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ABSTRACT

A family of numerical methods is developed for the solution of special
nonlinear sixth-order boundary-value problems. Methods with second-,
fourth-, sixth- and eighth-order convergence are contained in the family.
Global extrapolation procedures on two and three grids, which increase the
order of convergence, are outlined.

A second-order convergent method is discussed for the numerical
solution of general nonlinear sixth-order boundary-value problems. This
method, with modifications where necessary, is applied to the sixth-order
eigenvalue problems associated with the onset of instability in a Bénard

layer. Numerical results are compared with asymptotic estimates appearing

in the literature.
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1. INTRODUCTION

Many mathematical models concerning a Bénard layer assume a uniform steady-
state temperature profile and an adiabatic gradient which is constant.
Associated calculations reveal that, when a destabilizing temperature
gradient exceeds the adiabatic gradient, the whole layer becomes unstable
simultaneously (Baldwin, 1987a). Models which assume a non-uniform
destabilizing steady-state temperature profile, further assume that
convection sets in at a level where the local temperature gradient
sufficiently exceeds the adiabatic gradient for the restraining effects of
thermal conduction to be controlled. Baldwin (1987b) notes that, if this
level is not at a boundary, the motion may be modelled by the sixth order

eigenvalue problem

2

(D° —2°)Yw (x)+RAY(1-x")w(x)=0,D=d/dx (1.1)

with
w(x) > 0 as x > =*oo. (1.2)

In this problem, x is a dimensionless boundary layer coordinate,
w = w(x) is a dimensionless vertical wvelocity, R is a Rayleigh number and A
is a horizontal wave number. Such problems have applications in astro-
physics, as A-type stars are believed to have narrow convecting layers
bounded by stable layers (Toomre €t al. , 1976). Glatzmaier (1985) also
notes that dynamo action in some stars may be related to a narrow
convecting layer at the base of the convection zone in the critical region
between the stable interior and turbulent convection regions. The smallest
eigenvalue, RA?, of (1.1) includes the minimum Rayleigh number R for the
onset of stability and the corresponding wave number A. A similar
eigenvalue prcblem discussed by Baldwin (1987a) replaces x’ by x in the
differential equaiton (1.1).

Baldwin (1987a) notes that asymptotic expansions for the solution of

sixth order boundary-value problems are difficult to obtain. In a later
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paper Baldwin (1987b) expresses the solutions arising as laplace integrals,
the integrands of which involve a function satisfying a second order
equation with six transition points. W.K.B. approximations to this
function, wvalid in regions associated with each transition point, are
related by using global phase-integral methods. Baldwin then estimates
solutions of the sixth-order problem using steepest descent techniques,
leading to an eigenvalue condition. The eigenvalue estimates are used for
an accurate computation based on the compound matrix method.

The numerical analysis literature on the solution of sixth-order
boundary-value problems is sparse. Such problems are contained implicitly
in the work of Chawla and Katti (1979), although those authors concentrated
on numerical methods for fourth-order boundary-value problems. The book by
Agarwal (1986) contains theorems which list the conditions for existence
and uniqueness of solutions of sixth-order boundary-value problems, though
no numerical methods are contained therein. A low-order numerical method
is outlined in Twizell (1988).

Experience in solving second- and fourth-order boundary-value problems
has shown that considerable insight may be obtained by solving the special
problem first of all, followed by the general problem and the associated
eigenvalue problem. To this end, special sixth-order boundary-value
probems will be solved in §2 by finite difference methods of orders two,
four, six and eight. Global extrapolations on two- and three-grids to
increase order of convergence will be given. The general sixth-order
boundary-value problem is discussed in §3 and in §4 the sixth-order eigen-
value problem (1.1) is solved. The free-free and rigid-rigid cases of the
problem discussed by Baldwin (1987a), in which 1-x%1in (1.1) is replaced by

1-x, are also solved.
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2. THE SPECIAL BOONDAY-VALUE PROBLEM

2.1 A family of nurerical methods

Consider the special nonlinear sixth-order boundary-value problem

D (x)=f (x,w),a <x <b; a,b,x€R,w(x)€C*[a,b], (2.1)
w(a) = Ay , Dw(a) = A, , D'w(a) = A, ,
(2.2)
w(b) = By , D’w(b) = B, , D'w(b) = By

It is assumed that f(x,w) € C9[a,b] is real and that Ay, A, A4, By, B and
B; are real finite constants.

Conside now the mesh G cbtained by discretizing the interval a < x < b
into N+1 subintervals each of width h = (b-a)/ (\+1) where N>5 is an integer.

The solution w(x) will be computed at the points x,” = atnh (n = 1,2,...,N)

)

of G; and the notation wf will be used to denote the solution of an

approximating difference scheme at the grid point x,”. Clearly wo™ = Aq

(1)
=B
0 -

and wy,

A general family of symmetric numerical methods is given by

M M M M M M M
-w,, +6w., —15w ’ + 20w~ —15w | + 6w, , —w,

BT, BT, + 1)+ (14 2028 20 (2.3)
T+ BEL +af]=0.

where frgl) :f(x(l),wfj) ) and o, B, Yy are parameters chosen to ensure consis-

tency as a minimum requirement. The local truncation error t" at the

(1)

point x ' 1is then given by
t(nl) = c:7h7w("i‘l)(xn )+ cghsw(vni)(xn )+ cgh‘gw(ix)(xn )+ clohlow(x)(xn )+ ----- ;

(2.4)
in (2.4) the C; (i = 7,8,9...) are constants with C; = Co = ... =0

because of symmetry.
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(1)

n

Equation (2.3) is applicable only to the N-4 mesh points x.’(n=

3,4,..,N-3,N-2) of G;. In order to be able to implement the global
extrapolation procedures to be discussed in §52.2, 2.3 special formulae are
needed for the other mesh points of G;. These formulae will be assumed to

be consistent and to have the forms

(1) (1) (1) (1) 2_n 4__iv 6 (vi)
14w, — 14w, + 6w, —w, —a,w, —bh'w; —d,h'w;, —dh’w,

+10° (o, £V + B + v £ + 5,80 + e £ 4 0, £ 4 £V + 1Y) =0,
(2.5)
—14w" + 20w —15w) + 6wl —wl) —a,w, — b,h’w! — czh4w(iv) — d,h%w()

0 2 0

6 (1 (1) (1) (1) (L (L (1) (Ly _
+h'(o, £ +B,E7 + v, +0,5, +e £ +06, £ +Uv £ +1,57)=0,

