
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Balko, Soeren & Barros, Alistair (2014) In-memory business process man-
agement. Elsevier BV. [Working Paper] (Unpublished)

This file was downloaded from: http://eprints.qut.edu.au/79248/

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33496716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/79248/

In-memory Business Process Management

Sören Balko, Alistair Barros

Queensland University of Technology, Information Systems School, Services Sciences
Gardens Point Campus, 2 George Street, Brisbane, 4000, Queensland, Australia

Abstract

In-memory databases have become a mainstay of enterprise computing offering
significant performance and scalability boosts for online analytical and (to a
lesser extent) transactional processing as well as improved prospects for inte-
gration across different applications through an efficient shared database layer.
Significant research and development has been undertaken over several years
concerning data management considerations of in-memory databases. However,
limited insights are available on the impacts of applications and their supportive
middleware platforms and how they need to evolve to fully function through,
and leverage, in-memory database capabilities. This paper provides a first,
comprehensive exposition into how in-memory databases impact Business Pro-
cess Management, as a mission-critical and exemplary model-driven integration
and orchestration middleware. Through it, we argue that in-memory databases
will render some prevalent uses of legacy BPM middleware obsolete, but also
open up exciting possibilities for tighter application integration, better pro-
cess automation performance and some entirely new BPM capabilities such as
process-based application customization. To validate the feasibility of an in-
memory BPM, we develop a surprisingly simple BPM runtime embedded into
SAP HANA and providing for BPMN-based process automation capabilities.

Keywords: In-memory databases, NewSQL, Business Process Management,
BPMN 2.0, SAP HANA

1. Introduction

The proliferation of always-connected mobile devices, social networks, the
Internet of Things, and the uptake of Cloud-based deployment models poses
a challenge for traditional, disk-based storage technology. This impacts enter-
prise applications, now incorporating these traditionally niche areas, leading to
scalability issues1 for unprecedented increases in data volume and transaction
frequency.

Email addresses: Soeren.Balko@qut.edu.au (Sören Balko),
Alistair.Barros@qut.edu.au (Alistair Barros)

1Affecting both transaction throughput and transaction processing times.

Preprint submitted to Elsevier December 3, 2014

In response to these challenges, key developments have recently emerged in
database technology. Significant among these are NoSQL databases [18] which
improve scale-out characteristics compared relational databases, but which often
trade consistency for availability and “partition tolerance” [6], thus falling short
of ACID guarantees. Strong consistency is generally a highly desirable feature
of enterprise applications [23, 19]. Following on from NoSQL databases, a num-
ber of long-standing relational databases concepts have been renovated, through
“NewSQL” databases. While no narrow definition of NewSQL databases exist,
some frequently found principles [25, 24] include: single-threadedness, which
adopts the asynchronous and single-threaded design of Web application middle-
ware such as node.js [27] and nginx [22]; a shared-nothing principle that avoids
“singleton” components, often forming performance bottlenecks; and advanced
concurrency control that abandons dynamic locking over techniques like MVCC,
timestamp ordering, and clever global clock synchronization [9].

These design principles support better scale-out characteristics, where
provisioning additional database nodes successfully counteracts performance
degradation resulting from an increased load. Most authors position these ar-
chitectural changes alongside empirical insights into how OLTP workloads and
their underlying relational database schemas are structured. Even NewSQL
databases only demonstrate favorable scale-out characteristics when supported
by the actual database schema, the sharding, clustering, and replication strate-
gies on top, and the actual transaction workload. For example, in [8, 24] the
authors advise to employ single-sharded transactions (transactions that can be
run on the data that is replicated to a single node, avoiding to invoke costly dis-
tributed transactions). Empirical insights into prevalent transaction and schema
characteristics support the fact that many real-life OLTP workloads already rely
on schemas that are trivially partitionable into shards supporting single-sharded
transactions [25].

The aforementioned architectural “renovations” of NewSQL databases are
complemented by placing OLTP databases (and if reasonably sized, also OLAP
databases) in main memory. Avoiding slow access times of disk-based storage,
main memory offers multiple orders of magnitude faster access times, avoids
comparatively slow disk interfaces, and can benefit from vector processing in-
structions of modern CPUs to rapidly process large amounts of data in main
memory. Oversized databases can use techniques such as compression or anti-
caching [10] and still benefit from the performance advances of main memory
storage. Transitioning from a disk-based (or Flash-based) storage to an in-
memory storage essentially represents a scale-up strategy, benefiting the per-
node performance of a distributed database. In-memory databases [17] have
demonstrated their performance advances in early systems such as Monet [5],
C-Store [5] and are now adopted by major software vendors, e.g. SAP (“HANA”
[13, 14]), Oracle (Oracle Database 12c), Microsoft (SQL Server “Hekaton” [11]),
IBM (DB2 “BLU” [21]) and others.

As the latency of database operations reduces, application interfaces such as
ODBC and JDBC (copying query results into the application’s address space,
(de-)serializing data into (from) network packets, etc.) become a bottleneck for

2

end-to-end transaction turnaround times. Relocating data-intense portions of
the application code into the in-memory database can avoid costly data copies
and can greatly improve performance [24, 25].

As a result of applications migrating onto in-memory databases, some mid-
dleware services for application integration may become less relevant. For exam-
ple, messaging services (such as Enterprise Service Buses) traditionally invoke
public service interfaces of applications to transfer state and events between ap-
plications. When applications use the same database instance, the database as
such may form a more efficient route to do so. While this is not a unique prop-
erty of in-memory databases, two of their contributions make such a scenario
more plausible:

1. The aforementioned “push-down” of data-intense application code into
stored procedures within the (in-memory) database makes these low-level
services accessible on the database level.

2. The aforementioned pledge for virtually unbounded scale-out characteris-
tics of NewSQL databases makes them a suitable storage technology of a
Cloud platform, where multiple applications and/or tenants can share the
same underlying database instance. With the “lion’s share” of a database’s
operational budget being spent on administration [26], this technological
capability is augmented with a strong economic incentive. In fact, appli-
cation vendors such as SAP already position their in-memory databases
as the storage backend of their Cloud PaaS offerings.2

This paper provides a first and comprehensive exposition of the architectural
implications for enterprise applications and, specifically, a key supportive tech-
nology in business process management [1], through in-memory databases. Our
contribution is twofold. Firstly, we position the broader architectural implica-
tions of in-memory databases in the context of business process management
and identify novel BPM capabilities that become possible through an in-memory
database “underpinning”. Secondly, by way of demonstrating the feasibility of
an in-memory BPM, we present the building blocks of a BPM core runtime
service for SAP HANA, where we provide a mapping of BPMN [20] artifacts to
its “programming model”

The rest of this paper is organized as follows. In section 2, we provide general
insights into how software application architectures are changing as a result of in-
memory databases in conjunction with other trends underway. In section 3, we
specifically look into how enterprise application integration (EAI) technologies
such as business process management (BPM) are affected by the aforementioned
architectural changes to enterprise applications, resulting from their migration
to an in-memory database platform. In section 4, we give details of an in-
memory BPM reference implementation based on SAP HANA and focused on
process automation. In section 5, we summarize our contributions.

2http://hcp.sap.com/

3

2. Application Architecture Implications

Any database creates, effectively, a centralized technical hub, for applica-
tions inside an organization. Sharing a single database instance is economically
attractive and is now made possible by the aforementioned scalability advances
of modern in-memory databases3. Potentially, a single (distributed) in-memory
database instance may even be shared among multiple tenants, such as compa-
nies participating in the same supply chain. That sharing model is particularly
suitable for a Cloud deployment. For instance, a Supply Chain Management
(SCM) application may be deployed onto a public Cloud and using an in-memory
database that forms a part of the Cloud platform services. The SCM application
may then allow the different tenants (i.e., the supplier(s) down to the recipient)
to work with the same “business objects” that are stored in the (shared) un-
derlying database instance. That capability lends itself to monitoring, alerting,
and issue resolution scenarios, where the recipient may gain direct access to
business objects (such as production and logistics schedules, etc.) of its sup-
pliers. Altogether, a single, scalable in-memory database instance can provide
both the persistence layer for multiple applications and tenants and also allow
for efficient data exchanges and synchronization of state among these applica-
tions or tenants. In effect, introducing an in-memory database can lead to an
effective reduction of application and tenant “silos”.

In order for in-memory databases and their performance capabilities to be
fully harnessed, applications need to run any data-intense operations inside
them. Running application code within the address space of the in-memory
database follows general recommendations for NewSQL databases [24] and is in
stark contrast to long-standing database tuning practices. As a result, appli-
cation code is “dispersed” among two stacks (application server and database
system), effectively trading performance against a “clean” layering into a data
access and an application layer. Consequentially, the conventional 3-tier ar-
chitecture [12, 15] with a physical separation of the client, application, and
database layer is diminished as applications fully migrate onto an in-memory
database.

As a result of introducing scalable in-memory databases, Figure 1 illustrates
how application architecture may evolve. In a traditional 3-tier architecture
(on the left hand side), the application server is the sole container and runtime
environment for application components. The (disk-based) database is merely
used as a data storage and state synchronization facility. Disk-based databases
frequently form the scalability bottleneck within the 3-tier architecture. As a
mitigation action, application components incorporate certain data processing
tasks. As a result, the load on the database (in terms of statement complex-
ity and transaction processing times) is effectively reduced, such that general
transaction throughput increases. However, this deliberate design choice re-
quires application servers to perform costly data processing work locally, where

3Which are one incarnation of NewSQL databases.

