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ABSTRACT 

 

 Pregnancy loss is a multifactorial condition that compromises reproductive performance in 

dairy operations. Despite the high oocyte fertilization rate in dairy cows, only 28 % of those 

maintain a pregnancy to term. Pregnancy loss is estimated to cost U$600.00 per case. Identification 

of cows losing the pregnancy as early as possible can be helpful in providing timely opportunities 

for rebreeding, thus potentially minimizing economic losses. Traditionally, early pregnancy 

diagnosis is performed via ultrasonography, starting at 30 days, which provides information 

regarding embryo viability, uterine health, and ovarian structures. In addition, this technique 

allows the diagnosis of twin pregnancy that is three times more likely to be lost than a singleton. 

Despite its benefits ultrasonography requires well-trained personnel and incurs additional costs 

involving equipment purchase and maintenance. The use of biomarkers has been studied 

throughout the years, based on a demand for an easier, less costly, and more accurate test. 

Pregnancy-associated glycoproteins (PAG) is the most common biomarker marker to assess 

pregnancy status in cows. Produced and secreted on the maternal circulation by binucleate giant 

cells. Measurement of PAG in the blood has high sensitivity when performed between 25 32 days 

of gestation, however, the specificity can be as low as 83%. One of the major components that 

affect test accuracy is pregnancy loss. It has been reported that cows experiencing early pregnancy 

loss, present lower plasma concentrations of PAG. Another indirect biomarker to detect pregnancy 

in cows is progesterone. Cows experiencing pregnancy loss showed lower concentrations of this 

hormone, in comparison to cows keeping the pregnancy. The development of a threshold for PAG 

and progesterone that can predict pregnancy loss may aid in management decisions to provide 

earlier rebreeding opportunities. It was hypothesized that the plasma concentration of PAG and 
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progesterone is reduced and can predict pregnancy loss in cows experiencing a high-risk 

pregnancy. Additionally, it was hypothesized that the concentration of PAG and progesterone are 

increased and can predict twins. High-risk pregnancy (HR) were characterized using transrectal 

ultrasonography 37 days post-AI based on the following criteria: small embryo size (SE, embryo 

< 15 mm, n=10), slow heartbeat (SH, <60 beats per minute, n = 11), extra amniotic membrane 

(EM, additional amniotic membrane, n=3). A cohort of twins (TW, n = 41) diagnosed at day 37 

post-AI was also enrolled. Twins were also subgroups in unilateral (UT, n=17) and bilateral (BT, 

n=24). Each HR and TW cow was paired with the same parity cow carrying a normal singleton at 

d 37 post-AI (CON, n = 65). Blood samples were collected to measure PAG and progesterone at 

37, 44, and 51 post-AI. Statistical analysis was performed using ANOVA, logistic regression and 

receiver operation characteristics (ROC) with JMP. Pregnancy loss at day 51 post-AI was greater 

(P < 0.01) in HR than CON and TW (CON=1.5%; HR=87.5%; TW=12.2%). Concentration of 

PAG at day 37 post-AI did not differ (P = 0.75) among groups (CON = 5.3 ± 0.7; HR = 4.8 ± 1.2; 

TW = 4.0 ± 0.9 ng/ml). The subgroup SE showed a statistical difference regarding the 

concentration of PAG at day 51 post-AI (P < 0.05), EM showed a tendency (P < 0.10) whereas 

SH, UT and BT did not when compared to CON. Concentration of  progesterone  at day 37 post-

AI was greater in TW than HR and CON, and lower (P < 0.01) in HR than CON cows (CON = 

7.0 ± 0.3; HR = 5.9 ± 0.4; TW = 8.4 ± 0.3 ng/ml). Regression and ROC analysis for PAG at day 

37 post-AI did not find a threshold to predict pregnancy loss (P = 0.24) or twins (P = 0.30). 

Regression and ROC analysis for progesterone at day 37 post-AI found that a threshold of 6.5 

ng/ml predicted (P < 0.01) pregnancy loss with an area under the curve (AUC) of 0.65, and 

threshold of 7.2 ng/ml predicted (P < 0.01) twins with AUC of 0.70. In summary, pregnancy loss 

and twins were predicted with only moderate accuracy by progesterone concentration at day 37 
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post-AI and the variability in PAG concentrations at day 37 post-AI was insufficient to generate a 

threshold to predict pregnancy loss and twins in Holstein lactating cows. 
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CHAPTER 1: LITERATURE REVIEW 

1.1.Pregnancy loss in the first trimester 

Pregnancy loss is one of the major factors affecting reproductive efficiency in dairy 

operations. Despite high oocyte fertilization rates of, about 80-90%, only approximately 30 % of 

high producing dairy cows have pregnancies reaching term after timed artificial insemination 

(TAI) [1]. The incidence of pregnancy loss in cattle is the highest in the first trimester of gestation 

[1-4]. Wiltbank et al.[5] proposed a chronological subdivision for the pregnancy loss on the first 

trimester in pivotal periods: (1) First week, fertilization failure (2) second week to 27 days, 

maternal recognition (3) 28 to 60 days, placentome development (4) 60-90 days, placentome and 

fetal growth and twins. Based on this subdivision, important essential aspects of each period are 

detailed.  

Fertilization failure occurs in 10 to 20 % of cows living under cool weather conditions, 

inseminated with semen from fertile bulls [6-9]. The inadequate gamete transport can prevent the 

sperm acrosomal reaction in the zona pellucida, precluding the sperm-oocyte fusion, ultimately 

leading to fertilization failure [10]. This poor transportation can be related to inadequate AI 

technique [11], elevated polymorphonuclear cells in the uterine environment [12] and a slight 

increase in progesterone concentrations during timed AI [13,14]. Heat stress also plays a role in 

fertilization failure, since poor oocyte quality had been reported in cows kept under warm weather 

[6.12]. The oviduct has an important physiological role in this process, supplying an important 

combination of ions, such as phosphate, sulfate, and magnesium [15]. Amino acids such as glycine, 

glucose and lactate are energy-rich substrate present in the oviduct [16,17]. Additionally, 

spermatozoa are optimally capacitated by the isthmus cells improving the efficacy of fertilization 

[18,19]. Another challenging step in this early pregnancy process is embryonic development, 
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which initially consists of a series of cell divisions within the zona pellucida. The first stages of 

embryo development depend on maternal mRNA and proteins that are stored in the oocyte [20]. 

To develop to the blastocyst stage, the maternal-to-embryonic genome transition is necessary [21-

23]. This activation of the embryonic genome is the fundamental step that allows specific cell 

differentiation, leading to the development beyond the 16-cell stage division [24]. The 

preovulatory follicle condition is also involved in embryo development. Follicles exposed to 

reduced progesterone levels during the luteal phase, may extend their follicle dominance period, 

and become persistent, with an ovulatory size of more than 15 mm [25]. Persistent follicles are 

associated with poor embryo development to the 16-cell stage, even though the fertilization rate 

was similar compared to normal follicles [26]. Lactating dairy cows reported with persistent 

follicle during TAI, showed lower pregnancy rate per AI at day 31 than cows ovulating younger 

follicles [14]. Also, lower plasma levels of progesterone during the preovulatory follicle 

development, yield fewer embryos grade 1 and 2 at day 7 compared to cows exposed to higher 

concentrations of progesterone [13]. It is believed that increased duration of follicle growth can 

expose the follicle to more LH pulses, as during low plasma progesterone concentrations, which 

could ultimately result in the ovulation of larger follicles [5]. It is possible that oocytes could be 

experiencing premature germinal breakdown [27]. Another issue is related to the nutrition offered 

to the cow. Lactating cows experiencing profound weight loss, measured by the reduction in body 

condition score (BCS) between parturition and first AI, are also associated with poor fertility [28-

30]. According to a study [30], cows that experienced a considerable bodyweight loss presented a 

few good quality embryos at seven days post-AI. 

