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Abstract

We propose and mathematically examine a theory of calcium profile formation in unwounded mammalian
epidermis based on: changes in keratinocyte proliferation, fluid and calcium exchange with the extracellu-
lar fluid during these cells’ passage through the epidermal sublayers, and the barrier functions of both the
stratum corneum and tight junctions localised in the stratum granulosum. Using this theory, we develop
a mathematical model that predicts epidermal sublayer transit times, partitioning of the epidermal cal-
cium gradient between intracellular and extracellular domains, and the permeability of the tight junction
barrier to calcium ions. Comparison of our model’s predictions of epidermal transit times with experi-
mental data indicates that keratinocytes lose at least 87% of their volume during their disintegration to
become corneocytes. Intracellular calcium is suggested as the main contributor to the epidermal calcium
gradient, with its distribution actively regulated by a phenotypic switch in calcium exchange between
keratinocytes and extracellular fluid present at the boundary between the stratum spinosum and the
stratum granulosum. Formation of the extracellular calcium distribution, which rises in concentration
through the stratum granulosum towards the skin surface, is attributed to a tight junction barrier in
this sublayer possessing permeability to calcium ions that is less than 15 nm s−1 in human epidermis and
less than 37 nm s−1 in murine epidermis. Future experimental work may refine the presented theory and
reduce the mathematical uncertainty present in the model predictions.

Introduction

The calcium distribution within the mammalian epidermis is both an indicator of the skin barrier function
[1] and a regulator of epidermal structure [2]. Here, using a mathematical model, we propose and examine
a theory of the key mechanisms that control the calcium profile in unwounded epidermis.

The epidermis and its calcium profile

The epidermis consists predominantly of keratinocytes [3]. These cells are continuously being produced at
the bottom of the epidermis, driven to passively migrate towards the skin surface, and are sloughed away
during everyday activity [4]. During this life cycle, keratinocytes express distinct phenotypic changes
which characterise the boundaries of four sublayers of the epidermis:

1. The stratum basale (SB): Keratinocytes proliferate. The exact pattern of proliferation is still a
matter of debate [5], and is suggested to involve either one [6, 7] or two cell types [8]. The sin-
gle progenitor theory posits that a single population of slowly-cycling cells maintains epidermal
homeostasis, whilst the more traditional two progenitor theory proposes that the SB consists of
two keratinocyte subpopulations: (1) stem cells, which proliferate slowly and indefinitely, each
time producing one stem cell and one transit amplifying (TA) cell, and (2) TA cells, which divide
symmetrically 3-5 times before leaving the SB [9,10].
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2. The stratum spinosum (SS): Keratinocytes increase in volume [11] and passively migrate towards
the skin surface, displaced from the SB by proliferation there.

3. The stratum granulosum (SG): Keratinocytes become flattened and disintegrate, reducing their
volume [12] and expelling lamellar bodies [13].

4. The stratum corneum (SC): Denucleated and highly flattened keratinocytes, called corneocytes,
combine with lipids from the lamellar bodies exocytosed in the SG, in a “bricks and mortar”
architecture [14] that forms the primary skin barrier [4]. Transepidermal water loss (TEWL) exper-
iments, which involve progressive tape-stripping of the SC to identify the thickness that must be
removed to cause fluid flow to significantly increase across this sublayer, suggest that this barrier is
only strongly impermeable in the top 4-8µm of the SC [15–17]. Hence we subdivide this epidermal
sublayer into the lower SC (progressive barrier) and upper SC (impermeable barrier). At the top
of the upper SC, intercorneocyte linking structures degrade and corneocytes are shed from the skin
surface [18].

Epidermal calcium is present in three different localisations: the extracellular fluid (ECF), intracel-
lular cytosol and intracellular organelles [19]. Calcium concentrations in the ECF and organelles are
significantly higher than in the cytosol [20, 21]. These concentration differences are maintained by cal-
cium pumps present on the membranes of keratinocytes and their intracellular structures, which actively
remove calcium from the cytosol [22]. If we consider calcium in the ECF as “extracellular”, and calcium
in cytosol and organelles together as “intracellular”, then it is the action of the calcium pumps on the
keratinocyte membrane that is crucial for controlling intracellular and extracellular calcium levels [23].

The total epidermal calcium profile, which is a summation of calcium from intracellular and extracellu-
lar localisations, has been quantitatively measured using proton-induced X-ray emission (PIXE) [24–28],
and in unwounded skin these measurements typically adhere to the profile shown in Figure 1a. The
total calcium concentration is low in the SB, rises gradually to a peak in the SG (the so-called “epi-
dermal calcium gradient”), and drops to near-negligible levels in the SC. Because the PIXE technique
has a resolution of ∼10µm [29], it is unclear whether the calcium drop towards the skin surface occurs
at the SG-SC interface or further into the SC: the latter interpretation is quite feasible since the skin’s
primary barrier might only be fully formed in the upper SC, based on the previously discussed TEWL
experiments. PIXE cannot distinguish between the intracellular and extracellular contributions to the
epidermal calcium profile.

On the other hand, the intracellular and extracellular epidermal calcium profiles have been measured
separately using ion capture cytochemistry [30,31], but only semi-quantitatively [32–34]. As indicated in
Figure 1b, both intracellular and extracellular profiles qualitatively agree with the total profiles obtained
from PIXE, but it is difficult to make additional interpretations from this semi-quantitative data.

For the past decade, the presence of the epidermal calcium profile has been attributed solely to the
presence of the SC barrier [35], which is thought to act as a sieve, selectively allowing water but not
calcium to leave the viable epidermis [36]. When the epidermis is wounded, its calcium profile disappears
rapidly then reappears gradually with restoration of the skin’s barrier function [1,37,38]. This observation
fits easily within the conventional sieve view of epidermal calcium profile formation, as the removal of
the SC simply removes the impetus for the calcium gradient to form.

However, recent measurements of the epidermal calcium distribution using fluorescent lifetime imag-
ing [36, 39] have brought this view into question. These measurements demonstrated that the bulk of
free calcium is present in intracellular organelles [36], and that epidermal barrier disruption triggers a
mobilization of high amounts of calcium from these stores [39]. This prompted the questioning of this
conventional view that the epidermal calcium profile is regulated only passively by the SC. In previous
work, using a mathematical model, we found that this profile is largely intracellular and regulated by
sublayer-specific changes in the action of keratinocyte membrane pumps [23]. In the current paper, we ex-
tend this analysis further, to propose that there are three key mechanisms that control epidermal calcium
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profile formation in unwounded skin: the passive impermeable barrier of the SC, tight junction-limited
calcium diffusion in the SG, and a phenotypic switch in calcium exchange between keratinocytes and
extracellular fluid at the SS-SG boundary. We also investigate the contribution of the stem and TA cell
subpopulations of the SB, volume changes of keratinocytes in the SS, and calcium located in the lower
SC, to the formation of the calcium profile of unwounded epidermis.