4

Application Server

“Classic” (Disk-Based) Database

User Device

Tables, Indexes

Component 1

Business

Objects

Business

Logic

Presentation

Layer

Component 2

Business

Objects

Business

Logic

Presentation

Layer

Component N

Business

Objects

Business

Logic

Presentation

Layer

User Interface

(Rendering of Controls, User Interactions)

Tables, Stored Procedures,

Analytical Models

Component 1

Business

Objects

Data-intense

Business

Logic

Presentation

Layer

Component 2

Business

Objects

Data-intense

Business

Logic

Presentation

Layer

Component N

Application Server

User Device

Business

Objects

Data-intense

Business

Logic

In-Memory Database

Presentation

Layer

User Interface

(Rendering of Controls, User Interactions)

Lightweight

Business

Logic

Lightweight

Business

Logic

Lightweight

Business

Logic

Figure 1: Evolution of the 3-tier Architecture

much data is frequently copied between the database and the application server.
Adding further application server instances is the prevailing scale-out measure.

An alternative to the 3-tier architecture (right hand side of Figure 1) re-
sults from the programming model of in-memory databases and parallel trends
through the progression of client-side technologies. At its core, applications on
an in-memory database “push down” those portions of the code that process
large amounts of data. This also includes any code which needs to read or write
large amounts of data, such as end-of-period accounting procedures in an ERP
system which need to roll up a large number of line items (such as individual
expenses and invoices) to compute some totals. At the presentation layer, we
already see application server functionality offset by powerful client-side tech-
nologies such as mobile devices and HTML5-compliant user agents providing
presentation rendering. The application server is merely affected with provi-
sioning of service interfaces (like REST endpoints).

Taken together, in-memory databases and modern user clients are serving to
evolve application servers to a relatively slim layer of lightweight business logic
and vertical capabilities (such as security; central configuration, administration
and monitoring; software lifecycle management; etc.). While the long-term
trajectory of this development is yet to unfold, we argue that the remaining
functionality may not justify another stack layer (i.e., the application server)

5

and we expect the remainder of the application servers to also merge into a
single, consolidated in-memory database. That consolidated platform should
still expose logical layering and virtualization, where appropriate (e.g., when
tenant isolation is mandatory).

3. In-memory Business Process Management

Business Process Management [1] is a prominent application integration
technology. A business process model captures an execution order of activi-
ties through control flow dependencies, described in a flowchart-like notation.
Business processes provide the basis of business aligned application coordina-
tion, by allowing different parts of applications to be composed together and
coordinated through a process orchestration engine. Being able to directly inte-

Intra-stack workflow

management

On-premise integration and

orchestration middleware

Application Server

Intra-Stack Workflow Management

Component 1 Component 2 Component 3

Disk-based Database

R R R

Application

Server 1

Application

Server 2

Integration and Orchestration Middleware

Application

Server 3

R R R

Database 1 Database 2 Database 2

Database

Application

Server 1

Application

Server 2

Application

Server 3

In-memory platform

Tables, Stored Procedures,

Analytical Models

In-memory BPM

Runtime

Entities

Process

Models

Application Server

In-memory platform

Component 3Component 2Component 1

Tables, Stored Procedures,

Analytical Models

In-memory BPM

Runtime

Entities

Process

Models

C
la

ss
ic

 3
-t

ie
r

a
rc

h
it

e
ct

u
re

In
-m

e
m

o
ry

 a
rc

h
it

e
ct

u
re

Figure 2: Deployment options for in-memory BPM systems

grate applications within the in-memory database poses the question as to how

6

the resulting new integration and orchestration capabilities (both for system-to-
system and also human-to-system processes) are positioned against traditional
enterprise application integration (EAI, [16]) technologies. Specifically looking
at business process management (BPM) systems, we believe that an in-memory
approach is superior to the traditional architecture and deployment of BPM
systems as separate, self-contained systems. These separate BPM systems are
constrained to integrating with applications through their existing public ser-
vice interfaces. In contrast, an in-memory BPM system may access an appli-
cation on various levels, starting at the raw database structures (tables, rows,
attributes), over abstractions such as business objects (effectively correspond-
ing to database queries/views that join rows from a number of tables), down
to stored procedures (or other functional entities of the in-memory program-
ming model) representing the “pushed down” (data-intense) code portions of
an applications. Figure 2 illustrates the possible evolution of established BPM
capabilities to a new in-memory foundation.

The bottom row of Figure 2 shows two existing high-level architectures
and deployment models for BPM systems. The lower left diagram, illustrates
an “intra-stack” workflow management capability which comes bundled with
an application or platform. These intra-stack workflow management systems
help automating and customizing functionality inside an application or plat-
form, allowing to define “local” composites. Examples include SAP Business
Workflow, Microsoft Windows Workflow Foundation, Oracle Workflow embed-
ded in E-Business Suite, and Salesforce Visual Process Manager, noting that the
application-centric variants such as SAP Business Workflow and Oracle Work-
flow embedded in E-Business Suite are being phased out by their vendors. In
contrast, the platform-centric solutions such as Microsoft Windows Workflow
Foundation (for the .Net platform) and Salesforce Visual Process Manager (for
the Force.com Cloud platform) continue to be offered. The latter solutions have
a wider reach beyond application boundaries, are consequently better suited to
orchestrate tasks outside of a “monolithic” application stack and generally bet-
ter positioned with regards to Cloud platforms.

The lower right diagram of Figure 2 depicts a simplified architecture of a sep-
arate integration and orchestration services, suitable for both an “on-premise”
and Cloud deployment. Different to intra-stack workflow management solutions,
integration and orchestration services are layered above individual applications
and platforms and are suitable to integrate applications and systems from dif-
ferent vendors. Integration and orchestration services (such as IBM WebSphere
MQ, Microsoft BizTalk, Amazon Simple Queuing Services etc.) are typically
deployed onto their own physical (or virtualized) hardware infrastructure or are
part of a Cloud platform’s services. This is because these offerings are positioned
as integration “hubs” exclusively using public service interfaces of the connected
applications. BPM capabilities form a major part of the integration pipeline of
integration and orchestration services. Customer-defined process models con-
stitute complex integration semantics, orchestrating services provided by the
connected applications and including human-centric activities.

Despite the maturity and rich functionality of the aforementioned types of

7

BPM systems, we argue that the underlying architectures do not fit the propo-
sitions of in-memory databases and may soon be rendered obsolete. Firstly,
an intra-stack workflow management capability is nothing but another appli-
cation component that can be migrated to an in-memory database (top-left
of Figure 2), alongside other data-intense application components. Secondly,
whenever different applications base on a single in-memory database instance,
the case for an external integration services becomes obsolete, reason for that
being the fact that an external services require “messages”, which are to be ex-
changed in between two applications, to be passed from the sender application
to the integration middleware, on to the receiver application. When both appli-
cations share a single in-memory database, this approach is a costly “detour”,
which is conceptually flawed in not using the most efficient communication route
through the shared in-memory database instance. In effect, integration services
such as business process management (BPM) and generally message-oriented
middleware systems need to adapt and migrate into the in-memory database
(top-right of Figure 2).

We believe that the use of shared in-memory database instances underneath
applications yields superior ways to integrate applications and their tenants. We
retain a model-driven approach to define integration scenarios, such as business
processes. The architectural changes and technical capabilities made possible
by in-memory databases will give BPM users more choice as to how said in-
tegration can be accomplished. The upper row of Figure 2 illustrates how we
believe business process management (in its two aforementioned generic embod-
iments) to be affected by the proliferation of in-memory database for enterprise
applications. In either case, we propose to embed core BPM capabilities into
the in-memory database.

Our approach offers richer integration capabilities and better runtime per-
formance. This is because any external cross-application communication is
replaced with local communication within the in-memory database instance.
While an in-memory database instance will typically still constitute a distributed
database, the sharing, clustering, and replication strategies can be chosen in a
way that each step a single business process instance “finds” all of its data (such
as the accessed business objects) on a single node of the distributed database.

We partly follow the established trend of applications adapting to the in-
memory programming model. That is, both major portions of a BPM runtime
system and the business processes as such are implemented as (or automatically
compiled into) in-memory database entities (such as table definitions, stored
procedures, etc.). We further propose to broaden the spectrum of interfacing
options between applications and business processes, where we generally see
application integration enhanced in a number of ways:

1. In terms of service or data integration (or mixtures thereof) where a busi-
ness process may access applications through code (e.g., by invoking their
public service interfaces or stored procedures representing “pushed-down”
application code that resides within the in-memory datavase) or through
data (e.g., by directly querying and updating data that is “owned” by

8

some application).

2. In terms of data granularity (e.g., single attributes, database tables, busi-
ness objects, business object hierarchies, etc.) where an in-memory BPM
service can interface with applications by querying or updating those ap-
plication artifacts, offering more flexibility than merely integrating appli-
cations through their public service interfaces.

3. In terms of request directions (i.e., “push”, “pull”) where a process may
either actively trigger an application functionality or subscribe to appli-
cation events and be notified upon their occurrence.

4. In terms of different consistency models, where a business process may
be synchronously coupled to application transactions, be asynchronously
(yet, reliably) de-coupled from application transactions, or be asynchronously
de-coupled, yet eventually consistent [28] by means of some asynchronous
consistency protocol.

Interfacing application data entities by other means than invoking pre-planned
public service interfaces poses the risk of violating contracts and protocols that
are typically enforced by those service interfaces. While this problem is real and
may potentially “corrupt” persistent application state, we propose the following
mitigation actions:

• Adhering to the constraints that are normally enforced by a service inter-
face at runtime may often be relegated to a design-time problem. That is,
a process modeling tool for an in-memory BPM service should not simply
give modelers access to the database catalog (i.e., show plain tables) but
integrate with a business object repository, which is part of many business
applications (such as SAP’s ERP stack). By relying on a higher-level “se-
mantic” type system, the description of the listed business objects already
constitute a “safe” CRUD interface to their state. Moreover, some (alas,
not all) business objects are associated to a state machine model, which
defines discrete states as combinations of a business object’s attribute val-
ues and valid state transitions on top. An in-memory BPM runtime may
enforce these constraints by compiling the state machine into database
queries that are run from within the stored procedures which we generate
for the actual process steps.