Between the second week to 27 days of gestation entails the second pivotal period of 

pregnancy loss, involving three important events: (1) the embryonic growth and elongation, (2) 
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maternal recognition of pregnancy and (3) maternal immune down-regulation [5]. The embryo 

hatches the zona pellucida and initiates the free-floating state. The trophoblast/embryo expands 

from a 0.15 mm in diameter blastocyst to an elongated form of approximately 40 cm in length, 

extending to both uterine horns by day 25 [31], supported by nutrients from the histotroph to the 

embryonic cells. The elongation process involves complex crosstalk between the conceptus and 

maternal system [32]. Endometrium cells are regulated by factors produced by the conceptus, most 

notably interferon-tau (IFNT), that ultimately stimulate these cells to produce and transport 

substrates, optimizing the histotroph for embryonic nutrition and elongation [33]. Another 

important aspect of this relationship between uterine cells and histotroph is the circulating 

concentration of progesterone. Inadequate levels of progesterone, during the early luteal phase, 

can alter gene expression in endometrial cells, embryo growth, and pregnancy success [34,35]. 

The second important event during this period is the maternal recognition. The process consists of 

the conceptus signaling its presence in the uterus by producing IFNT, a key factor that prevents 

luteolysis and supports the pregnancy [36]. Although the luteolysis does not initiate until day 18 

or 19 post-ovulation in cows, signals from the embryo need to be present by day 16 to alter the 

endometrium cells' gene expression to induce an extended estrous cycle [37,38]. The mechanism 

involved in this process still unclear. One of the models postulates that the presence of an 

elongating conceptus produces IFNT, which reduces expression of specific proteins within the 

uterine endometrial cells, such as E2 and oxytocin receptors, preventing oxytocin pulses from 

stimulating the synthesis of prostaglandin F2α (PGF2α) resulting in lack of luteolytic signals [39-

41]. The third process during this period is the relationship between the newly generated conceptus 

and the maternal immune response. Under normal circumstances, the foreign antigenic peptides 

are presented to cytotoxic T lymphocytes via MHC molecules, ultimately removing the foreign 
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cell [42]. The trophoblast down-regulates the expression of MHC class I molecules, preventing the 

embryo from being rejected [43]. Additionally, IFNT is involved in the silencing of MHC class I 

in the endometrium lumen [42]. Another factor in this scenario is the presence of T regulatory cells 

in the uterus, signaling other maternal immune cells to an immune tolerance status, impeding the 

rejection of the semi allograft conceptus [44]. Therefore, the interaction among MHC expression, 

IFNT, progesterone, maternal T regulatory cells, coordinates immunological downregulation and 

protection of the embryo and placenta in pregnant cows [45,46]. Therefore, IFNT has a 

fundamental role in all events that entails this pivotal period, the embryonic elongation, maternal 

recognition of pregnancy, and maternal immune regulation against the conceptus. 

The third pivotal period comprises the second month of gestation. This stage is marked by 

the attachment between endometrium and the allantoic membranes, and subsequent development 

of placentomes. The complex embryo/amnion weight approximately five grams with no 

cotyledons between days 20 to 25 of gestation but grows substantially in the next five days 

reaching approximately 30 grams in weight. Alongside with this dramatic growth, the first 

distinguishable cotyledons are also observed around day 30 [47]. The placentome development 

was initiated around day 18-19 with the apposition between trophoblast and uterine epithelial cells 

microvilli, followed by adhesion of the membranes two days later, and subsequently, weak 

attachments linking the maternal and fetal tissues in the next week [48]. Evidence of interdigitation 

between maternal and trophoblastic tissues by Day 30 of pregnancy is noticed [49,50]. Also, a 

significant number of binucleate giant cells are observed during the placentome formation [50]. 

 A switch on embryonic nutrition from histotroph to choriovitelline is reported with the 

development of the yolk sac as early as day 18 [31]. The yolk sac remains as the primary source 

of the embryonic substrate until gradually replaced (up to day 30) by the chorioallantoic 
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placentomes, providing optimal diffusing of nutrients and gas exchange between maternal/fetal 

circulatory system [31]. A cotyledonary epitheliochorial, placenta is formed between 30 to 60 days 

of gestation in cattle [51]. Towards the end of the second month of gestation several cotyledons 

are distinguishable in both uterine horns, firm connections between maternal and fetal tissues, and 

nutrition from a chorioallantoic placental origin [31]. 

The factors causing pregnancy loss in this period are related to developmental issues, such 

as improper placentation [52,53], inadequate shifting from amniotic to allantoic nutrition [54], 

altered vascularization of the placenta [55] and suboptimal development of embryo/fetus [56]. A 

few risk factors have been linked as increasing the likelihood for pregnancy loss at this period; 

reduced concentrations of progesterone during follicle growth [13], parity (multiparous present 

higher pregnancy loss percentage) [29], change in BCS [28], uterine [57,58] and non-uterine 

diseases, such as mastitis [59]. Also, cows reported with a lack of expression of estrus in AI 

programs have been reported with a higher percentage of pregnancy loss [60]. It is s believed that 

this non-estrus behavior may be linked to inadequate levels of estradiol [60]. Independent of the 

cause, the losses during this period are approximately 12 %, but it ranges between 3 to 26.3 % 

depending upon farm, synchronization protocol, health status, etc. [5].  

In the last pivotal period, dramatic growth in fetal and total membrane mass is noticeable. 

Fetus weights approximately 10 grams alone at 60 days and up to 166 g at 90 days in gestation 

[60] and membranes total weight from approximately 70 g to 240 g in the same period [47,61]. 

Additionally, placentomes increase their volume and vasculature [60]. Limited information is 

available regarding pregnancy loss in this period. It has been estimated that the losses are 

approximately 2% [62-65]. The increase in placentome volume and vasculature during the first 

trimester of pregnancy are critical to support the nutrient uptake demand and fetal growth that will 
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occur during this gestational period. However, the major contributor to pregnancy loss in this 

period is twin pregnancy [61] Carrying twins is a non-infectious factor that could compromise the 

pregnancy maintenance in cows [62-66]. Cows experiencing twin parturition are associated with 

a higher incidence of dystocia, retained placenta, and calf mortality [67-70], consequently longer 

calving to conception interval and shorter mean production lifespan of 200 days have been reported 

for cows delivering twins compared to cows delivering singletons [70-73]. Lopez-Gatius et al. 

[62], reported 75% of this loss in twins between 68 to 90 days in gestation. In ipsilateral twins, the 

scenario is even more worrisome, with pregnancy loss being 3.45 times more likely than in 

bilateral twins [62]. Infectious diseases caused by viral, bacterial and protozoal agents are also 

responsible for a share of fertility issues, leading to pregnancy losses throughout the whole 

pregnancy. However, the incidence of pregnancy loss caused by some of those agents is 

significantly diminished with the implementation of vaccination and preventive measures [74-78]. 

 

1.2. Pregnancy diagnosis methods. 

Determination of pregnancy status in dairy herds is a routine practice. Sooner the non-

pregnant cows are found, a management strategy can be implemented aiming to re-inseminate 

those animals, diminishing the interval from calving to conception [79-80]. The ideal pregnancy 

test should have high sensitivity and specificity, at a low cost, simple to perform and present real-

time results [81]. Unfortunately, none of the tests available cover all the mentioned requirements. 

The easiest and least costly method to individually determine the non-pregnant animal is 

through observation of estrus return, from 18 to 32 days post-AI. However, a few factors affect 

this method’s efficacy. Estrus detection efficiency in the United States is estimated to be less than 

50% [82]. Estrous cycle duration varies widely with a high degree of variability among individual 
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cows [83]. New techniques and technologies allowed a direct method of pregnancy diagnosis. The 

direct method consists of the detection of tissue, fluids, or the conceptus itself, either manually via 

transrectal palpation or using ultrasonography [81]. Efficacy of these methods is affected by 

operator ability and stage of gestation, however, practitioners with proficiency can achieve high 

sensitivity and specificity with both methods. [84,85,79]. 

Transrectal palpation of the uterus to diagnose pregnancy in cattle is the oldest and most 

common direct method to perform early pregnancy diagnosis in dairy cows [86]. This technique 

can be performed by detecting the presence of the amniotic vesicle on the gravid uterine horn and 

/or slipping the chorioallantoic membranes between the thumb and forefinger, on about 30 days of 

gestation [84]. Considering that pregnancy can be terminated by disrupting the amniotic vesicle 

[87,88], studies have investigated the extent of iatrogenic pregnancy loss via transrectal palpation. 

