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Abstract 8 

Heat conduction through bonded metal-polymer interfaces often limits the overall heat transfer in 9 

electronics packaging, batteries, and heat recovery systems. To design the thermal circuit in such 10 

systems, it is essential to measure the thermal interfacial resistance (TIR) across ~1-100 μm 11 

junctions. Previously reported TIR of metal-polymer junctions utilize ASTM E1530-based two-12 

block systems that measure the TIR by applying pressure across the interface through external 13 

heating and cooling blocks. Here, we report a novel modification of the ASTM-E1530 technique 14 

that employs integrated heaters and sensors to provide an intrinsic TIR measurement of an 15 

adhesively bonded metal-polymer junction. We design the measurement technique using finite 16 

element simulations to either passively suppress or actively compensate the lateral heat diffusion 17 

through the polymer, which can minimize the systematic error to ≲5%. Through proof-of-concept 18 

experiments, we report the TIR of metal-polymer interfaces made from DuPont’s Pyralux double-19 

side copper-clad laminates, commonly used in flexible printed circuit boards. Our TIR 20 

measurement errors are <10%. We highlight additional sources of errors due to non-idealities in 21 

the experiment and discuss possible ways to overcome them. Our measurement technique is also 22 

applicable to interfaces that are electrically insulating such as adhesively-joined metal-metal 23 

junctions and sputter-coated or welded metal-polymer junctions. Overall, the technique is capable 24 

of measuring TIR ≳10-5 m2 KW-1 in bonded metal-polymer foils, and can be tailored for in situ 25 

measurements in flexible electronics, circuit packaging, and other hybrid metal-polymer systems. 26 

I. Introduction 27 

Bonded metal-polymer interfaces are used in devices ranging from wearable electronics [1], 28 

[2] batteries [3], [4] and heat recovery systems [5]–[7] to avionics [8], [9]. Accurate measurement 29 
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 2 

of their intrinsic thermal interfacial resistance (TIR) can inform the design of thermal systems [10], 1 

help in assessing joining methods [11], and provide an additional means of evaluating the interface 2 

in situ [3], [12]. For instance, the heat flux across batteries [3], [13], thermoelectric coolers [14], 3 

[15] and heat spreaders [16], [17] in electronics packaging are often limited by the thermal 4 

resistance of their interfaces, which are ~10-5-10-3 m2 KW-1. Similarly, in composite heat recovery 5 

systems, the effective thermal conductivity and the profitability of heat recovery is dependent on 6 

the thermal interfacial resistance [6], in particular on metal-polymer TIR in the range 10-5-10-3 m2 7 

KW-1. Such metal-polymer interfaces, especially in electronics packaging [16] and batteries [3], 8 

often deteriorate over time due to cyclic loading, which increases the TIR and can even lead to 9 

thermal runaway [4], [18]. Thus, measuring the intrinsic thermal interfacial resistance in situ on 10 

the metal-polymer interfaces could be useful for thermal management, [15], [17], [19] and 11 

interface evaluation [3], [12].  12 

The thermal interfacial resistance (TIR) arises from two sources. At microscopic scales, 13 

differences in vibrational and electronic states of the materials on either side of an interface scatter 14 

energy carriers such as electrons and phonons, leading to a resistance 𝑅𝐾𝑎
′′ , also called Kapitza 15 

resistance [20]. The Kapitza resistance is ~10-9-10-7 m2 KW-1[21], [22], and is of importance in 16 

atomically smooth interfaces typically formed in cleanroom environments under vacuum 17 

conditions. The equivalent thermal interface thickness (𝐿𝐾 
= 𝑘. 𝑅 

′′) or the Kapitza length of 18 

atomically smooth interface on dielectric substrates (𝑘~1 Wm-1K-1) is < 0.1 μm. On the other hand, 19 

at more macroscopic scales, asperities at the interface reduce the total area of contact and create 20 

crowding of heat flow lines, leading to a second component in the TIR, 𝑅𝑎𝑠𝑝
′′  [8]. In a vast majority 21 

of industrial applications, the macroscopic component 𝑅𝑎𝑠𝑝
′′  dominates the overall thermal 22 

interfacial resistance. For interfaces with 𝑅𝑎𝑠𝑝
′′ ~ 10-5-10-3 m2 KW-1 on a polymer substrate (𝑘~0.1 23 

Wm-1K-1), the Kapitza length, 𝐿𝐾, is ~1-100 μm Consequently, the penetration depth (heat 24 

diffusion length-scale) of a TIR measurement must be in the order of 𝐿𝐾~100 μm or more to ensure 25 

that the measurement is sensitive to the interface. 26 

Currently, techniques such as the 3𝜔-method [23]–[25], frequency domain and time 27 

domain thermo-reflectance (FDTR and TDTR) [26]–[28], [28] are used for microscopic TIR 28 

measurements (of relatively smooth junctions). For frequency-domain measurements, the 29 
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 3 

penetration depth is given by, 𝑑 = √𝛼/𝜋𝑓, where, 𝛼 is the thermal diffusivity and 𝑓 is the 1 

modulation frequency. In the typical frequency range of measurements ~5 Hz – 100 kHz  for 3𝜔 2 

and ~0.3 MHz – 20 MHz for FDTR [29], the penetration depth 𝑑 is <80 μm and <0.1 μm, 3 

respectively, when the substrate is a polymer (𝛼~0.1 mm2s-1) [30]. Since the penetration depth 𝑑 4 

is less than the Kapitza length 𝐿𝐾~100 μm, frequency domain techniques such as 3𝜔 and FDTR 5 

are not suitable for measuring such interfaces. For time-domain measurements, the penetration 6 

depth is given by, 𝑑 = √𝜏𝛼, where 𝜏 is the measurement timescale and 𝛼 is the thermal diffusivity. 7 