Proposed key mechanisms regulating the calcium profile

Our proposed theory is presented schematically in Figure 2. We treat the calcium present in the cytosol
and organelles within keratinocytes together as intracellular calcium, with the majority of this calcium
likely to be confined to the keratinocyte organelles [21]. Most epidermal calcium is present in this
intracellular calcium [36], which possesses a distinct spatial profile that forms as follows. Membrane
pumps on keratinocytes act to accumulate calcium intracellularly from the ECF in the SB and SS, and
in the SG this behaviour reverses to calcium expulsion into the ECF [23], emptying the intracellular
stores [39] so that corneocytes in the upper SC contain negligible levels of intracellular calcium. These
mechanisms yield an intracellular calcium profile that is low in the SB, rises gradually towards a peak in
the SG, and drops rapidly in the SC, in agreement with the experimental observations for both the total
and intracellular profiles (see Figures 1a and 1b).

The extracellular calcium profile, which possesses far less calcium due to the small volume of the
epidermis occupied by the ECF [36, 40], forms as follows. The ECF is essentially water [41], and hence
extracellular calcium in the SB and SS diffuses rapidly to near-constant levels throughout these sublayers
[23]. In the SG, cell-cell adhesions known as tight junctions (TJs) are located apically between the
lateral membranes of neighbouring keratinocytes [42, 43], and form a permeability barrier to calcium
ions [44,45] that reduces the rate of extracellular calcium diffusion there. Because calcium is continuously
being expelled by keratinocytes near the skin surface, this TJ-limited calcium diffusion in the SG causes
the extracellular calcium concentration to be slightly elevated there, negligibly affecting the calcium
levels in the underlying SB and SS [46]. Lipids cannot be responsible for this elevated extracellular
calcium concentration in the SG because they are localised only at the SG-SC boundary prior to their
contribution as the “mortar” of the SC barrier. Extracellular calcium cannot enter the upper SC due to
its barrier function, in agreement with the TEWL experiments [15–17]. These mechanisms together yield
an extracellular calcium profile which is nearly constant in the SB and SS, rises in the SG, and drops
rapidly in the SC, in agreement with experimental observations of the extracellular profile (see Figure
1b).

Materials and Methods

Main equations

We mathematically model the epidermis as a saturated porous medium [47]. This modelling strategy has
been used previously to consider avascular tumour growth [48-50] and cell behaviour within an artificial
scafffold [51], justified for the viable sublayers of the epidermis in our previous paper [23], and proposed
for modelling the SC of the epidermis by Kitson and Thewalt [52].

As a porous medium, we assume that the keratinocytes behave uniformly and are analogous to soil
particles, and the surrounding ECF is analogous to the water that saturates the soil system. We as-
sume that keratinocytes and ECF are comprised of an identical, incompressible fluid. Calcium is always
dissolved in the cells or ECF. Calcium contained in the cytosol and intracellular organelles of cells are
considered together simply as intracellular calcium. This simplification means that we do not specifi-
cally consider the intracellular dynamics of calcium exchange between the cytosol and organelles. We
cannot discount the possibility that the intracellular calcium dynamics may play an important role in
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the partitioning of calcium between intracellular and extracellular domains, although investigating this
is beyond the scope of the present work. As we are only interested here in identifying the extracellular
and intracellular contributions to the epidermal calcium profile, consideration of cytosolic and organelle
calcium separately is not necessary to investigate our proposed theory. Experimentally, intracellular cal-
cium waves are known to propagate between adjacent keratinocytes [53], but these waves negligibly affect
the epidermal calcium profile. Hence, in our model calcium cannot travel directly between keratinocytes,
but rather can only be exchanged between cells and the surrounding ECF.

We assume that both the structure and calcium profile of the epidermis have reached a distribution
that is stable and unchanging with time. Because of this we consider only one spatial direction z per-
pendicular to the skin surface. For this simplification, we ensured that any model parameters recorded
for the three-dimensional case are also appropriate for the one-dimensional case. The main equations of
our model, derived from mass conservation equations for the fluid and calcium present both in cells and
ECF, are identical to those from our previous paper [23], but with one important exception. We do not
specify the ECF velocity, because it will be unpredictably modified by TJs [54] and aquaporins [55, 56],
neither of which were considered in [23]. With all these considerations in mind, the main equations of
our model are

d

dz
(φui) = f, (1a)

d

dz
(ρciui) = g, (1b)

d

dz
(ρceuce) = −g, (1c)

where φ is the cell volume fraction, ρci and ρce are the superficial intracellular and extracellular calcium
concentrations respectively, ui and uce are the physical velocities of the cells and extracellular calcium
respectively, f is the rate of change of cell volume fraction due to fluid exchange between ECF and cells,
and g is the rate of change of superficial intracellular calcium concentration due to calcium exchange
between ECF and cells. Functions f and g are positive when fluid and calcium respectively are being
transferred from ECF to cells, and negative when fluid and calcium respectively are being transferred
from cells to ECF. We next use equations (1a)-(1c), together with defined boundary conditions, to derive
equations for calculating: keratinocyte velocity profiles ui(z) and transit times through the epidermis,
the intracellular calcium profile ρci(z) and pattern of calcium exchange between keratinocytes and the
ECF g(z), and the dependence of the extracellular calcium profile ρce(z) on the permeability of the TJ
barrier to calcium ions.

Model domain and boundary conditions

In this section, we define the model domain and provide two boundary conditions each for ui(z), ρci(z)
and ρce(z) as part of our proposed theory, although not all of these conditions will be necessary for
our subsequent analysis. The epidermal sublayers shown in Figure 2 are defined as follows: the SB in
0 ≤ z ≤ z1, the SS in z1 < z ≤ z2, the SG in z2 < z ≤ z3, the lower SC in z3 < z ≤ z4 and the upper SC
in z4 < z ≤ z5. We assume that the two progenitor theory holds for human and murine epidermis [8]. In
the two progenitor theory, the SB consists of stem cell and TA cell subpopulations which are suggested
to form two spatially separate compartments [57, 58]. Hence we subdivide the SB into compartments
consisting of stem cells, 0 ≤ z ≤ θz1, and TA cells, θz1 < z ≤ z1, where θ is the volume fraction of the
SB occupied by stem cells.

In our model, equation (1a) defines the dynamics of epidermal cells, whilst equations (1b) and (1c)
define the dynamics of epidermal calcium. Because keratinocytes occupy all sublayers of the epidermis,
the model domain for equation (1a) is 0 ≤ z ≤ z5. Keratinocytes cannot pass through the BM (z = 0)
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but are continuously expelled at the skin surface (z = z5), sloughed away during everyday activity [4].
Hence the boundary conditions for equation (1a) are

ui(0) = 0, (2a)

ui(z5) > 0. (2b)

Our description of epidermal calcium profile formation treats the lower SC as a progressive barrier
and the upper SC as an impermeable barrier to fluid and ion flow, based on TEWL experiments [15–17]
and the observation of non-negligible calcium levels in the lower SC [33]. In our model we simplify this to
treat the boundary between the lower and upper SC, denoted z4, as the impermeable barrier to transport
of fluid and ions. Hence the model domain for equations (1b) and (1c) is 0 ≤ z ≤ z4.