• Public service interfaces of business applications can be roughly subdi-
vided into a RPC-style interfaces (such as SOAP-based Web services) and
CRUD-style interfaces (such as RESTful Web services). Recent trends
have de-emphasized RPC-style interfaces in favor of CRUD-style inter-
faces. Besides other differences, CRUD-style interfaces are closely an-
gled around a “public” data domain model. That is, invoking a CRUD-
style service is conceptually very similar to directly querying, updating,
or deleting (portions of) a business object. Adapting applications expos-
ing CRUD-style service interfaces to our proposed approach of interfacing
business objects directly on the database level, may, in fact merely leave
out the “overhead” of the Web services stack, but essentially perform the

9

same actions on the database. Service contracts (such as the aforemen-
tioned state machine model) can, in fact, be part of the “pushed down”
application code, represented as database constraints, trigger definitions,
etc.

• Finally, our approach does not dis-allow invoking applications through
their public service interfaces, when appropriate. That naturally includes
interfacing with external applications and services, which do not share the
same database instance.

With those mitigations in place, we believe that the benefits of interfacing with
application on the storage level often outweighs the disadvantage of suffering a
potential loss of encapsulation. Beyond core performance reasons, integration
middleware may benefit in other ways from the migration into an in-memory
database. By way of BPM, in-memory technology enables a number of principal
capabilities:

Deep and flexible application integration: A BPM system that resides within
the same in-memory database as the applications, which it integrates has
a far greater reach into application entities such as business objects and
events. Being able to interface with an application using the different
perspectives (code or data), levels of abstraction, request directions, and
consistency models offers powerful ways to deeply integrate a business
process with applications.

End-to-end model driven process foundation: At the time when applica-
tion service interfaces are designed and implemented, future integration
requirements are difficult to anticipate. Hence, the use of external com-
position processes is often limited in practical settings, where augmenting
application interfaces is a costly governance exercise with long execution
delays. Our approach overcomes this limitation by not exclusively relying
on public service interfaces but integrating applications through a variety
of other (implicit) interfaces.

IT landscape consolidation: Replacing separate, stand-alone integration servers
(such as stand-alone BPMS) with in-memory integration platform services
constitutes an IT landscape consolidation where the number of distinct
systems in an IT landscape is reduced. The latter goes along with a mea-
surable cost reduction (TCO) for system maintenance.

Architectural simplification and reuse: From a BPMS vendor perspective,
there is a substantial potential of reusing existing in-memory database fea-
tures to build a BPM runtime service. In our prototypical implementation,
we were relieved of most dealings with complex aspects such as concur-
rency control and data consistency for the state making up a process in-
stance; Cloud “readiness” (scale-out); robustness and failover guarantees;
security (authentication and authorization); recovery and backup; data
transformations and rich expression evaluation capabilities; event-based

10

action triggering; software and content lifecycle management etc. The
enormous savings in terms of development efforts also help reducing im-
plementation risks and benefit the overall BPM system’s early maturity.
We will re-iterate on some of these benefits in more detail in Section 4.

Intra-process analytics: Being embedded in an in-memory database with
built-in OLAP capabilities (as is the case for SAP HANA), business pro-
cesses could integrate the aforementioned high-performance, flexible “live”
data analytics features. This principal capability can be employed in many
scenarios like task routing based on complex data analytics, where the
further process execution depends on a situational analysis of the current
data basis. In an extended scenario, the underlying data analytics could
actually even be altered by a process end user at runtime, enabling ad-hoc
process flexibility.

Multi-paradigm support: Business processes are not limited to control-flow
paradigms where a process model effectively defines the sequencing of pro-
cess steps. Equally important, other paradigms (like business rules eval-
uation, complex event processing, and data transformations), augment or
even supersede the control flow perspective of a process model. For exam-
ple, this includes declarative approaches for constraint-driven processes.
The in-memory process model actually makes it possible to simultaneously
support and merge a number of model-driven “execution paradigms”.

The aforementioned virtues of providing a core BPM system inside an in-
memory database (henceforth conveniently named “in-memory BPM”) augment
existing BPM middleware capabilities, where these are still applicable in the
context of the new architecture.

4. Approach

This section outlines the principles of a BPM runtime component running
within an in-memory database and suitable to run BPMN 2.0 [20] based process
models. We introduce a basic state model for process instances, illustrate the
mapping principle for BPMN-based process models to SQL and stored proce-
dures, and give the concrete mappings for a number of selected BPMN entities.
Some familiarity with BPMN 2.0 is required in reading this section, which con-
stitutes a conceptual proof-of-feasibility and leaves the necessary performance
and scalability evaluations to be covered by future work.

Supporting stringent consistency requirements of business applications, in-
memory databases (as one “incarnation” of NewSQL databases) provide for
full consistency, supporting transactions with ACID guarantees. Throughout
this paper, we will exclusively look at the aforementioned class of relational in-
memory databases, exemplified by SAP HANA which provide for the following
fundamentals:

• ACID style transactions with (at least) a “read committed” isolation level

11

• SQL interface for data definition, querying, and manipulation

• Procedural extensions (“stored procedures”) supporting control flow con-
structs like (recursive) procedure invocation, looping, and conditional branch-
ing (“if-then-else”) and database triggers for transparent nested execution
of user-defined statements

• Scalability advances inherited from architectural changes introduced with
NewSQL databases (c.f. Section 1) and based on schema, transactional
workload, sharding, clustering, and replication strategies that support
single-sharded transactions [8, 24].

• Per-node performance increase (“scale-up”) resulting from in-memory data
representation (possibly augmented by anti-caching strategies)

Besides the latter two criteria, popular disk-based relational databases (includ-
ing open-source databases such as MySQL and PostgreSQL) satisfy our require-
ments. In fact, our approach is functionally compatible with those systems, but
nonetheless ill-suited for pre-NewSQL relational databases for two reasons:

1. For one, the recent scalability advances of relational databases can partly
be attributed to the architectural innovations of NewSQL databases (c.f. Sec-
tion 1). Some (yet not all) of these innovations were transferred to other
relational databases, most prominently including an in-memory primary
data representation.

2. Secondly, the 3-tier programming model that is traditionally exercised
for applications on top of relational databases does not encourage relay-
ing application code into the database’s address space (e.g., as stored
procedures). In contrast, NewSQL (and in-memory) databases promote
using stored procedures for best performance. As a result, pre-NewSQL
databases would not host application code and“only” offer access to database
tables, limiting the interfacing options at the storage level for a BPM run-
time.

Extended functionality of our approach may even use “advanced” functionality
of certain in-memory databases such as analytics (OLAP) capabilities on “live”
data.

Our approach fundamentally embraces an event-condition-action (ECA) paradigm
to automate business processes [3, 7] within an in-memory database. An event
is a database state change, reflecting records in a table being inserted, updated,
or deleted. Any such event is generally suitable to trigger process steps. Condi-
tion expressions can aggregate multiple events, which can jointly trigger a pro-
cess step. Formally, these conditions are expressions in first order logic (FOL),
reasoning about the database state. For instance, the (simplified) triggering
condition for BPMN’s Synchronizing Parallel Gateway is as follows:

∃p.p ∈ P ∧ ∃t1.t1 ∈ T ∧ ∃t2.t2 ∈ T

∧t1[processId] = t2[processId] = p ∧ t1[pos] = 1 ∧ t2[pos] = 2

12

In relational database parlance, the expression requires a tuple p to exist in
some relation P and two tuples t1, t2 in another relation T . P and T would cor-
respond to to tables holding records representing individual process instances
and process tokens, respectively. Process tokens reference a process instance
through a foreign key attribute “processId”, thus associating tokens to a par-
ticular owning process instance. Tokens further have a “position” attribute,
storing the current position of that token within the control flow graph. In the
given example, the synchronizing join gateway had two inbound edges labeled
1 and 2 and a token being positioned on either edge in front of that gateway
had the corresponding values of its “position” attribute. This FOL expression
could be easily converted into a SQL query like that:

SELECT

"..." AS artifactId, "AND_JOIN" AS artifactType, p.ID AS processId,

t1.ID AS tokenId, "tokenId2=" || t2.ID AS customParameters

FROM

PROCESSES AS p, TOKENS AS t1, TOKENS AS t2

WHERE

t1.POSITION = 1 AND t1.PROCESS_ID = p.ID AND

t2.POSITION = 2 AND t2.PROCESS_ID = p.ID

Notice that the result tuples contain two “constant” attributes (“artifactId” and
“artifactType”), identifying the unique model identifier of the gateway artifact
and the type of the artifact as such. We will later explain why we need this extra
information to be part of the query’s result set. We further make an attribute
“customParameters” part of the result set. This attribute is a character string
using an URL parameter encoding scheme to accommodate any number of extra
key-value pairs. In the example above, we use it to pass on the primary key of
the second token.

The database state changes forming the events result from transactions being
run by database clients. These clients can be any application, such as an ERP
stack which updates its business objects. Alternatively, database state changes
may also result from transactions that are internal to the database, such as
process steps which, in turn, perform updates on the database. These updates
may both affect the state representing the process instance as such (like when
advancing a token of the process instance) and also update external state such
as business objects which are “owned” by other application.