(2.6)
—w'? + 6w — 15w, + 20w, — 14w —a,w,, —bhiw", —c,h'wlY — d niwl)
(e + U e + 0, + et + 5,60 + v, el 4+ BE +afP)=0 (2.7
and
- W(Nl—)B + 6W(le)2 - 14W(1q131 + 14W§q1) — Wy T blhzw;:Hl - Clh4w(Ni+vl) - d1h6W(Ni+Vl)
(£ ) 0 £ + e £+ 5, E + v, £ 4 B Y + o, £0) = 0 (2.8)

The a., b,,c,, d,, o, , B,y Vi d.r€,,0,, U, and 1, (1=1,2) are

parameters which must be chosen so that the local truncation errors of

(2.5)-(2.8) are identical with (2.3) to the order required in §2.2, 2.3.
Clearly, the family of numerical methods is described by the set of

equations {(2.5), (2.6),(2.3),(2.7), (2.8)} and the solution vector

) —[ @ @) (1)]T

N Wi Wy ly oe e s Wy

’Tdenoting transpose, is obtained by solving

a nonlinear algebraic system of order N which has the form



(3)
3w + hom, £0(x,w® ) - b =0 (2.9)

In(2.9) Jf is the cube of the familiar matrixJ; of order Ngiven by

2 -1
-1 2 -1 0
J, = : : : (2.10)
-1 2 -1
|0 -1 2 |

for which ‘J Il‘ :(N+l)2 /8 (the norm referred to throughout the paper is

the L_norm). (The choice of coefficients in the terms in w in {(2.5) -

(2.8)} was motivated by the convenience of using Jf’ in (2.9).) Also
in (2.9) the matrix M; , of order N, is given by

[a, B, Y, 5, £ e, 0, ) ]
o, B, Y, S, £, 0, U, T,
B v ) Y B o 0
a B % bX Y B o
0 o B Y pX Y B o
M, = . . . . . . . , (2.11)
o B Y pX Y B a 0
0 o B P ) Y (e
0 0 0 o o v 2 vy B
T, U, 0, £, o Y, B, o,
L T U, e, g N 2 B, oy |

in which > =1-2a—-2B-2y. The vector £ of order N has the form

f(l) =[f1(1),f1(1), e ,fh(,l)]T, the constant vector b" is given by









(6)

'a,A,+b,h’A, +c,h*A, +d,hw!")]
a,A, + b,h?A, +c,h’A, +d,h Wl
6 vi
A,—h awg )
0
bt = : (2.1)
0
B, —h60(w§’+i1)
a,B, +b,h’B, +c,h'B, +d,h°w!")
|a,B, +b,h’B, +c,h'B, +d,hw |
and 0 is the column zero-vector of order N.
The vector w')= [w(x(ll)),w(x(;)), e ,w(x(Nl))]T satisfies
3w + 0 £9 (=, w® )= — £ =0 (2.13)
Where t%= [t(ll),tgl), e ,t(Nl)]T is the vector of local truncation

errors and a conventional convergence analysis shows that thenormof the

vector
2 = ) W) (2.14)

Satisfies

H Z8| < (b-af

< 512—(b—a)6M*F* {|C8|h2V8 +|C10|h4v10 +... }
1

max

where V, =__ _,

1

diwbﬁ/dxi‘forj_:l,Z,....,rﬂk:”Ml” and F' =

max
a<x<b

8P/dﬁixl, provided the parameters in (2-5) - (2.8) are chosen to

ensure that C;=Cy = 0. The order of convergence of the numerical method
is, thus, p itCue, 1s the first non-vanishing constanton the right hand

side of (2.4) and F < 512/[ (b—a)ﬁw*].
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2.2 Global extrapolation on two grids
Suppose, now, that the interval a<x<b is subdivided into 2N+2 sub-

1
intervals each of width —h giving a finergrid G, of interiorpoints named
2

(2)

1 7

x(22), ceen ,xfgﬂ. Clearly the points x(;l) of the fine grid G, coincidewith

(1)

i

X

the points x;’ of the coarse grid G (i =1,2,...,N).

The finite difference formulae {(2.5), (2.6), (2.3), (2.7), (2.8)} are
1
modified for use on G, by replacing h with Eh . They may be written in

matrix-vector form as

6

in which J, and M, are matrices of order 2N+1 which may be written down
immediately from (2.10) and (2.11). All vectors in (2.16) have 2N+1
elements; b is obtained from b® and t® from t® by replacing h

1
with Eh' w? and f% follow in an obvious way from w" and f%, as do

(

w? from w'¥

and w from z®.

@)

In the convergence analysis on G, w* satisfies

b— 6 2 4
Hz(z) < 512_((b_8;))6M*F* |c8|(§h) V +|C10|[%hj Vipteoo- (2.17)
(from (2.15); note ||M2||:||M1||:M) Introduce, now, an extrapolation
vector z® of order N defined by

E h 1
29 =gl 2 + (-mz ",
2
where I} 1is a fine-to-coarse grid restriction operator with
~h
2

Ihhz(2) =[zgz),zg2), e ,z(j)]T and I}ihw@) = [w(zz),w(2), e ,w(22)]T .

L
2 2

I} | to be unity, it follows that

2

Defining

|26

<ol

+(1+q)|z"










and that
(8)

|2 | = ofn™2)

provided
q=27/(2"-1), (2.18)

where pis the order of convergence of the numerical method. The global
extrapolation vector

) = g1} W (1 (2.19

2

is thus of order p+2 also.

2.3 Global extrapolation on three grids
Consider, next,a third grid Gs; of step size 1/3h. The interval a<x<Db is
thus divided into 3N+3 subintervals and theinterior points of Gsare named

>43,XS),.. ..,xgﬁl. Clearly, the points Xg) of Gs are coincident with

the points x@) of G (i=1,2,...,N).

©) (@) .3 @)

. T . .
The solution vector w'/ =[w;’,w,’, ....Wy,,] on Gz 1s obtained

from the nonlinear algebraic system
h 6
J3w@) (5) M3fﬁwx,w@0—¥bc):o (2.20)

in which J35, Ms, £ and b"” are obtained in an cbvious way as in §2.2.
In the convergence analysis on G3, z®) satisfies

b_ 6
=] < 512-(<b_a3)6M*F* (ccloinyvy +owlpmyvs, +. ) (2.21)

(from(2.l5);note”M3”:Df). The extrapolation formula

z@):rl%@@)+51%;@)+(1—r—s)z@%

in which the fine-to-coarse grid restriction operator I%h is such that

(3) G) 06) ©)

T h
=lz3zgy oo y25] and I w

G) =[W(33)IW23)I ... /WSN)]T/

I%hz
Gives\
27

<o 21|



(assumingthat”l%h =1) so that
“Z(E) 0 (")
Provided
r=37/ (543" -2")and §=-2""/ (5437 = 2°7) . (2.22)

and, thus, 1l-r-s = 5/ (5+3P" —2P'5) .
The global extrapolation algorithm

W(E):I‘I}%hw(:%)-FSI;hW(Z)+(1—I—S)W(l) (2.23)

is thus of orderp+4 also, where p is the order of convergence of the
numerical method, provided r and s take the values indicated by (2.22).

