acetyl-l-phenylalanine and

2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid, and a spin-labeled lysine (SLK-1). DEER

experimental measurements among two spin labels are a proxy to explain the protein’s residue pair dis-

tances. Relying on cysteine modifications and addition of flexible spin probe molecules pose a possibility of

modifying the observed protein’s dynamics from DEER experiments. For example, MTSSL spin probe has

5 linker dihedrals attributing large rotational flexibility to the protein residue [108]. Recently metal cations

such as Gd3+, Cu2+ and Mn2+ based spin labels which are more rigid have been used [252–254] but their

applications in the study of membrane proteins is limited [255].

Based on the above discussed modifications in DEER experiments as compared to physiological conditions,

we propose five potential impacts on a protein, it’s dynamics and hence the observed DEER experimental

observables. Since DEER experiments are typically performed with proteins embedded in bilayer mimetics,

such as detergent micelles rather than lipid bilayer, membrane diffusion, packing flexibility and interactions

can (1) allow for shifts in DEER distributions and peaks and (2) alter the secondary structure and accessi-

bility of various helices and loops in the protein. Previous studies that draw comparisons between micelle

and bilayer environments on membrane proteins have been limited to either small peptides, such as single

transmembrane helices or are based on ns-timescale simulations which do not provide a realistic picture of a

protein’s conformational dynamics. (3) Since DEER measurements require a covalent modification on atleast

two sites of the protein, we evaluate whether this modulates the proteins underlying free energy landscape

by biasing it to adopt only a subset of the available conformations. (4) Not only can the MTSSL probes have

local structural affects on the protein, to what extent can the distance between unpaired electrons on oxygen

atom of MTSSL spin probes provide an approximation of the wild-type protein’s dynamics. (5) Multiple
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flexible bonds of nitroxide spin probes [108] such as MTSSL spin probes may have different timescales than

those from the wild-type residue which will equilibrate at a different timescale than the protein changing the

experimentally observed dipolar couplings. We evaluate the perturbations and these impacts in this work

and discern which among these is the main cause for mismatch between experiments and simulations.

Here, we directly compare the biophysical effect of different experiment and simulation conditions by perform-

ing MD simulations in conditions similar to experiments. To evaluate the effect of membrane environment on

protein structure and dynamics, we compare long timescale simulations of two proteins in a BDDM micelle

and a more typical lipid bilayer. Specifically we perform simulations of two proteins, PepTSo and LeuT,

which are biologically important representative proteins of two different membrane protein families, Major

Facilitator Superfamily (MFS) and Neurotransmitter: Sodium Symporter (NSS), respectively. Residue pairs

in both protein have been previously characterized using DEER experiments [106, 111, 256, 257]. LeuT has

many three-dimensional structures determined through X-ray crystallography and has been investigated us-

ing computational simulations. Recently, two crystal structures of PepTSo were resolved [111, 258] and we

have examined this protein using long timescale MD simulations in our previous work in Chapter 4. We

follow our micelle and bilayer simulations by introducing nitroxide spin labels MTSSL on a pair of residues

in PepTSo in order to examine the perturbations caused by the probe’s site specific mutations during DEER

spectroscopy experiments. We then perform restrained ensemble molecular dynamics (reMD) simulations

on order to evaluate the spin pair equilibration and it’s impact on the protein’s conformational landscape

and residue pair distance distributions.

5.3 Methods

MD simulations

All simulations were setup up using CHARMM-GUI [259–263], built with a rectangular box and a minimum

water height of 10 Å above and below the membrane. System specific details are provided below.

All simulations were run using NAMD 2.13 MD package [13] and the CHARMM 36 force field [264–266] on

the Blue Waters petascale computing facility. We used the NAMD inputs provided by CHARMM-GUI for

minimization and equilibration in six consecutive steps followed by production runs in the NPT ensemble

where constant temperature was maintained by employing Langevin dynamics with a damping coefficient of

1 ps−1. The Langevin piston method was employed to maintain a constant pressure of 1.0 atm with a piston

period of 50 fs. Nonbonded interactions were smoothly switched off at 810 Å and long-range electrostatic

interactions were calculated using the particle mesh Ewald (PME) method. For all simulation steps, bond
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distances involving hydrogen atoms were fixed using the SHAKE algorithm.

Minimization was done for 10,000 steps, total equilibration and production run time for individual simulations

are noted in Supplementary Table 5.1. Production simulations were run at 303.15 K, trajectory parameters

were determined every 2 fs, and coordinates were saved every 100 ps.

All trajectory analysis was done using MDTraj 1.7 [129] except where otherwise noted. Analysis methods

and workflows are explained in the Supplementary Information.

Determining a micelle size for membrane protein simulations

Previous work on simulating protein-micelle complexes [267] posit the use of number of detergents more

than the aggregation number of a detergent-only micelle which is 135-145 for the n-Dodecyl-β-D-Maltoside

(BDDM) detergent [268,269]. Moreover, the BDDM micelle size was determined to be 72 kDa [270]; with a

510.621 g/mol molecular weight of a BDDM molecule this yields ∼141 detergent molecules in the micelle.

To test the stability of the protein-micelle complexes, we took a single structure of the PepTSo protein from

our previous simulations in Chapter 4 and embedded it in 150, 180 and 200 BDDM detergent molecules.

The three simulation setups with 145668, 145847, and 146061 atoms respectively comprised of protein,

detergents, waters, and 0.15 M KCl ions. Simulation seetup with 150 detergent molecules was minimized

for 10,000 steps and the other two were minimized for 20,000 steps. We ran each of these simulations for 60

ns each post-equilibration and only last 50 ns were used for analysis (Supplementary Table 5.2).

Our goal was to identify a suitable micelle size for protein-micelle complex simulations and use this size for

all simulations in this work. We performed short simulations of PepTSo protein in three difference micelle

sizes, with 150, 180, and 200 BDDM detergent molecules and assessed the protein’s structure and dynamics

in all three micelle sizes. RMSD of the protein converges to values between 0.28-0.32 nm within 50 ns,

and these values are lower when only the transmembrane region of the protein is included (Supplementary

Figure 5.2A). We do not expect sampling any conformational change in the protein’s structure in such short

trajectories.

We then evaluated the extent of sphericity of the micelle, measured by calculating it’s eccentricity where a

perfectly spherical object has eccentricity 0. We find that in all three cases, micelles in our simulations are

mostly-spherical with an average eccentricity of 0.23 (±0.02) for micelle with 150 and 200 detergents and 0.22

(±0.02) for micelle formed by 180 detergent molecules (Supplementary Figure 5.2C). Radius of the micelles

do not show much variation, indicating that the micelles do not distort (Supplementary Figure 5.2D). As

expected, micelle with more detergents have a larger average radius - 4.4 nm, 4.58 nm, and 4.68 nm for

150, 180, and 200 detergent micelles, respectively. Supplementary Figure 5.2E shows a radial distribution of
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distances between BDDM detergent molecule headgroups. Since the distribution is same for all three micelle

sizes, we conclude that detergent packing is similar in all three micelles.

Our preliminary simulations indicated that protein dynamics and shape of detergent micelle do not vary

with number of detergents in the micelle and we chose 150 detergent micelle for rest of our simulations to

keep the system sizes smaller and conserve computational resources. We were also able to confirm that the

simulation setup is stable for all three micelle size choices.

Setting up LeuT simulations in bilayer and detergent micelle

We compiled 28 LeuT crystal structures of which all but 2 have no mutations in the proteins sequence.