We map process models to a set of event-condition-action (ECA) rules, where
the events and conditions are represented as database queries and an action
comprises one or multiple stored procedures. Each stored procedure is, in turn,
a sequence of database queries and update statements interspersed with control
flow constructs (loops, conditional branching, invocation of other procedures,
etc.). For example, the “action” for the Synchronizing Parallel Gateway from
above is as simple as this:

// parse the "customParameters" attribute into a variable "tokenId2"

DELETE FROM TOKENS WHERE ID = tokenId1;

13

UPDATE TOKENS SET POSITION = 3 WHERE ID = tokenId2;

That is, the two tokens t1, t2 from the gateway’s inbound edges are conceptually
“merged” into a single token for the outbound edge by deleting the first token
and setting the second token’s “position” attribute to the label of the outbound
edge. Other process artifacts have more complex actions, where (besides altering
the internal process state), other database entities may be affected. For instance,
a process artifact may well alter business objects of some external application
by directly updating the corresponding database tables. For the action to be
triggered, it needs to be technically related to the event and condition of the
associated ECA rule. Like in case of the synchronizing join gateway example,
any time after a state change to the processes or tokens tables when the query
corresponding to the condition yields a non-empty result set, the corresponding
action will be executed for the respective result tuples.

Mapping BPMN entities to ECA rules which are mapped to supporting
database structures and stored procedures benefits the versatility of our ap-
proach. Conceptually, other modeling paradigms that have a mapping to ECA
rules are also covered by our approach. From a BPM perspective, this is particu-
larly rewarding for “adjacent” paradigms, which are frequently used in conjunc-
tion (or as part of) business processes, including: (1) business rules definitions
(like decision tables, if-then-else cascades, etc.), (2) business activity monitor-
ing (usually accomplished by ways of complex event (stream) processing) and
(3) event correlation (as used in BPMN’s message-triggered Intermediate Catch
Events). We leave further details on other paradigms as subject to future work.

4.1. Synchronous and Asynchronous artifacts

Depending on the technical characteristics of the process at hand, two ways
of triggering an action upon an event may apply:

• For synchronous artifacts, we group these artifacts into a single database
transaction. Within that transaction we recurrently test the triggering
conditions of all the assembled process steps. When the query that cor-
responds to a triggering condition of a process step returns a non-empty
result set, we instantiate and run the corresponding action (a stored pro-
cedure). Only when all queries, which collectively represent the conditions
of the assembled process steps return an empty result set, the transaction
is complete.

• For asynchronous artifacts, we split the process model into “synchronous
segments” where each synchronous segment is run in the aforementioned
manner for synchronous artifacts. The synchronous segments are them-
selves related to database triggers which invoke the stored procedure for
the synchronous segment in a separate transaction.

We will subsequently explain the two concepts in detail and explain the mapping
of a BPMN-based process model by means of some examples.

14

In the simple-most case, a process model exclusively comprises synchronous
artifacts. Synchronous artifacts are those process steps (i.e., gateway, activity,
event) that can run without “blocking” the process by waiting for an asyn-
chronously incoming external event. An incoming event denotes an external
database state change on which a process step depends and which is not caused
by some upstream process step. For example, BPMN’s (message-triggered)
Intermediate Catch Events block a process instance until a “message” is re-
ceived. In technical terms, the receipt of that message denotes an external
event. In contrast, a Synchronizing Parallel Gateway merely depends on events
(database state changes), which are caused by upstream process steps. In de-
tail, the triggering condition of the Synchronizing Parallel Gateway refers to
database state changes (creating the process instance and putting the process
tokens onto the gateway’s inbound edges), which are exclusively caused by up-
stream process steps. In effect, the Synchronizing Parallel Gateway is classified
as a synchronous artifact, whereas the Intermediate Message Event is an asyn-
chronous artifact.

Please note that our classification into synchronous and asynchronous arti-
facts merely reflects the ability to group artifacts into a single transaction (or
not). Other concerns (notably those affected with message exchange patterns
or control flow parallelism) may result in different classifications, which are ir-
relevant to our approach. That is, we can group multiple synchronous artifacts,
which are interconnected through control flow edges into a single transaction.
An asynchronous artifact may only be the first process step in that transaction.
The table below classifies some key BPMN artifacts as being asynchronous or
synchronous: Besides purely synchronous and purely asynchronous artifacts, a

Synchronous Asynchronous Sync-Async

Events End (Throw)
Event, Intermedi-
ate Throw Event

Start (Catch)
Event, Intermedi-
ate Catch Event

Gateways Exclusive Gateway,
Inclusive Gateway,
Parallel Gateway,
Complex Gateway

Event-based Gate-
way, Parallel
Event-based Gate-
way

Activities Send Task, Service
Task, Script Task,
Business Rule
Task, Call Activity

Receive Task User Task, Manual
Task, Call Activity

Table 1: Synchronous and asynchronous process artifacts

third “sync-async” category classifies some BPMN artifacts as “hybrids” hav-
ing a leading synchronous and a trailing asynchronous part. Technically, these
artifacts synchronously perform some initial work. Only when this initial work
is completed, sync-async artifacts “block” and wait for an external event before

15

commencing with the asynchronous part.
For example, a User Task wraps the technical interaction with a task man-

agement software (through protocols like WS-HumanTask [2]), which is respon-
sible for serving the tasks to end users. Human interactions are by definition
asynchronous, i.e., the User Task artifact blocks until a human task processor
manually picks up the task and subsequently marks it as “completed”. Ini-
tially dispatching the task specification (comprising data to populate forms,
instructions on who is eligible/excluded to/from processing the tasks, comple-
tion deadlines, etc.) to the task management happens synchronously before the
User Task artifact blocks by waiting for the end user to complete the task.

4.2. Synchronous Artifacts Mapping

For a given process (or process fragment) exclusively comprising synchronous
process artifacts, we can groups these process artifacts into a single transaction.
The corresponding mapping algorithm is devised into three stages, being (1)
the preprocessing stage where we label all control flow connectors (“edges”)
with an integer identifier, the (2) mapping stage where we map each artifact
into a query and a stored procedure, collectively representing an ECA rule, and
(3) the assembly stage where we assemble the queries and stored procedures
from the mapping stage into a database view and a global stored procedure
polling that view and invoking the fitting stored procedures from the mapping
stage. The mapping algorithm generates SQL statements and stored procedure
definitions, which interact with a minimal BPM runtime system. That BPM
runtime system is itself a set of tables and stored procedure definitions that
jointly provide capabilities that are shared between all processes. Different to

ID
MODEL_ID
PARENT_ID
PARENT_TOKEN_ID
LIFECYCLE_PHASE

PROCESSES

ID
PROCESS_ID
POSITION

TOKENS
*

10..1

* 0..10..1

process tokenschild
processes

parent
token

Figure 3: Minimal database schema for process runtime

most applications, BPM systems have a central notion of “process instances”,
being instantiated process models (represented by the MODEL ID attribute) and
defining the lifecycle of a single coherent “case”. The LIFECYCLE PHASE at-
tribute may assume distinct values such as “running”, “suspended”, “canceled”,
“completed”, “archived”, etc. Process instances can be “nested” where parent
processes can transitively invoke child processes. A process instance record,
thus maintains a null-able PARENT ID foreign key denoting its parent process
instance (if any). Child processes also keep a null-able PARENT TOKEN ID foreign
key attribute to the token of the parent process instance which has triggered the
sub-process from within the parent process. Remembering that parent token is

16

important to correctly resume the parent process once the child process is com-
plete. Within a single process instance, one or many tokens may exist, where
each token simultaneously represents a parallel “thread of control” and a posi-
tion within the control flow definition of the underlying process model. Tokens
exclusively belong to a single process instance (denoted through its PROCESS ID

foreign key).
We further need a stored procedure DECODE PARAMETERS and table type def-

inition PARAMETER TYPE in order to deal with the URL-encoded “customPara-
meters” attribute. DECODE PARAMETERS is passed a parameter string, listing a
sequence of name-value pairs, following the syntax of URL request parameters

name1=value1&name2=value2&...

which it parses into a table instance of PARAMETER TYPE:

CREATE TYPE BPM.PARAMETER_TYPE AS TABLE (

NAME VARCHAR(50) PRIMARY KEY, VALUE VARCHAR(100));

Same as the PROCESSES and TOKENS tables, PARAMETER TYPE is assigned to a
schema “BPM”, which hosts the generic BPM runtime database definitions.
Parsing a “customParameters” string into an instance of the PARAMETER TYPE

table type is trivial such that we omit the DECODE PARAMETERS stored procedure
definition.

4.2.1. Preprocessing Stage

The preprocessing stage initially traverses the given process model to nor-
malize the model and label the control flow connectors. The traversal starts
at the process model’s entry point(s), being those artifacts which do not have
any inbound connectors. The pre-processing algorithm will then perform the
following operations:

Connector labeling: Assign each control flow connector a label and make that
label available in a lookup structure for the subsequent compiler stages.
The connector labels will generally be unique, except for two cases:

• For (converging) Exclusive Gateways (“XOR joins”), the gateway’s
inbound connectors will all be labeled with the gateway’s (single)
outbound connector’s label.

• For Event-based Gateways (“deferred choice”), the gateway’s out-
bound connectors will all be labeled with the gateway’s (single) in-
bound connector label.

Inbound connector normalization: Find all artifacts having more than a
single inbound control flow connector that are not converging gateways.
For each of these artifacts, insert a (converging) Inclusive Gateway (“OR
Join”) in front of that artifact.

17

Outbound connector normalization: Find all artifacts having more than a
single outbound control flow connector that are not diverging gateways.
For each of these artifacts, insert a (diverging) Parallel Gateway (“AND
Split”) behind that artifact.