Intracellular calcium cannot travel across the BM because it is contained within keratinocytes, and
is completely absent in the corneocytes of the upper SC [34, 37]. Hence the boundary conditions for
equation (1b) are

ρci(0)ui(0) = 0, (2c)

ρci(z4) = 0. (2d)

The calcium present in the epidermis originates from movement of fluids and calcium across the
BM [59], which at steady state must therefore act as a source of extracellular calcium with constant and
positive concentration. Extracellular calcium is prevented from entering the upper SC by the impermeable
barrier acting at z4. Hence the boundary conditions for equation (1c) are

ρce(0) = 0, (2e)

ρce(z4)uce(z4) = 0. (2f)

For the analysis performed in this paper, we will only explicitly require two of the six boundary conditions
listed here, equations (2a) and (2f).

Calculating keratinocyte velocity profiles and transit times

Using equation (1a), the keratinocyte velocity profile ui(z) is estimated from profiles that we now define
for the cell volume fraction, φ(z), and volume exchange between cells and ECF, f(z). We specify f(z) as

f(z) =



s0φ, 0 ≤ z ≤ θz1,
s1φ, θz1 < z ≤ z1,
s2φ, z1 < z ≤ z2,
−s3φ, z2 < z ≤ z3,
0, z3 < z ≤ z5.

(3)

This form expresses the different proliferation rates s0 and s1 of stem and TA cells in the SB [60], the
rate of volume increase s2 for keratinocytes migrating through the SS [11], the rate of volume decrease
s3 for keratinocytes migrating through the SG [12], and the relative structural inertness of corneocytes
in the SC [61].

The cell volume fraction φ is assumed to be constant and equal to φv throughout both the viable
sublayers (SB, SS and SG) and the lower SC [62]. The “bricks and mortar” architecture of the upper
SC [14] constitutes a slow-moving relatively impenetrable barrier to fluid transport [63], equivalent to a
sublayer consisting solely of keratinocyte-derived contents (φ = 1). Hence the cell volume fraction profile
φ(z) is specified as

φ(z) =

{
φv, 0 ≤ z ≤ z4,
1, z4 < z ≤ z5.

(4)
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The superficial keratinocyte velocity φui is assumed to be continuous at each of the sublayer bound-
aries, to ensure that cell mass flow is continuous throughout the epidermis. This consideration, together
with equations (1a), (2a), (3) and (4), yield the keratinocyte velocity profile ui(z) as

ui(z) =



s0z, 0 ≤ z ≤ θz1,
ui(θz1) + s1(z − θz1), θz1 ≤ z ≤ z1,
ui(z1) + s2(z − z1), z1 ≤ z ≤ z2,
ui(z2)− s3(z − z2), z2 ≤ z ≤ z3,
ui(z3), z3 ≤ z ≤ z4,
φvui(z4), z4 < z ≤ z5.

(5)

Rates s2 and s3 are obtained from empirical observations of the ratio of keratinocyte volumes between
the upper and lower boundaries of the SS, V1 > 1 (net volume increase from lower to upper boundary),
and the SG, V2 < 1 (net volume decrease from lower to upper boundary), respectively, by use of the
equations

s2 =
ui(z1)

z2 − z1
(V1 − 1), (6a)

s3 =
ui(z2)

z3 − z2
(1− V2). (6b)

Equations (6a) and (6b) can be obtained using mathematical procedures similar to the derivation of
s2(R) provided in Appendix B of [23].

Using the cell velocity profiles ui(z) defined by equations (5), (6a) and (6b), transit times through
the various epidermal sublayers are calculated via

τ(za, zb) =

∫ zb

za

dz

ui(z)
, (7)

where τ(za, zb) is the average time taken for a keratinocyte to move from height above the BM za to
height zb. We assume that the transit through the SB can be approximated by the transit through the
TA cell compartment, because the volume of SB occupied by stem cells is negligible compared to TA
cells [64], and stem cells possess theoretically infinite transit time because they may never leave the SB.
Hence, from equations (5) and (7) the epidermal transit times are given by

τSB ≈ τ(z0, z1) =
1

s1
ln

(
ui(z1)

ui(z0)

)
, (8a)

τSS = τ(z1, z2) =
1

s2
ln(V1), (8b)

τSG = τ(z2, z3) = − 1

s3
ln(V2), (8c)

τSC = τ(z3, z5) =
1

ui(z3)

(
z4 − z3 +

z5 − z4
φv

)
. (8d)

Calculating profiles of intracellular calcium and calcium exchange

In this section we show how the intracellular calcium profile ρci(z) and calcium exchange between ker-
atinocytes and ECF g(z), can be estimated from the total epidermal calcium profile ρ(z).

The total calcium profile is a summation of intracellular and extracellular calcium profiles,

ρ(z) = ρci(z) + ρce(z), (9)
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but extracellular calcium provides only a small contribution (2-10 mg/kg) to the total calcium profile in
the epidermis (100-1100 mg/kg) [23, 36]. Hence, to estimate the intracellular calcium profile ρci(z) from
the total calcium profile ρ(z) using equation (9), at the scale of ρ(z) we approximate the extracellular
calcium distribution by a constant equal to its mean value throughout the epidermis,

ρce(z) ≈ rρce(0). (10)

Here, r is a nondimensional factor equal to the ratio of the mean extracellular calcium concentration of
all sublayers enclosed by [0, z4] to its concentration at the BM, and whose uncertainty bounds express
the variation of the extracellular calcium concentration throughout these sublayers. The BM levels of
total and extracellular calcium are related by

ρ(0) =
ρce(0)

1− φv
, (11)

an equation that was derived in Appendix C of [23] under two assumptions: (1) the motion of calcium
across the BM only involves transfer between the free dermal and extracellular epidermal calcium, and
(2) the BM provides no barrier for this transfer.

Combining equations (9)-(11), the intracellular calcium profile can be estimated from the total calcium
profile via

ρci(z) ≈ ρ(z)− r(1− φv)ρ(0). (12)

Equations (5) and (12) can be used to estimate the keratinocyte velocity profile ui(z) and intracellular
calcium profile ρci(z). The pattern of calcium exchange g(z) between cells and ECF can then be calculated
from these two profiles using equation (1b) [23],

g(z) =
d

dz
(ρci(z)ui(z)).

In the following, we derive equations that link the extracellular calcium distribution to the permeability
of the TJ barrier.

The effect of tight junctions on extracellular calcium diffusion

TJs regulate the extracellular flow of calcium ions in the SG [44,45], and we model this as a reduction in
the rate of extracellular calcium diffusion there. This effect is introduced through the term representing
extracellular calcium flux, ρceuce, that appears in equation (1c). The extracellular calcium flux ρceuce
may consist of contributions from both diffusion and advection, the latter of which we expect to be
negligible in epidermal sublayers where TJs are not present [23]. However, in epidermal sublayers where
TJs are present, for advection to be negligible compared to diffusion we must ensure explicitly that the
Péclet number, Pe, satisfies

Pe =
ẑ|ue|
D
� 1, (13)

where ẑ ≤ z4 is the characteristic length scale over which the effects of diffusion and advection are being
compared, |ue| is the ECF velocity that characterises the advective contribution, and D is the Fickian
diffusion coefficient that characterises the diffusive contribution. In this paper we limit our analysis to
cases for which inequality (13) is satisfied. We specify the extracellular calcium diffusion coefficient as

D(z) =


DCa, 0 ≤ z ≤ z2,
εCaDCa, z2 < z ≤ z3,
DCa, z3 < z ≤ z4,

(14)



8

where DCa is the physical diffusion coefficient of calcium in the ECF in the absence of TJs, and εCa

represents the factor reduction in diffusion coefficient DCa induced by the presence of TJs.
In equation (14) we have assumed that TJs are evenly spread throughout the SG, which represents

a simplification to the dynamic model we proposed for skin equivalent construct growth [46, 65], and
that they are mostly absent in other sublayers. Whilst structures similar to the disassembly of TJs have
been observed at the SG-SC interface [66] and TJ-like structures have been observed in the SC [67], for
simplicity we assume that these structures provide no restriction on extracellular calcium ion flow there.