Conflicting results have been reported about the impact of transrectal palpation with few studies 

reporting higher pregnancy loss in cows after submitted to the technique [89,90], while others 

reported no effect [91,92]. This technique supplies high accuracy at a low cost per cow. Transrectal 

palpation is the standard method of choice for many practitioners worldwide [81]. 

Another common direct method is the use of transrectal ultrasonography. Not only it allows 

the diagnosis of early pregnancy, but it also provides information about ovarian structures and the 

determination of sex [79,93]. Additionally, this technique is less invasive when compared to 

transrectal palpation [94,95]. The use of transrectal ultrasonography allows accurate and rapid 

results to evaluate the pregnancy status of cows [79,81]. Well-trained personnel can accurately 

diagnose pregnancy as early as 35 days after insemination using transrectal palpation, but with 

transrectal ultrasonography pregnancy the range used is 28 to 34 days after insemination, which 

reduces the interval from insemination to pregnancy diagnosis by a few days [81]. Although 
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ultrasound conducted at 45 or more days after breeding did not increase the accuracy of pregnancy 

diagnosis for an experienced palpator, it may improve the diagnostic accuracy of a less experienced 

one [85]. For instance, treatment of cows without a CL at the first GnRH treatment of an OvSynch 

protocol with exogenous progesterone, increased fertility in lactating cows [96,97]. Also, the 

treatment of cows presenting a CL of 20 mm, upon non-pregnant diagnosis, with PGF 2α increased 

the proportion of cows inseminated after a detected estrus [98].  

Many bovine practitioners attempted to perform pregnancy diagnosis earlier than 30 days 

of gestation using the transrectal ultrasonography, based on a study that pushed this lower date 

threshold [51]. The investigation was conducted using a high-quality transducer and reported an 

embryonic heartbeat as early as 21 days in gestation under experimental conditions [51]. Other 

studies reported correct diagnosis using ultrasound as early as 26 days after AI [99]. However, 

there is evidence that conducting pregnancy diagnosis using transrectal ultrasonography before 30 

days post-AI under field conditions, negatively affect the accuracy of pregnancy diagnosis 

outcomes [68]. The criteria to assign a cow as pregnant below 30 days post-AI is often based on 

the uterine fluid presence and aspects, since embryo identification is not always possible on the 

ultrasound. Giordano and Fricke [81], reported that cows classified pregnant based on uterine fluid 

alone 29 days after timed AI were 3.8 times more likely to be classified as not pregnant 74 days 

after timed AI than cows diagnosed pregnant based on visualization of an embryo with a heartbeat. 

Transrectal palpation and ultrasonography technology remains as the standard technique 

of many practitioners worldwide to accurately diagnose cow’s reproductive status.  However, with 

the limited availability of skilled practitioners, and the urge for easier and more accurate diagnosis, 

indirect detection in cattle has become common practice [100-102].  
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The indirect methods for pregnancy detection consist of the use of hormones or fetal 

substances in maternal body fluids as indirect indicators of pregnancy [81]. Milk progesterone and 

blood levels of pregnancy-associated glycoproteins (PAG) are the most common indirect test 

available commercially. Progesterone is a steroidal hormonal produced by the corpus luteum 

during the estrous cycle and placenta during pregnancy. On-farm qualitative tests for assessing 

progesterone levels in milk were commercialized for pregnancy diagnosis in dairy cows in the 

early 80s [103]. Based on a study, the use of plasma progesterone presented a high accuracy on 

detecting non-pregnant cows, but not for detecting early pregnant cows [104]. The poor sensitivity 

(ability to correctly identify pregnant cows) is associated with a few factors. Cows undergoing 

pregnancy loss can present lower concentrations of progesterone and extended luteal phase [104], 

in which the maternal recognition of pregnancy occurs, supporting the CL, but later on experience 

pregnancy loss [80]. In conclusion, the use of a milk progesterone assay should be considered as 

a tool to monitor non-pregnant cows instead of pregnant ones between 18 to 24 days post-breeding. 

The monitoring of progesterone levels was traditionally performed using immunoassays.  

The demand for a more practical, less costly and more accurate method led to studies involving an 

automated system to monitor the progesterone in dairy cows’ milk at the parlor [105,106]. Despite 

presenting high accuracy, new techniques such as the use of immune sensor still request a high 

investment [105]. Others are relatively less costly, such as the apoenzyme reactivation 

immunological system (ARIS), but showed accuracy issues [105]. The ARIS has an analyte 

conjugate flavin adenine dinucleotide (FAD), that will bind to the analyte (in this case 

progesterone) and interact with a glucose oxidase (apoGOx) that will ultimately produce hydrogen 

peroxide, that can be quantified using HRP and specific chromogen [107]. The response can be 

determined using a reflectometer and is directly correlated with the progesterone concentration 
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[107]. However, a limitation of the ARIS is the presence of free FAD in raw bovine milk [108,109]. 

This free FAD competes with the progesterone for the apoGOx binding, interfering with the HRP 

reaction, hence compromising the assay efficacy [110]. Thus, a challenge remains to implement 

these methods into a workable fashion that can be used by farmers in the milking parlor. 

 

1.3.Pregnancy-associated glycoprotein 

Placental proteins have been used as an indirect method to diagnose pregnancy for many 

years in multiple species. Human chorionic gonadotropin was discovered in 1927 [111] and can 

be assayed in urine or blood as early as 8 to 10 days after conception [112]. One of the first 

placental origin proteins discovered in animals was the equine chorionic gonadotropin, [113] 

which became a useful marker of pregnancy diagnosis in this species [113].  

In ruminants, a morphologically distinct cell type named binucleate cells can first be 

identified during the cell-to-cell attachment between the trophoblast and the uterine wall [114]. 

Sheep and cattle experience the fusion of binucleate cells with uterine epithelial cells, leading to a 

syncytium [115]. Binucleate cells correspond to 20% of the trophectoderm layer and are constantly 

being replaced as migration to the uterine epithelium proceeds. These fused cells secrete their 

granules, via exocytosis, towards the underlying maternal capillary beds, allowing trophoblast cell 

products to reach the maternal circulation [115]. One of these products secreted by the binucleate 

cells is the pregnancy-associated glycoprotein (PAG) [116,117] also known as pregnancy-specific 

protein B [118]. The PAG are members of the family of inactive aspartic proteinases and are 

produced by the binucleate giant cells [119]. In cattle, the PAG gene family comprises at least 22 

transcribed genes and some variants [120]. Their physiological role remains unclear. It has been 

suggested that PAG may be immunomodulatory, protective for the corpus luteum or both, based 
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on their ability to induce chemokines, alter neutrophils activity and prostaglandin levels in 

reproductive tissues [121-123]. The PAG secretion was serologically detected, via 

radioimmunoassay, in the maternal circulation as early as 15 days post-breeding [124]. The 

maternal circulation of PAG fluctuates according to the day of gestation [118,124,125]. During 

the first trimester it reaches its highest concentration approximately 25 days post-breeding and a 

nadir approximately 60 days [64,118,125]. From week 8 to week 10 of gestation plasma 

concentration of PAG remain stable, about 10 ng/ml, but on week 12 PAG concentrations present 

a steady increase until parturition [125]. The peak of plasma PAG is approximately five days to 

parturition, with concentrations ranging from 588 ng/ml to 2462 ng/ml [118,125]. Plasma 

concentration of PAG has a steady decrease from 24 – 48h post-partum, reaching undetectable or 

baseline concentrations between 60 - 100 days postpartum, depending on the assay implemented 

[64,118,125].  Due to PAG expression into the maternal circulation in ruminants, these markers 

have been studied throughout the years as an indirect pregnancy diagnosis method.  

