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Abstract

This paper offers an uncertainty quantification (UQ) study ap-
plied to the performance analysis of the ERCOFTAC conical
diffuser. A deterministic CFD solver is coupled with a non-
statistical generalised Polynomial Chaos (gPC) representation
based on a pseudo-spectral projection method. Such approach
has the advantage to not require any modification of the CFD
code for the propagation of random disturbances in the aero-
dynalmic field. The stochactic results highlihgt the importance
of the inlet velocity uncertainties on the pressure recovery both
alone and when coupled with a second uncertain variable.
From a theoretical point a view, we investigate the possibility
to build our gPC representation on arbitray grid, thus increasing
the flexibility of the stochastic framework.

Introduction

Diffusers play an important role in the design of turbine com-
ponents as it helps recovering pressure and thus increasing the
turbine efficiency. Conical diffusers have been extensively stud-
ied in the literature by means of Computational Fluid Dynamics
(CFD). This is the case for the ERCOFTAC conical diffuser ex-
perimentally studied by Clausen [4, 5] and extensively investi-
gated numerically [1,2,6–8]. These studies have highlighted the
importance of several parameters such as the inlet swirl, turbu-
lent kinetic energy and inlet velocity profiles, amongst the main
uncertain parameters for the inlet boundat conditions. Also, as
mentioned by Armfield et al. [1], the ERCOFTAC diffuser is an
”extreme” case where the inlet rotational speed has been care-
fully adjusted to avoid any recirculation and separation of the
flow. However, any small variations of inlet parameters can lead
the numerical model to predict one or both of these regimes.
Also, in real applications and especially in turbines, the input
diffuser parameters are most likely to be uncertain because of
the flow fluctuations coming from the rotor. The variability of
these parameters may have dramatic effects on the global per-
formance of the system. Thus, it is of particular importance to
be able to quantify the impact of uncertain parameters by means
of statistical analysis of the parameters of interest. Amongst the
several different uncertain quantification methods available, the
most widespread is the direct Monte-Carlo method. However,
even if statistical approaches are straightforward to implement,
they also have prohibitive computational costs. For that reason,
a non-statistical generalised Polynomial Chaos (gPC) represen-
tation based on a pseudo-spectral projection method is adopted
in this study [3]. Similar to Monte Carlo (MC) simulation, such
approach doesnt require any modification of the CFD code.
In this work, a uniform distribution of the random parameters
associated with Legendre polynomials is chosen. Due to the
curse of dimensionality the uncertain parameters are investi-
gated separately with high-order spectral projections while the
combined effect of the parameters is initially investigated using
low-order polynomials. The impact of the variable input pa-
rameters are evaluated on the pressure recovery of the diffuser.
The stochastic space of each random variable is correlated to the
range of uncertainty of the physical input parameters. Stochas-

tic results are analysed by means of density probability function
of the pressure recovery and effectiveness of the diffuser. In
particular, the sensitivity to uncertain parameters and their po-
tential coupled effects on the stochastic aerodynamic field are
discussed in details.

Uncertainty Quantification Framework

Generalized Polynomial Chaos Method

In this work, the uncertainty quantification study relies on the
generalised Polynomial Chaos (gPC) framework [9]. The gPC
representation of a spatial random process u is

u(x,Θ) = ∑
α∈NN

ûα(x)φα(Θ), (1)

where Θ = {Θ j(ω)}N
j=1,N ∈ N, is a RN -valued random ar-

ray on a probability space (Ω,A ,P ) with probability distribu-
tion PΘ(dθ) and dθ is the Lebesgue measure. φα(Θ) repre-
sent the multivariate orthogonal polynomials, with total degree
not greater than P, that are built as tensor products of univari-
ate orthogonal polynomials along each random dimension with
respect to the probability measure PΘ(dΘ). The deterministic
coefficients in (1) are determined by:

ûα(x) = E{u(x,Θ)φα(Θ)}/E{φ2
α(Θ)}, for α ∈ NN , (2)

where E denotes the expectation. In practice, the order P of
the polynomial basis is chosen based on accuracy requirements.
The weights and nodes of the Gauss-Legendre quadrature are
determined by solving an eigenvalue problem based on the
Golub-Welsch algorithm.