The permeability of a barrier can be written as a ratio of the diffusion coefficient of the substance
within the barrier to the barrier’s width [68]. Hence the permeability of the TJ barrier to calcium, PCa,
which spans the SG z2 to z3, and has local diffusion coefficient there of εCaDCa according to equation
(14), is

PCa =
εCaDCa

z3 − z2
. (15)

Combining equations (13)-(15), we find that the inequality

PCa � |ue|, (16)

is identical to the requirement given by inequality (13). Inequality (16) demonstrates that the perme-
ability of the TJ barrier must be significantly larger than the local ECF velocity in order to disregard
the contribution of advection to extracellular calcium dynamics. From [23] we expect that max{|ue|} is
O(1 nm s−1) in the absence of TJs and aquaporins and hence we require

PCa � O(1 nm s−1), (17)

which effectively places a lower limit on the possible values of PCa that we investigate here. In summary,
we include the effect of tight junctions on extracellular calcium dynamics in our model by assuming that
the extracellular calcium flux ρceuce in equation (1c) is dominated by Fickian diffusion with coefficient
D defined by equation (14), and this approach is valid if the permeability of the TJ barrier in the SG
satisfies inequality (17).

Calculating the extracellular calcium profile

To derive an expression for the extracellular calcium profile ρce(z), we first equate (1b) and (1c) through
the common term g, and assume that Fickian diffusion is the dominant contribution to the extracellular
calcium flux, ρceuce = −D dρce/dz, to obtain

d

dz
(ρciui) =

d

dz

(
D

dρce
dz

)
. (18)

Both sides of equation (18) are then integrated with limits z and z4. We thereafter substitute boundary
condition (2f), which yields

dρce
dz

(z) =
1

D(z)
(ρci(z)ui(z)− ρci(z4)ui(z4)) . (19)

In epidermal sublayers where TJs are not present (i.e. everywhere except the SG), extracellular calcium
kinetics are sufficiently dominated by diffusion that ρce is constant [23]. Hence, replacing z by z′ in
equation (19), integrating this equation with limits 0 and z, and substituting equations (14) and (15),
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yields

ρce(z) =



ρce(0), 0 ≤ z ≤ z2,

ρce(0) +

∫ z

z2

ρci(z
′)ui(z

′)− ρci(z4)ui(z4)

(z3 − z2)PCa
dz′, z2 ≤ z ≤ z3,

ρce(z3), z3 < z ≤ z4.

(20)

In this equation, ρci(z) can be calculated from ρ(z) using equation (12). Hence, equation (20) expresses
the extracellular calcium profile ρce(z) in terms of ρ(z), ui(z) and PCa, if inequality (17) is satisfied.

Relationship between tight junctions and the extracellular calcium profile

Finally, to clearly demonstrate the effect of the TJ barrier on the extracellular calcium profile, we define
Rce as the rise in extracellular calcium through the SG,

Rce =
ρce(z3)

ρce(z2)
. (21)

From equations (20) and (21), the relationship between the rise in extracellular calcium concentration
through the TJ barrier in the SG, Rce, and the permeability of this barrier, PCa, can be written in the
elegant form

Rce = 1 +
P0

PCa
, (22)

where P0 is a constant that depends on the epidermal keratinocyte velocity and calcium profiles,

P0 =
1

(z3 − z2)ρce(0)

∫ z3

z2

(ρci(z)ui(z)− ρci(z4)ui(z4))dz. (23)

Using equations (22) and (23), the effects of a range of values for the permeability of the TJ barrier to
calcium PCa on the defining feature of the extracellular calcium profile (its rise through the SG, Rce) can
be easily investigated, once the value of P0 is known.

Results

The key predictions of our model are presented here. All mathematical equations were stated and derived
in Materials and Methods. All parameters were obtained from experimental literature (see Text S1) and
are stated in Table 1. In our calculations we also used the total calcium profiles ρ(z) for human and
murine epidermis reported in [28] and [26] respectively. All uncertainty bounds were calculated using error
propagation formulae from [69, 70] under the assumption that the error distributions of all parameters
were independent (i.e. zero covariance).

Epidermal transit times and keratinocyte velocities

Using equations (5)-(8) of our model, transit times through individual sublayers of human and murine
epidermis were calculated. Our model’s predictions of transit times mostly compared favourably with
the literature values, as shown in Figure 3, although it is difficult to quantitatively compare these values
due to the large uncertainty present in the transit times both from the literature and predicted by our
model. The uncertainty in our model predictions of transit time is due to the uncertainty present in
model parameters (Table 1), all of which were obtained from the experimental literature. Hence, a
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better quantitative comparison of transit times from the literature and model requires experimental data
possessing reduced uncertainty. We could not find literature values of transit time through murine SB so
did not include comparisons for these.

The model prediction of transit time through human SC was much smaller than two of the three
corresponding literature estimates. We attributed this discrepancy to our parameter estimate for human
V2 = 0.54±0.10, which was much larger than the estimate for murine V2 = 0.068±0.034, the latter of which
led to reasonable predictions of murine transit times. Hence, we modified our estimate of human V2 to
0.100±0.026, a value which was calculated from division of literature values for murine V1×V2 by human
V1 (see Text S1). The resulting predicted transit time for human SC agreed far better with the literature
values for this transit time (Figure 3a). Because this modification of V2 created agreement between
estimates of keratinocyte volume size changes and transit times through our model, our analysis suggests
that keratinocytes lose at least 87% of their volume during their disintegration in the SG, in both human
and murine epidermis.

Keratinocyte velocity profiles ui(z) calculated using equations (5), (6a) and (6b) are shown in Figure 4.
For the calculation of the human ui(z) profile, the modified V2 was used. Regardless of the value of human
V2, in our model results there was little difference between the keratinocyte velocity distributions in the
lower sublayers of human and murine epidermis. This conclusion extends to the upper sublayers if the
keratinocyte volume decrease through human SG agrees with our modified value for V2 (i.e. 90.0±2.6%
volume reduction).

The extracellular calcium rise mediated by tight junctions

Figures 5a and 5b show the relationships between the rise in extracellular calcium through the SG and the
permeability of the TJ barrier there, for human and murine epidermis respectively, that were predicted
by our model using equations (22) and (23). Results are only shown for PCa ≥ 5 nm s−1 in order to satisfy
applicability condition (17). As indicated by equation (22), each of these plots is characterised by one
parameter P0 which depends on the epidermal keratinocyte velocity and calcium profiles; to construct
Figures 5a and 5b we obtained P0 = 3.8±3.2 nm s−1 and P0 = 10±8 nm s−1 for human and murine
epidermis respectively. From these values, we calculated the permeability of the TJ barrier by assuming
that the extracellular calcium concentration rises by at least 50% across the SG (i.e. Rce = 1.5), based
on experimental data for extracellular calcium distributions (see Table S1). This calculation yielded TJ
barrier permeabilities to calcium ions of PCa< 15 nm s−1 for human epidermis and PCa< 37 nm s−1 for
murine epidermis.