We refrain from giving the algorithms to perform the aforementioned steps and
refer to an example instead. Figure 4 shows a simple process model, comprising

Task 1

Task 2

Task 3

Task 1

Task 2

Task 3

1

2

3

4 5

5

5

6 7

Figure 4: Process model pre-processing

a Start Event, an End Event, a converging Exclusive Gateway, and three Tasks.
The preprocessing stage inserts a diverging Parallel Gateway behind the Start
Event and a converging Inclusive Gateway in front of “Task 3”. The control flow
connectors are labeled with integer identifiers. These labels are generally unique
except for the inbound and outbound connectors of the converging Exclusive
Gateway which are all labeled “5”.

4.2.2. Mapping Stage

The mapping stage re-visits all process artifacts and generates fragments of
SQL and stored procedures, which are later assembled into a deployable file.
Each artifact is mapped into (1) a query representing the event and condition
part and (2) a stored procedure, which represents the action part. We subse-
quently give the mapping instructions for a a number of fundamental BPMN
artifacts in order of increasing complexity. We deliberately refrain from giving
mapping rules for the complete set of all existing BPMN artifacts, which beyond
the scope of this paper.

Plain Tasks. For example, a simple “no-op” Task artifact which merely forwards
a token from its inbound control flow connector to its outbound control flow
connector is mapped onto the following query and stored procedure pair:

SELECT

"..." AS artifactId, "TASK" AS artifactType, p.ID AS processId,

t.ID AS tokenId, NULL AS customParameters

FROM PROCESSES AS p, TOKENS AS t

WHERE p.LIFECYCLE_PHASE = "running" AND t.PROCESS_ID = p.ID AND

t.POSITION = <identifier of inbound connector>

18

CREATE PROCEDURE MYPROCESS.<artifactId> (

IN processId INTEGER, IN tokenId INTEGER,

IN parameters BPM.PARAMETER_TYPE)

LANGUAGE SQLSCRIPT AS

BEGIN

UPDATE TOKENS SET POSITION = <outbound connector label>

WHERE ID = :tokenId;

END;

The query returns a result set of all tokens and associated process instances,
where the token is directly “in front of” the task. Notice that we do not use the
“customParameters” attribute in this case.

The stored procedure, representing the action part of the corresponding rule
merely forwards the token to the task artifact’s outbound connector by updat-
ing its “position” attribute. Tasks and activities performing any work (such
as Script Tasks, executing a scripted sequence of program code) would natu-
rally need to include additional DML statements into their stored procedures.
For example, a Script Task ’s script code could be cross-compiled into stored
procedure code which was simply pasted into the stored procedure.

Forking. A diverging Parallel Gateway forks multiple branches by putting to-
kens on all of its outbound connectors. The query representing the triggering
condition is identical to the one shown above (for Task artifacts). The difference
lies in the action part where we need to insert additional token records for the
gateway’s 2nd, 3rd, etc. outbound connector:

CREATE PROCEDURE MYPROCESS.<artifactId> (

IN processId INTEGER, IN tokenId INTEGER,

IN parameters BPM.PARAMETER_TYPE)

LANGUAGE SQLSCRIPT AS

BEGIN

UPDATE TOKENS SET POSITON = <1st outbound connector label>

WHERE ID = :tokenId;

INSERT INTO

TOKENS(ID, PROCESS_ID, POSITION) VALUES(<new unique id>, :processId,

<label of 2nd outbound connector>);

END;

This simplicity of spawning additional threads by merely creating further records
in the TOKENS table is one of the conceptual strengths of our approach. Both the
labels of the gateway’s first and second outbound connectors are hard coded into
the generated stored procedure code. The primary key of the newly inserted
token record must be taken from a sequence or UID generator function (omitted
for brevity).

19

Conditional Branching. An diverging Exclusive Gateway needs to evaluate user-
defined branching conditions to decide onto which outbound connector a token is
to be placed, where the branching conditions are “black boxes” to our approach.
As a very simple example, suppose the gateway had three outbound connectors,
of which the third was a “default branch” which is activated if none of the others’
conditions evaluate to “true”. The gateway’s responsibility is to implement a
staged purchase approval scenario where, depending on the monetary amount
of some purchase order, the control flow was routed to different downstream
branches.

SELECT

"..." AS artifactId, "XOR SPLIT" AS artifactType,

p.ID AS processId, t.ID AS tokenId,

"outboundLabel=" || (

(SELECT <branch1> FROM PURCHASE_ORDERS WHERE VALUE<100) UNION

(SELECT <branch2> FROM PURCHASE_ORDERS WHERE VALUE>=100 AND VALUE<1000) UNION

(SELECT <branch3> FROM PURCHASE_ORDERS WHERE NOT((VALUE<100) OR

(VALUE>=100 AND VALUE<1000))

) AS customParameters

FROM PROCESSES AS p, TOKENS AS t

WHERE p.LIFECYCLE_PHASE = ’’running’’ AND t.PROCESS_ID = p.ID AND

t.POSITION = <inbound connector label>

We embed the (mutually exclusive) routing conditions of the three branches (two
branches with explicit conditions and one “default” branch) into the condition
query. That is, the customParameters is used to store outboundLabel param-
eter that is set to the label of the Exclusive Gateway’s outbound connector
(“branch1”, “branch2”, “branch3”) that gets activated. In effect, the resulting
stored procedure merely had to use the returned outboundLabel parameter to
update the token’s POSITION attribute:

CREATE PROCEDURE MYPROCESS.<artifactId> (

IN processId INTEGER, IN tokenId INTEGER,

IN parameters BPM.PARAMETER_TYPE)

LANGUAGE SQLSCRIPT AS

outboundLabel INTEGER;

BEGIN

SELECT VALUE INTO outboundLabel FROM :parameters WHERE NAME=‘outboundLabel’;

UPDATE TOKENS SET POSITON = :outboundLabel WHERE ID = :tokenId;

END;

Complex Synchronization. As a final example, the converging Inclusive Gate-
way’s (“OR Join”) complex synchronization behavior can also be represented
in an equally simple manner. An OR Join must pass a token to its outbound
connector iff it has a token(s) on at least one of its inbound connectors and
for none of the inbound connectors having no tokens, there is a token further
upstream that can reach that inbound connector. When triggered, the gateway

20

will then remove a single token each of those inbound connectors that have a
token and put a single token onto its outbound connector.

Various alternatives have been proposed to efficiently implement OR joins
in workflow engines, e.g. [30, 29]. Our approach is based on a variant that
was conceived for the SAP NetWeaver BPM runtime [4]. The core idea is to
determine for each of the gateway’s inbound connectors the set of upstream
control flow connectors. In case of the example process from Figure 4, the OR
join’s first (upper) inbound connector’s (labeled 5) upstream connectors were
the ones labeled with {1, 3, 4}.

Please note that we exclude 5 from that set as it is also the label of the
inbound connector itself and does not count as “upstream” connector label. The
second (lower) inbound connector’s (labeled 2) upstream connectors were these
labeled {1}. We first determine a result set of “candidates” being combinations
of tokens at the gateway’s inbound edges which may (potentially) jointly trigger
the gateway. In our example scenario, these token candidates are returned by
querying a CANDIDATES view as defined below:

CREATE VIEW CANDIDATES AS

SELECT EDGE1.PID AS processId, EDGE1.TID AS tokenId1, EDGE2.TID AS tokenId2

FROM

(SELECT PROCESSES.ID AS processId, TOKENS.ID AS tokenId

FROM (TOKENS JOIN PROCESSES ON TOKENS.PROCESS_ID=PROCESSES.ID)

WHERE TOKENS.POSITION=2) AS EDGE1

FULL OUTER JOIN

(SELECT PROCESSES.ID AS processId, TOKENS.ID AS tokenId

FROM (TOKENS JOIN PROCESSES ON TOKENS.PROCESS_ID=PROCESSES.ID)

WHERE TOKENS.POSITION=5) AS EDGE2

ON EDGE1.processId=EDGE2.processId

The view’s query performs a full outer join on (TOKENS, PROCESSES) pairs that
constitute process tokens residing on different inbound connectors of the gateway
and their associated process instances. The gateway may synchronize varying
numbers of tokens at a time, depending on the available tokens on the gateway’s
inbound connectors. In case of two inbound connectors, it may either synchro-
nize one or two tokens at a time. The exact combination of inbound connectors
from which to consume tokens is only known at runtime, where for N inbound
connectors O(2N) combinations of inbound connectors having tokens exist. Our
approach covers all of these combinations using O(N) operations. Despite using
a full outer join to form a tuple of candidate tokens on the gateway’s inbound
connectors, the nested selection (WHERE TOKENS.POSITION=...) creates small
input tables on either side of the join operator, keeping the runtime cost low.

Even when candidate tokens are present, an OR join must not trigger if one
of its inhibiting conditions holds. The INHIBITORS view queries the primary keys
of all inhibited process instances where the OR join cannot currently synchronize
any candidate tokens. An OR join is inhibited if for those inbound connectors
that do not currently carry a candidate token, there are upstream tokens which
can still potentially reach that inbound connector.