Structures 3TT1, an Outward Facing (OF) structure with 2 mutations, and 3TT3, an Inward Facing (IF)

structure with 4 mutations [271], were modeled on the wild-type LeuT sequence using Modeller [272] interface

in Chimera [273]. Based on these PDBs, we identified 36 unique structural models for the LeuT protein

from residue Arg5 to Ala513 (509 residues in all). Most of these 36 structures were missing residues either

on EL2, EL3 or EL6, the size of the largest missing region in any structure is 6 residues. These missing

regions were modelled to yield 72 LeuT structures as a starting point for our simulations. These structures

were aligned in VMD [172] using orient and a linear algebra Tcl package, La.

During setup in CHARMM-GUI, LeuT protein was capped with ACE and CT3 residues. For protein-bilayer

complexes, the structures were embedded in a POPE bilayer of 150 lipid molecules equally distributed in

the upper and lower leaflet using the Insertion method. For protein-micelle complexes, protein structures

were embedded in 150 BDMM detergent molecules. We only added 3 Cl− ions to neutralize the system.

Since we are only interested in the equilibrium conformational changes of apo protein, we did not want to

introduce Na+ ions which are known to play an important role in the transport mechanism of LeuT. Ion

binding and substrate transport are coupled and ions can be considered as substrate. Details for system size

and simulation time are provided in Supplementary Table 5.1.

Setting up PepTSo simulations in bilayer and detergent micelle

We used 42 structures extracted from our previous simulations of PepTSo in Chapter 4 from residue Pro8 to

Tyr512 (505 residues in all). During setup in CHARMM-GUI, the protein was capped with ACP and CT3

residues. For protein-bilayer complexes, the structures were embedded in a heterogeneous POPE/POPG

(3:1 ratio) bilayer of 200 lipid molecules equally distributed in the upper and lower leaflet using the Replace-

ment method. For protein-micelle complexes, protein structures were embedded in 150 BDMM detergent

molecules. We added 0.15 M NaCl ions in addition to neutralizing the system. Details for system size and
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simulation time are provided in Supplementary Table 5.1.

Setting up PepTSo Simulations with MTSSL probes on residue-pair

The same method as for PepTSo in detergent micelle was followed, and residues Asn174 and Ser466 were

mutated to MTSSL (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl methanethiosulfonate) [274] probes. This

corresponds to one of the extracellular residue pairs chosen by Fowler et al. for DEER experiments [111].

Here, we have used WYF parameter for cation pi interactions as available in CHARMM-GUI.

For all simulations described above we examine convergence by randomly sampling 25%, 50%, and 75%

of the trajectories and graphing experimental residue pair distance distributions shown in Supplementary

Figure 5.3,Supplementary Figure 5.4,Supplementary Figure 5.5,Supplementary Figure 5.6,and Supplemen-

tary Figure 5.7. We choose to look at these residue pair distance distributions, as a check for convergence,

because these will be the main focus of most results in this work. We see that for all systems, error bars

are small even with 25% simulation data and they decrease as we include more data. We can conclude that

multiple trajectories sample each region of the conformational ensemble and no single trajectory shifts the

distance distributions completely.

Restrained-ensemble molecular dynamics (reMD) simulations for PepTSo

We used 42 different protein conformations as starting point for reMD simulations in vacuum which means

the protein was not surrounded by lipids, water or ions. CHARMM-GUI default value of 25 spin labels

copies were attached to each labeled protein residue. Experimental distance distributions from Fowler et al.

were provided as target histograms [111]. We also used default values for force constants, bin widths and

Gaussian natural spread [263]. Simulations were run using a special version of NAMD 2 [13,245].

For system reMD (1 dist), we attached MTSSL probes on residues Asn174 and Ser466, and restrained this

distance. For system reMD (2 dist), MTSSL probes were places on four residue and two distances were

restrained, Asn174-Ser466 and Arg201-Glu364. These residue pairs are on opposite side of the protein. For

system reMD (8 dist), MTSSL probes were places on 12 residues, and 8 experimentally studied residue pairs

were restrained. Details for system size and simulation time are provided in Supplementary Table 5.3. We

used an integration timestep of 1 fs and saved trajectory coordinates at a frequency of 50 ps.

Since reMD simulations are biased simulations, where the distance between the probe molecules is restrained

to a targeted distribution using harmonic forces we use these simulations as an opportunity to explore the

protein and the MTSSL probe dynamics when the experiment and experiment distance distributions show a

perfect match. This is also why reMD simulations in vacuum are efficient and sufficient to sample the spin
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probe dynamics.

5.4 Results

Residue pair distances from micelle-embedded proteins resemble trends in

bilayer-embedded proteins

PepTSo is a proton-coupled bacterial symporter for which, recently, researchers characterized eight inter-

residue distance distributions using DEER [111]. There are two known crystal structures for this protein

found in the bacteria Shewanella oneidensis, 2XUT [258] and 4UVM [111], both in the inward-facing con-

formation of the protein. PepTSo is a promiscuous transporter for most di/tri-peptides, but it belongs to

the Proton-dependent oligopeptide transporter (POT) family and the Major Facilitator Superfamily (MFS)

whose members have a wide variety of functions and are found in many different organisms including hu-

mans. According to the OPM database, there are crystal structures available for 24 proteins from the POT

family and 65 from MFS, which is also one of the largest superfamilies of membrane proteins. Like most

MFS family transporters, PepTSo has 14 transmembrane helixes, divided into N terminal bundle (TMs 1 to

6), C terminal bundle (TMs 7 to 12), and two helixes A and B between the two domains packed closely with

the C terminal bundle.

LeuT, a leucine transporter, has many high-resolution crystal structures and been extensively characterized

using DEER experiments [106, 256, 257]. LeuT belongs to the Neurotransmitter: Sodium Symporter (NSS)

family whose other members include Dopamine, noradrenaline, GABA, glycine, and serotonin transporters.

LeuT was the first structure resolved using X-ray crystallography from the NSS family and of the many

structures resolved since there, only one structure is in the inward-facing state as a quadruple mutant

(3TT1 [271]). The LeuT-fold consists of 12 transmembrane helixes, of which TMs 1 to 5 and TMs 6 to 10

are inverted repeats of each other.

PepTSo and LeuT, both are important model proteins from two different families of membrane proteins and

yet, LeuT has been well studied using computational simulations with both unbiased and biased protocols,

whereas there are only a few short-timescale computational studies focused on PepTSo. Our previous work

in Chapter 4 sampled the conformational dynamics of PepTSo using long timescale 54 µs MD simulations

and analyzed it’s equilibrium dynamics using Markov state model based analysis. These simulations were

carried out in a POPC bilayer using the AMBER FF14SB force field. In order to compare dynamics of

PepTSo protein in detergent micelle and bilayer and capture solely the effect of the membrane environment,

we replicated our simulations in a POPE/POPG bilayer in CHARMM 36 force field. Simulations from our
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Figure 5.1: (A) Violin plot shows distance distributions for 5 intracellular residue pair distances and 3 extracellular residue pair
distances measured by Fowler et al. as observed from MD simulations of PepTSo protein in micelle (yellow, right) and bilayer (blue,
left) [111]. (B) Violin plot shows distance distributions for 17 intracellular residue pair distances and 7 extracellular residue pair
distances measured by Kazmier et al. as observed from MD simulations of LeuT protein in micelle (purple, right) and bilayer (green,
left) [257]. Distance distributions among Cα atoms and sidechain atoms is shown in Supplementary Figure 5.21 and Supplementary
Figure 5.22.

previous work provide a benchmark for sufficient conformational sampling since we were able to sample IF,

OC, OF and multiple other intermediate states (Supplementary Figure 5.8). Here, we compare our atomistic

molecular dynamics simulations of PepTSo and LeuT in BDDM micelles and in lipid bilayers.