2.4 Second order methods
Method A Writing o= = vy = o in (2.3) gives

1 2
-——,c,=——— (2.24)
240 945

C = — — C =
8 r ~10
4

in(2.4), so that (2.3) is a second order method (Twizell, 1988). To allow

global extrapolation on three grids the parameters in the special end - point
formulae (2.5)-(2.8) must be chosen so that C; = Cy = 0 in (2.4) and so

that Cg and Cip in (2.4), with n = 1,2,N-1 or N, agree with (2.24). The

method of undetermined coefficients revealsthat this is achieved provided

5 1
al:5,bl:—2,01=€,a2=—4,b2:—1,c2:E (2.25)

together with

d = 717926/d , 2 = 0,

o = 4026944/d o = -51467/d ,

B, = -439716/d , B. = 3733148/d ,
yi = 218144/d , y2 = -105222/d ,
§ = -43286/d , 5, = 52868/d ,

-10607/4d ,

€2









where

d = 3628800 = 10!

The parameters g1, 61, @1, T1, B2, @2, T2 may then be arbitrarily assigned

the value zero.

This set of 24 parameter values gives Ci; as the first non-zero
constant,in (2.4).Global extrapolation on two grids, with p=2 in (2.18),

and, on three grids, with p=2 in (2.22), gives the numerical emthods

4 1
Ww)z——I? W2 —Zw(1) (2.20)
3 Eh 3
and
81 16 1
W = 4_0 }11/3hw(3) _EI?/\th(z) +zw(” (2.27)

which are, respectively, 0(h") and 0(h’) convergent.

Method B Global extrapolation on three grids gives 0(h°) convergence if
the parameters in (2.5)-(2.8) are chosen to give C; = Cg = C;; = 0 as well
as Cg and Cijg having the values in (2.24). This is achived at minimal cost

by the parameters a;, b, c¢1, az, by, ¢ as given in (2.25) with, now,

d; = 17590730/d, d, = 239881/d ,
o1 = 98456332/d, o , = 70270/d ,
B = -32046202/d, B, = 79714751/d ,
v1 = 31580488/d, v2 = 115316/d ,
51= -18751822/d, 5, = -67699/d ,
g1 = 6205228/d, g, = 22222/4d ,
0= -881774/d, 0, = -3139/d ,

and where, now,
d = 79833600.
The parameters ¢;, T1, @2, Tz may then be arbitrarily assigned the value
zero. The parameters of Method B are such that Ci; also agrees with (2.24)
for alln=1,2,...,N on grid G;.
The global extrapolation formulae (2.26) and (2.27) are therefore O(hﬁ



and 0 (h®) convergent methods.

2.5 Fourth order methods

Method C Equation (2.3) becomes a fourth order method by choosing

1
o =p =0as before and by writing y = Z . The constants in (2.4) then

become
1 43
C,=0,C,,=———,C,, =~ (2.28)
? 1200 T 30240
with C; = Cy = C;3 = ... =0 because of symmetry. Choosing the parameters

ai, b1, c1, az, by, ¢ given in (2.25) with

d = -1624722/d , d; = 118371/d ,
on = 26624444/d , o = 10004918/d ,
B, = 569404/d , B, = 19922518/d ,
vi = 6972504/d , v> = 10005468/d ,
5, = -2762606/d , 5, = -10307/d ,
e, = 457292/d , £, = 1694/d ,

where

d = 39916800 = 11! ,

ensures that C; = Cg = Cg = C; = 0 and that Cio = -1/120 as in (2.28);

the parameters ©;, yi, T1, 62, Y2 and 1, can then be arbitrarily assigned
the value zero.

The constant Cj;, however, is different from that in (2.28) and
Method C can only be extrapolated on two grids. Writing p=4 in (2.18)

leads to the numerical method

16 1
W =—1 w(2)-—w" (2.29)
15 on 15

2
(from (2.19)) which is 0 (h®) convergent.
Method D It is possible to extrapolate on three grids if Ci, = -43/30240
for alln=1,2,...,N. This is achieved for o« = 3 = 0 and y = 1/4 if aj,

bi, c; (1 = 1,2) are given the values in (2.25) while the other parameters









in (2.5)-(2.8) are given the values

d; = -19679504/d , dy = 3156504/d ,
ou = 838715358/d , o = 260639067/d ,
B, = -390245752/d , B, = 516574292/d ,
vi = 799053554/d , y2 = 262290093/d ,
5, = -632200396/d , 5, = -2211872/d ,
e, = 313772290/d , e, = 1087957/d ,
0, = -89164504/d , 6, = -307164/d ,
y1 = 11100206/d , v, = 38051/d ,

where

d = 1037836800 ;
t; and t; may then be arbitrarily assigned the value zero.

Equation (2.29) gives the extrapolation of the 0(h') convergent
Method D on two grids to 0(h®) convergence, while putting p=4 in (2.22)
gives the numerical method

729 32 1
0 = . R S [ —— (2.30)
560 105 -n 336

2

(from (2.23) which is O(h?) convergent. This higher order convergence is
obtained at the cost of increasing the number of non-zero diagonals in the

matrix M; given by (2.11).
2.6 Sixth order methods

Method E Equation (2.3) attains sixth order by writing o = 0 as before and

then by choosing ! and L3 sothatl - 20 -2 11 The con
1 = — = —_— —_ —_ =— —_
Y 120 Y60’ 720

stants in (2.4) become

1 11

Cg=C,=0,C=""7"7" Cuzm

- 7 (2.31)
30240

with Cy= C¢= Coy= Ci3 =...- 0 because of symmetry. Choosing the

parameters. ai, bi, ci, az, bz, c; as given in (2.25) with



i = -54274064/d , d» = -5492136/d ,
oy = 648445278/d , op, = 226044507/4d ,
B, = 59483528/d , B, = 568466132/d ,
v1 = 20229739%4/4 , Y2 = 227695533/4d ,
5 = -147957056/d , o, = 6436768/d ,
g1 = 71610370/4d , e, = 1087957/d ,
6, = -19975384/4d , 6, = -307164/d ,
v, = 2451566/d , y , = 38051/d ,

where, now,

d = 1037836800 ,

is the first non-zero constant in tg) given by

ensures that Cp, = —
30240

(2.4) and that C;3 =0 also (for all n=1,2,...,N). The parameters T; and
T, may then be assigned the value zero. The constant Cis does not,
however, have the value given in (2.31) for n = 1,2,N-1,N and the global
extrapolation of Method E can consequently be carried out on two grids
only.