Extracellular and intracellular calcium profiles

Extracellular and intracellular epidermal calcium profiles, predicted from total calcium profiles ρ(z) and
keratinocyte velocity profiles ui(z) using the equations of our model, are shown in Figures 6a and 6b for
human and murine epidermis respectively. The intracellular calcium profiles ρci(z) were nearly identical
to the experimental total calcium profiles [26, 28] from which they were calculated. The extracellular
calcium profiles ρce(z), calculated using equation (20), possessed constant concentration in the SB and
SS due to rapid diffusion of this calcium throughout the ECF, and a rise through the SG due to the
presence of TJs (see Figure 2). In Figures 6a and 6b we chose the permeability of the TJ barrier to
calcium as PCa = 8 nm s−1 and PCa = 20 nm s−1 for human and murine epidermis respectively, as these
values yielded a calcium rise through the SG of Rce ≈ 1.5 in qualitative agreement with the experimental
data (Table S1). These values of TJ permeability barrier (8 nm s−1 for human epidermis and 20 nm s−1

for murine epidermis) also clearly satisfy the previously stated inequalities of PCa< 15 nm s−1 for human
epidermis and PCa< 37 nm s−1 for murine epidermis.

Patterns of calcium exchange g(z) between keratinocytes and the ECF, predicted using equation (1b),
are shown in Figures 7a and 7b for human and murine epidermis respectively. In both plots, a distinct
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switch in calcium exchange from cellular influx (positive) to outflux (negative) was predicted at the SS-SG
boundary, in agreement with our theory (Figure 2).

Discussion

In this paper we investigated the hypothesis that the intracellular and extracellular epidermal calcium
profiles in unwounded skin are attributed to three key mechanisms: (1) the primary SC barrier which
selectively allows water but not calcium to leave the epidermis [35], (2) progressive intracellular calcium
accumulation through the lower epidermal sublayers [36] followed by a phenotypic switch at the SS-SG
boundary to expulsion of intracellular calcium to the ECF above this boundary [23], and (3) reduced
diffusion of extracellular calcium ions in the SG due to the secondary TJ barrier [43] which together
with the aforementioned expulsion of calcium from intracellular stores causes the extracellular calcium
concentration to become elevated towards the skin surface [44, 46]. This hypothesis was formulated in a
mathematical model (described in Materials and Methods) that predicts intracellular and extracellular
calcium profiles in human and murine epidermis (Figure 6) which agree well with semi-quantitative
experimental data available for these profiles [32–34].

We first parameterised the keratinocyte velocity profiles in human and murine epidermis, which is
a requirement for the proper investigation of intracellular calcium dynamics. The calculation of these
velocity profiles improves over our previous model [23] by including consideration of the slower cycling
stem cell subpopulation of the SB [60] and the keratinocyte volume changes through the SS [11], and
validating the velocity profiles against several sources of experimental data for keratinocyte transit times
in the SB (human only) and the three suprabasal sublayers (SS, SG and SC).

The presence of stem cells in interfollicular epidermis is currently a hotly debated topic [6, 8]. Stem
cells have little effect on the keratinocyte velocity profiles and subsequent calculations due to their small
potential occupancy of the SB (1-10%, [64]), but their inclusion in the present model is advantageous as
it allows validation of these profiles against transit times in the SB. Although our model assumed that
the traditional two progenitor theory holds, it can be reduced to the single progenitor theory by setting
θ = 0, in which case s1 is the proliferation rate of these progenitors.

The validation of keratinocyte velocity profiles against epidermal transit time data (Figure 3) was
made somewhat difficult by the uncertainty in both our predicted velocity profiles and the data. Despite
this, the validation clearly supported the modification of one of our parameters, the volume change in
keratinocytes through the SG for human epidermis (V2), from its value used in our previous model of
unwounded epidermis (R = 1 − V2, [23]). Our results suggested that keratinocytes in human epidermis
may reduce their volume by approximately 10-fold during terminal differentiation and that this reduction
may be even larger in murine epidermis.

We next investigated the effect of the permeability of the TJ barrier to calcium ions, PCa, on the extra-
cellular calcium distribution. Our model predictions of PCa carry large uncertainty due to the cumulative
uncertainty in all parameters used to calculate them, and are only applicable if PCa is significantly greater
than O(1 nm s−1). Despite these limitations, we found that a value of PCa that is less than 15 nm s−1

for human epidermis and less than 37 nm s−1 for murine epidermis is sufficient to cause the extracellular
calcium distribution to rise by at least 50% across the SG, which is a typical pattern seen in the exper-
imental semi-quantitative calcium profiles measured using ion capture cytochemistry [32–34]. Kirschner
et al. [45] recently reported that the permeability of the TJ barrier to calcium ions in cultured primary
human keratinocytes was 40-80 nm s−1 within 1-4 days after a switch to high calcium medium (this switch
is the key step in triggering keratinocytes to stratify in vitro [2]). These larger experimentally-found val-
ues of PCa, which indicate a reduced TJ barrier to calcium ions, may be attributable to the impaired
barrier formation demonstrated by cultured keratinocytes compared to native skin [33].

To further elucidate this point, the transepithelial resistance (TER) of the TJ barrier in the submerged
human keratinocytes reported by Kirschner et al. [45] reached a steady-state value of ∼150 Ω cm2 after
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4 days. In contrast, Sun et al. [71] and Petrova et al. [72] reported that the TER of the TJ barrier
in human epidermal equivalents grown at an air-liquid interface (which yields a better representation of
native epidermis than submerged keratinocytes [73]) rose to over 1000 Ω cm2 prior to formation of the
lipid barrier. TER is the most common experimental measure of TJ barrier permeability [74], and is
inversely related to it [75]. These considerations together suggest that the permeability of the TJ barrier
should be less in native epidermis than in submerged keratinocytes grown in vitro. This agrees with our
model prediction of a TJ barrier permeability to calcium ions in human epidermis that is less than the
TJ barrier permeability to calcium ions experimentally observed in cultured human keratinocytes [45].

Finally, we calculated profiles of intracellular calcium, extracellular calcium and the exchange between
these two (Figures 6 and 7), from experimentally-reported total calcium profiles for human epidermis [28]
and murine epidermis [26]. For the calculation of extracellular calcium profiles, we set the value of
the calcium permeability of the epidermal TJ barrier so that it approximates an extracellular calcium
concentration rise of 50% through the SG. The resulting profiles (Figure 6) indicate that the physical
intracellular calcium concentration is typically greater than the physical extracellular calcium concentra-
tion. Bearing in mind that intracellular and extracellular calcium are present in cells and ECF which
occupy ≥93% and ≤7% of the epidermal volume respectively [36, 40], our model clearly predicts that
intracellular calcium is the main source of the epidermal calcium profile [23].