In Supplementary Figure 5.8A,B, we project our PepTSo simulation datasets on gating residue pairs, Ser131-

Tyr431 on the intracellular side and Arg32-Asp316 on the extracellular distance. We compare the sampled

regions with our previous simulations (Supplementary Figure 5.8D) to conclude that all physical confor-

mations of the protein have been well sampled. Similarly, in Supplementary Figure 5.9 we project our

LeuT simulation datasets on one residue pair each on the intracellular and extracellular side of the protein,

Arg5-Asp369 and Arg30-Asp404, respectively. These residue pairs are based on gating residues identified in

hSERT [275] which also has a typical LeuT-fold and shares 35.5% sequence similarity with LeuT protein.

Of the four residues involved in the gating residues, Asp404 from LeuT is homologous to Glu493 in hSERT

and the three others are arginines.

Upon comparing simulated and experimental distance distributions from our micelle and bilayer simulations

(Supplementary Figure 5.1B,C) we clearly see that distance distributions obtained from micelle simulations
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are no better at matching with experiments. However, by comparing distance distributions as determined

from our MD simulations for micelle and bilayer environment simulations for both proteins in Figure 5.1 we

examine the impact of the choice of membrane on the protein’s dynamics, residue distances and secondary

structure. For PepTSo protein, five out of a total of eight distance distributions show a higher median value

(middle horizontal line on violin plots in Figure 5.1A) in micelles as compared to bilayer. For instance,

residue pair 174-466 shows a single peak in the distributions for both micelle and bilayer, but the data has

a median value of 3.87 nm mean in bilayer whereas this value is 4.00 nm in micelle. On the other hand, two

distances distributions for residue pairs 47-330 and 174-401 show lower median values in the micelle than in

the bilayer. One distance distribution for residue pair 141-438 show about the same value 1.6 nm in both

micelle and bilayer. In Supplementary Figure 5.10, we show that most of the mean or median values lie

along the black dotted line, indicating that they are similar for micelle and bilayer and the differences are

minimal. Mean and median values for all inter-helix distances also fall along the dotted line.

Based on visual inspection, not only the positions of the peaks but the number of peaks in the distance

distributions can differ such as 3 peaks in bilayer versus 2 in micelle for residue pairs 141-432 and 141-500.

Interestingly, these two distance distributions show new peaks in micelle where little or no data is seen

in those regions in bilayer. For LeuT, although the distance distributions differ, the variation is much less

(Figure 5.1B and Supplementary Figure 5.10), for example none of the 24 experimental distance distributions

show a peak in bilayer which is not there in micelle or vice versa.

For PepTSo, five of the experimental residue-pair distance distributions also show slightly broader distri-

butions. For inter-helix distributions (Supplementary Figure 5.10) we see that few upper values and lower

values lie below the dotted line meaning that the distributions move towards larger values in micelles. Does

this mean that micellar environments shift the distributions to larger values? This is unlikely because for

LeuT we see values that are both above and below the black dotted line in experimental distances as well

as inter-helix distances.

In order to conclude that the reason for mismatch between DEER experimental observables and MD simu-

lations distance distributions is due to the use of detergent micelle in MD simulations, distance distributions

should have exhibited a consistent behavior such as micellar distributions are always larger, smaller, wider

or narrower. However, in our simulations there are no dramatic or homogeneous shifts in the distance

distributions.
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Proteins in micelles and bilayers show structural similarity

For both proteins, we measure helicity of transmembrane helices and Supplementary Figure 5.11 shows the

distribution of helicity values. Values closer to 1 indicate helical nature and decreasing values show loss of

helicity. TMs 7 and 10 exhibit a wider range of helicity in PepTSo which indicates their dynamic nature.

In Chapter 4 we report that one of the extracellular gating residue is on TM7 and one of the intracellular

gating residues is on TM10. Given that the median of TM7 helicity is 0.76 in both micelle and bilayer, lowest

among all other transmembrane helices, none of the helices lose their entire alpha-helical nature. Moreover

broader distributions for TMs 7 and 10 are seen in both micellar and bilayer environments.

In LeuT TMs 1 and 6 show wide helicity ranges, this is the case in both environments. Readers must note

that TM1 here indicates residues of TM1a, the first half of TM1 helix. TM1a is of particular interest in

LeuT and other NSS family transporters [271,276,277] because in IF structures this region is away from the

bundle as shown in Supplementary Figure 5.12C. In Supplementary Figure 5.11B these low values of TM1

helicity arise from IF trajectories and other trajectories that transition to IF like states. Our simulation

ensemble includes two independent trajectories based on the IF structure 3TT3 [271]. A recent study

by Gotryd et al. reports a LeuT IF structure but the structure is unreleased as of the writing of this

work [277]. LeuT TM1a dynamics show a significant distinction in OF and IF states in our MD simulation

trajectories (Supplementary Figure 5.12), TM1a helicity drops to 20-30% in IF trajectory whereas this is

50-80% in OF trajectories. Due to the dynamic nature of this region, it follows that one of the gating

residues on both intracellular and extracellular side of the protein are also positioned on TM1. This distinct

behavior of TM1a is also seen in Supplementary Figure 5.9A,B where LeuT is open on both extracellular

and intracellular sides. Other studies on transporter proteins using extensive MD simulations [275,278,279]

have also reported observing this hourglass-like state of the transporter. Terry et al. have reported evidence

for this conformation in LeuT which is due to a weaker coupling between extracellular and intracellular side

of LeuT [280]. We suggest that this weaker coupling allows LeuT to explore a large range of intracellular

gating distance while the extracellular side of the protein is also open.

TM regions of PepTSo and LeuT show structural similarity in both micelle and bilayer, but could the choice of

the membrane milieu affect the intracellular and extracellular flanking regions of our proteins? We compare

the distributions for these regions such as helicity of two short helices in PepTSo one on each side. For

LeuT we compare the helical content of the loop regions which connect the TM helices. While their might

be molecular level differences in protein residue interactions with lipids in bilayer or detergents in micelle,

Supplementary Figure 5.13 and Supplementary Figure 5.14 show that distance distributions are similar and

not impacted by the choice of membrane environment.
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Figure 5.2: Comparing mean (blue), median (orange), upper value (green), and lower value (red) of alpha-helical content of (A) 14
TM helices in PepTSo, and (B) 12 TM helices in LeuT. Markers below the black dotted line indicate larger values observed in micelle
environment. Markers above the black dotted line indicate larger values observed in bilayer environment. Markers along the black
dotted line indicate similar observations in micelle and bilayer simulations.