Writing p=6 in (2.18) leads to the numerical method

—w" (2.32)

(from (2.19)) which is 0(h®) convergent.

Method F Ninth order convergence may be obtained by extrapolation on
three grids by increasing the number of non-zero diagonals in M; given by
(2.11) . This is achieved for the same values of o, {3, y used in Method E,
and for the values of a;, bi;, ¢; (i = 1,2) given in (2.25), by changing the

remaining parameters in (2.5)-(2.8) to the following values:









(14)

d; = -5473830536/d , d; = -572925812/d ,
o = 69886323662/d , o = 23764660979/d ,
B, = -52722712/d , B, = 59583986756/d ,
vi = 33838212674/d , v> = 24117945173/d ,
5, = -31281723760/d , 5, = 413467880/d ,
g1 = 20116075154/d , £, = 324149693/d ,
0, = -0395908472/d , 0, = -137209324/d ,
@1 = 2056983902/d , @, = 33983099/d ,
T = 224946184/d , T, = -3748468/d ,

where
d = 108972864000 .
Equation (2.32) gives the extrapolation of Method F from 0 (h°) to 0 (h°)

convergence, while putting p=6 in (2.22) gives the numerical method

2187 256 1
0 = Il/3hh (3) 429 I? w2 = W (2.33)
1960 2205 =:n 3528

2

(from (2.23)) which is O(hg) convergent.

2.7 An eight order method

o 1 41 2189
Method G writing o= , B= and y = , so that
30240 5040 10080
4153 | . . -
1-20-2B8 -2y = ﬁ , gives the unique eighth order method of the family

(2.3) for n =3,4,..,,N-2. The constants in (2.4) become

1
c,=¢C,,=C 0 = (2.34)
8 10 12 ’ 14 57600
with C; = Cg = C3 = Ci3 = Ci5 = ... = 0 because of symmetry.

The same values of C; (1 = 7,8,...,14) can be attained for the end
points n= 1,2,N-1,N by choosing a;, bi, ¢ (1 = 1,2) as given by (2.25)
and by choosing the following values of the remaining parameters in

(2.5)-(2.8):



(15)

d; = -5495452136/d , d, = -583736612/d ,
on = 69727765262/ , o = 23688985379/d ,
B, = 455384888/d , B, = 59814617156/d ,
vi = 32908483874/d , v, = 23717945573/d ,
5, = -30218661760/d , 5, = 845899880/d ,
g1 = 19337697554/d , £, = 25050893/d ,

0, = -8039152072/d , 0, = -7479724/d ,

¢ = 1963290302/d , ©; = 1550699/d ,

1. = -214135384/d , T, = -144868/d ,

where
d = 108972864000 .
These parameter values give Cis# 0 forn=1,2,N-1,N and so
extrapolation of Method G can be carried out on two grids only. Writing

p=8 in (2.18) leads, from (2.19), to the numerical method

I, W(2)———W (1) (2.35)

which is O(h?) convergent.

Equation (2.3) does not yield a numerical method of order higher than
Method G.

2.8 Numerical results

The numerical methods outlined in §§2.4-2.8 were tested on the following
problem.

Problem 2.1
D°w (x)=20exp [-36w (x)—40 (1+x)°,0<x<1

With boundary conditions

w(O):O,D2w(O):—%, D4w(0)=—1,w(1)=%xn2,D2w(1)=i,D w(l)=——

for which the theoretical solution is









wbdz%hﬂl+xL

The interval 0 <x< 1 was divided into N+l equal subintervals each of

width h = 2™ with m = 3,4,5 so that N = 7,15, 31 respectively.
The value of ||w—W||, where W is some numerical solution, was computed

for each value of N. The results for all second, fourth, fifth, sixth,
eighth and ninth order methods are given in Tables 2.1, 2.2, 2.3, 2.4, 2.5
and 2.6, respectively. These tables include results for the global extra-
polation algorithms (the notation EXT(A,2,5) is used, for example, to
denote the extrapolation of Method A which is second order convergent to

achieve fifth order convergence) as well as for Methods A-G.

Tables 2.1-2.6 here

The two second order methods give very similar results and, as Method B

has more non-zero off-diagonal elements in the matrix M;, it is more
expensive to implement than Method A. It does however give a higher order

of convergence than Method A when extrapolated using three grids.

The global extrapolation of Method A on two grids (equation (2.26)),
which gives fourth order convergence, gives slightly more accurate results
than the similar extrapolation of Method B. Each gives better results than
Method C which, in turn, gives higher accuracy than Method D. Methods C
and D, however, are cheaper to implement than the two extrapolation
formulations, especially Method C which has fewer non-zero off-diagonal
elements in matrix M; (see (2.11)) than Method D.

The global extrapolation of Method A on three grids (equation(2.27))
is the only method with fifth order convergence. Generally, as 1is
expected, results relating to it are intermediate to those of fourth and
sixth order methods.

No sixth order method is significantly better than any other sixth

order method though Method F did give better results on the two fine grids.
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Also in its favour, Method F is cheaper to implement than any of the extra-
polation methods, especially the extrapolation of Method B on three grids

which gives poor results for small values of h.

Similar observations can be made regarding the four eighth-order
methods tested, though on the finest grid (N=31) Method G gave better
results, at significantly less cost, than any of the three extrapolation
algorithms.

The global extrapolation on three grids of Method F (formula (2.33)),
using the smallest values of h, gave more accurate results than the extra-
polation on two grids (formula (2.35))of Method G. However, the former is

the more expensive of the two ninth-order methods and, to the engineer or
scientist, the gain in accuracy may not warrant the extra cost.

Overall, there is evidence in Tables 2.1-2.6 that decreasing the grid
size does not necessarily produce the desired effect of a considerable
improvement in accuracy when using the higher order methods. This is due
to the small value of h, raised to a large power, having little bearing on

the calculation. This observation is also applicable to the extrapolation
procedures which use fine grids.