21

CREATE VIEW INHIBITORS AS

SELECT DISTINCT INHIBITED.ID AS processId

FROM TOKEN JOIN PROCESSES AS INHIBITED ON TOKEN.PROCESS_ID=INHIBITED.ID

WHERE (TOKEN.POSITION IN (4, 3, 1) AND

NOT EXISTS (SELECT *

FROM TOKEN JOIN PROCESSES AS ENABLED ON TOKEN.PROCESS_ID=ENABLED.ID

WHERE TOKEN.POSITION=5 AND INHIBITED.ID=ENABLED.ID

)) OR (

TOKEN.POSITION IN (1) AND

NOT EXISTS (SELECT *

FROM TOKEN JOIN PROCESSES AS ENABLED ON TOKEN.PROCESS_ID=ENABLED.ID

WHERE TOKEN.POSITION=2 AND INHIBITED.ID=ENABLED.ID

))

For instance, for the first (upper) inbound connector, the query returns those
process instances where there is a token in one of the upstream connectors’
positions 4, 3, 1 and where there is no other token directly on the inbound
connector (labeled 5). Finally the following query ties together the CANDIDATES

and INHIBITORS views to yield the complete triggering condition of the OR join
gateway:

SELECT

"..." AS artifactId, "OR JOIN" AS artifactType, c.processId AS processId,

c.tokenId1 AS tokenId, "tokenId2=" || c.tokenId2 AS customParameters

FROM CANDIDATES AS c, PROCESSES AS p

WHERE p.LIFECYCLE_PHASE = "running" AND p.ID = c.processId AND

c.processId NOT IN (SELECT processId FROM INHIBITORS)

The associated stored procedure (representing the OR join rule’s “action” part),
needs to place a token onto the gateway’s outbound connector and remove the
candidate tokens from its inbound connectors:

CREATE PROCEDURE MYPROCESS.<artifactId> (

IN processId INTEGER, IN tokenId INTEGER,

IN parameters BPM.PARAMETER_TYPE)

LANGUAGE SQLSCRIPT AS

tokenId2 INTEGER;

BEGIN

SELECT VALUE INTO tokenId2 FROM :parameters WHERE NAME=‘tokenId2’;

INSERT INTO TOKENS(ID, PROCESS_ID, POSITION)

VALUES(<new unique id>, :processId, <outbound position>);

DELETE FROM TOKENS WHERE ID IN (:tokenId, :tokenId2);

END;

Depending on the number of candidate tokens, tokenId or tokenId2 may be
NULL (i.e., there is no candidate token on the first or second inbound connector,
respectively). The primary key of the to-be-generated outbound token can be
retrieved from a sequence or a UID generator function of the database. The

22

gateway’s outbound connector label 〈outbound position〉 is hard-coded into the
procedure at compile time.

4.2.3. Assembly Stage

Finally, the queries and stored procedures that were generated for each pro-
cess artifact need to be assembled into a single deployable SQL file, which rep-
resents the compiled process model. The principle is to aggregate the queries
into a single view QUEUE, which represents the ready-to-execute process artifacts
at any point in time:

CREATE VIEW MYPROCESS.QUEUE(artifactId, artifactType,

processId, tokenId, customParameters) AS

-- sub-query for process step 1

UNION

-- sub-query for process step 2

UNION

...

The QUEUE view is placed into a process-specific schema MYPROCESS, such that
the database definitions of different process models reside in different (named)
schemas. A SCHEDULER procedure recurrently queries the QUEUE view until an
empty result set is returned, signaling the end of the synchronous process frag-
ment:

CREATE PROCEDURE MYPROCESS.SCHEDULER ()

LANGUAGE SQLSCRIPT AS

processId INTEGER; tokenId INTEGER;

hasTransition INTEGER; artifactId VARCHAR(100);

artifactType VARCHAR(100); customParameters VARCHAR(1000);

BEGIN

queue = SELECT * FROM MYPROCESS.QUEUE;

CALL BPM.NEXT_TRANSITION(:queue, hasTransition, artifactId, artifactType,

processId, tokenId, customParameters);

WHILE (hasTransition > 0) DO

CALL BPM.DECODE_PARAMETERS(customParameters, parameters);

IF (artifactId = ’<artifactId1>’) THEN

CALL MYPROCESS.<storedProcedure1>(processId, tokenId, :parameters);

ELSEIF (artifactId = ’<artifactId2>’) THEN

CALL MYPROCESS.<storedProcedure2>(processId, tokenId, :parameters);

...

END IF;

queue = SELECT * FROM MYPROCESS.QUEUE;

CALL BPM.NEXT_TRANSITION(:queue, hasTransition, artifactId, artifactType,

processId, tokenId, customParameters);

END WHILE;

END;

23

The SCHEDULER procedure invokes another procedure “NEXT TRANSITION” which
is part of the BPM runtime schema. It provides a mechanism to look up a ready-
to-run artifact by querying the QUEUE view (omitted for brevity).

As long as NEXT TRANSITION yields a value of > 0 for the hasTransition

output parameter, the SCHEDULER procedure will call the corresponding stored
procedure for the queried ready-to-run artifact. Each synchronous process seg-
ment starts with an asynchronous artifact, i.e., depends on an outside event to
be “triggered”. We discuss the mechanics of invoking a synchronous process in
the following section.

4.3. Asynchronous Artifacts Mapping

Executing a process model containing asynchronous artifacts requires spread-
ing a single process instance across multiple database transactions, where a
each transaction runs a single “synchronous segment”. A synchronous seg-
ment is a process (fragment) having an asynchronous artifact as its starting
point and purely synchronous segments downstream. Our approach to support-
ing processes interspersed with asynchronous artifacts entails (1) synchronous
segment decomposition (identifying the set of synchronous segments which
collectively make up the end-to-end process model), (2) synchronous seg-
ment mapping (mapping each synchronous segment into a set of SQL artifacts
and stored procedures, following the instructions given in Section 4.2), and (3)
trigger definitions (identifying the asynchronous starting point of each syn-
chronous segment and mapping it onto at least one database trigger definition).
We subsequently sketch out how we tackle the synchronous segment decom-
position and trigger definitions tasks and give the corresponding algorithms in
pseudo-code and by means of examples.

4.3.1. Synchronous Segment Decomposition

Part of our transformation of BPMN-based process models into the HANA
programming model is to decompose the process graph into “synchronous seg-
ments”. Informally, a synchronous segment is a contiguous fragment of the

Segment 2Segment 1

Start
Event

Task 1

Intermediate
Event

Task 2

End
Event

Figure 5: Simple synchronous segment decomposition

process model where the contained process artifacts can be executed in a single
database transaction. As a consequence, a synchronous segment must only con-
tain non-blocking process steps and after the synchronous segment was started

24

in some transaction T1 it must not depend on some other transaction T2 to suc-
cessfully commit. Any (asynchronous) artifact in a process model that estab-
lishes a dependency on some other (external) transaction denotes the boundary
of a synchronous segment. The previous synchronous segment(s) end(s) before
that asynchronous artifact and a new synchronous segment starts having that
artifact as its entry point. The idea is to later de-compose the process model
such that it is completely covered by synchronous segments. Each synchronous
segment is executed in the transaction that triggers its first (asynchronous) arti-
fact. That is, if a process blocks on some asynchronous artifact, it is continued
within the external transaction that “delivers” the event which resumes the
process instance.

Figure 5 illustrates the synchronous segment decomposition of a simple pro-
cess model, which is a plain sequential arrangement of artifacts. The process
contains two asynchronous artifacts, being a Start Event and an Intermediate
Catch Event. The remaining artifacts (two Tasks and an End Event) are syn-
chronous. Accordingly, the first synchronous segment (surrounded by a dotted
line) has the Start Event a its asynchronous starting point and the second syn-
chronous segment (surrounded by a dashed line) has the Intermediate Catch
Event as its starting point.

Sync-Async Artifacts. Before a process model can be decomposed into its syn-
chronous segments, all sync-async artifacts need to be expanded into purely
synchronous and asynchronous artifacts. For an illustration, please refer to Fig-
ure 6, where a User Task artifact is broken up into a sequence of a (synchronous)
Service Task (“Create Task”) and an (asynchronous) Intermediate Catch Event
(“Wait for Task Completion Message”). Accordingly, the first synchronous seg-

Segment 2

Start Event

User Task

End Event

Create Task

Wait for Task
Completion Message

Task Id

Segment 1

Figure 6: Decomposition of sync-async artifacts

ment (dotted border) encompasses the “Create Task” Service Task, whereas
the “Wait for Task Completion Message” Intermediate Catch Event becomes
the asynchronous starting point of the second synchronous segment (dashed
border). The “Create Task” Service Task is responsible for creating the task in-
stance, e.g., by synchronously invoking an external task management software.
The “Wait for Task Completion Message” Intermediate Catch Event blocks the
process until it receives a message from the task management software, signal-
ing the completion of the respective task instance. A “Task ID” Data Object

25

provides for a unique identifier of the task instance which is created in the “Cre-
ate Task” Service Task. The downstream “Wait for Task Completion Message”
Intermediate Catch Event uses the value stored in the “Task ID” Data Object
to match the completion message to the correct task instance.

In a more complex case, a User Task may require treatment of tasks ex-
ceeding some processing timeout. In BPMN, this could be handily modeled
with Boundary Catch Events, which provide an extra “channel” for events out
of running activities. For an illustration, please refer to Figure 7, where the
upper part shows a process with a User Task, having a Timer Boundary Event
attached, leading to an alternate branch (“Task 3”). The lower part of Figure 7

Start Event

User Task

End Event

Timer Boundary Event

Task 1 Task 2

Task 3

Start Event End Event

Intermediate
Timer Event

Task 1 Task 2

Task 3

Create Task

Intermediate
Message Event

Segment 1 Segment 2

Segment 3

Figure 7: Complex decomposition in the presence of sync-async artifacts

shows the representation of that process after eliminating the sync-async User
Task artifact with the corresponding boundaries of the resulting synchronous
segments. The User Task was split into an upstream Service Task (“Create
Task”) and a downstream Event-based Gateway having two (mutually exclu-
sive) Intermediate Catch Events connected to it. The first Intermediate Catch
Event has a message trigger and represents the regular completion of the task.
The second Intermediate Catch Event has a timer trigger and represents the
timeout of the task before it was completed by an end user. The two Inter-
mediate Catch Events form the starting points of two distinct, yet overlapping
synchronous segments.