Figure 5.2 strikingly shows that TM helicity median and mean values lie along the black-dotted line, and in

most cases lower and upper values also don’t deviate much in micelle and bilayer. In general, helicity values

or distributions are not different which means that micelles do not impact the structure of the protein.
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Covalent modification due to MTSSL probes cause small local structural

perturbations on the protein

We used Kullback-Leibler (KL) divergence to quantify mis-match and differences among the distance dis-

tributions. KL Divergence for two distributions P and Q is 0 if and only if P and Q are equal almost

surely. We calculated KL divergence among distance distributions from MD simulations and micelle and

MD simulations in bilayer discussed above. Among 8 experimentally characterized distances in PepTSo, we

found that residue pair Asn174-Ser466 has the highest KL divergence value. Hence, we chose this residue

pair for further study, specifically to perform simulations with realistic nitroxide DEER labels. We attached

an MTSSL DEER probe on Asn174 and Ser466 after mutating them to cystines via CHARMM-GUI these

residues and simulated our protein in a BDDM micelle for ∼19 µs. To our knowledge, this is the first study of

the impact of MTSSL spin labels on a protein and the resulting DEER distance distributions using unbiased

simulations.

Figure 5.3A shows the simulated conformational ensemble projected on the intracellular and extracellular

gating residues. Comparing this landscape to those for the PepTSo simulations without probes in micelle

shows that both ensembles capture all conformational states of the protein. This follows that probe molecules

do not seem to interfere with the conformational dynamics of PepTSo protein in any way that could hinder

it’s transport function.

Figure 5.3: (A) The conformational landscapes of PepTSo protein are generated by projecting all simulation data on the chosen
extracellular and intracellular side distances measured between Arg32-Asp316 and Ser131-Tyr431, respectively.Conformational land-
scape for PepTSo MD simulations in BDDM micelle with an MTSSL labeled residue pair. (B) Distance distribution for MTSSL labeled
residue pair in PepTSo, 174-466, from simulations in BDDM micelle without probes (yellow), and (C) with probes (red). (D) Distance
distribution for MTSSL labeled residue pair in PepTSo, 174-466, from simulations in BDDM micelle without probes (orange) where
distances is measured between ON atoms on MTSSL labels. Black lines show DEER experiment distance distributions.

In order to understand the local effects of the MTSSL probes on the protein, we calculate Phi & Psi dihedral

angles and generate Ramachandran plots for the mutated residues 174 and 466. We see a slightly larger

coverage for residue 174 with MTSSL probe (Supplementary Figure 5.15B) as opposed to when it is an Asn

residue (Supplementary Figure 5.15A), while there is no difference for residue 466. Similarly, when we look
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at the regions surrounding the labeled residues, specifically two residues both before and after the labeled

residues, we see larger distribution for residue 174 (Supplementary Figure 5.15E,F). Hence, we conclude that

while mutants created for DEER spectroscopy experiments slightly impact the local dynamics and secondary

structure of the protein, this affect is not significant and does not alter the overall conformational dynamics

of the protein.

We suggest that any alteration seen in transport activity could be due to the kinetic rates of the transport

function which would not affect the DEER observations unless functional interactions are mutated. Fowler

et al. tested the transport activity of their PepTSo double cysteine mutants and 174-466 mutant although

decreased activity, did not abolish AlaAla transport entirely [111]. Kazmier et al. also tested binding of Leu

to spin-labeled LeuT pairs and most double mutants retained more than 50% binding affinity as the wild

type protein.

MTSSL probe distances are vastly different when compared to distances from

wild-type protein simulations

We examine the impact of a spin-probe labeled residue pair on the resulting distance distributions (Supple-

mentary Figure 5.16) by comparing micelle simulations with and without MTSSL probes. Since the probe

molecules are on the extracellular side of the PepTSo protein, we observe that the intracellular side distances

show no differences and two extracellular side distance distributions do appear slightly perturbed. This affect

is likely because of the two MTSSL molecules on this side of the protein. A closer look at the distribution for

the residue pair labeled with MTSSL probes, 174-466, shows that the median values as well as 25% and 75%

quartile values are conserved. Overall, we don’t see any significant changes in the distance distributions for

all 8 experimental distances as compared to the distance distributions obtained from simulations in BDDM

micelle. This is expected, if there is no overall difference in the underlying conformational landscape as

we discussed above, individual residue pair distances also would not deviate. Quantitatively, symmetrised

divergence values indicated that distance distributions from MD simulations in micelle with and without

probes were less divergent as compared to distance distributions from MD simulations in bilayer and micelle.

Most nitroxide spin labels such as MTSSL consist of an unpaired electron on an oxygen atom which we will

refer to as the ON atom. Dipolar coupling in DEER experiments is measured between two ON atoms, our

simulations with two MTSSL labeled residues now allow us to obtain ON-ON atom distance distributions.

Supplementary Figure 5.17 shows the ON-ON atom distance distributions as compared to the Cα and

sidechain atom distances as observed in these probe simulations. Given the long length of the MTSSL

molecule it is expected that ON-ON atom distance distributions are upward shifted with a median value of
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5.22 nm. On the other hand the median value of the closest heavy atom based distance distribution is ∼0.9

nm lower than the ON-ON atom distance median.

Comparing these distributions to the experimental DEER distribution, we see single peaks from MD simu-

lations whereas two peaks are seen in the experimental distribution, black lines in Figure 5.3. From Figure

5.3B and C, it appears that the MD simulation data captures conformations corresponding to the first

peak, but Figure 5.3D shows that the ON-ON atom distance distribution points to conformations captured

corresponding to the second peak with larger distance value. Evidently, the choice of atom for distance

calculations is imperative and may significantly impact structural inferences from MD simulations. It is

also important to note that while the ON-ON atom distance distribution changes our view of which peak

our data corresponds to, we still do not match the experimental data and nor do we obtain multi-modal

distributions as seen in experiments.

Restrained-ensemble MD simulations sample spin probe dynamics, but alter

protein dynamics

Our results above elucidate that MTSSL probes modulate the distance distributions obtained from DEER

experiments and the experimentally characterized distance distributions are a function of both the protein’s

dynamics as well as the probe’s dynamics. MTSSL spin labels are long and flexible molecules and their

dynamics have not been examined previously over a long time. We believe that our previous simulations

are not sufficient, making unbiased simulations intractable to explore MTSSL probe dynamics. Restrained-

ensemble MD (reMD) simulations have been used previously to restrain MTSSL probe’s dynamics to the

experimentally obtained DEER distributions and we explore this avenue to deconvolute the effect of MTSSL

probe’s dynamics from the experimental distributional data.

For our reMD simulations we first restrained residue pair 174-466. Since this residue pair is on the extra-

cellular side of the PepTSo protein, we chose another pair, 201-364, which had the highest KL divergence

on the intracellular side. Hence, our next set of reMD simulations involved two restrained pairs one on each

side of the protein. We dubbed these set of simulations as reMD (1 dist) and reMD (2 dist).

While in Figure 5.4A, B and Supplementary Figure 5.18A,B, the distance distributions between the ON-

ON atoms of the MTSSL probes show a match with the experimental distribution, the closet-heavy atom

distances don’t. In Figure 5.4A, residue pair 174-466 distribution in teal violin plot has a single dominant

peak with a median value of 3.22 nm, whereas the experimental distribution has two peaks. Moreover the

same peak as seen in unbiased BDDM micelle simulations distribution shown in yellow violin plot is 4 nm.

