
 TR/4 November 1971 
 
 
 

SARD KERNELS FOR CERTAIN BIVARIATE 
CUBATURES 

 
 

by 
 

R o b e r t  E .  B a r n h i l l  a n d  D a v i d  T .  P i l c h e r  
 
 
 
 
 
 
 
 
Acknowledgments . 
 
The research of  R.  E.  Barnhil l  was supported by the National  
Sc ience  Foundat ion  wi th  Grant  GP 20293  to  The  Univers i ty  o f  
Utah  and by  the  Sc ience  Research  Counci l  wi th  Grant  B/SR/9652  
at  Brune i  Univers i ty .  The  computer  ca lcu lat ions  and drawings  
were done on the Univac 1108 at  the University of  Utah Computer 
Center with support  by The University of  Utah Research Committee.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
SARD KERNELS FOR CERTAIN BIVARIATE CUBATURES 

Rober t  E .  Barnh i l l*  and  David  T .  P i l cher*  

1.  Introduction. 

Sard's kernel theorems [5] concern the result  of applying a bounded 

linear functional to an appropriate Taylor expansion.  The smoothness 

assumed for the functions determines the Taylor expansion, which in turn 

determines a norm on the function space.  This norm of course defines 

which linear functionals are bounded. 

Stroud [5] has recently used Sard kernels to bound cubature errors 

for certain cubature rules.   In this paper we consider some general 

properties of the kernels of cross-product cubatures.  We also consider some 

additional cubature rules due to Franke [3] and tc Barnhill and Nielson [1]. 

Because of the algebraic duality between cross-product cubatures and 

blending-function cubatures [2],  results for either yield results for the 

other.   This duality is stated at the end of Section 3. 

2.  Kernels of Cross-Product Cubatures. 

In his Ph.D, thesis,  Lether [4] proved various theorems about this 

type of cubature.  In particular,  he proved the following theorem:  Let 

B┌
p ,q

┐  [5] be the space of  funct ions  f  such that  the  par t ia l  der ivat ives  
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,qj0,pi0,f j,i <<<<  e x i s t  a n d  a r e  c o n t i n u o u s  o n  t h e  r e c t a n g l e  

 a n d  t h e  p o i n t   ( )   i s  i n  I  .   L e t  R  a n d  d],[cb],[aIII yx ×=×= βα,

S  d e n o t e  t h e  r e m a i n d e r s  o f  q u a d r a t u r e  r u l e s  w i t h  p r e c i s i o n  p  a n d  q   

o n  I x  a n d  I y  w i t h  w e i g h t  f u n c t i o n s  u ( x )  a n d  v ( y ) ,  r e s p e c t i v e l y .  

I f  f  i s  i n   B┌
p , q

┐  , t h e n  t h e  r e m a i n d e r  o f  t h e  c r o s s - p r o d u c t  r u l e  w i t h  

un ivar ia te  remainders  R  and  S   i s  the  Boolean  sum 
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where  dx
1)(p

b
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   dual;isGand)x~(x(x)u q0,
dx

1)(p
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a
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Error bounds for (R X S)(f) can be obtained by the use of Holder's 

and Minkowski 's inequalities.   Perhaps the most practical bound utilizes 

the sup norm on the partial derivatives of   f .   In order to have sharp 

inequal i t i es ,  the  L 1  norm is  then  used  for  the  Sard  kerne ls .   In  the  

cross-product rule case,  the expressions (2) for the kernels in (1) have 

the  spec ia l  p roper ty  tha t  on ly  th ree  d i f fe ren t  ke rne l s ,  ),y~(k),x~(K q0,p,0  

and  ),y~,x~(k qp,  a r e  r e a l l y  i n v o l v e d .   F o r  ma n y  q u a d r a t u r e  r u l e s  t h e  

norms of the first  two have been tabulated by Stroud and Secrest [7].  

In general the norms of these two kernels dominate the norm of the third 

kernel,  

 
 

3.  Computer Results for Cross-Product Cubatures, 
 

Le t  G 2  be  the  two-poin t  Gauss-Legendre  quadra ture  on   [ -1 ,1] .  

We consider  the cubature  G2  X G2 on [-1,1]  X [-1,1]  .   The fol lowing 

are  contour  p lo ts  of  the  two d imens iona l  kerne l  qp,K   for  var ious  p  and  

q  and .   The  shaded  reg ions  ind ica tes  where  the  kerne l  func t ions  

are positive.  Severe discontinuities occur at the boundaries of these 

regions.  These sketches rule out symmetry properties which might be expected 

from the definition of the kernels.  

)(αβ
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B y  a n  i s o m e t r i c  v i e w  w e  m e a n  a  d i s t a n c e - p r e s e r v i n g ,  t h r e e -

dimensional view drawn by the computer f igure 1 is  an isometric view of 

a cabe with edges four inches long. 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Figure 1. 
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Figure 2 is an isometric view of   where,GGfory)(x,K 11

1,1 ×

G1 is the Legendre –Gauss one –point rule with ( ).0,0(, =βα ) 
 
 
 
 

 
 
 

Figure 2.
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Figures  3a and 3b are  two views of  K1 , 1  (x ,y)  for   with  

( )  =  ( 0 , 0 )  •  D i s c o n t i n u i t i e s  l i k e  t h e s e  a l o n g  l i n e s   o r  

 where (x

22 GG ×

βα, ixx =

,yy i= i ,y i )  i s  a  cubature  node,  are  common.  