Several studies were performed to test the effectiveness of ELISA using plasma and milk 

PAG to diagnose pregnancy in cattle. Fricke et al [81], presented a detailed table having the results 

among authors that investigated the accuracy of the use of plasma and milk PAG in specific days 

post-breeding in dairy cows and heifers. The sensitivity and specificity percentage for blood 

ranged from 81–100 at 22 to 35 post-AI and 57-100 % respectively [100] [101,118,126], and 98-

100 and 83-100 % respectively for milk PAG, although only two researches compared for the milk 

tests [64,127]. Results from the animals tested using plasma PAG ELISA, should be interpreted 

cautiously. Positive results are uncertain in the first 30-35 days post-breeding, especially for dairy 

cows, since the antigen concentrations in the maternal circulation are low, and somewhat variable 

[118,124,128]. 
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Maternal circulation of PAG is influenced by days post-partum [64,124,125], twin 

pregnancies [129], sire and parity [130], which in turn, all factors, affects the assay precision. 

Additionally, it was reported that milk production negatively correlates with the maternal 

circulation of PAG [64,131,132]. The relationship between high milk production and decreased 

PAG concentrations in the plasma is not fully understood. It is speculated that the increased 

metabolization rate of progesterone in high-producing dairy cows [133] may reflect in slower-

growing embryos during early development, consequently leading to lower maternal circulation 

of PAG [64].  

Another contributor to the assay precision is pregnancy loss. Cows experiencing late 

embryonic and early fetal loss have lower concentrations of PAG when compared to cows that 

maintain the pregnancy [104,128,130,132]. It has been speculated that once the maternal–placental 

interface is disrupted, such as during pregnancy loss, the binucleate cells ( the primary source of 

PAG) migration would cease, preventing protein secretion by these cells from reaching the 

maternal circulation and leading to a decreased plasma level of PAG [104]. The onset of the 

reduction of PAG in the event of pregnancy the loss was reported to be rapid (between 1 to 3 days) 

under experimentally induced pregnancy loss [104,134]. However, the plasma levels of PAG may 

persist on detectable levels for about seven days after a cow experience pregnancy loss [104,134]. 

Szenci et al [126], reported that cows facing embryonic mortality between day 29 to 38 

post-AI, had a steady decrease in PAG plasma, but it only reached non-pregnant levels up to day 

53 to 58 post-AI. Another investigation reported that plasma PAG levels reached nonpregnant 

levels between 7 to 14 days after pregnancy loss [64]. Under experimentally induced abortions, 

the plasma concentration of PAG presented an imminent decrease (after cows were treated with 

PGF 2α intramuscularly and intrauterine hypertonic saline) one day after treatment but remained 
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detectable for up 7 days after treatment [104].  A threshold of below 1.4 ng/ml for plasma PAG 

was reported [135], to predict pregnancy loss in cows between days 31 and 59 post-AI with 95 % 

accuracy. However, a study reported pregnancy loss in cows with plasma levels of PAG above the 

mentioned threshold, using a similar assay [132]. A recent study in beef cattle was able to establish 

a threshold to determine the pregnancy in cows (≥ 0.33 ng/mL) and heifers (≥ 0.54 ng/ml) at 24 

days post-breeding, however, no statistical difference was found between cows that maintained or 

lost the pregnancy at the same point [130]. 

Pregnancy loss is a routine situation faced in cattle operations, with losses ranging up from 

3 to 40 % depending on cow type, location and seasonality [1,2,5]. This issue plays an important 

essential role in the use of PAG as an early pregnancy indicator. Still, limited information is 

available regarding temporal changes in plasma concentration of PAG in cows identified with a 

potential conceptus loss. 
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CHAPTER 2: CHARACTERIZATION OF PREGNANCY-ASSOCIATED 

GLYCOPROTEINS AND PROGESTERONE AS A PREDICTOR OF TWINS AND 

CONCEPTUS LOSS IN HIGH-RISK PREGNANCY HOLSTEIN COWS† 

 

 

 

2.1.Abstract 

The objective of this study was characterizing plasma concentration of pregnancy-

associated glycoprotein (PAG) and progesterone as predictors of twins and pregnancy loss in high-

risk pregnancy Holstein cows. High-risk pregnancy (HR) were characterized using transrectal 

ultrasonography 37 days post-AI based on the following criteria: small embryo size embryo < 15 

mm, n=10), slow heartbeat (<60 beats per minute, n=11), extra amniotic membrane (additional 

amniotic membrane, n=3). A cohort of twins (TW, n=41) diagnosed at day 37 post-AI was also 

enrolled. Each HR and TW cow was paired with a cow of the same parity carrying a normal 

singleton at d 37 post-AI (CON, n = 65). Blood samples were collected to measure PAG and 

progesterone at 37, 44, and 51 post-AI. Statistical analysis was performed using ANOVA, logistic 

regression and receiver operation characteristics (ROC) with JMP. Pregnancy loss at day 51 post-

AI was greater (P < 0.01) in HR than CON and TW (CON=1.5%; HR=87.5%; TW=12.2%). 
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Concentration of PAG at day 37 post-AI did not differ (P = 0.75) among groups (CON = 5.3 ± 

0.7; HR = 4.8 ± 1.2; TW = 4.0 ± 0.9 ng/ml). Concentration of progesterone at day 37 post-AI was 

greater in TW than HR and CON, and lower (P < 0.01) in HR than CON cows (CON = 7.0 ± 0.3; 

HR = 5.9 ± 0.4; TW = 8.4 ± 0.3 ng/ml). Regression and ROC analysis for PAG at day 37 post-AI 

did not find a threshold to predict pregnancy loss (P = 0.24) or twins (P = 0.30). Regression and 

ROC analysis for progesterone at day 37 post-AI found that a threshold of 6.5 ng/ml predicted (P 

< 0.01) pregnancy loss with an area under the curve (AUC) of 0.65, and threshold of 7.2 ng/ml 

predicted (P < 0.01) twins with AUC of 0.70. In summary, pregnancy loss and twins were predicted 

with only moderate accuracy by progesterone concentration at day 37 post-AI and the variability 

in PAG concentrations at day 37 post-AI was not sufficient to generate a threshold to predict 

pregnancy loss and twins in Holstein lactating cows. 

Keywords: Pregnancy loss, pregnancy-associated glycoprotein, progesterone, high-risk 

pregnancy, twins 

 

 

2.2.Introduction 

Suboptimal fertility is a multifaceted issue [1] that negatively impacts the profitability and 

sustainability of dairy herds [2,3]. Pregnancy loss is a major contributor to compromised 

reproductive performance, with an average cost per case ranging from U$555 to 640 per case [4,5]. 

It has been reported that most of the pregnancy losses in dairy cows occur in the first trimester 

with approximately 12% occurring between 28 and 60 days of gestation [6]. Identification of cows 

losing the pregnancy as early as possible can be helpful providing timely opportunities for 

rebreeding minimizing reproductive losses [3,4]. The transrectal palpation technique emerged in 
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the last century and remained the most common method to diagnose pregnancy in cattle [7,8]. The 

procedure allows immediate results, no investment in equipment or laboratory facilities, and 

presents accurate outcomes when performed after 35 days post-breeding [7,8]. The earlier 

diagnosis was feasible when the transrectal ultrasonography technology was implemented in the 

1980s [9,10]. The pregnancy diagnosis with the aid of ultrasound can be performed as early as 25 

days after AI [11] and allows identification of suggestive signs of high-risk pregnancy, such as 

reduced fetal heart rate, abnormal conformation, and amniotic membrane integrity [9,12]. 

Additionally, transrectal ultrasonography allows the diagnosis of twins’ pregnancy that are three 

times more likely to be lost than singletons. Despite its benefits, ultrasonography requires well-

trained personnel and incurs additional costs with equipment purchase and maintenance [13]. A 

third alternative that became available was the use of biochemical markers in plasma. The most 

common biomarker used as a pregnancy test in cows is pregnancy-associated glycoproteins (PAG). 