For comparison, this value is 3.98 nm for our unbiased simulations with a labeled residue pair. In general
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Figure 5.4: (A) Violin plot shows distance distributions for 5 intracellular residue pair distances and 3 extracellular residue pair
distances as observed from (A) reMD (1 dist) simulations where residue pair 174-466 is restrained, teal violin plots, (B) reMD (2 dist)
where residue pairs 174-466 and 201-364 are restrained, pink violin plots, and (C) reMD (8 dist) where all 8 residue pairs are restrained,
brown violin plots. Yellow violin plots correspond to unbiased simulations of PepTSo protein in micelle. Black dotted outlined residues
pairs in (A) and (B) are restrained pairs and probe distances are shown to match with experimental DEER distance distributions.

all three extracellular distances in Figure 5.4A are lower shifted in reMD simulations. This shift is also seen

in Figure 5.4B for the three extracellular distances. reMD (1 dist) and reMD (2 dist) systems both have a

labeled residue pair on the extracellular side which would explain lower shifts for all distance shown on this

side of the protein. While the distributions are lower shifted in reMD for the extracellular distances, neither

a lower shift not an upward shift is seen in the five intracellular distances in Figure 5.4A or B. Comparing

the residue pair 201-364 in Figure 5.4A and B, we note that when this residue pair is not restrained (teal

violin plot) its mean value is 2.66 nm and when it is restrained this value is 3.54 nm, very close to unbiased

simulation value of 3.51 nm.

What happens when we restrain all 8 residue pairs in system reMD (8 dist)? Three out of five distances
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- distance #2, 3, and 4 - on the intracellular side show an upward shift, the median value of the brown

violin plots is higher than the median value of the yellow violin plot distributions. Distance #1 and 2 on

the extracellular side also are shifted up as compared to systems reMD (1 dist) and reMD (2 dist), although

their median values are still lower than those in unbiased simulations.

An upward shift in distance distributions is similar to what we observe in Figure 5.3 where the ON-ON atom

based distances shifted the distribution upwards by ∼0.9 nm. However, the origins of these shift are different.

In particular, considering the distance distribution for residue pair 174-466 which is the third distance on the

extracellular side, a lower shift in all reMD simulations compared to unbiased simulations without probes

(yellow violin plots in Figure 5.4) and with probes (red violin plots in Supplementary Figure 5.18) indicates

that reMD simulations alter the backbone dynamics in a way MTSLL probe labeled simulations did not. Vast

differences in backbone dihedral angles of the relevant residues in reMD simulations support this observation

(Supplementary Figure 5.19). These drastic shifts in distance distributions are mirrored in the underlying

conformational landscapes (Supplementary Figure 5.20). Hence, bias introduced in reMD simulations via

additional energetic terms for force calculations affect the protein structure differently than the modulation

caused when MTSSL probes are attached to residues but simulated with unbiased MD simulations.

Similar to our MTSSL-labeled simulations, reMD simulations also suggest that the DEER experiment dis-

tance distributions are a convolution of both the spin probe distances as well as the inherent protein dynamics

based distances. The impact of spin labels is not straightforward, while the ON-ON atom distance will al-

ways be larger than residue backbone or closest-heavy atom distances, the spin labels may modulate the

protein’s conformational dynamics. Unbiased simulations are not ideal to capture this impact, in our ∼19 µs

simulations we did not see this difference, however reMD simulations proved otherwise. Moreover, limited by

computational resources it is not feasible to perform long timescale residue pairwise simulations with MTSSL

probes. At the same time, while pairwise reMD simulations are also not cheaper, multiple residue pairs can

be combined together as we demonstrated for our systems reMD (2 dist) and reMD (8 dist). While this may

make them computationally tractable, this still does not solve the problem of an unbiased match with MD

simulations from long timescale MD simulations. reMD simulations with multiple restrained residue pairs

also raise the unexplored concern that what number of restraints in reMD simulations would be adequate

to capture an MD ensemble where all residue pair distance distributions can correspond to their DEER

experiments observables without perturbing the protein’s conformational dynamics.
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5.5 Discussion

This work highlights the necessity for careful interpretation of DEER spectroscopy and MD simulations in

membrane protein biophysics. Scarcity of membrane protein biophysical characterization necessitates that

we salvage all information available from laboratory experiments and computational simulations. Hence

DEER spectroscopy and MD simulations will continue to be important techniques in progressing our under-

standing of protein dynamics. It is, therefore, imperative to understand how to best compare data obtained

from both techniques, not only to show a validation of MD simulations with experiments, but also to avoid

misleading conclusions and to draw predictive conclusions. Previous work in Chapter 2 has proposed opti-

mization protocols to choose ideal choice of residue pairs for DEER experiments from already performed MD

simulations. These protocols can also be used iteratively, performing simulations followed by experiments

and then more simulations to update our understanding of a protein’s conformational changes, as shown in

Chapter 3. Such methods can be used to their full potential once we can decipher structural characteriza-

tion of different protein modes identified via multiple peaks in DEER distance distributions. Hence, in this

work we carry out a comprehensive study of potential reasons for discrepancy between DEER experiment

distributional data and residue pair distributions from atomistic MD simulations.

We show that major reason for the difference between experiments and simulation distributions is due to

the long length of the MTSSL label and it’s slow dynamics. The slow dynamics of the flexible MTSSL

probes could not be captured in unbiased MD simulations and we examined this using biased simulation

methods. While reMD simulations and other biased simulation strategies can reconcile experiments and

simulations for the restrained residue pairs, reMD yielded significant changes in the protein’s conformational

dynamics itself including, both residue-level and global perturbations. It is also not feasible for researchers

to perform DEER experiments on all residue pairs of a protein which can be followed by multiple residue pair

biased reMD simulations. On the other hand, while unbiased MD simulations do not cause any unphysical

perturbations in the protein, it is computationally expensive to perform long timescale MD simulations

with MTSSL probes. We surmise that when using methods such as OptimalProbes it would be sufficient to

perform MD simulations for the top predicted choices for DEER experiments .

Another strategy is for experiments to use alternative probe molecules, such as metal cation based probes

which are more rigid [253] or use biophysical experimental methods that do not require any changes to the

covalent structure of the target protein that affect the protein’s dynamics and sometimes function. One such

technique is Hydrogen Deuterium Exchange Mass Spectrometry which has been used for membrane proteins

including for MFS and NSS family proteins [281–283]. While these experiments are performed in micelle and

nanodisc, our work shows that membrane environment does not influence protein dynamics while covalently
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linking MTSSL spin probes do alter the obtained measurements.
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5.6 Supplementary Information

Experimental DEER distances

Experimental DEER distances and distance distributions were extracted from previous experiments pub-

lished in ref. [111] and [257] using Plot Digitizer Java program.

For PepTSo, 8 DEER distributions are available:

• 5 intracellular distances (86-432,141-432,141-438,141-500,201-364)

• 3 extracellular distances (47-330,174-401,174-466)

For LeuT protein, we have examined 24 distance distributions because these distributions have data available

for Apo system in ref. [257].

• 17 intracellular distances (185-271,79-277,184-277,7-86,12-86,12-377,71-193,193-377,12-371,71-89,71-184,71-

377,79-377,71-425,71-455,277-425,277-455)

• 7 extracellular distances (309-480,123-240,208-240,37-123,37-208,123-306,208-306)

PepTSo experimental distributions were fitted to multiple Gaussian distributions in order to get an equal-

sized-bin distribution for KL divergence calculations and restrained MD simulations. Comparisons shown in

Supplementary Figure 5.23.

MD simulations

List of LeuT structural models

2A65 [284], 2Q6H [285], 2Q72 [285], 2QB4 [285], 2QEI [285], 3F3A [286], 3F3C [286], 3F3D [286], 3F3E [286],

3F48 [286], 3F4I [286], 3F4J [286], 3GJD [287], 3GWU [288], 3GWV [288], 3GWW [288], 3TT1 (chains A &

B) [271], 3TT3 (chain A) [271], 3USG [289], 3USI (chains A & B) [289], 3USJ (chains A & B) [289], 3USK

(chains A, B, C, & D) [289], 3USL [289], 3USM [289], 3USO (chains A & B) [289], 3USP [289], 5JAE (chains

A & B) [290], 5JAF [290].