A  p r o p e r  c h o i c e  o f  t h e  p a r a m e t e r s   c a n  r e s u l t  i n  

cont inuous kernel  funct ions,  or ,  in  some cases ,  cont inuous and posi t ive.  

Figures  4 ,  5 ,  and 6 show the effect  of  changing ( ) .   The surface is  

 for  

βandα,

βα,

y)(x,K2,2 .GG 11×  

 
 
 
 
 
 

 

 
Figure  4. 
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 F igure  7  shows  a  smooth  pos i t ive  su r face  fo r  k 4 , 4  (x  ,  y )  fo r  
 

22 GG ×  w i th  ( =(1 ,0 ) .  )αβ
 
 

 
 

Figure 7. 
 
 

Examples indicate that the L1  norm of the kernel grows excessively 

when the kernel is positive.  
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The isometric views are drawn on a Gerber G22 plotter.  The surface 

is approximated by drawing line segments connecting points on the surface 

occurring above a rectangular grid in the (x, y)-plane. Thus lines which 

should be seen as verticals appear often as "near" vertical.  The program 

PSARD which produces the drawings is an extension of SARFUS [8] available 

at the University of Utah Computer Center.   The flow of the program is 

the following: PSARD generates functional values at grid points on a 

square  g r id  wi th  s t ep  s i ze  1 /32  over  [ -1 ,1 ]  ×  [ -1 ,1 ]  -  Th i s  s t ep  s i ze  

was chosen since it  gives a good picture of the surface without using too 

much computer time.  The functional values are stored as a matrix.  PSARD 

then calls SARFUS which edits the data; i .e. ,  checks for errors and does 

horizontal and vertical scaling and rotation of the view, if  desired.  It  

calls ISOMET and several other subroutines which actually generate the 

driving program for the plotter.  PSARD creates four views of the surface. 

Often all  four views were needed to "see" the surface due to its dis-

continuities.  

The following table gives L1 norms of one- and two-dimensional 

kernels for cross-product Legendre-Gauss rules.  To simplify the calculations 

 are chosen to be zero.  The trapezoidal rule was used to compute 

the L

βandα

1  norms of the two-dimensional kernels.  
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TABLE 1 

TABLE OF L1 NORMS OF KERNEL FUNCTIONS 

 
RULE p ,q (y)K(x)K q0,p,0 =  y)(x,K q,p  

33 GG ×  p=q=1 .714 .487 

 p=q=3 .109(-1) .870(-3) 

 p=q=6 .171(-3) .464(-7) 

44 GG ×  p=q=1 .555 .425 

 p=q=4 .539(-3) .717(-5) 

 p=q=8 .576(-6) .310(-11) 

55 GG ×  p=q=1 .683 .312 

 p=q=5 .159(-2) .531(-7) 

 p=q=10 .298(-7) .807(-16) 
 
 
 
 
 
We  u s e  f l o a t i n g - p o i n t  n o t a t i o n ,  i . e . ,  . y ( N )  me a n s  .  .10y N×
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The bivar ia te  blending-funct ion cubature  rules  [2]  ment ioned in  

the Introduction have the property that their remainders are formal products 

 o f  u n i v a r i a t e  r e m a i n d e r s .  T h a t  i s   SR× =×S)(f)(R  

  i f  t h e  q u a d r a t u r e s  a r e  Qy)dxdy.(x,y)k(x,f qp,

I
qp,∫ ∫ R  a n d  Q S ,  

respectively, then  is the cross-product rule with remainder sr QQ ×

R S and Q⊕ R ⊕  Qs  is the blending-function cubature with remainder SR× ,. 

 
 

4.  Computer Results for Efficient Cubatures and for Best Cubatures. 
 

For  cubatures    that  are  not  cross-product  rules ,  

the more general Sard kernel theorem [5, p, 200] is used. For the integration 

functional  the following kernels are involved: 

)y,(xfw kk

n

1k
k∑
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∫ ∫− −

1

1

1

1
,

 
}x)1(1]α)[θθ(xx)(1α){θθ(x},β)1(β){(1(x)k (i)(i)1)(j1)(jji, −−−−−−−−−= ++  
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1)-(i
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1k
k βωα ∈−−−− ∑

=

 
;for   dual is  )y(k y,

j,i
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)q()P(q,p )y1()x1](1),y(][1),x([)y,x(k −−−−−βθ−αθ=  

 
  )q()P( )y1()x1(),y(]1),x([1 −−−βθ−αθ−
 
  )q()p( )y1()x1](1),y(),x( −−−−βθαθ−
 
  (q)(p) y)1(x)11](β)α)θ(y,θ(x, −−−−−+
 

 ∑
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1)(p
kk ,)yy,ψ(β,y))(yxx,ψ(α,x)(xw  



14 
 
w h e r e   =  )xx,ψ(α, k )xθ(x,α)θ(x, k−  a n d  βω ,x  a n d  yα,ω  a r e  c e r t a i n  

index sets defined in Sard. By use of the triangle inequality, the following 

rough estimate can be obtained. 