The PAG are members of the family of inactive aspartic proteinases produced by the binucleate 

giant cells of the placenta in ruminants [14,15]. Studies reported PAG secretions in cattle maternal 

circulation as early as 15 days after conception [16,17], but the highest sensitivity and specificity 

to use PAG for pregnancy diagnosis occur between 26 to 32 days post-AI [16 -21]. It has been 

reported that plasma PAG concentrations present a high sensitivity, between 94-100% [20-24], but 

some authors registered specificity as low as 83% when compared to ultrasound in dairy cows 

between 28 to 32 days after AI [24]. Studies also revealed that dairy cows experiencing early 

pregnancy loss have lower concentrations of circulating PAG [25,26]. Pohler et al. [19] reported a 

threshold of 1.4 ng/ml for plasma PAG, to predict pregnancy loss in cows between days 31 and 59 

post-AI. However, pregnancy loss was still reported in dairy cows presenting plasma levels of 

PAG above 1.4 ng/ml, using similar assay and days post-AI [26]. The maternal circulation of PAG 
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is also influenced by cows bearing twins since it presents a greater concentration of this marker 

compared to singletons [27]. A threshold to predict twins using PAG is not well established and 

configures necessary since cows bearing twins are at higher risk of suffering pregnancy loss 

compared to singletons, especially in unilateral twins [28].  Progesterone is another biomarker 

used to diagnose pregnancy in cattle at 18-24 days post-breeding [29,30]. As a point in time test, 

measuring progesterone is not a viable test for pregnancy because sensitivity is only 75% [31,32].  

Serial, automated testing in advanced parlor systems improves the accuracy of progesterone as an 

indicator of pregnancy [33].  Additionally, progesterone can be used to predict pregnancy loss in 

dairy cows. There is a positive relationship between plasma progesterone concentration and 

maintenance of pregnancy at week five of gestation [34]. The biomarkers could be a useful tool to 

assess the likelihood of a cow to experience pregnancy loss and advance opportunity for 

resynchronization. Additionally, pregnancy diagnoses have been traditionally performed via 

transrectal ultrasonography, but based on a demand for an easier, last costly and more accurate 

test, indirect methods are being investigated throughout the years [17-20,26] as an alternative 

technique.  However, establishing a precise threshold for PAG and progesterone to predict 

pregnancy loss and twins is challenging, since those markers can present a broad range of 

concentration in the plasma [23-28]. Perhaps, the relationship between biomarkers and pregnancy 

loss can be evaluated with more accuracy by enrolling cows identified on ultrasound carrying a 

high-risk and twin pregnancy. In this manner, the interval from enrollment to pregnancy loss may 

be shortened, allowing the simultaneous assessment of PAG and progesterone closely before and 

after pregnancy loss, which could provide more efficacy to generate a threshold. Therefore, the 

objective of this study was characterizing the plasma temporal concentrations of PAG in Holstein 

dairy cows presenting high-risk pregnancy and determine a threshold value of PAG and 
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progesterone that can be used as a predictor of twins and pregnancy loss. We hypothesized that 

the plasma concentration of PAG and progesterone is reduced and can predict pregnancy loss in 

cows experiencing a high-risk pregnancy. We also hypothesized that the concentration of PAG 

and progesterone are increased and can predict cows carrying twins. 

2.3.Material and methods 

2.3.1.Animals and husbandry  

The study was conducted between October 2018 and November 2019, in a commercial 

dairy farm Illinois. The herd contained approximately 3,300 lactating Holstein cows, milked three 

times daily, with an average milk yield of 48.30 ± 5.87 kg/cow/day. Cows were housed in free-

stall barns with feedline headlocks, fed a TMR ad libitum, formulated for high-producing dairy 

cows. A modified Double-OvSynch was used as an estrus synchronization protocol for the first 

service. Cows enrolled in the study received their first service timed AI at 66 ± 3 DIM. Briefly, 

the Double-OvSynch protocol began with a modified Ovsynch (Pre-Ovsynch: GnRH - 7 d - PGF2α 

-3 d- GnRH) to pre-synchronize the estrous cycle followed 7 d later with a CoSynch 72, GnRH- 7 

d - PGF2α – 72 h GnRH with concurrent timed AI and an additional AI 24h later. Pregnancy 

diagnosis was performed 37 days post-AI using a portable ultrasound scanner (Easi-Scan, BCF 

Technology Ltd., Livingston, UK). All animals were enrolled in the resynchronization program at 

day 33 post-AI receiving GnRH. Then cows diagnosed open at day 37 post-AI cows received the 

other steps of resynchronization that included PGF2α at day 40 post previous AI and GnRH 

concurrent new insemination at 42 after the previous AI. The injections for both GnRH (2 ml 

containing 50 µg of gonadorelin hydrochloride per ml; Factrel, Zoetis Inc.) and PGF2α (2 ml 

containing 12.5 mg of dinoprost tromethamine per ml; Lutalyse HighCon, Zoetis Inc., Madison 

NJ) were given intramuscularly.  
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2.3.2.Study design 

Cows were enrolled in the study based on three group categories as follow: high-risk 

pregnancy (HR n= 24), twins (TW n = 41) and control (CON n =65), according to pregnancy 

diagnosis at day 37 post-AI, via transrectal ultrasonography. Among HR, TW and CON, a total of 

130 cows (n = 48 primiparous and n = 82 multiparous) were enrolled (Fig. 1). Cows from HR and 

TW were paired with herd mates (CON) from the same pen, at the same day of pregnancy 

diagnosis, and same parity that had a viable pregnancy (singleton, embryo size more than 15 mm 

and heartbeat more than 60 bpm) (Fig. 2). The HR cows were enrolled based on three subgroup 

criteria: small embryo size (n = 10), largest width of amniotic vesicle less than 15 mm of diameter 

(Fig. 3A); slow heartbeat (n =1 1), during ultrasonography the embryo’s heart rate were less than 

60 beats per minute; extra membrane (n =3), uterine horn identified with an amniotic vesicle 

without embryo despite a viable pregnancy in the same or different horn (Fig. 3B). Cows enrolled 

in TW were divided into two subgroups: bilateral twins (n = 24), characterized by the presence of 

one viable embryo in each uterine horn (Fig. 4); and unilateral twins (n =17): two embryos 

identified at the same uterine horn (Fig. 5). Cows had their embryo sizes recorded and a blood 

sample collected at enrollment. and then again on 44 and 51days post-AI. Pregnancy loss (Fig. 6) 

was denoted when the fetus was absent or dead (had no heartbeat). In twins, pregnancy loss was 

only reported when both fetuses were non-viable.  If only one viable embryo was present in cows 

previously diagnosed with twins, the animal was reported as fetus number reduction. Plasma PAG 

concentrations of HR and TW, were compared to CON at day 37, 44 and 51. The interaction with 

pregnancy loss on day 51 was also evaluated. Additionally, cows that eventually lose their 

pregnancy post 51 days were reported by the farm personnel.  
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2.3.3.  Determination of plasma progesterone and pregnancy-associated glycoprotein 

concentrations. 

Blood samples from all cow were collected via venipuncture from the coccygeal vein using 

evacuated tubes (Becton Dickinson, Franklin Lakes, NJ) containing K2 EDTA for plasma 

separation. Samples were placed immediately on ice and kept refrigerated until arrival to the 

laboratory. Blood tubes were centrifuged at 3000 x g for 15 min for plasma separation. Two 

aliquots of 2 ml of plasma were transferred into polypropylene vials and stored at - 20o C until 

further analyses. Progesterone concentrations were analyzed using a chemiluminescence assay 

(Immulite 2000 XPi platform; Siemens Medical Solutions USA, Inc.). Serum concentrations of 

PAG-I were measured using a sandwich ELISA similar to that described by Green et al. [16] and 

modified using a polyclonal antibody (Ab 63) as previously described by Reese et al. [35,36]. The 

intraassay coefficient of variation for the progesterone assay was 2.44 %, whereas the intraassay 

coefficient of variation for PAG was 10%. 

2.3.4.Statistical analysis  

All responses were analyzed using JMP®, Version 14.2.0 (SAS Institute Inc., Cary, NC). 

Categorical data such as the proportion of pregnancy loss from days 37 to 44 and from day 37 to 

51 were conducted using logistic regression considering a binary distribution. The model included 

the effect of group, parity, and their interaction. Continuous data such as the concentration of PAG 

and progesterone were evaluated using ANOVA with models including the effect of group, parity, 

time and their interactions. The PAG concentration by the pregnancy loss criteria was assessed via 

linear regression, including their time interaction. Linear regression and receiver operating 

characteristics were used to generate a threshold to predict pregnancy loss at day 51 and twins 

based on PAG and progesterone plasma concentration. A significant difference was considered 



39 

 

when P < 0.05, whereas differences between P ≥ 0.05 and P ≤ 0.10 were considered a statistical 

tendency. 