TDTR typically uses femtosecond laser pulses (pump) with a probe time delay of few nanoseconds 8 

(𝜏~ 10 ns) [31], which has a penetration depth, 𝑑 of ~30 nm in a polymer substrate. Transient 9 

thermo-reflectance (TTR) employs nanosecond lasers with up to 𝜏~10 μs delay time [32], which 10 

has a penetration depth, 𝑑 of ~1 μm in a polymer substrate. Since time-domain techniques such as 11 

TTR and TDTR have penetration depth 𝑑 ≲ 1 μm, they are also not suited for measuring the TIR 12 

of interfaces with a Kapitza length, 𝐿𝐾~100 μm. We note that the values of penetration depth and 13 

Kapitza length were estimated using 𝛼 and 𝑘 of substrate (polymer); however, the outcome does 14 

not change if we use copper’s thermal properties. In general, the state-of-the-art TIR measurement 15 

techniques are suited for atomically smooth interfaces made in cleanroom environment and not for 16 

high TIR interfaces (10-5-10-3 m2 KW-1) that are common in industrial applications.  17 

Instead, TIR measurements of thick junctions (𝐿𝐾≳ 100 μm) typically resort to steady-state 18 

ASTM standards (D5470/E1530) that use two blocks at different temperatures to sandwich the 19 

sample [33]–[36]. Such measurements have been used to report the contact resistance of metal-20 

polymer-metal [36], or metal-metal blocks kept under pressure. However, the contact resistance 21 

of two blocks under pressure is not representative of the intrinsic TIR of bonded interfaces that are 22 

welded or adhesively joined. For instance, changing the pressure applied across two contacting 23 

blocks by 0-3 MPa can change the measured TIR by an order of ~103 [36], [37]. On the other hand, 24 

interfaces used in electronics packaging [10], [38], [39], aviation [8] [9], and other commercial 25 

applications are often bonded using adhesives or welds. Adhesively bonded interfaces are typically 26 

cured at high temperatures and pressures (~190°C and 2 MPa) [40], which also improves the 27 

physical adsorption and diffusion between the adhesive and adherent [41]. Similarly, welding 28 

processes can locally melt the interface, reducing the grain size, and increasing the surface area of 29 

the contact [42], [43]. Such bonded interfaces may exhibit different intrinsic interfacial resistance 30 
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 4 

in comparison to the previously reported TIR of two surfaces kept under pressure. In summary, 1 

existing steady-state TIR measurement techniques used for thermally thick junctions (𝐿𝑇 ≳100 2 

μm) do not measure the intrinsic TIR of bonded interfaces.  3 

 4 

In this work, we adapt techniques used previously for measuring the thermal conductivity 5 

of thin films [44] to introduce a novel modification to the ASTM-E1530 standard. The main 6 

modification is to employ an integrated heater and sensor. Here, we demonstrate the technique 7 

using proof-of-concept experiments to measure the intrinsic TIR of copper-Kapton junctions 8 

bonded using adhesives but the technique can be used on any metal-polymer junction (𝐿𝐾 ≫1 μm) 9 

made through techniques ranging from sputtering [45] to electroplating [46] to welding (laser [47], 10 

friction-stir [43], or ultrasonic [48]). Such metal-polymer junctions are used in emerging 11 

applications such as wearable electronics [1], [2], flexible solar cells [49], [50], Li-ion batteries 12 

[3], and hybrid heat exchangers [6]. This paper is organized as follows. Section II develops the 13 

concept of our TIR measurement technique using finite element simulations. We specifically 14 

design the measurement to minimize systematic errors to < 5%. Section III describes the 15 

fabrication and the measurement process of an experiment that uses the optimized design to 16 

measure the TIR of adhesively joined copper-Kapton interface. We explain the experimental 17 

results in Section IV. Section V discusses the results, applications, and limitations of our TIR 18 

measurement technique. We also discuss additional sources of errors due to non-idealities in our 19 

experiments. Our integrated measurement technique can be suitably designed to have an error 20 

≲10% for TIR ≳10-5 m2 KW-1 in any metal-polymer interface as well as adhesively-bonded metal-21 

metal interfaces.  22 

 23 

II. Experiment Design 24 

In this Section, we discuss experimental design aspects for measuring the intrinsic TIR of 25 

bonded metal-polymer junctions, whose Kapitza length (𝐿𝐾) is ~1-100 μm. At macroscopic scales, 26 

metal-polymer TIR measurements [36], [37] were typically performed using external heating and 27 

cooling metal blocks that sandwich a polymer block under external pressure. However, such two-28 

block systems do not measure the intrinsic TIR since the polymer is cured outside of the TIR 29 
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 5 

measurement setup [36], [37]. On the other hand, at microscopic scales, spin-coated polymers and 1 

evaporated metals can be patterned into a micromesa structure [44] to measure the intrinsic metal-2 

polymer TIR. However, the micromesa technique is limited to polymers that can be spin-coated 3 

and patterned, which is usually <5 μm thick [44]. Widely used polyimides like Kapton are 4 

chemically resistant [51], [52] to conventional patterning processes [53], [54]. To this end, we 5 

devise a technique that keeps the polymer intact, and instead patterns the metal as heaters and 6 

temperature sensors (Figure 1). A cross-section view of the TIR test section is shown in Figure 1a, 7 

and the electrical four-point probe connections to the heater and temperature sensors are shown in 8 