    

   
1)!(ji!
!q!p

LK

LK

1
qp,

1
ji,

+
≈  

 

Let = (0,0) and R(f)  ),( βα ∫ ∑∫
− =−

−≡

1

1

n

1k

kkk

1

1

)y,f(xwf .

If appropriate precision is assumed, then the preceding kernels can be used 

to obtain the following theorem: 

 
(2) ∑

∈

∞≤

x,0

1

ωj)(i,

L

ji,
Lji, (x)K(x,0)fR(f)  

   +
1

y0,

L

ji,
Lji,

ωj)(i,

(y)Ky)(0,f ∞∑
∈

 

 
   +

1L

qp,
Lqp, y)(x,Ky)(x,f ∞  

 
We apply (2) to a 14-point precision seven formula due to Franke 

[3] .  An eff ic ient  cubature  is  a  cubature  in  which the weights  and nodes 

are chosen so as to integrate exactly a maximal number of the lowest order 

monomials.  Franke's cubatures are constructed so as to be more efficient 

than known cubatures  with the same number of  nodes.  I f  f i , j  i s  

c o n t i n u o u s  f o r  i  a n d  j  s u c h  t h a t  i + j  =  6 ,  p  =  q  =  3 ,  t h e n  

y)(x,fmax2)(.152R(f) ji,
6ji =+

−≤  ,  w h e r e  b o u n d s  o n  t h e  L 1 ,  no rms  o f  

the seven kernels required are given in the first  part of Table 2. 
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The  weights  and  nodes  of  the  cubature  formula  
 

     ∫ ∫ ∑
− − =

+=

1

1

1

1

14

1n

iii R(f))yf(xwy)dxdyf(x,

 
are given below, 

 
xi yi wi

±.774596669241483 ±r .193252691743630 

.0 ±r .309204306788848 
±.915060523380880 ±s .1690499212109002 
±.396191039748320 ±s .483095233643544 

r = .86113 63115 94053 
s = .33998 10435 84856 

 
 

Figure 8 depicts 3,3K multiplied by 103 . 

Figure3 
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A second l4-point precision seven formula with nodes outside the 

square by Franke is given below. Bounds for the kernels are given in the 

second part of Table 2. 

xi yi wi
±1. 05784012371275 ±r .0437841520872291 

±.774596669241483 ±s .362302863812526 

.0 ±s .579684582100041 

±.469253522127911 ±r .304070693050225 

r = .861136311594053 

s = .339981043584856 

 

 
We apply (2) to a 7-point minimum norm cubature due to Barnhill  

and Nielson [1, Table 1, ∞=ρ ] .  Minimum norm cubatures are cubatures that 

minimize the norm of the remainder functional in an appropriate Hilbert 

space.  These cubatures  are  not  eff ic ient  in  that  they need not  integrate  

low order monomials exactly. Thus these rules are a kind of opposite to 

Franke’s rules.  The minimum norm cubatures do integrate exactly the 

representers of the point functionals corresponding to the cubature's nodes. 

If f ∈  B4 , 4  ,  then 

 
  ,y)(x,fmax3).464(R(f) ji,

8ji =+

−≤  

 
where bounds on the L1 norms of the seven kernels required are given in 

the first  part of Table 3. 
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Figure 9 depicts K4,4 multiplied by 103 . 
 
 

 

 
Figure 9
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TABLE 2 

 
14-POINT RULE WITH  PRECISION 7, by Franke. 

 

p,q Bound for 1 dimensional kernels y(x,K qp,  

p=q=1 .437(-1) .510 
P=q=3 .189(-3) .382(-3) 

      
 
 

14-FOINT RULE WITH PRECISION 7 (WITH NODES OUTSIDE THE SQUARE), by Franke 
 

p,q Bound for 1 dimensional kernels y(x,K qp,  

p=q=1 .437(-1) .499 
p=q=3 .305(-3) .630(-3) 

 
 
 
 
 

TABLE 3 
 

7-POINT RULE, by Barnhill and Nielson [1, Table 1, ]∞=ρ .
 

 

p ,q Bound for 1 dimensional kernels y(x,K qp,  Bound for ci,j

p=q=1 .263(-1) .505 .340(-5) 
p=q=3 .123(-2) .244(-2) .340(-5) 

 
7-POINT RULE, by Barnhlll and Nielson [1, Table 2, ∞=ρ ]. 

 
p,q Bound for 1 dimensional kernels y(x,K qp,  Bound for ci,j

P=q=1 .749(-1) .560 .247(-2) 
p=q=3 .303(-3) .156(-2) .247(-2) 
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