2.4.Results  

2.4.1.Descriptive data 

Average milk yield, number of services and days in milk (DIM) at enrollment, are 

presented in Table 1. No statistical difference was revealed in milk yield among groups. Cows that 

experienced pregnancy loss at day 51 were compared to cows that maintained the pregnancy (P = 

0.28). Retained placenta, stillbirth and mastitis cases among all animals in the study are also 

presented in Table 1. Twin group had a greater number of mastitis cases compared to the other 

groups (P < 0.05). 

2.4.2.Pregnancy Loss 

A total of 24 cows were diagnosed as HR and 41 cows were diagnosed as TW at day 37 

post-AI. The overall percentage of pregnancy loss during the data points in the study for all groups 

and subgroups is represented in Table 2. The HR group had greater pregnancy loss (P < 0.01) than 

CON and TW (Table 2). Subgroups pregnancy loss are presented in (Table 3). Cows carrying 

small embryos and extra membrane had 100% of pregnancy loss, whereas slow heartbeat (8/11) 

72.2%. Bilateral and Unilateral twins had 8 and 12 % of pregnancy loss respectively.  Pregnancy 

reduction was observed in approximately 29 % of cows carrying twins (12/41) until day 51. Only 

four cows experienced fetal loss between the last data collection and the end of the first trimester. 

2.4.3.Plasma concentration of pregnancy-associated glycoproteins 

Primiparous cows had higher (P < 0.01) plasma concentration of PAG than multiparous 

cows (4.72 ± 0.45 and 2.83 ± 0.36, respectively). The concentration of PAG was not different 
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when pregnant cows were compared to non-pregnant cows (Fig. 7) at day 44 post-AI (P = 0.41) 

but were higher (P < 0.05) in pregnant than non-pregnant cows at day 51 post-AI (Fig. 8). 

However, it did not differ among groups at any day of gestation (Fig. 9). No difference was found 

among groups regarding PAG plasma concentrations (P = 0.18) and their interaction with time (P 

= 0.79). In order to evaluate the effectiveness of using plasma PAG at d 37 to predict pregnancy 

loss and twins at d 51, regression and ROC analysis were conducted (Fig. 10). The tests were 

unable to generate a threshold to predict pregnancy loss (P = 0.24) or twins (P = 0.30) using plasma 

PAG. A comparison between the subgroup categories and their respective controls (Fig. 11, Fig 

12), for each data collection day, were presented for PAG. The plasma levels of PAG between 

small embryo subgroup and their controls at d 51 post-AI were different (P < 0.05). Extra 

membrane subgroups tended to present lower plasma concentration of PAG than control (P < 0.1).  

Plasma concentration of PAG was also compared regarding the pregnancy loss criteria (Fig. 13) 

and their time interaction for the high-risk subgroups, but no statistical difference was between 

subgroups and controls (P = 0.14) 

2.4.4.Plasma concentration of progesterone  

The plasma concentration of progesterone (P < 0.01) was higher in TW than CON and HR 

(Fig. 14). In HR cows, progesterone was lower (P<0.01) than in CON cows (Fig. 14). Regression 

and ROC analysis were also conducted to assess plasma progesterone effectiveness at d 37 to 

predict pregnancy loss and twins at d 51. A threshold of 6.5 ng/ml predicted (P < 0.01) pregnancy 

loss with an area under the curve (AUC) of 0.65, and a threshold of 7.2 ng/ml predicted (P < 0.01) 

twins with AUC of 0.70 using progesterone as a predictor (Fig. 15). Additionally, the progesterone 

plasma levels differed among all subgroups and their respective controls (P < 0.05). The 

combination of PAG and progesterone concentrations at day 37 post-AI did not generate a 
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threshold to predict loss at day 51 (P =0.47).  However, the use of PAG and progesterone at day 

44 post-AI generated a threshold, 3.70 and 6.60 ng/ml respectively for PAG and progesterone, to 

predict pregnancy loss at day 51 post-AI (P < 0.01) with AUC of 0.78 (Fig. 18). The statistical 

analysis to predict twin pregnancy using the combination PAG and P4 concentrations at day 37 (P 

= 0.70) and 44 post-AI (P = 0.62) did not generate a threshold to predict twins at day 51 post-AI. 

2.5.Discussion 

The present study was the first designed to identify cows carrying a high-risk pregnancy 

via ultrasonography and attempt to establish a threshold to predict conceptus loss and twins using 

plasma concentrations of PAG and progesterone.  

 Approximately 20% of the cows enrolled in this study experienced pregnancy loss, 87.5 

% of those were enrolled in the HR group and 12.2% in the TW group. Traditionally, the 

embryonic viability is monitored via ultrasonography mostly based on the presence of a heartbeat 

[12,22,37]. However, in the current study, the adoption of criteria such as extra membrane and 

small embryo also revealed that 100% of animals experienced subsequent pregnancy loss, whereas 

slow heartbeat 72.2%. The percentage of pregnancy loss in twins was similar to the results reported 

by Silva-del-Río et al. [38]. The current study design allowed a comparison between the secretion 

pattern of progesterone and PAG before, during and after the occurrence of pregnancy loss. This 

timeline relationship involving PAG, progesterone and pregnancy loss could be the key contributor 

to establish a threshold to predict in high-risk and twin gestations. 

 A statistical difference between pregnant and non-pregnant cows at day 51 was found for 

the plasma concentration of PAG which agrees with previous reports [19,26]. No statistical 

difference was observed between HR in comparison to CON (P = 0.44). Also, the regression and 

ROC analysis were not able to generate a threshold to predict pregnancy loss using plasma PAG. 
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A Lack of statistical difference among groups might be associated with two factors. First, a broad 

range of plasma concentrations of PAG has been reported in cattle [16-22,39]. In the present study, 

pregnant cows at day 51 ranged from 0.52 – 25.07 ng/ml and the non-pregnant ones 0.01 to 13.23 

ng/ml at day 37 post-AI. Since there was an overlap between groups, it made difficult to use PAG 

as a predictor for pregnancy loss. Second, plasma concertation of PAG peaks between 29 to 32 

days of gestation; however, a steady reduction is noticed between 32 to 50 days [16,19,27,40], 

which comprises approximately the days in gestation investigated in this study. Therefore, this 

secretion pattern might make identification of differences in plasma concentration of PAG in cows 

with impending pregnancy loss difficult to discern.  

The maternal circulation of PAG was greater in CON compared to TW, contrary to our 

hypothesis that cows carrying twins would present greater circulation of this marker compared to 

herd mates bearing singletons. Although, no statistical difference was found between TW and 

CON regarding plasma levels of PAG (P = 0.75). Conflicting results were found on previous 

reports comparing cows bearing twins versus singletons. One study reported no statistical 

difference between 35 to 49 days of gestation [27], whereas another study reported it at the same 

time point [41]. A few design differences may play a part in these differences. First, in the present 

study 12.2% of cows carrying twins experienced pregnancy loss and 41 % pregnancy reduction 

between 37 to 51 days of gestation, whereas in the other studies that information is not available. 

Second, milk production is reported to negatively impact the plasma levels of PAG [36], the herds 

in those studies had a lower milk yield compared to the herds in the current study, of about 8-10 

kg per cow [27,41]. Therefore, it is reasonable to assume that part of these conflicting results 

among studies involving the maternal circulation of PAG in twins, could be associated with 

embryonic/fetal death or reduction, milk yield, seasonality and management. Although, limited 
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information is available about PAG in cows bearing twins and the exact reason behind these 

differences still unknown. Twin pregnancies also presented a wide range of PAG, 0.52 to 18.07 

ng/ml at day 37 which may also negatively affect the ROC analysis to generate a threshold to 

predict twins.  