3. THE GENERAL BOTWDARY-VALUE PROBLEM

The general nonlinear sixth-order boundary-value problem consists of a
differential equation of the form

D°w(x)=qg (x,w,w,w ,w ,w " ,w"),a<x<b (3.1)

with given associated boundary conditions. The book by Agarwal (1986)
gives theorems on existence and uniqueness relating to this problem.
A particular form of the differential equation (3.1) is given by

—(D*2%) %W (x) - RA2(1-xD)w(x) + f(x,w(x))=0, 0 < x < X, (3.2)

with the boundary conditions









w(0) - Ay , DW(0) =R, , D'w(0) =2, ,

w(X) =By , DPw(X) = B, , D'w(X) = By

specified; it is assumed that w e (fD[O,X] and that Ag, Ay, L4, By, By, By
are real finite constants. Other forms of boundary conditions will be
considered in §§4.2, 4.4. The physical situation associated with (3.2) was
discussed in §1.

The interval 0< x <X will be divided into N+l subintervals (N25) each
of width h, so that (N+1)h = X, giving a grid G of points X, = nh
(n=0,1,....,N,N+1) including the boundary points xy = 0Oand xw1 = X. The
notations introduced in $2.1 may thus be used. However, as extrapolation
will not be considered in this section, the superscripts will not be used.

In order to use powers of the matrix J; (see (2.10)) in the convergence
analysis, the derivatives in (3.2) will be approximated by the finite

difference replacements

W(Vi)(xn) = h_6(wn_3 —6Wn_2 +15Wn—1 —2OWn +15Wn+1 _6Wn+2 tw,3+0 (hz) ’ (3.4)
w'(x )=h""w_,—4w_, +6w,_—4w__ +w_,)+o(h’), (3.5)
and
w'(x,)=h"(w,, —2w, +w,_,)+0 (h) (3-6)

Substituting (3.4), (3.5) and (3.6) into (3.2) leads to the numerical

method

—w,_, =3(2+A%h%w,_, -3 (5+4A"h* +A'hY)w

n

= [204+18A°h* +6A°h* + A°h® —RA’h®(1-x°) Jw, —3 (5+4A°h* +A*h*)w_,

1

= 3(2+A*h*)w,_,—w,_,+hf =0 (3.7)

(Twizell, 1988) which has local truncation error given by

n+3



It is noted that, when A=0, the differential equation (3.2) becomes the
differential equation (2.1),the method (3.7) becomes Method A of §2.4, and
t, in (3.8) becomes t,, 1 3ssociated with Method A.

The numerical method (3.7) may be applied forn = 3,...,N-2 only; for
n=1,2,N-1 and N special approximations to w (%,), and for n=1 and N
) (

special approximations to w"” (x,), must be used. Assume they are of the

forms
—w'" (%) =h"" (o, W, +oL,W, + oW, + 0w, + o W,
—v,w, —h’y,w, —y3h4wgiv) —y8h6wgVi) (3.9)
w (%) =hT (5w, —4w, + W, + V. W, +v6h2w'; +y7h4w(oiv’ +\/8h6w(OVi), (3.10)

—w'"(%,)=h"(B,w, +B,w, +B, W, +B,w, +B.w.
2_" iv 6_ _(vi
-5, w,—5,h’w, =5 h'wi =5, h'wl™,  (3.11)
CN(x)=h" (4w, +6w, —4w, +w, +5.w, +5.h’w, +5 h'w " +5.h°w), (3.12)

(vi) __ 1.6
-w (Xn—l) =h (BSWN—ZI 'B4WN—3 + B3WN—2 + B2WN—1 + Ble

2 4_ (iv) 6_ _(vi)
—5,w,,, —5,h Wi —8.h W) —5,h W, (3.13)
(iv) 4 2w 4_ (iv) 4 _(vi)
( N—l) =h (WN—3 _4WN—2 +6WN—1 _4WN +65wn+l +66h Wyt1 +67h Wit +68h WN+1) ’
(3.14)
(vi) -6
-w N (x, )=h" (oW, , +o, W, oW, F0LW, | FO W,

— VW, —Y,hiwl, =y h'wl Y =y, hwl ) (3.15)
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And

(iv)

(iv) _ 1.4
w (XN)_h (W N+1

o, —4w, 5w +vy.w +V6h2W§+1 +y7h4w +\{8h6w§'+il)) , (3.16)
then (3.9)-(3.16) are substituted into (3.2) to give finite difference
methods for n = 1,2,N-1,N.

The 26 parameters oy , B; (1 =1,2,..,5), and vi, & (1 =1,2,...,8),
which have different values to those in §2, are chosen to give local

truncation error

—%wwnkxg+§AﬂM“wa—%A%wmwx)]+0(h% (3.17)
for n=1,2,N-1,N. To achieve (3.8) for n= 1,2,N-1,N also, requires more
parameters and consequently produces a method which is more expensive to

implement. The method of undetermined coefficients gives

op = 14 - 10500/d , B; = -14 - 42/4 ,
op = =14 + 12000/4 , B, = 20 + 48/d ,
o = 6 - 6750/d , By = -15 - 27/d ,
on = -1 + 2000/d , B, =6+ 8/d,
os,= -250/d , Bs = -1 - 1/d ,
vi = 5-3500/d , vs = -2,
Y2 = -2 + 1250/d , ve =1,

5
vs==-2375/d, v,=1/12,

29
Y. =2 -+6125/36d, v, =1/360,

8, =—-4-14/d,

5,=1+5/d,
1
5,=—-19/d,
12
5, =——49/72d,
5. =1,
5, =5,=5,=0, (3.18)
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where d = 15619 (writing the parameter values in the above forms is

motivated by the convenience of using powers of the matrix Ji).

After substitution of (3.6) and (3.9)-(3.16) with (3.18) into (3.2),
and using (3.7), it is seen that the solution vector W may be found by

solving the nonlinear algebraic system
(J +3A°h°J7 + 3A"h"J, + A°h°T - RA*h°G)w + h°f (x,w)=D (3.19)

in which J; is given in (2.11), I is the identity matrix of order N,

2
G =G(x) = diag{ (1-X=—)}, £ = [f1,f5...,f.]", and b = [b;, by, ...,by]" with
n

b, =(vy, —3v.A’h* +32°h* +v,A°h® -y, RA*h® —3y,A°h® + 3y, RA‘h®) A,

1
+h*(y, —3y,A’h® -3y,A*h* +9y,A°h") A,

+h*(y, -3y,A°h* +3y,A°h* -9y, A'h*) A, +h°(y, —3v,A’h?*) £(0,A,),

(3.20)
b, =(5, —3A°h* +5,A°h® =5,RA*h°*) A, +h*(5, —35,A*h") A,
+h*(5, +35,A°h*) A, +h°5,f (0,A,), (3.21)
bs = A , (3.22)
by-2 = Bo , (3.23)
by, =[5, —38°h” +5,2°h° —5,RA’h°(1—x* )| B, + h*(5, —35,A°h") B,
(3.24)