Numerical Implementation

This nonintrusive approach has the advantage of not requir-
ing modifications of the existing deterministic CFD solver.
The evaluation of the unknown coefficients ûα(x) is equivalent
to computing multidimensional integral using quadrature rules
whose point locations and weigths are dictated by the probabil-
ity distribution of the inputs. In this study, we choose uniform
distributions, giving the Legendre polynomials [10], as an ap-
propriate basis with respect to the probability measure.
Two approaches are investigated to compute u(x,Θ) at a given
quadrature point xq. First, we directly run the deterministic
CFD solver for the values of the input random variable at xq.
In the second approach, we consider an arbitrary sampling of
u(x,Θ), resulting for instance from a previously existing deter-
ministic database. Next, we interpolate the CFD solution at xq
in order to perform the stochastic projection. This approach will
be refered as interpolated CFD gPC (iCFD-gPC hereafter).

Test Case

The conical diffuser experimentally studied by Clausen [4,5] is
used in this study. The geometry is presented in figure 1. S0-S7
represent the locations of the experimental measurements.



Figure 1. Non-scaled 2D schematic view of the ERCOFTAC conical diffuser with
dimensions in [mm].

Deterministic CFD Simulations

The open source code OpenFOAM is used to perform the deter-
ministic CFD simulations. The 3D steady state flow solutions
are computed with the SimpleFOAM solver using the standard
high-Reynolds number k-ε model with wall functions. The rota-
tion of the honeycomb is set through the addSwirlAndRotation
routine [2].
The present work builds upon previous studies from the Open-
FOAM turbomachinery workgroup [7]. It was determined that
Case 1 as presented by Nilsson [7] with an O-grid mesh gave
adequate performance when compared to the experimental case
and had a good y+ value using a moderate number of nodes.
Mesh refinement was performed improving the y+ value of each
section to an average of 20 which improved the comparison to
the original experimental results of Clausen [4].
At the inlet of the computational domain, the velocity is purely
axial and set to 11.6 m.s−1. The inlet turbulent kinetic energy
is set to 2.0184 m2.s−2 and the turbulent energy dissipation to
896.1 m2.s−3 [2]. At the outlet the atmospheric pressure is set.

Uncertain Parameters

Based on previous published works [1,2,6–8], five random dis-
turbances in total, three freestream uncertain parameters and
two geometric parameters are propagated using the gPC method
detailed above: the inlet kinetic turbulence k, the inlet mean ve-
locity U∞, the inlet swirl velocity Wθ, the length of the diffuser
L and the cone angle of the diffuser α. The geometrical param-
eters and inlet swirl have been chosen because of their impor-
tance in the design of diffusers especially for pressure recovery,
flow separation and recirculation concerns. Armfield et al. [1]
also suggest that the experimental accuracy of the mean flow
are within 6%. Furthermore, a wide range of values have been
used in the previous numerical studies published [1, 2, 6–8].
A uniform distribution of the random parameters associated
with Legendre polynomials is chosen in order to not favor any
particular variable. The mean value µ and the support of the
distribution for each parameter are listed in table 1.
Combined uncertainty quantification is also performed for (k,
U∞), (k, Wθ), (U∞, Wθ), (k, U∞, Wθ), and (L, α).

Uncertain Parameter µ support
swirl velocity Wθ [rad.s−1] 52.65 [45–55]
turbulent kinetic energy k [m2.s−2] 2.02 [0.1–10]
inlet mean velocity U∞ [m.s−1] 11.6 [9–14]
half cone angle α [deg] 10 [8–12]
diffuser length L [mm] 510 [410–610]

Table 1. Characteristics of the studied uncertain parameters: swirl velocity, turbu-
lent kinetic energy, inlet mean velocity, half cone angle and diffuser length.

Results

Deterministic Aerodynamic Field and Response Surfaces

One important parameter to evaluate the effectiveness of the
diffuser is the pressure recovery coefficient Cp (Cp = (pout −
p∞)/0.5ρU2

∞) as any improvements in the pressure recovery can
increase the overall turbine efficiency.
Several factors such as separation and recirculation can dramat-
ically affect the pressure recovery. Figure 2 shows the axial
velocity field in the diffuser at the experimental conditions and
for the lower and upper bounds as defined in table 1. At the
experimental conditions, the simulations provide results close
to the experimental data and we can note the absence of re-
circulation and separation in the diffuser. For the lowest inlet
velocity (U∞=9.046 m.s−1), there is a large recirculation in the
center of the diffuser near the exit while for the highest veloc-
ity (U∞=13.9539 m.s−1), there is no recirculation but a slight
separation at the walls very close to the exit of the diffuser.