The subgroup's plasma levels of PAG revealed a statistical difference for the small embryo 

and a tendency in the extra membrane when compared to their respective controls on day 51. As 

expected, those subgroups suffered most pregnancy losses between day 37 and 44, but their plasma 

levels of PAG statistically differed only at day 51 of gestation. The gradual reduction in plasma 

PAG found in our study resembles the temporal changes reported under experimentally induced 

abortions, using intramuscular PGF2α and intrauterine infusion of hypertonic saline [40]. Both 

treatments registered a steady decrease in PAG concentration at one-day post-injections, but only 

at about 8 to 9 days post-treatment, this marker reached baseline levels in the cow’s blood [40]. 

Another study investigated the PAG secretion pattern after inducing intrauterine infection, 

injecting a solution containing Actinomyces pyogenes [42]. The author reported that PAG plasma 

concentrations presented a half-life of about seven days post-treatment until reaching non-

detectable concentrations [42]. Regardless of the treatment, it caused deleterious effects on the 

fetal membranes. In our study, pregnancy was ceased without any intervention, but the precise 

mechanism that impairs the binucleate giant cells, leading to the reduction in plasma concentration 

of PAG, is not clear. It has been suggested that a maternal-placental disruption could cease the 

binucleate cell migration, preventing proteins secreted by these cells from reaching the maternal 

circulation, hence decreasing plasma levels of PAG [40]. The subgroup slow heartbeat showed a 

lower concentration of plasma PAG compared to the CON but was the only subgroup within the 

HR group that did not reveal a statistical difference when compared to the respective CON. Cows 
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that lost the pregnancy were reported based on two ultrasonography evidence: conceptus absence 

or death, which could reflect on the concentration of PAG. Most cows carrying small embryos 

were reported as non-pregnant by the absence of the conceptus. Four of the cows carrying slow 

heartbeat had a dead conceptus (so as extraembryonic tissues) within the uterus and were also 

classified as non-pregnant. Perhaps the maternal-placental disruption model suggested [40], 

happened slowly and/or in less extent in the slow heartbeat subgroup compared to small embryos, 

explaining the non-statistical difference for the PAG plasma levels compared to CON. Although, 

the plasma concentration of PAG showed no difference when pregnancy loss per fetal absence or 

fetal death were compared (P = 0.14).  This distinct secretion pattern among subgroups and the 

fact that 28 % of slow heartbeat cows maintained the pregnancy, could also be involved in the lack 

of statistical difference between HR and CON groups. 

 Progesterone is a key hormone to maintain pregnancy in ruminants [34]. Circulating 

progesterone is involved in regulating the uterine environment and histotroph secretion [43-45]. 

Additionally, progesterone is partially involved in the down-regulation of the complex maternal 

immune system, preventing immune cells from identifying the embryo as a semi allograft [46,47]. 

It’s been reported that cows with low plasma concentrations of progesterone between late 

embryonic/early fetal stage have greater odds of experiencing pregnancy loss [34,48-50]. In the 

present study, the plasma concentration of progesterone was higher in cows that maintained the 

pregnancy (P < 0.05). The CON had a greater concentration of progesterone compared to HR and 

their interaction group by day also differed (P < 0.05). These findings agree with our hypothesis 

that HR cows would present a lower concentration of progesterone than CON. The lower 

concentration of progesterone in the HR group compared to CON is perhaps associated with a 

conceptus death and subsequent luteolysis of the corpus luteum regression led to the conceptus 
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death, terminating the pregnancy [40]. A threshold to predict pregnancy loss using progesterone 

was established at 6.5 ng/ml with 65% accuracy. Another study also investigated the circulation 

levels of progesterone in cows experiencing pregnancy loss and a threshold of < 3.76 ng/ml of 

progesterone was associated with greater odds of losing the pregnancy, but about 80 % of the cows 

in this lower concentration category were still pregnant [34]. Thus, more investigation is necessary 

to find a more accurate cutoff point to predict conceptus loss. Twin pregnancies had a greater 

concentration of progesterone compared to singletons, which is in agreement with a previous 

report [27]. Additionally, a plasma concentration to predict twins using progesterone found a 

threshold of 7.2 ng/ml, although with only moderate accuracy of 70%. The use of both PAG and 

progesterone concentrations at day 44 was able to generate a threshold to predict pregnancy loss 

(P < 0.01), however with moderate accuracy (AUC = 0.78).  Limited literature is available 

regarding plasma levels of progesterone in twins, so more studies are necessary to find a more 

accurate threshold to predict twins.  

In conclusion, this data suggests that cows experiencing pregnancy loss have lower 

concentrations of PAG, but the wide range of PAG concentrations did not allow the identification 

of pregnancy in high-risk cows nor twin pregnancy. Progesterone was able to predict pregnancy 

loss and twins with only moderate accuracy indicating more research is necessary to determine its 

importance as a biochemical marker to predict pregnancy loss and twins. 
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2.6. Figures and tables  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Representation of the study design. Cows identified bearing a high-risk pregnancy or twins were 

enrolled in the study at day 37. A control cow from the same pen, parity and pregnancy diagnosis day was 

immediately paired with the cow carrying a high risk or twin pregnancy. Conceptus size was recorded, and a 

blood sample collected at day 37, 44 and 51 post-AI.  
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Fig. 2. Representative ultrasonography images of the uterus of Holstein cows carrying a normal 

singleton pregnancy at days (A) 37, (B) 44, (C) 51 post insemination. (*) Denotes the conceptus 

inside the amniotic vesicle (white arrowhead).  On (C) the fetus head is denoted by (H), the anterior 

and posterior limbs (AL and PL respectively) and body (b). The dotted line across the widest 

portion of the amniotic vesicle crosses the fetus. 

 

 

Fig. 3. Representative ultrasonography images of the uterus of Holstein cows diagnosed with a 

(A) small embryo size (less than 15 mm) at 37 days. (B) A normal pregnancy at 37 days with an 

extra amniotic membrane identified without a viable embryo. The arrow is indicating the embryo 

and the arrowhead the amniotic vesicle (A), while the (x) denotes the empty amniotic vesicle. The 

dotted line across the widest portion of the amniotic vesicle crosses containing the embryo. 
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Fig. 4. Ultrasonography image of a Holstein cow uterus carrying a bilateral twin pregnancy at 37 

days (A, B) and 44 days (C). Denotes the embryo (*). The dotted line across the widest portion of 

the amniotic vesicle crosses the conceptus. 

 

 

Fig. 5. Ultrasonography image of a Holstein cow uterus carrying a unilateral twin pregnancy at 

(A) 37 and at (B) 44 days. (*) Denotes an embryo. The dotted line across the widest portion of the 

amniotic vesicle containing the fetus. 
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Fig. 6. Representative image of cows experiencing pregnancy loss at (A) 37, (B) 44, (C) 51 days 

respectively. Excessive echogenicity on the uterine fluids (A), floating structures (A) (B), 

compromised membranes (B), empty amniotic membrane (C) were clinical signs of pregnancy 

loss reported with ultrasound. 

 

  

Fig. 7. Plasma concentration of PAG in pregnant and non-pregnant cows. Mean ± SE plasma 

PAG-I in cows reported as pregnant and non-pregnant via transrectal ultrasonography at day 44 

post-AI. No statistical difference was present between pregnant and non-pregnant cows (P = 0.41). 
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Fig. 8. Plasma concentration of PAG in pregnant and non-pregnant cows. Mean ± SE plasma 

PAG-I in cows reported as pregnant and non-pregnant via transrectal ultrasonography at day 51 

post-AI. Cows deemed as bearing a conceptus presented  statistically lower concentration of PAG 

(P < 0.05) at this specific data point. 
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Fig. 9. Plasma concentration of PAG among groups at day 37, 44 and 51 post-AI. No statistical 

difference was observed among groups (P = 0.18) and their time interaction (P = 0.79). The overall 

mean ± S.D for control, high-risk and twin pregnancy was 3.90 ± 0.37 vs. 2.92 ± 0.61 vs. 2.98 ± 