Data analysis

Micelle radius. First, we compute the radius of gyration (Rg) of the micelle using compute rg in MDTraj

1.7 [129], which is related to the micelle radius (R) as, R =
√

5
3Rg [291]. This formula hold when the micelle

is assumed to be spherical in shape.
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Eccentricity. The shape of the micelle and the protein-micelle complex is determined using the ratio

between moments of inertia I1, I2, and I3 Supplementary Table 5.2. Eccentricity is calculated as 1−Imin/Iavg

[291, 292]. The moments are inertia are defined as the eigenvalues of a moment of inertia tensor calculated

using compute inertia tensor in MDTraj 1.7 [129].

Distance distributions. All inter-residue distance distributions are estimated as the distance between

closest heavy atoms between the two residues, unless otherwise mentioned.

Inter-helix distances Transmembrane helix ends for proteins are defined based on OPM database [293]

numbering for 14 helixes in PepTSo and 12 in LeuT. We determine inter-helix distances among all helixes

on intracellular and extracellular side of the proteins. For PepTSo these are 2× (14)(13)/2 = 182 distances

and for LeuT these are 2× (12)(11)/2 = 132 distances.

Kullback-Leibler (KL) divergence. KL divergence (also called relative entropy) is a measure of how

one probability distribution is different from a second, reference probability distribution. KL divergence for

two distributions P and Q is 0 if and only if P and Q are equal almost surely. For two discrete probability

distributions P and Q defined on the same probability space, X, the KL divergence of Q from P is defined

to be,

KL(P |Q) = −
∑
xεX

P (x)log(
Q(x)

P (x)
) (5.1)

KL divergence is an assymmetric measure by definition, and wherever possible we have used this measure

both ways to validate our conclusions regarding similarity and difference among probability distribution. We

used scipy.stats.entropy routine to calculate KL divergence values. Another useful measure of divergence

between probability distribution we use is Symmetrised Divergence, which is symmetric and non-nagative

defined as,

Divergence = KL(P |Q) +KL(Q|P ) (5.2)

When calculating frequencies used for the KL divergence we corrected for the presence of frequencies of zero

by adding a very small value to the probability distribution.

Helical content. The helical content of the all TM helixes are calculated as defined in the NAMD 2.11

manual [13]. The python implementation is taken from https://github.com/amoffett/alpha_helical_

content as used in ref. [294]. The individual helixes in this work are as defined by the OPM database web

server [293] for PepTSo PBD 4UVM [111] and LeuT PDB 2A65 [284]. Specifically, TM1 of LeuT refers to

residues in TM1a only, which are residues 15 to 25 whereas the helix ends at residue 35.
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Supplementary Table 5.1: List of MD simulations.

Complex Components#1 # Trajectories # Atoms
Equilibration run

(ps)
Simulation time

(for analysis#2, µs)

LeuT-bilayer 150 POPE, Cl− 72 56,707 - 66,784 675 32.18

LeuT-micelle 150 BDDM, Cl− 72 107,521 - 145,589 450 28.73

PepTSo-bilayer
150 POPE,

50 POPG, NaCl
42 66,045 - 74,700 675 27.3

PepTSo-micelle 150 BDDM, NaCl 42 130,506 - 195,681 750 20.42

PepTSo-micelle-
MTSSL probes 150 BDDM, NaCl 42 128404 - 181800 750 18.78

#1: All systems contain protein and TIP3P water.
#2: For all trajectories, we eliminate the first 10 ns of the production run from analysis.

Supplementary Table 5.2: Geometry of protein-micelle complexes with varied micelle sizes.

Complex
PepTSo w/ detergents

Micelle Radius
(nm)

I1 : I2 : I3 Eccentricity

Micelle 150 detergents 4.4 ± 0.02 1.46 : 1 : 1.24 0.23 ± 0.02
180 detergents 4.58 ± 0.03 1.42 : 1 : 1.25 0.22 ± 0.02
200 detergents 4.68 ± 0.02 1.53 : 1 : 1.16 0.22 ± 0.02

Protein+Micelle 150 detergents - 1.26 : 1 : 1.16 0.16 ± 0.02
180 detergents - 1.23 : 1 : 1.18 0.16 ± 0.01
200 detergents - 1.38 : 1 : 1.13 0.17 ± 0.02

Supplementary Table 5.3: List of reMD simulations.

System # Trajectories # Atoms
Equilibration run

(ps)
Production run

(ns)
Simulation time

(µs)

reMD (1 dist) 42 9795 25 ∼95 3.98

reMD (2 dist) 42 11645 25 (2 setups required 50 ps) ∼95 3.88

reMD (8 dist) 42 19049 25 (8 setups required longer) ∼65 2.67
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Supplementary Figure 5.1: Experimentally characterized residue pair distance distributions as observed in our MD simulations in
(A) POPC bilayer (simulations previously performed in Chapter 4), (B) POPE/POPG (3:1 ratio) bilayer, (C) BDDM micelle, and (D)
BDDM micelle with MTSSL labeled residue pair. Black lines show experimental DEER distance distributions obtained from Fowler et
al. as discussed above [111].
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Supplementary Figure 5.2: (A) RMSD of protein with respect to the starting frame is shown with time. Dotted lines show RMSD
of the full protein while the bold lines show RMSD of transmembrane region of the protein. Shaded regions show instantaneous values
while the lines show a running time average RMSD over a 1 ns time window. (B) An example protein-micelle setup top and side view
including BDDM detergent molecules and ions. (C) Probability distribution of micelle eccentricity values. (D) Micelle radius with time
is shown. Shaded regions show instantaneous values while the lines show a running time average radius over a 1 ns time window. (E)
Radial distribution of distances between BDDM detergent molecule headgroups. Headgroup distances are estimated using the distance
among oxygen atoms highlighted in magenta in (F). Colors indicate three micelle sizes, micelle with 150 (blue), 180 (magenta), 200
(skyblue) detergent molecules.
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Supplementary Figure 5.3: Residue pair distance distributions for PepTSo simulations in BDDM micelle averaged over 25%, 50%,
and 75% of the collected trajectories. Filled regions show error bars in the distance distribution as obtained from 10 iterations where
a subset of the trajectories are selected randomly.

Supplementary Figure 5.4: Residue pair distance distributions for PepTSo simulations in bilayer averaged over 25%, 50%, and 75%
of the collected trajectories. Filled regions show error bars in the distance distribution as obtained from 10 iterations where a subset
of the trajectories are selected randomly.
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Supplementary Figure 5.5: Residue pair distance distributions for PepTSo simulations in BDDM micelle with a residue pair labeled
residue pair averaged over 25%, 50%, and 75% of the collected trajectories. Filled regions show error bars in the distance distribution
as obtained from 10 iterations where a subset of the trajectories are selected randomly.
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Supplementary Figure 5.6: Residue pair distance distributions for LeuT simulations in BDDM micelle averaged over 25%, 50%,
and 75% of the collected trajectories. Filled regions show error bars in the distance distribution as obtained from 10 iterations where
a subset of the trajectories are selected randomly.
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Supplementary Figure 5.7: Residue pair distance distributions for LeuT simulations in bilayer averaged over 25%, 50%, and 75%
of the collected trajectories. Filled regions show error bars in the distance distribution as obtained from 10 iterations where a subset
of the trajectories are selected randomly.
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Supplementary Figure 5.8: The conformational landscapes of PepTSo protein are generated by projecting all simulation data
on the chosen extracellular and intracellular side distances measured between Arg32-Asp316 and Ser131-Tyr431, respectively. (A)
Conformational landscape for PepTSo MD simulations in BDDM micelle. (B) Conformational landscape for PepTSo MD simulations
in POPE/POPG (3:1 ratio) bilayer. (C) Conformational landscape for PepTSo MD simulations in BDDM micelle with an MTSSL
labeled residue pair. (D) Conformational landscape from our previous simulations in a POPC bilayer and using an AMBER FF14SB
force field.