+h*(5, +35,A°h”) B, +h"5,f (X,B,),

1 1
b, =y, +6A°h’ +3A'h* +v,A°h°® —y ,RA’h’( 1—x2)—EA8h8 +?ORA4h8(1_X2) B,

1
+h*(y, —3A*h* -3y,A"h’ —4—OA6h6 ) B,

1 1
+h*[v, —(¢—-3y,) Ah? —4—OA4h4] B, +h°(y,———A%h?) f (X,B,) (3.25)

120
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(3.206)

-42
~10500 |

(3.27)

(3.28)

(3.29)

and b, = 0 for n = 4,5,...,N-3. The matrix J is given by
J=J, +P
where
_—lOSOO 12000 —-6750 2000 —250
—42 48 —-27 8 -1
0 0 0 0 0
p=d~
0 0 0 0
0 -1 8 -27 48
L —-250 2000 ——6750 12000
Now, the matrix P can also be written in the form
P = QJ,
where
[~ 500 250 i
-2 1 0
0 0 0
Q =4d"
0 0 0
0 -1 -2
| 250 - 500]
So that
_ 750
0" = [of =
15619

(3.30)

A standard convergence analysis then verifies that (3.19) is second-

order convergent if

192A%%X% + 240X + A°X® + RA®X G  +X°F" +512Q" <512

+ _max 2 * _max
where G :na h - x,| and F = a

T0<x<x

8f/6wbﬂ|

(3.31)
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4_. SIXTH-ORDER EIGENVALUE PROBLEMS

The numerical methods developed in §3 for the boundary value problem
{(3.2), (3.3) } may be adopted to solve the following Bénard layer boundary
value problems in Baldwin (1987a,1987b).

Problem 4.1  Baldwin considers the integration of the differential
equation (1.1) over the interval [0,10], that is to say

(D° =AY w(x)+RA*(1-x")w(x)=0, 0<x<10, (4.1)

with the even-mode boundary conditions

w (0)=D% w(0)=D* w(0)=0,

w(10)=D° w(10)=D" w(10)=0.

Il
o

The eigenvalue problem {(4.1), (4.2)} is obtained from (3.2) with f
and X = 10, and from (3.3) with 2y = A =2, = By = B, = By, = 0.
Therefore, £ = 0 and b = 0 in (3.19) and the eigenvalues, P@@, of {(4.1),

(4.2) } may be obtained from the algebraic eigenvalue problem

ATh™°GT(J] + p+3A°h°J] + A°h°I) W=RW (4.3)

in which the matrices J;, G and P are defined in §§2.1, 3.

Taking h=0.02 (N=499), the eigenvalues were obtained using the NAG
(Numerical Algorithms Group) library package FO2AFF in an iterative
technique. First of all, two values of A, say A% and A® are chosen arb-
itrarily and corresponding values of R, say R = R(a"Y) and R = R(a%),
are determined from (4.3); let R(A), be the smaller of RY and R¥ .Next,
choose a small number € >0 and find the value of R = R(A+e)corresponding
to the use of A = A+e in (4.3); 1if R(A+e) is smaller than R(A) then
refine ¢ and iterate again, otherwise compare R with R(A-g), refine &, and
iterate again. This procedure, which is used to find the eigenvalue-pairs
required, is repeated until the sequence of iterates converges.

The first three even-mode critical values of R and A are given in
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Table 4.1, which includes the equivalent results of Baldwin (1987b, p.303).
The results of Table 4.1 show that the computed results are smaller than
the results of Baldwin, indicating lower minimum values of R and A for the
onset of instability in a Bénard layer. Further experiments with smaller
and larger values of h produce computed results which approach and recede
from, respectively, the results of Baldwin (1987b). Refining the grid, and
thusincreasing N, is an expensive adjustment which could only be justified
in situations demanding accuracy to the high number of significant figures

claimed for the results in Baldwin (1987b).

Table 4.1 here

Proble 4.2 This eigenvalue problem consistsof the differential equation

(4.1) and the odd-mode boundary conditions

Dw(0) = D*w(0)=D’w (0)=0
(4.4)
Dw(10)=D’w(10)=D"w (10)=0

for which the method of §3 requires modification.

The finite difference method (3.7) may be applied for n = 4,5,...,N-3
but, in (4.1), special approximations to w"(x1), w " (xy), W™ (xn,
n=1,2,N-1,N and w) (1), n=1,2,3,N-2 ,N-1 ,N utilizing (4.4) instead

of (3.2) / (4.2) must be determined. They are assumed to have the forms

(vi) -6
—w ' (x,)=h"" (oW, +0,W, + 0w, +0,W, + oW, + Ol W,
(4.5)
' 3_.m S, (V)
—Y.hw, —v,h wy —y;hw,"),
(iv) -4 3
wo ' (x)=h"T (0w, + oW, + oW, + 0w, +0o, W, + v, hw) +y. hiwy) , (4.6)

—w' (%)= h_2(oclzwl + 0, W, + 0, W, + o W, =y hwp) , (4.7)
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—W(Vi)(xz) = h_6( Blwl +B2W2 +B3W3 +B4W4 + B5W5 +B6W6
-5, hw} —&,h’w! —5,h’w)"), (4.8)
W () =h TN (Bw, +Bw, + B, + B W, +By W, +0,hwl +5.hw!), (4.9)

(vi) _ 1.6
-w (x35)=h "(g,w, +e,w, +e,w, +e,w, +e, W, +E,W,

’ 3. (v)
-0, hw, -6, h"w, —6;hw, "), (4.10)
vi -6
w' )(xN_2) =h (e,wy . +tew, ,+e,wy s +ew, ,+e,w,  +& Wy
’ 3_.n 5_(v)
—6,hw,,, —6,h"w,, —6.h"w, ), (4.11)

- W(Vi)(XNfl) =h" (BeWy s +BsWy g +B,Wy 5 +Bswy, +B,wy, +B,W,
_61hW;q+1 —62h3w§+1 _65h5W§qv+)1) ’ (4.12)

(vi) 1.4
w (XN—l) =h ( Blle—zl + BloWN—:a + B9WN—2 + B8WN—1 + B7WN

+5,hw!, +3d.h’wl, , (4.13)
(iv -6
Y )(XN) =h "(owy o +owy , +0,Wy , +O,W , +OL,W, , +0 W,
_ h ! _ h3 " _ h5 (v) 4 14
Yl WN+1 Y2 WN+1 Y3 WN+1) ’ ( . )
i -4
w(”’(xN) =h" (o, Wy, +0 Wy 5 F oW, oW, oW
[ 3_.m
+yshwy,, +yshiwy,) (4.15)
and
-2
-w" (%) =h"" (o Wy 5+, Wy, +0L W, +0,W, — Y hwy,, (4.16)

The 46 parameters oy (1 = 1,...,15), B (1 =1,...,11), vi A1 =1,...,6),









local truncation error
undetermined coefficients givens

wrD), g1 (1 =1,...