0.46 ng/ml, respectively. 
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Fig.10. Day 37 post-AI ROC curve to predict pregnancy loss and twins at day 51 post-AI 

using PAG. Receiver operating characteristics (ROC) was used to predict pregnancy loss (A) and 

twins (B) at day 51 using values of PAG at 37 d post-AI. Threshold for PAG to predict pregnancy 

loss (P = 0.24) and twins (P = 0.30) were not generated. 
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Fig.11. Subgroup (small embryo, slow- heartbeat and extramembrane) comparison with 

controls regarding plasma concentrations of PAG in ng/ml. A statistical difference and 

tendency were found for cows carrying small embryos (*P < 0.05) and extra membrane († P< 0.1) 

pregnancies respectively, at day 51 post-AI compared to control. Additionally, a tendency was 

also observed at day 44 post-AI for the extra membrane subgroup. No statistical difference was 

found between slow-heartbeat compared to control (P = 0.44) and their time interaction (P = 0.93) 
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Fig. 12. Subgroup (bilateral and unilateral twins) comparison with controls regarding 

plasma concentrations of PAG in ng/ml. No statistical difference was found among unilateral (P 

= 0.61) and bilateral (P = 0.95) compared to controls.  The subgroup time interaction, respectively 

for unilateral (P = 0.78) and bilateral (P = 0.96) was not statistically significant.  
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Fig. 13. Plasma concentration of PAG regarding the pregnancy loss criteria (fetal absence, n 

= 13 and fetal death, n = 8), for the high-risk subgroups (small embryo, slow-heartbeat and 

extra membrane). No statistical difference was found among the two criteria (P = 0.14) and their 

time interaction (P = 0.85). The overall mean ± S.D for fetal absence and death were 1.91 ± 0.62 

vs. 3.42 ± 0.79 ng/ml, respectively.  
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Fig. 14. Plasma concentration of progesterone among groups at days 37, 44 and 51 post-AI. 

A statistical difference was present among groups (P< 0.01). Additionally, the group and time 

interaction was greater (P < 0.01) in TW (**) than CON and HR. In HR cows, progesterone was 

lower (P< 0.01) than in CON (*) cows.  in twins. The overall mean ± S.D for control, high-risk 

and twin pregnancy was 6.81 ± 0.20 vs. 8.13 ± 0.26 vs. 3.96 ± 0.32 ng/ml, respectively. 
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Fig 15. Day 37 post-AI ROC curve to predict pregnancy loss and twins at day 51 post-AI 

using progesterone.  Receiver operating characteristics (ROC) was used to predict pregnancy loss 

(A) and twins (B) at day 51, using values of progesterone at day 37 post-AI. The test generated a 

threshold of 6.5 ng/ml for progesterone to predict pregnancy loss (P < 0.01) with an area under the 

curve of 0.65 and 7.2 ng/ml for progesterone to predict twin pregnancy (P <0.01) with an area 

under the curve of 0.70. 
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Fig.16. Subgroup (small embryo, slow- heartbeat and extramembrane) comparison with 

controls regarding plasma concentrations of progesterone in ng/ml. A statistical difference 

was found among all subgroups and their time interaction at day 51 post-AI compared to control 

(P < 0.05). Additionally, a difference was also observed at day 44 post-AI for the slow-heartbeat 

subgroup.  
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Fig.17. Subgroup (bilateral and unilateral twins) comparison with controls regarding plasma 

concentrations of progesterone in ng/ml. Group and time interaction differences were found 

between unilateral twins and control at day 44 post-AI compared to control. Additionally, a 

tendency for lower plasma progesterone was noticed at day 37 post-AI for the unilateral twin. No 

statistical difference was found between bilateral twins and control (P = 0.15) and their time 

interaction (P = 0.93). 
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Fig 18. Day 44 post-AI ROC curve using a combination of plasma PAG and P4 

concentrations to predict pregnancy loss at day 51 post-AI. Receiver operating characteristics 

(ROC) was used to predict pregnancy at 51 d, using values of progesterone at 37 d post-AI. The 

test generated a threshold of 3.70 and 6.60 ng/ml for PAG and progesterone respectively, to predict 

pregnancy loss (P < 0.01) with an area under the curve of 0.78. 
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Table 1. Descriptive data of each group (CON, n = 65; HR, n =24; TW, n = 41), containing milk yield, days in milk (DIM) at enrollment and 

number of services1. 

 

 

 

 

 

Traits 

 
Groups  

 
CON HR TWIN 

P-value 

No. of cows 
 

65 24 41 
- 

Parity1 
 

1.93 ± 0.13  2.04 ± 0.21  2.17 ± 0.16 
0.53 

Milk yield, kg2  49.2 ± 1.89 47.8 ± 2.17 49.7 ± 1.83 0.28 

Enroll, DIM1  142.2 ± 23.7 140.3 ± 12.8 151.1 ± 11.2 0.81 

No. of services1  2.01 ± 0.59 1.95 ± 0.32 2.21 ± 0.28 0.86 

Stillbirth, n  1 2 3 0.21 

Retained placenta, n  2 0 0 0.24 

Mastitis, n  3 0 7 < 0.05 

1Results shown as mean ± S.D 

2 Milk yield at pregnancy diagnosis in kg 
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Table 2.  The overall percentage of pregnancy loss of groups among d 37 – d 44, d 44 – d51 and the total percentage at d 37 – d 51. 

 

 

 

 

 

 

 

 

 

 

 

Table 3.  The overall percentage of pregnancy loss of groups among d 37 – d 44, d 44 – d51 and the total percentage at d 37 – d 51. 

 

 

 

 

Item 
  Groups    

 CON HR TW  P- value 

No. of cows, n  65 24 41 
  

Preg. Loss: d 37 - 44 (%)  1.5 (1/65) 66.6 (16/24) 4 (2/41)  <0.01 

Preg. Loss: d 44 - 51 (%)  0 (0/64) 62.5 (5/8) 7 (3/39)  <0.01 

Total: d 37- 51 (%)  1.5 (1/65) 87.5 (21/24) 12.2 (5/41)  <0.01 

Item 

 Subgroups 

 SE SH EM BT UT 

No. of cows, n  10 11 3 24 17 

Preg. Loss: d 37 – 44 % (n/n)  80 (8/10) 54 (6/11) 66 (2/3) 8 (2/24) 0 (0/17) 

Preg. Loss: d 44 - 51 % (n/n)  100 (2/2) 40 (2/5) 100 (1/1) 0 (0/22) 17 (3/17) 

Total: d 37- 51 % (n/n)  100 (10/10) 72 (8/11) 100 (3/3) 8 (2/24) 17 (3/17) 
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CHAPTER 3: CONCLUSION AND FUTURE DIRECTIONS 

The present study investigated the secretion pattern of PAG and progesterone in cows 

carrying a high risk and twin pregnancy. The study design adopted proved its efficacy since most 

of the cows enrolled in the high-risk group experienced a subsequent pregnancy loss. The 

variability in the secretory pattern of plasma concentration of PAG influenced the attempt to 

establish a cutoff to predict high-risk and twin pregnancy. Regardless of the study, these 

variabilities revealed as one inevitable challenge involving PAG as a predictor of conceptus loss 

in dairy cows. Another issue in predicting high-risk pregnancy is that the concentration of PAG in 

cow's blood was gradually reduced in cows experiencing pregnancy loss. Cows diagnosed as non-

pregnant at 44 days post-breeding were still presenting high concentrations of plasma PAG 7 days 

later. A maternal-placental disruption is suspected to preclude the PAG secretory activity via 

binucleate giant cell, but the exact mechanism involving the reduction of plasma levels of PAG 

needs more investigation. Perhaps an additional plasma sample alongside an ultrasonography 

evaluation on day 30 post-AI could provide information regarding the high-risk and twin 

pregnancy cows on day 37. The use of plasma progesterone revealed thresholds to predict high-

risk pregnancy and twins, but only with moderate accuracy. Reduced plasma levels of progesterone 

in the HR group compared to CON is perhaps associated with a conceptus death and subsequent 

luteolysis, or, the corpus luteum (CL) regression led to the conceptus death, terminating the 

pregnancy. Perhaps collecting data on the cow’s CL could provide additional information to 

understand the nature of the pregnancy loss. The combination of PAG and P4 revealed useful to 

predict pregnancy, although the use of those two biomarkers together still needs more 

investigation. The findings in this study involving the relationship of the biochemical markers 

before, during, and after pregnancy loss could be used as a model for future studies. 