Figure 1b. A subtle issue in keeping the polymer intact arises from the lateral heat diffusion 9 

through the polymer that must be accounted for in the TIR measurements. We explain the 10 

experiment design process in this section for adhesively joined copper-Kapton junctions made 11 

from Dupont’s double-side clad laminates [40] as a test case; however, it can also be extended to 12 

sputter-coated [45], electroplated [46], or welded [47], [48] metal-polymer junctions.  13 

 14 

 15 

Figure 1. a) Schematic of the TIR test section, showing a cross-section. Typical values of 𝑡𝑝 are 25-75 16 

μm. Representative of a sample made using DuPont Pyralux copper-clad laminate. b) Schematic of the 17 

electrical connections for temperature measurement and heating. 18 
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 6 

 The metal on either side of the laminate is patterned as four-point probes that act as heaters 1 

and temperature sensors. The sample is placed on a sink (or fixture) such that only the sensor metal 2 

film is in contact with the fixture. The contact pads on the backside (sensor) can be made accessible 3 

through the top side during fabrication. In Section III, we explain in detail one of the possible ways 4 

of implementing such a measurement setup, whereas the current section focuses on developing the 5 

concept of the measurement technique. A heat flow, 𝑄𝐷𝐶, can be supplied to the heater line using 6 

a DC current, 𝐼𝐷𝐶. Both the heater and the sensing lines’ temperatures (𝑇ℎ and 𝑇𝑠) can be 7 

simultaneously measured through the four-point probe resistances. The thermal interfacial 8 

resistance between the metal and polymer (𝑅𝑚𝑝
′′ ) can be extracted using Eq. (1) by assuming a 1D 9 

heat conduction through the test section.    10 

Δ𝑇ℎ − Δ𝑇𝑠

𝑄𝐷𝐶
=

𝑡𝑝

𝑘𝑝𝐴
+

2𝑅𝑚𝑝
′′

𝐴
 (1) 

where, 𝑡𝑝 is the thickness of the polymer, 𝑘𝑝  is the polymer’s thermal conductivity, 𝐴 is the area 11 

of the interface, and 𝑅𝑚𝑝
′′  is the thermal interfacial resistance of a unit area. If the polymer's thermal 12 

conductivity 𝑘𝑝 is not known a priori, the thermal interface resistance 𝑅𝑚−𝑝
′′  can still be extracted 13 

(through Equation (1)) by using test sections of different polymer thickness (𝑡𝑝). We separately 14 

measured Kapton’s thermal conductivity to be 0.17 Wm-1K-1 ± 0.01 Wm-1K-1 (see Supplementary 15 

Information, Figure 2), which is used throughout the study. We can then extract the TIR, 𝑅𝑚𝑝
′′ , 16 

from the slope of a linear fit to Equation (1) for different heat inputs.  17 

The polymer laterally extends beyond the test section for structural integrity, and ease of 18 

fabrication and external connections. Lateral heat diffusion through the polymer introduces a 19 

systematic error in the TIR measured through a 1D assumption (Equation (1)). To investigate this 20 

possibility, we use finite element simulations of the measurement process in COMSOL to 21 

understand when the 1D assumption fails. Figure 1a shows the geometry of the 2D model used for 22 

the simulations. We assumed that the Kapton extends to about 5 mm on either side. We use 400 23 

Wm-1K-1 as the thermal conductivity of copper. A heat input of 𝑄𝐷𝐶 was given to the heater at the 24 

top. The bottom of the sensor was assumed to have a thermal resistance, 𝑅∞
′′  (~ 4×10-4 m2KW-1) 25 

to the sink (𝑇∞), which corresponds to the sample holder’s thermal resistance taken from our 26 

previous work [55]. The outcome of the simulations is insensitive to 𝑅∞
′′ , which we discuss further 27 

in Section V. We perform our measurements in a vacuum cryostat, and consequently, we applied 28 
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 7 

adiabatic boundary conditions elsewhere for the simulations. We initially provide a certain thermal 1 

resistance, 𝑅𝑚𝑝
′′ , as a material property for the adhesive, and then extract the same from the 2 

simulation results using Eq. (1). We denote the difference between the input TIR (𝑅𝑚𝑝
′′ ) and its 3 

extracted value as  Δ𝑅𝑚𝑝
′′ , which is indicative of the absolute error in the TIR measurement. 4 

 5 

Figure 2. a) Simulated error in TIR measurements plotted as a function of test section width (𝑤) and 6 

polymer thickness (𝑡𝑝). The circled points are used for the contours shown in the adjacent figures. b) Heat 7 

flux lines and temperature contours for a narrow test junction (30 μm). c) Contours for a wider junction 8 

(350 μm). For all the points shown here, the TIR, 𝑅𝑚𝑝
′′  = 10-4 m2KW-1 9 

 10 

Figure 3. a) a) Simulated error in TIR measurements plotted as a function of the TIR (𝑅𝑚𝑝
′′ ) and polymer 11 

thickness (𝑡𝑝). The circled points are used for the contours shown in the adjacent figures. b) Heat flux 12 

lines and temperature contours for a low TIR (10-5 m2KW-1) junction. c) Contours for a high TIR (10-3 13 

m2KW-1) junction. For all the points shown here, test section width, 𝑤 = 250 μm. 14 
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 8 

Lateral heat diffusion through the polymer depends on the test section’s width (𝑤), polymer 1 

thickness (𝑡𝑝) and the TIR (𝑅𝑚𝑝
′′ ).  We first examine the relative error, |

Δ𝑅𝑚𝑝
′′

𝑅𝑚𝑝
′′⁄ |, as a function of 2 

the test section width, 𝑤, and the polymer thickness, 𝑡𝑝, in Figure 2. Irrespective of polymer 3 

thickness, the error reduces with increasing width. For a wider test section, the proportion of the 4 

lateral heat diffusion is smaller, as evident from the heat flux lines in Figure 2b, c. Further, thicker 5 

polymer junctions require wider test sections to reduce lateral heat diffusion. For the errors to be 6 