The predicted pattern of calcium exchange between keratinocytes and the ECF (Figures 6a and 6b)
is significantly modified from our previous calculations of this pattern (Figures 4c and 4d in [23]), due
to the improved parameterisations used here for the keratinocyte volume changes through the SS and
the SG, the former of which was assumed to be negligible in our previous models [23, 46]. The updated
predictions cast doubt over the assertions in [23] that calcium influx is constant in the SB and SS and
that there is a calcium influx peak in the lower SG potentially due to loss of plasma membrane Ca2+-
ATPase [76]. However, the improved parameterisations confirmed the key finding of [23] that a change
in calcium exchange from cellular influx to outflux actively regulates the epidermal calcium profile. The
present theoretical work provides stronger evidence that this active regulation is caused by a phenotypic
switch located at the SS-SG boundary (Figure 7). The origin of this distinct switch in calcium exchange
is currently being investigated with time-dependent continuum models developed by members of our
research group [77].

Whilst our quantitative theory is able to predict the key features of intracellular and extracellular
calcium profiles in unwounded epidermis, it has some potential weaknesses. We have assumed that the
SC and TJ barriers are inert entities which regulate the epidermal calcium profile without any existing
feedback processes, which is reasonable for considering unwounded epidermis as it represents a steady
state condition. However, the formation of these barriers is likely to be dependent both on each other [78]
and on the presence of the local calcium concentration [79,80]. Hence this model cannot be immediately
extended to consider temporal dynamics of wounded skin without specifying additional assumptions about
the effects of epidermal calcium on the TJ and SC barriers. This is especially important since the rapid
secretion by keratinocytes of lamellar bodies (the precursor to lipids that form the “mortar” component
of the SC barrier) following barrier disruption is primarily controlled by calcium ions in the SG [13].
Whilst our conceptual model provides a feasible explanation for the formation of the calcium profile,
especially as model parameters were obtained from experimental data, we cannot rule out the possibility
of the contribution to this profile from other factors, such as the lipid barrier [78], electrophoresis [81],
or binding of calcium to molecules such as profilaggrin [82]. In addition, if the factors that contribute
substantially to the epidermal calcium profile occur on length scales of cells or smaller, our mathematical
treatment of the epidermis as a porous medium may not be appropriate, and individual cell-based models
(e.g. [83,84]) are more suitable.

Our estimates of the TJ barrier permeability to calcium may require revision if the width of this
barrier is larger or smaller than the SG. The effective TJ barrier may be larger than the SG if the TJ-like
structures observed in the SC [67] reduce the extracellular calcium diffusion rate sufficiently there to yield
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protrusion of the extracellular calcium rise into the lower SC. On the other hand, the width of the TJ
barrier may be smaller than the thickness of the SG, as recent experiments in mouse ear epidermis have
suggested that only the TJs forming apically between the second of three cell monolayers of the SG are
primarily responsible for its barrier [85]. Future experimental work may resolve this question about the
localisation of TJ barrier function.

The investigations of the TJ barrier with our model were also limited to values for its permeability
to calcium that satisfy inequality (17), which mathematically states the assumption that the TJ barrier
permeability is significantly larger than the local ECF velocity in the absence of TJs. ECF flow is
likely to be important for maintaining healthy unwounded epidermis, as occlusion of wounded skin by a
vapour-permeable dressing (which permits low rates of transcutaneous water movement) is an adequate
substitute for the SC whilst a vapour-impermeable dressing is not [35]. Future direct measurements of
the TJ barrier permeability to calcium ions in native epidermis will hopefully confirm the applicability
of inequality (17) and our subsequent mathematical theory relating the TJ barrier permeability to the
extracellular calcium profile.

In conclusion, we have proposed and mathematically investigated a theory of calcium profile formation
in unwounded mammalian epidermis governed by: the impermeable barrier of the SC, TJ-limited calcium
diffusion in the SG, and a phenotypic switch in calcium exchange between keratinocytes and ECF at the
SS-SG boundary. Future experimental results gained from improved measurement techniques [39,86] may
refine the presented theory and reduce the uncertainty in our model predictions. There are many possi-
bilities for future theoretical work, including the investigation of temporally changing epidermal states for
which calcium plays a major role (e.g. wound healing [35], psoriasis [34], and stratification of keratinocyte
cultures [2]), and the consideration of our proposed calcium kinetics in individual cell-based models of
epidermal homeostasis [83]. We intend that this paper provides a conceptual and quantitative model for
future experimental and theoretical research to examine, modify and update, as our understanding of
epidermal calcium profile formation becomes increasingly advanced.
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33. Vičanová J, Boelsma E, Mommaas A, Kempenaar J, Forslind B, et al. (1998) Normalization of
epidermal calcium distribution profile in reconstructed human epidermis is related to improvement
of terminal differentiation and stratum corneum barrier formation. J Invest Dermatol 111: 97-106.

34. Menon G, Elias P (1991) Ultrastructural localization of calcium in psoriatic and normal human
epidermis. Arch Dermatol 127: 57-63.

35. Elias P, Ahn S, Brown B, Crumrine D, Feingold K (2002) Origin of the epidermal calcium gradient:
regulation by barrier status and role of active vs passive mechanisms. J Invest Dermatol 119:
1269-1274.

36. Celli A, Sanchez S, Behne M, Hazlett T, Gratton E, et al. (2010) The epidermal Ca2+ gradient:
measurement using the phasor representation of fluorescent lifetime imaging. Biophys J 98: 911-
921.

37. Ahn SK, Hwang SM, Jiang SJ, Choi EH, Lee SH (1999) The changes of epidermal calcium gradient
and transitional cells after prolonged occlusion following tape stripping in the murine epidermis.
J Invest Dermatol 113: 189-195.

38. Denda M, Hosoi J, Asida Y (2000) Visual imaging of ion distribution in human epidermis. Biochem
Biophys Res Commun 272: 134-137.

39. Behne MJ, Sanchez S, Barry NP, Kirschner N, Meyer W, et al. (2011) Major translocation of cal-
cium upon epidermal barrier insult: imaging and quantification via FLIM/Fourier vector analysis.
Arch Dermatol Res 303: 103-115.

40. Elias P, Leventhal M (1979) Intercellular volume changes and cell surface expansion during corni-
fication. Clin Res 27: 525A.

41. Halprin K, Ohkawara A (1967) Glucose entry into the human epidermis: II. The penetration of
glucose into the human epidermis in vitro. J Invest Dermatol 49: 561-568.

42. Brandner JM, Kief S, Grund C, Rendl M, Houdek P, et al. (2002) Organization and formation
of the tight junction system in human epidermis and cultured keratinocytes. Eur J Cell Biol 81:
253-263.



16

43. Kirschner N, Houdek P, Fromm M, Moll I, Brandner JM (2010) Tight junctions form a barrier in
human epidermis. Eur J Cell Biol 89: 839-842.

44. Kurasawa M, Maeda T, Oba A, Yamamoto T, Sasaki H (2011) Tight junction regulates epidermal
calcium ion gradient and differentiation. Biochem Biophys Res Commun 406: 506-511.