01=14-751920/d,,
o,=-14+735065/d,,
o3=6-336860/d1,
oy=-1+24870/d4,
os=-1+24870/d4,
og=715/d4,

a7=5-5896/ds,
og=—-4+7888/ds,
oo=—1-3593/d3,
010=996/d3,
o11=-125/ds,

o1,=2-48/ds,
a13=14+36/ds,
o14=-16/ds,
as=-3/ds,

51— -6720/d2,
d,- 6380/d,

53- —-118/d,,
S4- -180/dy4,
Os- —16/d4,

91:18060/d6,
62=—1800/d6,
05=-216/dg,

(3.17)

(26)

B,=—14+49220/d,,
8,=20-42150/d,,
By=-15+21925/d,,
B.=6-7918/d,,
Bs=—1+1753/d,,
Be=—178/dy,

B,=-4+616/da,
Bg=6-428/dy,
Bo=—4+208/dy,
B10=1-61/d4,
B11=8/d4,

v1=15540/d,,
vo=-16600/d,,
vs=34352/d;,
va=240/ds,
vs=-936/d3,
Ye=12/ds,

£1=6-60480/ds,
82:15+41985/d6,
€3=20—21760/d6,

84:—15+7830/d6,
€5=6—l728/d6,
ge=—1+175/dg,

,6) and 6; (1 = 1,2,3) are chosen to give

for n=1,2,3,N-2,N-1,N. The metod of

(4.17)
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where

d; = 56630, d, = 5663, d; = 1715, dy = 343, ds,= 25, dg = 33978 ,
and it follows that the eigenvalues of {(4.1), (4.4)}

(4.18)
are obtained by

solving the algebraic eigenvalue problem

RwW.

Ah™°GT'[J] + P, + 3A°h*(J7 + B,) + 3A°h*(J, + P, A°h°IW (4.19)

It is seen from (4.5)-(4.18) that the matrices P;, P, and P3 of order N
are given by
[~ 48 36 —- 16 3 ]
0 0 0 0 0 0
-1
p, = d5
0 0 0 0
i 0 3 - 16 36 — 48]
[— 8596 7888 - 3593 996 - 125 1
3080 2140 1040 305 40 0 0
0 0 0 0 0 0 0
b, = dgl
0 0 0 0 0 0 0
0 0 40 305 1040 2140 3080
L — 125 996 — 3593 7888 - 8596_
and
[-2255760 2205195 -1010580 74610 -38100 2145 1
1476600 —1264500 657750 —-237540 52590 —5340
—302400 209925 -108800 39150 -8640 875 0
0 0 0 0 0 0
B =d’ 0 0 0 0 0 0
875 —-8640 39150 -108800 209925 —302400
0
—-5340 52590 —-237540 657750 —1264500 1476600
| 2145 —-38100 74610 ~1010580 2205195 —2255760)
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where dy = 169890, and G = diag{(l—xf)} as in Problem 4.1.

Takingh = 0.02 as, before, the routine, outlined for Problem 4.1 was
used toobtain the eigenvalues. The first three odd-mode critical values
of RandAaregivenin Table 4.2, which includes the equivalent results of
Baldwin (1987b, p.303). The computed results are lower than those of
Baldwin (1987b) : choosing a smaller value of h would narrow the gaps

between the two sets of results.

Table 4.2 here

Problem 4.3 The differential equation here is given by
(D*-2%)° w(x)+RA® (1-x)w(x)=0, 0 < x < 10 (4.20)
with the free-free boundary conditions (4.2) (Baldwin, 1987a).

This eigenvalue problem is very similar to that of Problem 4.1 and
clearly (4.3) may be used to obtained the eigenvalues: in (4.3), now,

G = diag{ (l1-xq)}.

Taking h = 0.02 once again and using the computational routine outlined
for Problem 4.1, yields the critical values of R and A, the first four of
which are given in Table 4.3. This table includes the edquivalent results of
Baldwin (1987a, p. 152). The difference between the results may again be
explained by the use of a low-order numerical method: the numerical

results; reported are, again, lower than the estimates of Baldwin (1987a).

Table 4.3 here

Problem 4.4 The differential equation in this eigenvalue problem is that

in (4.20) while the boundary conditions are given by

w(0) = Dw(0) = w(1l0) = Dw(1l0) = 0 , (4.21)
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(D°-A%)*w (0) = (D°-A*)°w(10) = 0 , (4.22)
(the rigid-rigid boundary conditions, Baldwin (1987a)).

These boundary conditions do not permit the use of the numerical method
Developed in §3. Instead the following second-order "splitting" approach,
on the same discretizaiton of the interval 0 < X < 10 is proposed.

Introduce an "intermediate function" v (x) defined by
v(x) = (D°-A%)*w(x) . (4.23)
Then, from (4.22),

v (0)

v(10) = 0 (4.24)

and w(x) may be determmined by solving the fourth-order boundary-value
problem {(4.23), (4.21)}. To this end, the second-order approximants to
D'w(x) and D'w(x), given by (3.5) and (3.6), are used to replace the derivatives
in (4.23) at the general mesh point x, = nh (n = 2,3,... ,N-1).
This gives, from (4.23)

Wn72 - 4wnf + 6wn - 4wn+1 + wn 2 2 anl - 2wn + wn+1 4 _
[ S 2| _on il v 2% — v, =0, (4.25)

for which the local truncation error is

1 .
t = — h2[— 2w (x

- )+ W] + o) (4.26)

n

2
In order to use the matrix J; , Special formulae, which use the elements

2
of the first and last rows of Jl,IHUSt be constructed. To achieve this,

equation (4.23) is approximated by the equation

[5w1 — 4w, + wg} {awl + P, + W, + S+ € W, + ogw, + goo}
h* h*

_ZAz[Wo‘%’ﬁWz} b AW - v, = 0(4.27)

h2

for n=1 and by the equation









(30)

I:WN—Q — le—l + 5WN} _ |:€ Wy_g + 5WN—3 + Wy, t ﬂwal +aw, + gy, — Q’W'N*l:|
h' h*

B -
_ 2A2|:WN_1 :2N WN—l:l + A4WN - Vv = O (4.28)

for n N, where a, o, B, v, O, €, ¢ and | are parameters (with different values

to those jn earlier sections of the paper) .