< 10%, the required width of the test section is >60 μm, 250 μm, and 625 μm for 25 μm, 50 μm, 7 

and 75 μm polymer thickness, respectively. We then choose 250 μm as the test section width to 8 

examine the error as a function of the TIR (𝑅𝑚𝑝
′′ ) and the polymer thickness (𝑡𝑝) in Figure 3. 9 

Notably, we find that the error decreases with increasing interfacial resistance (𝑅𝑚𝑝
′′ ). For a low 10 

interfacial resistance (𝑅𝑚𝑝
′′ ~10-5 m2KW-1), most of the temperature drop appears across the 11 

polymer, increasing the lateral heat diffusion (Figure 3b). On the other hand, at high interfacial 12 

resistance (~10-3 m2KW-1), the temperature drops primarily across the adhesive, reducing the 13 

lateral heat diffusion through polymer (Figure 3c). Overall, whenever the polymer’s thermal 14 

resistance dominates the overall transverse resistance of the test section, lateral heat diffusion 15 

through the polymer increases.    16 

 For a 1D heat conduction, a wider test section is always preferable. However, from a 17 

measurement perspective, a wider test section produces a smaller temperature change (Δ𝑇ℎ-Δ𝑇𝑠) 18 

and requires more heating current (𝐼𝐷𝐶), as shown in Figure 4. We show the current required and 19 

temperature changes across the test section for 10 mW heating power to measure TIR~ 10-3 -10-5 20 

m2KW-1. The current required, 𝐼𝐷𝐶, is calculated from 𝑄𝐷𝐶=𝐼𝐷𝐶
2 𝑅, assuming the electrical 21 

resistivity of copper ~1.7×10-8 Ω.m. Assuming a conservative temperature measurement error of 22 

~0.5 K, data points below the dashed line (~0.5 K) are not measurable (shaded region in Figure 23 

4a). Similarly, assuming a maximum amperage for the electrical leads in the cryostat to be ~1 A, 24 

the data points in the corresponding shaded region (>1 A) in Figure 4b are not suitable. The range 25 

of widths, 𝑤, under the shaded region is not suitable. If we trace the x-axis of Figure 4 from left to 26 

right, the highest width, 𝑤, that is not under any shaded region is the optimum width for the test 27 

section. Data points leaning toward higher widths are preferred since they have low systematic 28 

errors from a reduced 2D heat conduction. This figure therefore provides a guideline for choosing 29 

the appropriate width for the test section, given the expected range of the thermal interfacial 30 
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 9 

resistance. We note that Figure 4 is plotted for a heating power of 10 mW, which suggests an 1 

optimal 𝑤 = 250 μm. Similar analysis can be performed if higher heating power (>10 mW) can be 2 

supplied through high amperage electrical leads to enable a measurable Δ𝑇 (>0.5 K) in wider test 3 

sections (>250 μm). For the experiments reported in this study, we use 10 mW and hence choose 4 

a width, 𝑤~250 μm to curtail systematic error to ≲10% since we expect the thermal resistance to 5 

be in the range 10-3-10-4 m2KW-1. If the expected TIR is ~10-5 m2KW-1 (say, for the conditions in 6 

Figure 3b) the systematic error can still be reduced to <10% by actively compensating for lateral 7 

heat diffusion using additional heaters, which we explain later in Section V. We also discuss 8 

additional sources of errors due to potential non-idealities in the experiment in Section V.  9 

 10 

Figure 4. a) The simulated temperature difference across the test section are plotted for test sections of 11 

different widths. b) The calculated DC current required is plotted for test sections of different widths. 12 

Heating power of 10 mW and polymer thickness, 𝑡𝑝 = 25 μm, are assumed for all the points shown here. 13 

The shaded regions correspond to limitations in measurement either due to a low-temperature difference 14 

(<0.5 K) or a high current (>1 A) requirement. 15 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
12

40
4



 10 

III. Fabrication and Measurements 1 

Using simulations, we predicted that a test section width of 250 μm is appropriate for our 2 

metal-polymer junctions. In this section, we first describe the fabrication steps to pattern the test 3 

section with heaters and temperature sensors (schematically represented in Figure 1), and then we 4 

explain the measurement process. Our test samples were adhesively bonded copper-Kapton 5 

junctions made from DuPont’s Pyralux LF copper-clad laminates [40]. Specifically, we used 6 

LF9111R, LF9121R, and LF9131R, which has 25 μm, 50 μm, and 75 μm thick Kapton, 7 

respectively. The Kapton was bonded to copper on either side using acrylic-based adhesives (~25 8 

μm thick). Such laminates are commonly used in flexible printed circuit boards [40], and hybrid 9 

heat exchangers [56] owing to its high-temperature (~100°C) stability. 10 

 11 

Figure 5. a) Schematic shows the composition of copper-clad laminates. b) Photoresist on top side is 12 

photolithographically patterned to resemble a four-point probe heater. c) Copper is etched using the 13 

photoresist as a mask using ferric chloride. d) The process is repeated on the backside to form a four-point 14 

probe sensor.   15 
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 11 

We patterned heating and sensing elements with four-point-probes (4pp) on either side of the 1 

copper-clad laminates through a process depicted in Figure 5. We first spun photoresist on the 2 

backside of the laminate to protect it. The photoresist on the topside was then patterned to form 3 

the heater of the test section (250 μm wide and ~1.3 cm long), with 4-point-probe contact pads 4 