45. Kirschner N, Rosenthal R, Furuse M, Moll I, Fromm M, et al. (2013) Contribution of tight
junction proteins to ion, macromolecule, and water barrier in keratinocytes. J Invest Dermatol
133: 1161-1169.

46. Adams MP, Mallet DG, Pettet GJ (2012) A continuum model of the growth of engineered epi-
dermal skin substitutes. ANZIAM J (EMAC 2011) 53: C90-C109.

47. Lemon G, King JR, Byrne HM, Jensen OE, Shakesheff KM (2006) Mathematical modelling of
engineered tissue growth using a multiphase porous flow mixture theory. Journal of Mathematical
Biology 52: 571-594.

48. Please C, Pettet G, McElwain D (1998) A new approach to modelling the formation of necrotic
regions in tumours. Appl Math Lett 11: 89-94.

49. Please C, Pettet G, McElwain D (1999) Avascular tumour dynamics and necrosis. Math Mod
Meth Appl S 9: 569-579.

50. Landman K, Please C (2001) Tumour dynamics and necrosis: surface tension and stability. IMA
J Math Appl Med 18: 131-158.

51. Lemon G, King J (2007) Multiphase modelling of cell behaviour on artificial scaffolds: effects of
nutrient depletion and spatially nonuniform porosity. Math Med Biol 24: 57-83.

52. Kitson N, Thewalt JL (2000) Hypothesis: the epidermal permeability barrier is a porous medium.
Acta Dermato-Venereologica Supp 208: 12-15.

53. Tsutsumi M, Inoue K, Denda S, Ikeyama K, Goto M, et al. (2009) Mechanical-stimulation-evoked
calcium waves in proliferating and differentiated human keratinocytes. Cell Tissue Res 338: 99-
106.

54. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, et al. (2002) Claudin-based tight junctions
are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. The
Journal of Cell Biology 156: 1099-1111.
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Figure Legends

Figure 1. The epidermal calcium distribution. (a) Typical shape of the total profile found
quantitatively using PIXE (for examples in the experimental literature, see [26,28]). (b) Typical shape
of the semi-quantitative intracellular ([Cai]) and extracellular ([Cae]) profiles measured using ion
capture cytochemistry (for examples in the experimental literature, see [32–34]).

Figure 2. Proposed conceptual model of epidermal calcium profile formation in
unwounded skin. The mathematical model presented in this paper simplifies the progressive barrier
in the lower SC to a distinct barrier at the lower-upper SC boundary.

Figure 3. Comparison of epidermal sublayer transit times predicted by our model with
experimental literature values. (a) Human literature values from [87–91]. (b) Murine literature
values from [92–94]. *Model prediction in the SB was independent of the value of V2. **Value may
include some residence time in the SB.

Figure 4. Keratinocyte velocity profiles predicted by our model. For (a) the human
keratinocyte velocity profile, the modified V2 = 0.100±0.026 was used in its calculation. The solid and
dashed lines represent the mean values and uncertainty bounds (±SD) respectively.

Figure 5. Extracellular calcium rise through the SG vs TJ permeability to calcium
predicted by our model. The solid and dashed lines represent the mean values and uncertainty
bounds (± SD) respectively.

Figure 6. Physical intracellular ([Cai]) and extracellular ([Cae]) epidermal calcium profiles
predicted by our model. These profiles are calculated from experimental total calcium profiles
reported in [26,28]. [Cae] profiles are shown for TJ barriers that yield a calcium rise through the SG of
Rce ≈ 1.5: (a) PCa = 8 nm s−1 for human epidermis and (b) PCa = 20 nm s−1 for murine epidermis.

Figure 7. Keratinocyte calcium influx profiles g(z) in the epidermis predicted by our
model. These profiles are calculated from experimental total calcium profiles reported in [26,28].
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Tables

Table 1. Model Parameters

Parameter Value and Reference
Human Murine

Stem cell volume fraction of the SB, θ 0.055±0.045 [64] 0.055±0.045 [64]
Height of the SB-SS boundary above the
BM, z1

45µm [95] 20µm [26]

Height of the SS-SG boundary above the
BM, z2

75µm [95] 60µm [26]

Height of the SG-SC boundary above the
BM, z3

105µm [95] 90µm [26]

Height of the inner SC-outer SC boundary
above the BM, z4

118.5±1.5µm [15,16,28] 94±2µm [17,26]

Thickness of the epidermis, z5 125µm [28] 100µm [26]
Ratio of keratinocyte volumes SG:SB, V1 1.9±0.5 [96] 2.8±1.4 [97,98]
Ratio of keratinocyte volumes SC:SG, V2 0.54±0.10 (original) [12] 0.068±0.03 [97–99]

0.100±0.026 (modified) [96,99]
Proliferation rate of stem cells in the SB,
s0

5.6×10−7 s−1 [60] 1.4×10−6 s−1 [60]

Proliferation rate of TA cells in the SB, s1 (1.7±1.1)×10−6 s−1 [88, 100] (2.8±1.3)×10−6 s−1 [101]
Physical diffusion coefficient of calcium in
the ECF, DCa

1×10−9 m2 s−1 [102–104] 1×10−9 m2 s−1 [102–104]

Cell volume fraction in viable epidermis
and lower SC, φv

0.955±0.025 [36] 0.9925±0.0025 [40]

Ratio of the extracellular calcium distribu-
tion to its BM value, r

1.1±0.6 [33,34] 1.25±0.75 [32]

Parameters used for the numerical solutions in this paper. Justification is provided in Text S1.

Supporting Information Legends

Text S1. Justification of parameter values.

Table S1. Semi-quantitative extracellular epidermal calcium distributions, determined
using ion capture cytochemistry.
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Text S1: Justification of Parameter Values

In the manuscript, Table 1 lists the parameters used in this paper and their key references. Here, we
present the justification of the parameter values, starting from the experimental literature and applying
subsequent calculations where necessary.

S.1 Stem cell volume fraction of the SB, θ

Li et al. state that epidermal stem cells constitute 1-10% of the SB based on several in vivo studies
[1]. A range for the stem cell volume fraction of the SB that fully encompasses these estimates is
θ = 0.055 ± 0.045. We assume that this value of θ applies to both human and murine epidermis.

S.2 Heights of the epidermal sublayer boundaries above the BM, z1, z2, z3,
z4, z5

For the human epidermal calcium profile investigated, the total epidermal thickness z5 is 125µm [2],
and the thicknesses of the SB, SS, SG and SC are approximately 30-40µm, 30µm, 30µm and 20µm
respectively, although the thickness of the SB is difficult to estimate due to undulation of the BM [3].
Hence we assume that the estimates of SS, SG and SC thickness are more accurate than the estimate of SB
thickness, and consecutive subtraction of these values from z5 = 125µm yields z3 = 105µm, z2 = 75µm
and z1 = 45µm.

For the estimation of z4, we subtract from z5 literature-reported estimates of the SC thickness removed
at which transepidermal water loss (TEWL) becomes large. Bashir et al. reports that TEWL is significant
after 5-7µm of human SC is removed [4], whilst Kalia et al. reports that removal of ∼8µm causes two- to
ten-fold increase in TEWL [5]. We combine these values to estimate the thickness of upper SC in human
epidermis as 6.5±1.5µm, and hence z4 = 118.5 ± 1.5µm.