Supplementary Figure 5.9: The conformational landscapes of LeuT protein are generated by projecting all simulation data
on the chosen extracellular and intracellular side distances measured between Arg30-Asp404 and Arg5-Asp369, respectively. (A)
Conformational landscape for LeuT MD simulations in BDDM micelle. (B) Conformational landscape for LeuT MD simulations in
a bilayer. (C) Gating residues used to determine extracellular and intracellular distances are shown on a cartoon representation of a
three-dimensional LeuT structure.
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Supplementary Figure 5.10: Comparing mean (blue), median (orange), upper value (green), and lower value (red) of distance
distributions of experimental residue pair distances and all inter-helix residue pair distances. Markers below the black dotted line
indicate larger values observed in micelle environment. Markers above the black dotted line indicate larger values observed in bilayer
environment. Markers along the black dotted line indicate similar observations in micelle and bilayer simulations.
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Supplementary Figure 5.11: (A) Violin plot shows alpha-helical content for 14 TM helices as observed from MD simulations of
PepTSo protein in micelle (yellow, right) and bilayer (blue, left). (B) Violin plot shows alpha-helical content for 12 TM helices as
observed from MD simulations of LeuT protein in micelle (purple, right) and bilayer (green, left).
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Supplementary Figure 5.12: (A) TM1a alpha-helical content of trajectories started from OF structure of LeuT in micelle (purple)
and bilayer (green). (B) TM1a alpha-helical content of trajectories started from IF structure of LeuT in micelle (purple) and bilayer
(green). (C) Superposed structures of LeuT’s OF, OC and IF structures.

Supplementary Figure 5.13: Violin plot shows alpha-helical content of a short helix on the intracellular (IC) side and another of
the extracellular (EC) side of PepTSo protein in micelle (yellow, right) and bilayer (blue, left). Inset shows two short helices in red on
the PepTSo protein structure in grey.
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Supplementary Figure 5.14: Violin plot shows alpha-helical content of intracellular loops (ILs) and extracellular loops (ELs) in
LeuT protein in micelle (purple, right) and bilayer (green, left). Loop EL5 is only 4 residues long and too short to determine it’s
alpha-helical content.

Supplementary Figure 5.15: (A-D) Ramachandran plots for residues 174 and 466. Yellow and red colors indicate residue dihedral
angle distribution in micelle and bilayer MD simulations, respectively. (E-F) Ramachandran plots for regions surrounding residues 174
and 466. (I) Residues 174 and 466 are shown on a cartoon representation of a three-dimensional PepTSo structure.

Supplementary Figure 5.16: (A) Violin plot shows distance distributions for 5 intracellular residue pair distances and 3 extracellular
residue pair distances measured by Fowler et al. as observed from MD simulations of PepTSo protein in micelle without MTSSL probes
(yellow, right) and with an MTSSL probe labeled residue pair (red, left). Black dotted outlined residues pair is the labeled residue
pair.
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Supplementary Figure 5.17: Violin plots compare distance distributions for simulations with MTSSL probes as meausured between
the ON atom with the closest heavy atom, Cα atom, and the closest sidechain atom of the labeled residues. ON-ON atom distance
distributions are shown in orange and the backbone atom distance distributions are shown in red.

Supplementary Figure 5.18: (A) Violin plot shows distance distributions for 5 intracellular residue pair distances and 3 extracellular
residue pair distances as observed from (A) reMD (1 dist) simulations where residue pair 174-466 is restrained, teal violin plots, (B)
reMD (2 dist) where residue pairs 174-466 and 201-364 are restrained, pink violin plots, and (C) reMD (8 dist) where all 8 residue pairs
are restrained, brown violin plots. Yellow violin plots correspond to unbiased simulations of PepTSo protein in micelle with MTSSL
molecules on residues 174 and 466. Black dotted outlined residues pairs in (A) and (B) are restrained pairs and probe distances are
shown to match with experimental DEER distance distributions.
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Supplementary Figure 5.19: (A-F) Ramachandran plots for residues 174 and 466. Teal, pink, and brown colors indicate residue
dihedral angle distribution in reMD (1 dist), reMD (2 dist), and reMD (8 dist) MD simulations, respectively. (G-L) Ramachandran
plots for regions surrounding residues 174 and 466.

Supplementary Figure 5.20: Conformational landscape for PepTSo (A) reMD (1 dist), (B) reMD (2 dist), and (C) reMD (8 dist)
simulations. The conformational landscapes are generated using the same residue pairs as in Supplementary Figure 5.8.
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Supplementary Figure 5.21: Violin plot shows distance distributions for 5 intracellular residue pair distances and 3 extracellular
residue pair distances measured by Fowler et al. as observed from MD simulations of PepTSo protein in micelle (yellow, right) and
bilayer (blue, left) [111]. (A) Residue pair backbone distances as measured between Cα atom of residues. (B) Residue pair sidechain
distances i.e. closest distance between any two non-hydrogen atoms in residue sidechains.
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Supplementary Figure 5.22: Violin plot shows distance distributions for 17 intracellular residue pair distances and 7 extracellular
residue pair distances measured by Kazmier et al. as observed from MD simulations of LeuT protein in micelle (purple, right) and
bilayer (green, left) [257]. (A) Residue pair backbone distances as measured between Cα atom of residues. (B) Residue pair sidechain
distances i.e. closest distance between any two non-hydrogen atoms in residue sidechains.

Supplementary Figure 5.23: Black dotted lines indicate experimental distributions obtained by tracking data from Fowler et al.
and red lines indicate multiple Gaussian fitted to the experimental traces [111].
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Chapter 6

Conclusion and Future Directions

The work in this dissertation describes the integration of MD simulations and DEER spectroscopy exper-

iments. Designing experiments based on MD simulations is routine, some examples for such studies on

membrane proteins are discussed here. Selvam et al. perform MD simulations of glucose transport through

a rice SWEET2b transporter and validate their results using site-directed mutagenesis experiments [278].

Researchers identified seven high contact residues with glucose in the transport tunnel, five of which revealed

significant effects in glucose transport from experiments. In another study that used adaptive sampling based

simulation strategies, followed by MSM bases analysis of human serotonin transporter (hSERT) researchers

identified a novel sodium binding site which was previously not known for NSS family transporters [275].

Two glutamic acid residues that form this binding site were then mutated to alanine, validating the loss of

serotonin transport experimentally.