(Figure 5b). The photoresist pattern served as an etch mask to pattern the underlying copper using 5 

a ferric chloride-based copper etchant solution (from Transene Inc.), as shown in Figure 5c. The 6 

copper etching was performed at 40°C for around 15 minutes. Steps b and c of Figure 5 were 7 

repeated on the backside of the laminate to pattern the sensing line (Figure 5d). The heater and 8 

sensing lines (250 μm wide) were aligned with each other using a backside alignment 9 

photolithography step. We removed the photoresist using a typical degreasing procedure (acetone, 10 

and isopropyl alcohol). Figure 6 shows optical images and a schematic of the fabricated test 11 

samples and the sample fixture. The sensing line’s 4pp contact pads (5-8) on the backside were 12 

made accessible on the frontside using silver paint (Figure 6b). To ensure that the test section’s 13 

bottom copper film (sensor) is the only component attached to the sink (as shown in Figure 1a), 14 

we use a Kapton tape with a small window (~3 mm) of adhesive exposed on the chip holder (Figure 15 

6a). The test sample is then placed by orienting the test section along the exposed adhesive (Figure 16 

6c). The test section was gently pressed using a wire bonder capillary to ensure that the bottom 17 

copper film (sensor) is firmly in contact with the exposed adhesive (Figure 6d). We note that this 18 

technique may result in additional heat pathways through the extended polymer that could be in 19 

contact with the sample fixture (sink). We discuss the possible errors due to the additional heat 20 

pathways in Section V. The samples were wire bonded to the exposed contact pads 1-8 on the front 21 

side (Figure 6c).  22 
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 1 

Figure 6. Optical image and schematic of sample fixture. a) An optical image of the sample holder 2 

that has a Kapton base with exposed adhesive. b) Optical images of a representative test sample shown 3 

with numbered contact pads. Silver paste was used to bring the back-side connections to the front. c) The 4 

test sample is placed on the sample holder and the test section is attached to the exposed Kapton adhesive. 5 

A cross-section of the image in c) is shown in a schematic in d). d) A Kapton tape with double-side 6 

adhesive is first attached to the chip holder. A thin (~13 μm) Kapton tape is used to limit the exposed 7 

adhesive to the vicinity of test section. 8 

 9 

The interfacial resistance measurement is a two-step process. In the first step, the temperature 10 

coefficient of electrical resistance (TCR) of the heating and sensing line is measured individually 11 

by measuring changes in the electrical resistance at different bath temperatures of the cryostat. The 12 

bath temperature of the cryostat can be controlled with an accuracy of 1 mK. We used Keithley 13 

6221 as an AC current source for both heater (𝐼𝐴𝐶(ℎ)) and sensor (𝐼𝐴𝐶(𝑠)) lines (Figure 1b). Two 14 

lock-in amplifiers (SR830) were used for voltage measurements across the heater (𝑉𝐴𝐶(ℎ)) and 15 

sensor (𝑉𝐴𝐶(𝑠)). Using the calibrated TCRs, we then estimate the temperature changes at the heater 16 

and sensor. In the second step, we used a Keithley source meter to send DC current (𝐼𝐷𝐶) ranging 17 

from 0 to 0.6 A in steps of 0.1 A to the heating line. The corresponding temperature changes at the 18 

heater (Δ𝑇ℎ) and sensor (Δ𝑇𝑠) lines can be used to extract the thermal interfacial resistance of the 19 
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 13 

metal-polymer junction (𝑅𝑚−𝑝
′′ ) using equation (1). The overall error in measuring the interfacial 1 

thermal resistance of the metal-polymer junction is: 2 

𝛿(𝑅𝑚−𝑝
′′ ) =

𝐴

2
√(𝛿 (

(Δ𝑇ℎ − Δ𝑇𝑠)

𝑄𝐷𝐶
))

2

+ (
𝑡𝑝

𝑘𝑝
2𝐴

𝛿(𝑘𝑝))

2

    
(2) 

 3 

The error in measuring the temperature difference is given by δ(Δ𝑇𝑖 ) =4 

−Δ𝑇𝑖 × 𝛿(𝑇𝐶𝑅𝑖 ) 𝑇𝐶𝑅𝑖 ⁄ , where 𝑇𝐶𝑅 is the temperature coefficient of resistance, 𝑖 = ℎ(heater) or 5 

𝑠(sensor). The error component 𝛿(𝑇𝐶𝑅) corresponds to the 95% confidence interval of the slope 6 

of resistance change, 𝑑𝑅/𝑅, vs, temperature, 𝑇. Similarly, the first term in Eqn. (2) corresponds to 7 

the 95% confidence interval for the slope of (Δ𝑇ℎ-Δ𝑇𝑠) vs 𝑄𝐷𝐶. The error in measuring the 8 

polymer’s thermal conductivity, 𝛿(𝑘𝑝) is explained in the supplementary information. 9 

IV. Results  10 

We first measured the temperature coefficient of electrical resistance (TCR) of the heater and 11 

sensing line. For a test sample using 𝑡𝑝=50 μm, we measured the TCR of the heater and sensing 12 

line at 300 K to be 2.38 × 10-3 K-1 ± 1.02% and 2.48 × 10-3 K-1 ± 0.83%, respectively. The 13 

measured TCRs are lower than the bulk value ~4 × 10-3 K-1 [57], possibly due to stressvoiding 14 

[58] in copper, induced during adhesion process or fabrication, which may also be amplified by 15 

being on a flexible substrate. We then provided a DC current to the heater ranging from 0 to 0.6 16 