(a) U∞=9.046 m.s−1 (b) U∞=13.9539 m.s−1

(c) Experimental Conditions

Figure 2. Axial velocity for (a) the lower (U∞=9.046 m.s−1) and (b) upper
(U∞=13.9539 m.s−1) U∞ values and (c) for the experimental conditions using
U∞ as random parameter

Figure 3 shows the evolution of Cp with the five uncertain pa-
rameters U∞, Wθ, k, L and α. It is clear that none of the un-
certain parameters have a linear effect on the pressure recovery
with, in some cases, relatively sharp gradients after or before the
optimal Cp value. Thus these selected parameters are suitable
for an uncertainty quantification investigation.

Statistical Study

The mean and standard deviation for the gPC with 1 and 2
variables are presented in table 2. The gPC with one random
variable is checked against the Monte-Carlo-based gPC method
for which the polynomials are established from a MC draw.



Variable gPC 1D (P=11) gPC 2D (P=5)
k U∞ Wθ α L U∞-k Wθ-k Wθ-U∞ α-L

µ (gPC) 0.797855 0.755063 0.789230 0.782003 0.779792 0.771833 0.802020 0.762643 0.776044
σ×10−3 (gPC) 9.27099 49.0990 8.99946 8.01009 8.35796 4.61054 13.2119 39.6858 14.6711

CoV (gPC) 1.162 6.503 1.106 1.024 1.072 5.973 1.647 5.204 1.890
µ (gPC-MC) 0.797848 0.755034 0.789864 0.781996 0.779786 - - - -

σ×10−3 (gPC-MC) 9.26944 49.1173 8.73683 8.01942 8.36015 - - - -

Table 2. Mean and standard deviation of the diffuser pressure recovery cp for each individual uncertain parameter and coupled uncertain parameters with gPC and gPC-MC.
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Figure 3. Initial deterministic solutions of Cp versus inlet velocity, U∞, swirl
velocity Wθ, k, L and α.

While considering the effects of the input uncertainties individ-
ually on the pressure recovery, the lowest variability level is
obtained for the cone angle α, closely followed by the diffuser
length L and the swirl velocity Wθ. The inlet velocity U∞ is
the most influential parameter, followed by the inlet turbulent
kinetic energy k. When parameters are coupled, the effect of
U∞ remains the most important with U∞-k and Wθ-U∞, the most
influential coupled random variables.

Stochastic Recirculation Length

For each uncertain parameter, the mean value µ, the standard
deviation σ and the coefficient of variation CoV=σ/µ of the re-
circulation length in the center of the diffuser was computed
with the gPC at P=11. Table 3 shows that the longest recircula-
tion in terms of mean value is obtained when varying U∞. The
shortest length corresponds to the randomness in k. Table 3 also
highlights that the sensitivity of the recirculation is much higher
for k while U∞ is far from the most influential uncertainty on the
mean recirculation length.

Variable k U∞ Wθ α L
µ 0.01166 0.21264 0.05669 0.17958 0.1894

σ×10−3 72.2150 165.849 72.2150 91.1153 40.545
CoV 6.192 0.780 1.273 0.507 1.063

Table 3. Mean, standard deviation and CoV of the recirculation length for each
individual random parameter using the gPC.

Mean Velocity Profiles

The axial velocity profile at the S7 experimental location
(xs=405 mm) near the diffuser exit obtained from the gPC us-
ing U∞ as random variable is compared against the deterministic
solution and experimental profile in figure 4. The deviation ob-
tained from the gPC is also represented as an illustration of the
range of possible realizations of the stochastic solution. We can
note that the variance of Ux is more pronounced around the peak
of velocity and near the center of the diffuser where the recir-
culation occurs. The plot also shows that this UQ is capable
of capturing the experimental values until xs=120mm. Beyond
this value, the UQ still remains above the experimental values.

Figure 4. Axial velocity profile vs yn at S7: comparisons between the experimental
data [4], the deterministic solution and the mean and standard deviation obtained
from the gPC method.

Convergence Analysis

In this section, we investigate the accuracy and efficiency of
the gPC and iCFD-gPC approaches by means of convergence
analysis. The relative error of the variance of a typical quantity
of interest is based on the best estimate obtained with Pre f =11:

errL2(σ
2
v) =

√
σ2

v(P)−σ2
v(Pre f ) (3)

where P is the current P-order and v a typical random variable.