For the murine epidermal calcium profile, all sublayer boundary heights are provided except z4 [6]:
z1 = 20µm, z2 = 60µm, z3 = 90µm and z5 = 100µm. In murine epidermis TEWL increases dramatically
once 4-8µm has been removed [7]. We therefore assume that the thickness of murine upper SC is 6±2µm,
and hence z4 = 94 ± 2µm.

S.3 Ratio of keratinocyte volumes SG:SB, V1

For human epidermis, Bergstresser et al. reported the volumes of keratinocytes in basal and superficial
layers, in six human subjects and three anatomical locations for each subject [8]. We assume that each
of the 18 associated ratios of superficial to basal keratinocyte volume are a good approximation of the
volume change of a keratinocyte during its passage through the SS. From the mean and standard deviation
of these 18 ratios, we obtain V1 = 1.9 ± 0.5.

For murine epidermis, the volumes of keratinocytes in the basal and granular sublayers have been
reported both by Rowden [9], and by Rodrigues and Maia Campos [10]. Ratios of granular to basal
keratinocyte volume, calculated from these publications, are 4.2 and 1.4 respectively. We combine these
values to obtain V1 = 2.8 ± 1.4.

S.4 Ratio of keratinocyte volumes SC:SG, V2

For human epidermis, the original estimate of V2 is based on the report of Norlén and Al-Amoudi
that there is a reduction in cell volume between SG and SC keratinocytes from 700-900µm3 to 400-
450µm3 [11], which corresponds to V2 = 0.54±0.10. For murine epidermis, Allen and Potten report that
mouse dorsum keratinocyte volume changes from 163µm3 at the SB to 31.1µm3 at the skin surface [12].
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This corresponds to V1×V2 = 0.1908. Dividing this by our obtained value of murine V1 = 2.8±1.4 yields
V2 = 0.068 ± 0.034.

In our results we found that the estimate of human V2 was questionable, due to its prediction of
transit times through the SC that disagreed strongly with the experimental literature and its order of
magnitude difference from the estimate of murine V2 which predicted SC transit times that agreed more
reasonably with the experimental literature. Hence, for the modified estimate of V2 for human epidermis,
we used the human V1 = 1.9± 0.5 obtained from [8] together with the murine V1 ×V2 = 0.1908 from [12]
to obtain V1 = 0.100 ± 0.026.

S.5 Proliferation rate of stem cells in the SB, s0

The stem cell cycle time is difficult to measure, but is suggested to be greater than 500 hours in human
epidermis and approximately 200 hours in murine epidermis [13]. The stem cell proliferation rate can be
obtained simply by inverting the cycle time. For simplicity we assume that the human and murine stem
cycle times are equal to 500 hours and 200 hours respectively, and inversion immediately yields human
s0 = 5.6 × 10−7 s−1 and murine s0 = 1.4 × 10−6 s−1.

S.6 Proliferation rate of TA cells in the SB, s1

For both human and murine epidermis, the TA cell proliferation rate s1 is calculated from literature-
reported values of the mean proliferation rate in the SB, denoted here as sµ, together with our found
values for θ and s0, via the equation

sµ = θs0 + (1 − θ)s1. (1)

For human epidermis, Castelijns et al. reported a mean cycle time of approximately ∼62.5 hours [14],
which together with the growth fraction in the SB of 60% [15], yields an estimate of sµ = 2.7× 10−6 s−1.
On the other hand, Iizuka reported that there are 27,000 cells and a birth rate of 1,246 cells per day in a
1 mm2 section of the proliferative compartment of human epidermis [15]. Dividing the birth rate by the
number of cells yields an alternative estimate of sµ = 5.3× 10−7 s−1. Combining these two estimates, we
choose sµ = (1.6 ± 1.1) × 10−6 s−1. Then, using equation (1) we obtain s1 = (1.7 ± 1.1) × 10−6 s−1.

For murine epidermis, Potten reported that the cell production rate in murine epidermis varies from
0.55 to 1.42 cells per 100 basal cells per hour, depending on the anatomical location [16]. This corresponds
to a mean proliferation rate in the SB of sµ = (2.7± 1.2)× 10−6 s−1. Then, using equation (1) we obtain
s1 = (2.8 ± 1.3) × 10−6 s−1.

S.7 Physical diffusion coefficient of calcium in the ECF, DCa

For both human and murine epidermis, we assume that the ECF is essentially water [17], and hence
DCa is equal to the diffusion coefficient of calcium ions in water at skin temperature. We assume that
the value of this diffusion coefficient is unaltered for the one-dimensional case, as our model considers
only one spatial direction z perpendicular to the skin surface. The calculation of this coefficient from
data in [18–20] together with the Stokes-Einstein equation [18] is detailed in Appendix A of our previous
paper [21], and yields DCa = 1 × 10−9 m−2 s−1.

S.8 Cell volume fraction in viable epidermis, φv

For human epidermis, Celli et al. reported that the cell volume fraction increases from 0.93 in the SB to
0.98 in the SG [22]. We combine these values to choose φv = 0.955 ± 0.025.

For murine epidermis, Elias and Leventhal reported that the ECF volume fraction, 1 − φv, is 0.5-
1.0% in the SG [23]. We assume this value applies throughout the viable epidermis, and hence choose
φv = 0.9925 ± 0.0025.
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S.9 Ratio of the extracellular calcium distribution to its BM value, r

To calculate r for human and murine epidermis, we use data from the semi-quantitative extracellular
calcium distributions shown in Table S1.

For human epidermis, we assume that the number of positive signs is proportional to the extracellular
calcium level. From the use of this assumption on the data in [24] and [25], the mean extracellular calcium
levels in human SB, SS, SG and lower SC are 2, 2, 2.75 and 2 (i.e. overall mean of 2.2), and the minimum
and maximum reported extracellular calcium levels in the whole epidermis excluding the upper SC are
1 and 3 respectively. This data can be enclosed by an extracellular calcium level throughout the whole
epidermis excluding the upper SC of 2.2±1.2, which written as a ratio of the mean extracellular calcium
level in human SB, yields r =1.1±0.6.

For murine epidermis, we fit a five-point quantitative scale to the worded descriptors in [26]: 1 (very
low), 2 (low), 3 (medium), 4 (high) and 5 (very high). Using this scale, the mean extracellular calcium
levels in the SB, SS, SG and SC are 2, 1, 4 and 3 (i.e. overall mean of 2.5), and the minimum and
maximum reported extracellular calcium levels in the whole epidermis excluding the upper SC are 1
and 4 respectively. This data can be enclosed by an extracellular calcium level throughout the whole
epidermis excluding the upper SC of 2.5±1.5, which written as a ratio of the mean extracellular calcium
level in murine SB, yields r =1.25±0.75.
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Table S1. Semi-quantitative extracellular epidermal calcium distributions, determined
using ion capture cytochemistry

Extracellular Calcium Concentration
SB SS Lower Upper Lower Upper Species,

SG SG SC SC Reference
++ ++ +++ +++ +++ 0 Human, [1]
++ ++ ++ +++ + 0 Human, [2]
Low Very low High High High-Low Low Mouse, [3]
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