A. The corresponding temperature changes at heater and sensor are plotted in Figure 7. Even 17 

though the heater’s temperature rises to ~15 K above 300 K at 𝐼𝐷𝐶=0.6 A, the overall temperature 18 

difference between the heater and sensor is only ~3.1 K. The solid lines represent the 19 

corresponding results from the simulation. We fit the simulation to experimental data using 𝑅∞
′′  as 20 

a fitting parameter, since it can change with experimental conditions. From the figure, the 21 

experimental data seems to closely follow the predicted trends from the simulation.   22 

 23 

 24 
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 1 

Figure 7. Temperature changes at heater (in red triangles) and sensor (in blue circles) are plotted along the 2 

left y-axis for different heating currents. The overall temperature difference between heating and sensing 3 

lines (black squares) is plotted along the right y-axis. The solid lines represent the corresponding 4 

simulation results with 𝑅∞
′′ ~3.4 × 10-3 m2 KW-1. The error bars correspond to 1𝜎 measurement errors. 5 

This graph corresponds to a sample with 𝑡𝑝=50 μm and is representative of all samples used in this study.  6 

  7 

The interfacial thermal resistance between metal and polymer (𝑅𝑚−𝑝
′′ ) can be extracted 8 

from the slope of a linear fit shown as a dashed line in Figure 8, using Eq. (1). We separately 9 

measured Kapton’s thermal conductivity to be 0.17 Wm-1K-1 ± 0.01 Wm-1K-1 (Supplementary 10 

Figure 2). Using the appropriate thickness (𝑡𝑝) and thermal conductivity (𝑘𝑝), the interfacial 11 

thermal resistance (𝑅𝑚−𝑝
′′ ) for a sample with 𝑡𝑝=50 μm was found to be 3.1 × 10-4 m2 KW-1. We 12 

calculate the measurement error from Eq. (2) to be ±3.5%. From simulations, we predict the 13 

systematic error to be 2.9%. Together, the total error is ±4.6%. We repeated the measurements on 14 

other test samples with 𝑡𝑝=25 μm and 75 μm. The average thermal interfacial resistance (𝑅𝑚−𝑝
′′ ) 15 

of all the measured copper-Kapton junctions were 3.7× 10-4 m2 KW-1, with a measurement error 16 

of ±4.1%. The corresponding systematic errors estimated from simulations were 0.8%, and 5.7%, 17 

for the test samples with 25 μm, and 75 μm thick Kapton. The overall error is ~±4.7%, dominated 18 

by measurement errors. 19 
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 1 

Figure 8. The temperature difference between the heater and the sensor line is plotted against the input 2 

heating power. The dashed line represents a linear fit to the data. The error bars correspond to 1𝜎 3 

measurement errors. This graph corresponds to a sample made with 𝑡𝑝=50 μm and is representative of all 4 

samples used in this study 5 

V. Discussion 6 

In this work, we designed the TIR measurement technique using simulations and 7 

experimentally implemented the measurement on a copper-Kapton junction. Below, we analyze 8 

the results of our measurements, additional sources of errors, and then discuss the applications and 9 

limitations of the measurement technique.  10 

We used finite element simulations to predict the error in TIR measurements. For the 11 

simulations in Section II, we used an estimate for 𝑅∞
′′  (~ 4×10-4 m2KW-1) that is different from the 12 

extracted value (~3.4×10-3 m2 KW-1) using experimental data in Figure 7. However, this does not 13 

change the predicted systematic error in TIR measurements. The value of 𝑅∞
′′  only affects Δ𝑇ℎ and 14 

Δ𝑇𝑠, but does not influence the overall temperature difference (Δ𝑇ℎ-Δ𝑇𝑠), since it appears outside 15 

the resistance network used for Equation (1). Further, we were limited to 250 μm wide test 16 

sections, since our rated amperage was 1 A for the electrical leads in the cryostat (Figure 4). Future 17 

work can utilize higher heating power (>10 mW) on wider test sections (>1 mm) using high 18 

amperage (>1 A) or multi-strand electrical leads to reduce the systematic errors. A wider test 19 

section can also reduce fabrication complexity. The results on experimental design presented in 20 

Section II provide a general framework for designing measurements and they can be customized 21 
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 16 

to suit different experimental conditions such as the available heating power, test section 1 

dimensions, and the expected measurement errors.   2 

 3 

Figure 9. Schematic of non-idealities in the experimental measurement of the thermal interface resistance. 4 

(1) represents offset error due to misalignment. (2) represents undercut of the adhesive during fabrication. 5 

(3) represents additional heat pathways due to the extended polymer. 6 

In Section II, we developed the concept of our measurement technique. However, experimental 7 

implementation of the measurement could result in non-idealities that could introduce additional 8 

sources of error. In Figure 9, we show three primary sources of error: (1) offset (𝑤𝑜𝑓𝑓) between 9 

the heater and sensor due to misalignment, (2) undercut (𝑢) of the adhesive during fabrication, (3) 10 

additional heat pathways through the extended polymer that could be in contact with the sample 11 

fixture materials. The error in TIR measurement increases with the misalignment (𝑤𝑜𝑓𝑓), reaching 12 

up to ~10% for 𝑤𝑜𝑓𝑓=50 μm if the test section width is 250 μm (Supplementary Figure 3b). The 13 

misalignment error becomes less significant if the test section is wider. For instance, for a test 14 

section of 1 mm width, a higher misalignment 𝑤𝑜𝑓𝑓= 100 μm results in a TIR error of ~10%. For 15 