The method of undetermined coefficients wverifies that, choosing the
values

65 10 10 1 1 224 13
a= - — = — :*18:718:_*/ = (4'29)
12 b 3 ! 9 4 30 ? 45 v 3

achieves the aim of involving J f and ensures that t;, and ty ,the local

truncation errors at x3 and xy have principal parts as indicatedin
(4.206) .
Fquations. (4.27), (4.25), (4.28) maybe written in matrix—vector form

as
JW + 2A°h*J,W + h'A'W — MW — h'V + b = 0 , (4.30)
Where W=[w, W, ..., w.], V = [v,v,...,v,] Jiin given by(2.10),
- ; y ;
0 0 0 0 0
0
. . . . . . . (4.31)
0 0 0 0 0 0
L € o Y B o

and b ® 0 from 4.21)). Equation 4.30) then gives

V = h™(@7 + 28°h%J, + h'A‘T — M)W. (4.32)

Returning now to equations 4.20) and (4.23) it follows that

(D> —A%)v(x) + RA?(l-x)w(x) =0, 0 < x < 10 (4.33)
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and the boundary value problem {(4.33),(4.24)} may be solved using the
second order method

— + 2 —
- { Vo h;“ V“”} — A%, + RA’(l - x_)w, =0 (4.34)
in which n = 1,2,...,N (note vy, = wa = 0 from (4.24)). The local trunc-
ation error t, at the point x = x,,(n =1,2,...,N) is given by
1
t, = Eth“(xn) + 0h*) (4.35)

Written in matrix-vector form, equation (4.34) becomes
- (J1+A’h?*I)v + RA%’GW = 0 , (4.36)

in which G = diag{(l-x,)} as in Problem 4.3. Substituting for the
intermediate vector V from (4.32), equation (4.36) becomes

h G, + A*h D[, + A*h’T) — MW = RA'W (4.37)

and it follows that the eigenvalues of the boundary-value problem {(4.20),
(4.21), (4.22) } coincide with the eigenvalues of the matrix

h™*G™(J, + A*h’I) [ (J, + A*h°T) — M]. (4.38)
Writing (4.37) as
ATh™°G™H(J, + A’h’I) [ (J, + A’h’T) — MIW = RW (4.39)
the computational routine outlined for Problem 4.1, using h = 0.02 once  more,
gives the critical values of R and A. The first four of these pairs are given

in Table 4.4 which also contains the corresponding wvalues calculated by
Baldwin (1987a, p.153)

Table 4.4 here
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As in Problems 4.1, 4.2 and 4.3 the results yielded by the numerical

method are all lower than the corresponding values of Baldwin (1987a). The
nurerical methods therefore predict that the onset of instability in a  Bénard
layer occurs for lower minimum values of the Rayleigh number, R, and associated
horizontal wave number, A, than is predicted by the global phase-integral
methods used by Baldwin (1987a,1987b). The use of a finer discretization does,
however, increase the predictions of the numerical method, nearer to those of

Baldwin (1987a,1987b) .
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Table 2.1 Error norms for second-order methods
N Method A Method B
7 0.432E-3 0.435E-3
15 0.105E-3 0.105E-3
31 0.259E-4 0.259E-3

(The theoretical solution is in the interval 0 <X< 0.116 approximately
for o £ x £ 1.

Table 2.2 Error norms for fourth-order methods
N Method C  Method D EXT (A, 2,4) EXT (B, 2, 4)
7 0.844E-5 0.997E-5 0.448E-5 0.550E-5
15 0.625E-6 0.651E-6 0.332E-6 0.357E-6
31 0.393E-7 0.394E-7 0.196E-7 0.206E-7

Table 2.3 Error norms for the fifth order extrapolation of Method A

N EXT (A, 2,5)
7 0.947E-7
15 0.369E-8
31 0.522E-7
Table 2.4 Error norms for sixth-order methods

N Method E Method F EXT (B,2,6) EXT(C,4,6) EXT(D,4,6)

7 0.241E-6 0.496E-5 0.251E-7 0.105E-6 0.296E-7
15 0.756E-9 0.135E-10 0.808E-9 0.906E-9 0.566E-9
31 0.225E-7 0.123E-10 0.152E-7 0.439E-8 0.176E-8
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Table 2.5 Error norms for eight-order methods
N Method G  EXT (D, 4, 8) EXT (E, 6, 8) EXT (F, 6, 8)
7 0.463E-5 0.273E-8 0.306E-8 0.787E-7
15 0.720E-9 0.219E-6 0.349E-10 0.123E-10
31 0.975E-11 0.238E-8 0.613E-8 0.113E-10
Table 2.6 Error norms for ninth-order methods

N EXT (F, 6, 9) EXT (G, 8, 9)
7 0.135E-8 0.174E-7
15 0.572E-9 0.126E-10

31 0.171E-7 0.924E-9
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Table 4.1 First three even-mode (n=2,4,6) critical wvalues
for Problem 4.1 with h = 0.02
Baldwin (1987b) Computed results
n R A R A
2
411.720155 1.6791 411.515421 1.6790
4 11382.695328 3.8130 11356.557010 3.8112
6 ©68778.117 5.971 ©8397.491 5.965
Table 4.2 First three odd-mode (n=1,3,5) critical values
for Problem 4.2 with h = 0.02
Baldwin (1987b) Computed results
n R A R A
1
9.78136567 0.72605 9.77836945 0.72603
3 3006.709534 2.7379 3003.053226 2.7374
5 30916.2534 4.8916 30800.6998 4.8882
Table 4.3 First four critical values (n=1,2,3,4)
for Problem 4.3 with h = 0.02
Baldwin (1987a) Computed results
n R A R A
1 550.790984 1.5928 550.539887 1.5925
2 16380.4958 3.7529 16342.5918 3.7513
3 99807.1956 5.9031 99239.9841 5.8980
4 344966.91 8.051 341332.66 8.036
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Table 4.4. First four critical values (n=1,2,3,4)

for Problem 4.4 with h = 0.02

Baldwin (1987a) Computed results
n R A R A
1 1178.594406 2.0337 1178.183739 2.0335
2 2893.6831 4.1829 22846.6806 4.1811
3 123586.84 6.322 122930.96 6.314
4 403656.60 8.466 399600.86 8.449
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