Overlapping Segments. In many cases, synchronous segments exclusively group
process artifacts with no overlap. As can be seen in Figure 7, distinct syn-
chronous segments do sometimes overlap, though. Generally, overlapping syn-
chronous segments may exist because of converging gateways merging two or
more “branches”, where each branch belongs to a different synchronous segment.
Two control flow branches belong to different synchronous segments when their

26

asynchronous starting points are different. This is because any synchronous
segment has only a single asynchronous starting point. Figure 8, depicts a sim-

Add message
to collection

Set
counter=0

Receive total

counter<total?

Counter

Collection

Compute
aggregate

Aggregate

Increment
counter

Total

Send out
aggregate

Figure 8: Overlapping synchronous segments

ple “message collect” pattern. A process instance receives a fixed number of
messages and finally computes an aggregate value from the received messages.
For instance, the process could be employed to sum up the prices of line items
on some invoice. The first synchronous segment (dotted blue line) is anchored
at the Start Event, where the process is initialized with the number of messages
to receive, which is stored in a Data Object “Total”. The first synchronous
segment further comprises a downstream Task where another “Counter” Data
Object is initialized to 0, a converging Exclusive Gateway, which demarcates
the “bottom” of the loop where the messages are collected, and an “Increment
Counter” Task, where the “Counter” Data Object is incremented by one.

The second synchronous segment (dashed red line) starts with the “Add
message to collection” Intermediate Catch Event where the messages are re-
ceived and appended to a list-valued “Collection” Data Object. A diverging
“counter<total?” Exclusive Gateway then decides whether to stay within or
to break out of the loop. The second synchronous segment incorporates both
cases. In the former case, tokens are passed back to the upstream converging
Exclusive Gateway, starting another loop cycle. In the latter case, a “Com-
pute aggregate” Task is activated, which calculates a total value from the set
of received messages that are stored in the “Collection” Data Object. Finally,
an End Throw Event ends the process sends the aggregate value (stored in the
“Aggregate” Data Object) to some external receiver.

The two synchronous segments overlap in portions of the loop where mes-
sages are progressively received. This is because the first synchronous segment
enters the loop for the first time and only ends before the (asynchronous) Inter-
mediate Catch Event, where the process blocks until a matching message was
received. The second synchronous segment has that Intermediate Catch Event
as its starting point. Each run of the second synchronous segment represents
an iterations of that loop, which will repeatedly re-execute the initial portion of
the loop cycle, thus causing the overlap with the first synchronous segment.

27

Decomposition Algorithm. The synchronous segment decomposition algorithm
takes a process model as input and initially replaces the sync-async artifacts
with their alternate representation, exclusively comprising purely synchronous
and purely asynchronous artifacts (see Section 4.1). Starting at the artifacts
that have no control flow predecessors, the algorithm then traverses the process
model downstream, following control flow connectors. A synchronous segment S
is defined as a tuple S = {a, T}, where a is the asynchronous starting point and
T is the synchronous “tail” (i.e., the set of synchronous artifacts contained in
S). Whenever an asynchronous artifact f is found, a new synchronous segment
(f, {}) is created, having the newly found asynchronous artifact set as its asyn-
chronous starting point. The algorithm can be written down in pseudo-code as
follows:

procedure decomposeProcess

in: Process p

out: set of all synchronous segments A

begin

Let A be an empty set {}.

Replace sync-async artifacts.

let F be the set of Flow Nodes contained in p, which have no incoming connectors.

for each f in F do

Assert that f is an asynchronous artifact.

Call traverseSegment(f, (f, {}), A).

end for

end

The algorithm decomposeProcess is invoked on an entire BPMN Process entity
and invokes another algorithm traverseSegment for each of its Flow Nodes that
have no incoming connectors. The algorithm traverseSegment first checks if
the given Flow Node is an “new” asynchronous artifact (i.e., it is different from
the current synchronous segment’s starting point). If so, it will create a new syn-
chronous segment, add it to the set of all discovered synchronous segments and
recursively invoke traverseSegment. If the given Flow Node is placed within the
current synchronous segment (i.e., it is either part of its synchronous “tail” or it
is the segment’s synchronous starting point), traverseSegment will make it part
of the current synchronous segment and recursively invoke traverseSegment for
any successor artifacts (i.e., Flow Nodes having an inbound Sequence Flow from
the current artifact).

procedure traverseSegment

in: FlowNode f

inout: synchronous segment S,

set of all synchronous segments A

begin

if f is an asynchronous artifact and f is not identical to S.a then

Let S be (f, {}).

Include S in A.

28

Call traverseSegment(f, (f, {}), A).

else if f is not contained in S.A then

if f is a synchronous artifact then

Include f in S.T.

end if

Let N be the set of all successor FlowNodes of f.

for each n in N do

Call traverseSegment(n, S, A).

end for

end if

end

When decomposeProcess returns, the set A will contain all discovered syn-
chronous segments.

4.4. Trigger Definitions

After having identified a process’ synchronous segments, each synchronous
segments’ asynchronous starting point is mapped into one or many database
trigger definitions, each representing the condition for that synchronous seg-
ment to be run. In this paper, we merely present an approach where each
synchronous segment runs in the single transaction (which is shared with the
database trigger). As a result, the number of operations performed in that trans-
action depends on the “length” of the synchronous segment (i.e., the number of
BPMN artifacts within the synchronous segment).

Having few transactions per process limits the per-transaction overhead, but
may lead to resource contention in concurrent transactions. For a number of
reasons, we argue that this design is nevertheless well suited for in-memory
databases. Firstly, the rows that are frequently updated by process steps affect
tables with little potential for conflicting table row accesses. For example, the
tokens are are passed through a synchronous segment (as the associated rows of
the TOKENS table) are exclusive to that synchronous segment. Likewise, business
objects from external applications that may be updated by a synchronous seg-
ment are typically bound to a single “case” (e.g., a purchase order business ob-
ject is primarily accessed within the associated purchase process). Secondly, the
database operations performed by the process steps within a synchronous seg-
ment are non-blocking and hard-wired (static per process model), following the
characteristics of most real-world OLTP applications, thus generally well-suited
for NewSQL databases [25]. Thirdly, most real-world processes that we have
come across relatively frequently intersperse synchronous artifacts with asyn-
chronous process steps (such as User Tasks, Intermediate Catch Events, etc.).
And finally, our approach trades the number of database trigger definitions that
are needed to represent a process model against the number of operations within
each single transaction. With a 1-2 orders of magnitude speed-up of OLTP op-
erations in an in-memory database (“scale-up”) we believe that a reasonably
large number of operations per transaction is within the “design parameters” of
an in-memory database.

29

We subsequently illustrate the definitions of database triggers for (message-
triggered) Start Events and Intermediate Catch Events.

Start Events. A process’ start event initially kicks off a process instance by
constructing the records for the TOKENS and PROCESSES tables. A Start Mes-
sage Event specifically needs to receive a “message” to launch the process. In a
traditional integration middleware environment, a message normally relates to
a piece of data that is received from some external sender, such as an XML or
JSON document which is extracted from the HTTP payload of some incoming
Web request. In an in-memory database setting, incoming messages could be
represented as records being inserted into a MESSAGES table. The Start Mes-
sage Event’s trigger could thus relate to insertion operations performed on said
MESSAGES table:

CREATE TRIGGER MYPROCESS_SE_<artifact id>_MESSAGE_TRIGGERED

AFTER INSERT ON MESSAGES FOR EACH ROW

EXECUTE PROCEDURE MY_PROCESS.SCHEDULER()

Whenever a record is inserted into the MESSAGES table, it invokes the SCHEDULER
procedure from the schema that was generated for the associated synchronous
segment (c.f., Section 4.2.3).

Additionally, the Start Event needs to have a representation as an ECA rule,
i.e., a database query constituting the condition part and a stored procedure
for the action part:

SELECT

"..." AS artifactId, "START MESSAGE EVENT" AS artifactType

NULL AS processId, NULL AS tokenId,

"messageId=" || m.ID AS customParameters

FROM MESSAGES AS m WHERE m.ID=NEW.ID AND <start condition>

The query’s purpose was to test a Start Event’s (optional) start condition,
which is a Boolean predicate atop the message “payload”. This predicate is to
be placed in the “where” clause of the query and can access the attributes of the
newly inserted MESSAGES record by means of the NEW prefix. Notice that both
the processId and tokenId attributes are set to NULL. This is because neither
the process instance nor the process’ initial token exist before the start event is
executed.

CREATE PROCEDURE MYPROCESS.<artifactId> (

IN processId INTEGER, IN tokenId INTEGER,

IN parameters BPM.PARAMETER_TYPE)

LANGUAGE SQLSCRIPT AS

newProcessId INTEGER; newTokenId INTEGER;

BEGIN

// generate unique newProcessId

// and newTokenId values

INSERT INTO PROCESSES(ID, LIFECYCLE_PHASE) VALUES(:newProcessId, ’’running’’);

30

INSERT INTO TOKENS(ID, PROCESS_ID, POSITION) VALUES(:newTokenId, :newProcessId,

<outbound connector label>);

// perform output data mapping from message

DELETE FROM MESSAGES WHERE ID IN

SELECT VALUE FROM :parameters WHERE NAME=‘messageId’;

END;

The corresponding stored procedure initially generates unique primary keys for
the newly inserted TOKENS and PROCESSES records (details omitted for brevity).
After inserting these records into the respective tables, the stored procedure
for Start Events may (optionally) perform a data mapping from the “received”
message to a private process context (i.e., the set of its modeled Data Objects).
Finally, the message that has triggered the Start Event is being deleted.