our samples, the misalignment (𝑤𝑜𝑓𝑓) is typically less than 25 μm, and hence the corresponding 16 

contribution to the overall error is negligible (<5%). An undercut, 𝑢, could locally crowd the heat 17 

flux lines, which could result in a 2D heat spreading across the test section. Assuming a typical 18 

undercut, 𝑢 ~ 25 μm, corresponding to the thickness of the adhesive, we use computations to find 19 

that the error in TIR could increase from 2.9% (without undercut) to 6.9% (with undercut) for a 20 

sample with 𝑡𝑝=50 μm, and width 𝑤=250 μm. The error in TIR due to undercut could also be 21 

reduced by using a wider test section. For instance, for a test section of 𝑤=1 mm, the error in TIR 22 

could be 1.5% with an undercut of 25 μm. During fabrication, undercut could be reduced by using 23 

anisotropic RIE etching using O2 to remove the photoresist instead of acetone. The TIR 24 
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 17 

measurement error due to additional heat pathways from the extended polymer is difficult to 1 

predict computationally since the contact resistances of additional pathways between the polymer 2 

and the fixture are unknown. We instead performed experiments using thermal paste to fix the test 3 

section to the chip holder (Supplementary Figure 4). Since the spreading of thermal paste is 4 

difficult to control, it creates additional pathways for the heat to flow from polymer to the chip 5 

holder directly. We repeated our TIR measurements on the same samples to find that the average 6 

TIR is 3.4× 10-4 m2 KW-1 ± 8.4% when thermal paste was used. When the samples were fixed 7 

with thermal paste, the TIR is roughly 10% smaller than the average TIR reported in Section IV, 8 

possibly due to additional heat pathways. However, since the difference is comparable to the error 9 

in the measurements, we believe that the additional heat pathways either did not contribute to any 10 

significant error in TIR, or our measurement is insensitive to the difference. Further, we measured 11 

the Kapton’s thermal conductivity separately through ASTM E1530 standard, by stacking multiple 12 

Kapton layers together (supplementary information). The measured thermal conductivity was 0.17 13 

Wm-1K-1 for Kapton HN films, which is within the range (0.12-0.23 Wm-1K-1) of previously 14 

reported values for Kapton [52], [59]. However, since we assumed the interfacial resistance 15 

between Kapton layers to be negligible, the measured thermal conductivity of Kapton, 𝑘𝑝, is 16 

representative of a lower bound. Our TIR measurement is therefore representative of a lower bound 17 

and serves as a proof-of-concept experiment to demonstrate our TIR measurement technique on 18 

adhesively joined metal-polymer interface. Future work can measure Kapton’s thermal 19 

conductivity separately by using 3𝜔 or TDTR via thin metal films evaporated directly on Kapton, 20 

or use test sections of different 𝑡𝑝 to extract the TIR (𝑅𝑚𝑝
′′ ) (Eqn. (1)). 21 

The systematic error in TIR measurements can be further reduced by using additional heaters 22 

to actively compensate for the lateral diffusion of heat through polymer. By supplying an 23 

additional heat, say 𝑄𝑟𝑒𝑓, from either side of the test section, we could compensate for the portion 24 

of heat from 𝑄𝐷𝐶 that diffused laterally through the polymer. Figure 10b shows a schematic of the 25 

additional heaters that can supply a heat 𝑄𝑟𝑒𝑓, whose temperature 𝑇𝑟𝑒𝑓 can also be measured using 26 

four-point probes. The optimum 𝑄𝑟𝑒𝑓 can be found experimentally, by monitoring the temperature,  27 

Δ𝑇𝑐𝑜𝑚𝑝 = |
Δ𝑇𝑟𝑒𝑓 + Δ𝑇𝑠

2
|

𝑄𝐷𝐶=0
− |

Δ𝑇𝑟𝑒𝑓 + Δ𝑇𝑠

2
|

𝑄𝑟𝑒𝑓=0
 

(3) 
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which goes to zero for a certain 𝑄𝑟𝑒𝑓 that compensates the lateral heat diffusion. The first 1 

component of Δ𝑇𝑐𝑜𝑚𝑝 in Eqn. (3) is representative of the temperature change in Kapton near the 2 

test section, due to the additional heat (𝑄𝑟𝑒𝑓) in the absence of heating at test section (𝑄𝐷𝐶). The 3 

second component corresponds to the average temperature at the Kapton near the test section due 4 

to the heat, 𝑄𝐷𝐶. By balancing these two components we can roughly compensate for the lateral 5 

heat diffusion. We explore this aspect using finite element simulations for two test cases shown in 6 

Figure 10a. For a test section with 25 μm thick Kapton and TIR=10-5 m2KW-1, we could reduce 7 

the TIR measurement error from ~32.3% (Figure 3b) to ~0.2% (Figure 10c) by providing a heat 8 

𝑄𝑟𝑒𝑓=0.08𝑄𝐷𝐶 (red points in Figure 10a). Similarly, for a test section with 100 μm thick Kapton 9 

and TIR = 10-4 m2KW-1, the error in TIR measurements can be reduced from ~38.9% to ~2.0% by 10 

using 𝑄𝑟𝑒𝑓=0.23𝑄𝐷𝐶 (black points in Figure 10a). This compensation technique can be readily 11 

implemented experimentally to find and supply 𝑄𝑟𝑒𝑓, and it requires fabricating two additional 12 

four-point probes. The compensation technique cannot reduce the thermal gradients everywhere 13 

in the polymer film. It reduces the lateral temperature gradient in the polymer film at close 14 

proximity to the test section, as evident from Supplementary Figure 5. We note that the definition 15 

of Δ𝑇𝑐𝑜𝑚𝑝 may not apply to all cases, especially if 𝑡𝑝 >100 μm and TIR<10-5 m2KW-1, where the 16 

temperature drop across Kapton is large and requires an explicit temperature measurement of 17 