Using simulations as a means to validate and mechanistically elucidate observations from experiments is

also routine. For example, Adhikary et al. study LeuT protein constituted inside phospholipid bilayer

(POPC:POPG in 3:2 ratio) nanodiscs using hydrogen-deuterium exchange coupled with mass spectrometry

(HDX-MS) [164]. Both HDX-MS experiments and lipid bilayer simulations show significant deuteration

differences in the similar regions of the protein. Through residue-level protection factors calculation from

short MD simulation trajectories, researchers were able to narrow down the segment responsible for the

measured changes from peptides to individual residues. Another study combined HDX-MS experiments and

MD simulations to study the effect of substrate and inhibitor binding to an MFS family xylose transporter,

XylE [295].

In our work, we go a step further and show as a proof of concept that MD simulations and experiments can

be used together to obtain full understanding of a proteins dynamics. Our method OptimalProbes is one

of the first examples where MD simulations are used to predict spectroscopy experiments in a systematic

manner. Moreover, as we demonstrated in Chapter 3 the method can also be used in an iterative manner,

where simulations are succeeded by experiments, followed by updated predictions from experiments. Hays

et al. use a similar methodology rooted in mutual information, instead of GMRQ as the objective function,
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to predict residue-pairs for DEER experiments in an iterative manner [183]. Their method picks residue-

pairs that minimize the mutual information among residue-pair distance distributions so that the final set

of residue-pairs provide orthogonal information in terms of the conformational dynamics. In our method,

OptimalProbes this condition is inherent in the definition of GMRQ which we aim to maximize for our top

predictions of choice of residue-pairs for spectroscopy experiments.

The methods discussed in Chapters 2 and 3 are extremely general and may be used for mostly any ex-

perimental technique that yields residue-pair dynamics data. Our computational tool OptimalProbes is

experimental technique agnostic and can predict optimal choice of residue-pairs for a diverse range of exper-

imental techniques and a variety of proteins. Spectroscopy techniques such as DEER have also been applied

on nucleic acids DNA and RNA using a nitroxide spin label 3-iodomethyl-1-oxy-2,2,5,5-tetramethylpyrroline

that can be attached to a phosphorothioate group on a nucleotide [296] or a Ç (C-spin) spin label which

is less flexible, is a 2′-deoxycytidine analogue, and base pairs with guanine [297, 298]. With improved

force-fields [299–303], nucleic acid MD simulations are becoming increasingly accurate and amenable. As

computational simulations become more tractable, they will be indispensable in the study of protein-complex

structures [304], and the association and dissociation of protein-protein systems [305–307] or protein-nucleic

acids systems [308, 309]. OptimalProbes thus has a potential to predict ideal choice of probe positions for

the study of conformational heterogeneity in nucleic acids.

MD simulations also provide an attractive means to compare change in protein conformational dynamics

due to post-translational modifications [51, 294, 310] and macromolecular crowding in-cell that resemble in

vivo conditions [311, 312]. The versatility of DEER spectroscopy experiments as well as other spectroscopy

experiments is also well suited to comparatively study the structural dynamics of proteins in different states.

For example, Shi et al. used DEER experiments on two sets of residue-pairs to compare the conformations

of an F/G loop in CYP119 protein in an apo state and when bound to a substrate and separately to two

inhibitor molecules [313]. The F/G loop exhibits an open conformation in apo protein and slightly closed form

when bound to inhibitor molecules, but is disordered when bound to substrate lauric acid. The disorder

is characterized by DEER experiments since the relevant distance distribution ranges 2.2 nm without a

predominant peak. Guin et al. use FRET labels mCherry and mEGFP to compare the binding of heat

shock protein Hsp70 and heat shock cognate protein Hsc70 to PGK protein in living cells [314, 315]. While

this study used fluorescent proteins as FRET probes, we have shown that Trp-Tyr quenching fluorescence

experiments can be used to identify protein folding and unfolding such as in the presence of denaturants [316].

Hence, we envision that scientific studies that compare systems in different equilibrium conditions and

systems involving multiple proteins/nucleic acids entities will benefit significantly from using protocols that
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use MD simulations to design experimental studies.

A major requirement of the OptimalProbes methodology is long timescale MD simulations that are able to

sample rare conformational change events reversibly. As system sizes get larger, enhanced MD simulation

strategies such as accelerated MD, metadynamics, replica exchange, and umbrella sampling and coarse-

grained MD simulations where multiple atoms are grouped into a single bead, are better suited to address

scientific inquiries into conformational dynamics. In order to utilize these simulations, the core idea behind

OptimalProbes would still be valid, however a novel objective function is needed to assign order to all the

possible residue-pair choices for experiments. Wu et al. have proposed multiensemble Markov models using

transition-based reweighting analysis method (TRAM) as an approach to combined unbiased and biased MD

simulations expanding the power of the MSM framework [317]. TRAM is included in pyEMMA [70]. Since

TRAM can estimate the thermodynamics and kinetics of the conformational transitions, a way to design

experiments experiments using TRAM would be to (1) perform biased MD simulations to accelerate sampling

of rare events, (2) use biased simulations as starting structures to perform unbiased adaptively sampled MD

simulations, (3) build TRAM based multiensemble Markov models, and finally (4) score multiensemble

Markov models.

Finally, one of the challenges in the field of molecular simulations is sharing simulation data. While there is

a need for analysis and method development in the field of biophysical dynamics to use MD simulations and

biophysical experiments in conjunction with each other, these techniques cannot be used by experimentalists

if simulation datasets are not available in the public domain. Unavailability of datasets also leads to duplicate

simulations which is inefficient utilization of computational resources for the entire scientific community. At

the same time, method developments are bounded when experimental datasets are not available. In chapter

5 we describe a cumbersome manner in which we extracted DEER spectroscopy distance distributions from

published work where the authors did not provide access to the datasets.

Major hurdles for sharing datasets is the large size of such data and lack of standardized protocols and

formats to share data. In order to overcome this issue, we envision a platform based on cloud-based services

which can store datasets and serve as a work engine for researchers to run analysis such as OptimalProbes

on shared simulation datasets. There are existing initiatives to share biomolecular simulation data but they

serve only as centralized deposit locations. A common platform to share data, run analysis, and store analysis

would allow users to (1) request data when necessary, (2) analyze existing or new simulation data without

demanding local need for large computational resources, (3) update protein dynamics models as they collect

new simulation or experimental data, and (4) visualize and work via an intuitive graphical user interface

for non-intensive tasks. Such a platform would democratize the study of dynamics through computational
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and experimental methods, both of which provide a wealth of information and insights into biomolecular

structural heterogeneity and biomolecular function.
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Resolution. Journal of Molecular Biology. 1992;228(4):1177–1192.

[134] Newstead S. Molecular Insights Into Proton Coupled Peptide Transport in the PTR Family of
Oligopeptide Transporters. Biochimica et Biophysica Acta. 2015;1850(3):488–499.
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Portella G, Battistini F, Gelṕı JL, González C, Vendruscolo M, Laughton CA, Harris SA, Case DA,
Orozco M. PARMBSC1: A Refined Force Field for DNA Simulations. Nature Methods. 2015;13(1):55–
58.

[300] Bergonzo C, Cheatham TE. Improved Force Field Parameters Lead to a Better Description of RNA
Structure. Journal of Chemical Theory and Computation. 2015;11(9):3969–3972.

[301] Tan D, Piana S, Dirks RM, Shaw DE. RNA Force Field With Accuracy Comparable to State-of-the-Art
Protein Force Fields. Proceedings of the National Academy of Sciences. 2018;115(7):E1346–E1355.

[302] Minhas V, Sun T, Mirzoev A, Korolev N, Lyubartsev AP, Nordenskiöld L. Modeling DNA Flexibility:
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