Figure 5 shows the CFD points of the iCFD-gPC and full gPC
for P ranging from 1 to 11 when U∞ is the random variable.

It is clear from figure 6 that the full gPC method achieves better
convergence rate than iCFD-gPC based on a cubic interpola-
tion scheme. On this figure, symbols represent our simulations
while dashed lines are the corresponding linearly fitted decay
rates. As expected, we can also note that for P-orders of the
gPC below the interpolation order (here 3), the errors are simi-
lar for both methods. Beyond this order, the difference between
both methods (gPC and iCFD-gPC) dramatically increases.

Figure 7 shows the corresponding deterministic solutions of cp
at the initial grid points and at the quadrature points and the
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Figure 5. Legendre quadrature points and arbitrary support points for U∞ for P =
1 to 11
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Figure 6. Convergence rates of the solution variance for the inlet mean velocity
U∞ vs P-order

interpolated CFD solutions. We clearly see the interpolation
errors responsible for the poor convergence rate of the iCFD-
gPC (figure 6), especially close to the highest values of cp.
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Figure 7. Deterministic solutions Cp for a variation of U∞ at the Legendre quadra-
ture points, at the arbitrary points and interpolated from the arbitrary solutions for
P = 1 to 11.

Conclusions

Uncertainty quantification is applied to the performance of a
conical diffuser for the propagation of various aerodynamic and
geometric uncertainties. This stochastic study highlihgts the
importance of random variations in the inlet velocity over the
other uncertainties (swirl, inlet turbulent kinetic energy, diffuser
length and cone angle) on the pressure recovery both alone and
when coupled to a second uncertain variable. However, for the
variance of the recirculation length, the most influential uncer-

tainty is the inlet turbulent kinetic energy. Due to the non-linear
effects associated with the recirculation, the velocity profiles are
more sensitive close to the center of the diffuser where the re-
circulation is located. However, the highest sensitivity is found
around the peak of velocity in the boundary layer. In addition,
an interpolated CFD based gPC procedure was developped to
deal with arbitrary samples of the CFD computations. As ex-
pected, results show that low interpolation order can strongly
affect the convergence rate of the stochastic spectral projec-
tion approach. An improved accuracy and convergence rate
were obtained with a higher-order interpolation. However, dif-
ferences in the variance of the pressure recovery coefficients
ranges between 4.7% for U∞ up to 10% for k. Further study
will be devoted to the coupling of the gPC method with higher-
order interpolation schemes.

Acknowledgements

Dr. E. Sauret thanks the Australian Research Council
(DE130101183) and the Australian Academy of Science for
their financial support.

References

[1] Armfield, S. W., Cho, N.-H. and Fletcher, C. A. J., Predic-
tions of turbulence of turbulent quantities swirling flows in
conical diffusers, AIAA Journal, 28 (3), 1990, 453–460.

[2] Bounous, O., Studies of the ercoftac conical diffuser with
openfoam, Technical report, Research Report 2008:05,
Department of Applied Mechanics, Chalmers University
of Technology, Goteborg, Sweden, 2008.

[3] Chassaing, J.-C. and Lucor, D., Stochastic investigation of
flows about airfoils at transonic speeds, AIAA Journal, 48,
2010, 938–950.

[4] Clausen, P. D., Koh, S. G. and Wood, D. H., Measure-
ments of a swirling turbulent boundary layer developing
in a conical diffuser, Experimentsl Thermal and Fluid Sci-
ence, 6, 1993, 39–48.

[5] Clausen, P. D. and Wood, D. H., Some measurements of
turbulent swirling flow through an axisymmetric diffuser,
in Proceeding of Sixth Symposium on Turbulent Shear
Flows, editor F. J. Durst, et al., University Paul Sabatier,
Toulouse, France, 1987.

[6] Gyllenram, W. and Nilsson, H., Very Large Eddy Simula-
tion of Draft Tube Flow, in Proceedings of the 23rd IAHR
Symposium, Yokohama, Japan, October, 2006.

[7] Nilsson, H., Page, M., Beaudoin, M., Gschaider, B. and
Jasak, H., The openfoam turbomachinery working group,
and conclusions from the turbomachinery session of the
third openfoam workshop, in 24th Symposium on Hy-
draulic Machinery and Systems, IAHR, October 27-31,
Foz Do Iguassu, Brazil., 2008.

[8] Page, M., Giroux, A.-M. and Massé, B., Turbulent
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