Kapton near the test section for compensation. In such cases, numerical simulations can be used 18 

to find the optimum 𝑄𝑟𝑒𝑓. Further, an estimation of the additional heat required, 𝑄𝑟𝑒𝑓, is also 19 

limited by the error in measuring Δ𝑇𝑐𝑜𝑚𝑝. In general, the active compensation technique utilizing 20 

additional heaters can reduce the systematic errors in the range of ~20-50% (without 21 

compensation) to ≲10% (with compensation), which can be useful in cases where 𝑡𝑝 > 50 μm and 22 

TIR<10-4 m2KW-1 (Figure 3). 23 
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 1 

Figure 10 a) Compensation heat (𝑄𝑟𝑒𝑓) is varied to find out the optimum at which the lateral heat 2 

diffusion is compensated, which occurs at Δ𝑇𝑐𝑜𝑚𝑝~0.  The results shown here are obtained from 3 

simulations. 𝑄𝐷𝐶  =10 mW, 𝑤 = 250 μm. b) A schematic of the additional heaters that are placed adjacent 4 

to the test section. c) Temperature contours are shown along with the heat flux lines for the chosen 𝑄𝑟𝑒𝑓 5 

from a). This figure is drawn to scale, with the width of the test section 𝑤=250 μm. 6 

The design of our experiment enables in situ and intrinsic TIR measurement, and its related 7 

applications. Since our technique leaves the polymer layer intact, it allows for a TIR evaluation 8 

that can be readily integrated into existing flexible electronics and circuit packaging. In-situ 9 

thermal interface resistance measurement can then be used to evaluate the degree of delamination 10 

of the interface [12]. Especially, flexible and wearable electronic circuits are often subjected to 11 

cyclic loading, which can delaminate the metal leads from the polymer, substrates [60], increasing 12 

the TIR. Similarly, thermal interfacial material (TIM) [16] in chip packaging, and electrode-13 

separator interfaces [3] in Li-ion batteries can deteriorate over time, which increases their TIR and 14 

under extreme conditions results in a thermal runaway [4], [18]. By suitably tailoring our 15 

measurement design, an in situ TIR measurement can help to evaluate the interface delamination. 16 

Although we report measurements on adhesively-joined copper-Kapton junctions in this study, 17 

this TIR measurement technique is generally applicable to any metal-polymer junction and even 18 

certain metal-metal junctions. Such metal-polymer junctions made using sputtering [45], adhesives 19 

[40], mechanical fastening [61], or welding [47], [48], find applications in automotive sector [47], 20 

[62], flexible electronics [1], [40], and hybrid thermal management devices [6], [63]. Moreover, 21 

this TIR measurement technique can be used on metal-metal junctions that are adhesively bonded 22 
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together, which are used in hybrid heat exchangers [6], [56], and in aircraft industries [64], where 1 

high strength-to-weight ratio joints are preferred.  2 

Our TIR measurement technique requires the junction to have metal surfaces on either side 3 

that can be patterned as a heater and a sensor. The integrated sensors also require the junction to 4 

be electrically insulating in the cross-plane direction, which is available in most printed circuit 5 

boards and other electronics packaging. Typical candidates could be metal-polymer-metal 6 

junctions, or metal-metal junctions joined using adhesives or TIM that are electrically insulating. 7 

For such metal-polymer-metal junctions, a deterministic TIR measurement is possible if the 8 

polymer’s thermal conductivity is known a priori, or it can be statistically extracted using test 9 

sections of different polymer thickness 𝑡𝑝. Overall, our TIR measurement technique applies to any 10 

combination of materials at the junction as long as the interface is electrically insulating. 11 

VI. Conclusion 12 

In summary, we report an integrated sensing technique to measure the intrinsic thermal interfacial 13 

resistance (TIR) of bonded interfaces. On a metal-polymer interface, we microfabricated heaters 14 

and temperature sensors using the metal layer, which were calibrated in situ for the TIR 15 

measurement. We kept the polymer layer intact to minimize fabrication complexity and potentially 16 

enable in situ applications. To reduce the lateral heat diffusion through the polymer, we use finite 17 

element simulations to design the test section and curtail systematic errors to <5%. Through proof-18 

of-concept experiments, we measured the metal-polymer TIR to be ~3.7 × 10-4 m2 KW-1 ± 4.7% 19 

for DuPont Pyralux copper-Kapton laminates that were adhesively bonded. This technique is 20 

extendable to sputter-coated, electroplated, or welded metal-polymer interfaces as well as 21 

adhesively-bonded metal-metal interfaces with TIR ≳10-5 m2 KW-1. For TIR measurements on 22 

junctions with thick polymers (>50 μm) or low TIR (<10-4 m2 KW-1), we developed an active 23 

compensation technique utilizing additional heaters to further reduce the systematic error in TIR 24 

measurements to <10%. We also discussed additional sources of errors due to non-idealities in the 25 

experiments and provided ways to overcome them. Our TIR measurement technique requires the 26 

polymer’s thermal conductivity to be known, or it can be extracted by using test sections of 27 

different polymer thicknesses. Our measurement framework can be suitably adapted for in situ 28 

TIR measurements in flexible electronics, batteries, or chip packaging to evaluate an interface.  29 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
12

40
4



 21 

 1 

Supplementary Material 2 

See supplementary material for a description of Kapton’s thermal conductivity measurement 3 

using a technique similar to ASTM E1530 standard. 4 
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