Intermediate Catch Events. Message-triggered Intermediate Catch Events ex-
pand the semantics of Start Events to a reliable, correlation-based message
receipt [20] within running process instances. Generally, Intermediate Catch
Events are used to synchronize a process to external events, being database
state changes originating from other applications (or processes). By being em-
bedded into the control flow of running process instances, Intermediate Catch
Events may be triggered by two stimuli: a matching message arriving and a to-
ken reaching the Intermediate Event artifact. Both may independently trigger
the Intermediate Catch Event as shown in the trigger definitions below:

CREATE TRIGGER MYPROCESS_IE_<artifact id>_TOKEN_TRIGGERED

AFTER INSERT ON MESSAGES FOR EACH ROW

EXECUTE PROCEDURE MYPROCESS.SCHEDULER();

CREATE TRIGGER MYPROCESS_IE_<artifact id>_TOKEN_TRIGGERED

AFTER INSERT OR UPDATE OF POSITION ON BPM.TOKENS FOR EACH ROW

EXECUTE PROCEDURE MYPROCESS.SCHEDULER();

The two database trigger definitions relate to new MESSAGES records being in-
serted and TOKEN records being inserted (or the POSITION attribute of existing
TOKEN records being updated).

SELECT

"..." AS artifactId, "INTERMEDIATE MESSAGE EVENT" AS artifactType

PROCESSES.ID AS processId, TOKENS.ID AS tokenId,

‘messageId=’ || m.ID AS customParameters

FROM

MESSAGES AS m, PROCESSES AS p, TOKENS AS t

WHERE

t.PROCESS_ID=p.ID AND m.ID=NEW.ID AND t.POSITION=<inbound connector label>

AND <correlation condition>

Unlike Start Events, Intermediate Catch Events need to consider a token be-
longing to a running process instance. The “where” clause also incorporates

31

a check whether the token has actually reached the Intermediate Catch Event
and a custom “correlation condition” holds, which is a test whether or not a
message is being “matched” by the process instance. The corresponding stored
procedure simply moves the token to behind the Intermediate Catch Event (by
changing its POSITION attribute accordingly), (optionally) performs an output
mapping from the message’s “payload” to the private process context and finally
removes the message record from the database:

CREATE PROCEDURE MYPROCESS.<artifactId> (

IN processId INTEGER, IN tokenId INTEGER,

IN parameters BPM.PARAMETER_TYPE)

LANGUAGE SQLSCRIPT AS

BEGIN

UPDATE TOKENS

SET POSITION=<outbound connecto label> WHERE ID=:tokenId;

// perform output data mapping from message

DELETE FROM MESSAGES WHERE ID IN

SELECT VALUE FROM :parameters WHERE NAME=‘messageId’;

END;

5. Contribution and Future Work

In summary, in-memory computing represents an opportunity for business
process management to reach into wholly new scenarios, substantially increasing
the overall value proposition of BPM. At the same time, today’s middleware-
based BPM systems could be in part obsolete as applications consolidate on
in-memory databases. Both the opportunity and the threat form the motivation
for our work.

In this paper, we proposed a BPM automation solution that is embedded
into an in-memory database. Embracing the aforementioned stack consolida-
tion approach, our design eliminates the need for an external application inte-
gration middleware system. Instead, our BPM system comprises two parts: (1)
a runtime system which is implemented by means of the in-memory databases
programming model and (2) a compiler infrastructure which maps business pro-
cess definitions (here: BPMN 2.0 models) into native artifacts of the in-memory
database which interact with the aforementioned runtime system.

Both the runtime system and the compiled process models constitute arti-
facts of the in-memory database’s programming model (e.g., SQL and stored
procedures). By deploying these artifacts into the in-memory database, our ar-
chitectural approach reuses fundamental capabilities of the in-memory database
(such as transactional concurrency control; failover and persistence; cluster-
readiness and scale-out; backup, recovery, and archiving; etc.) and abolishes
the need for a separate BPM stack. This design stands in pronounced difference
to an established BPM middleware architecture where the core BPM function-
ality (in terms of process orchestration, monitoring, administration, lifecycle
management, etc.) are normally provided by a separate BPM runtime which

32

can be a designated middleware “stack” or be a component of a larger applica-
tion server. For example, some ERP systems come with workflow management
capabilities. These capabilities are provided by infrastructure components being
part of the application server, which also hosts the core ERP components.

By running business processes inside of the in-memory database, our ap-
proach benefits from the following advances over state-of-the-art BPM systems:

1. Business processes running inside of an in-memory database benefit from
the performance advances of in-memory databases as such. In effect,
model-based business processes become a suitable way of implementing
high-performance applications.

2. Most importantly, business processes that are based in the same in-memory
database, which also hosts other applications have an unconstrained reach
into the application data artifacts (such as business objects and events),
thus being able to deeply integrate against these applications.

3. By reusing major capabilities of the in-memory database, the cost and
technical risk of building a BPM system is much reduced. In fact, many
non-functional characteristics can be relayed back to features of the in-
memory database itself.

When have made our in-memory BPM automation approach available as
open source4 and invite interested readers to experiment with and contribute to
this software. Our current emphasis is on validating the performance and scale-
out characteristics of our approach, which we hope to publish soon. In addition,
we expand the coverage of the BPMN 2.0 standard in an upcoming publication
and address the state synchronization challenges of integrating applications with
business processes on the persistence level.

References

[1] van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: A survey. In: Business Process Management, LNCS, vol. 2678, pp.
1–12. Springer (2003)

[2] Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann,
M., König, D., Leymann, F., Müller, R., Pfau, G., et al.: Web ser-
vices human task (ws-humantask), version 1.0., june 2007. Online at:
http://www.adobe.com/devnet/livecycle/pdfs/ws humantask spec. pdf

[3] Bae, J., Bae, H., Kang, S.H., Kim, Y.: Automatic control of workflow processes
using eca rules. IEEE TKDE 16(8), 1010–1023 (2004)

[4] Balko, S., Hettel, T.: Systems and methods providing a token synchronization
gateway for a graph-based business process model (2013). US Patent 8,453,127

[5] Boncz, P.A., Kersten, M.L.: Monet. an impressionist sketch of an advanced
database system. In: In Proc. IEEE BIWIT workshop. Citeseer (1994)

4https://github.com/sbalko/bpmn2hana

33

[6] Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC, p. 7
(2000)

[7] Bry, F., Eckert, M., Pătrânjan, P.L., Romanenko, I.: Realizing business processes
with ECA rules: Benefits, challenges, limits. Springer (2006)

[8] Cattell, R.: Scalable sql and nosql data stores. ACM SIGMOD Record 39(4),
12–27 (2011)

[9] Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J., Ghemawat,
S., Gubarev, A., Heiser, C., Hochschild, P., et al.: Spanner: Googles globally
distributed database. ACM Transactions on Computer Systems (TOCS) 31(3),
8 (2013)

[10] DeBrabant, J., Pavlo, A., Tu, S., Stonebraker, M., Zdonik, S.: Anti-caching: A
new approach to database management system architecture. Proceedings of the
VLDB Endowment 6(14), 1942–1953 (2013)

[11] Diaconu, C., Freedman, C., Ismert, E., Larson, P.Å., Mittal, P., Stonecipher, R.,
Verma, N., Zwilling, M.: Hekaton: Sql server’s memory-optimized oltp engine.
In: SIGMOD, pp. 1243–1254 (2013)

[12] Eckerson, W.W.: Three tier client/server architecture: Achieving scalability, per-
formance, and efficiency in client server applications. Open Information Systems
10(1) (1995)

[13] Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: Sap hana
database: data management for modern business applications. SIGMOD Record
40(4), 45–51 (2011)

[14] Färber, F., May, N., Lehner, W., Große, P., Müller, I., Rauhe, H., Dees, J.: The
sap hana database – an architecture overview. IEEE Data Eng. Bull. 35(1), 28–33
(2012)

[15] Fowler, M.: Patterns of Enterprise Application Architecture, first edition edn.
Addison-Wesley, Boston (2003)

[16] Gable, J.: Enterprise application integration: Eai is the soluble glue needed for
modular relationships that allow organizations to be flexible and responsive to
market demands. Information Management 36(2) (2002)

[17] Garcia-Molina, H., Salem, K.: Main memory database systems: An overview.
IEEE Trans. Knowl. Data Eng. 4(6), 509–516 (1992)

[18] Han, J., Haihong, E., Le, G., Du, J.: Survey on nosql database. In: Pervasive
computing and applications (ICPCA), 2011 6th international conference on, pp.
363–366. IEEE (2011)

[19] Leavitt, N.: Will nosql databases live up to their promise? IEEE Computer
43(2), 12–14 (2010)

[20] Model, B.P.: Notation (bpmn), v. 2.0, 2011. OMG: www. omg.
org/spec/BPMN/2.0

34

[21] Raman, V., Attaluri, G.K., Barber, R., Chainani, N., Kalmuk, D., KulandaiSamy,
V., Leenstra, J., Lightstone, S., Liu, S., Lohman, G.M., Malkemus, T., Müller,
R., Pandis, I., Schiefer, B., Sharpe, D., Sidle, R., Storm, A.J., Zhang, L.: Db2
with blu acceleration: So much more than just a column store. PVLDB 6(11),
1080–1091 (2013)

[22] Reese, W.: Nginx: the high-performance web server and reverse proxy. Linux
Journal 2008(173), 2 (2008)

[23] Stonebraker, M.: Sql databases v. nosql databases. CACM 53(4), 10–11 (2010)

[24] Stonebraker, M., Cattell, R.: 10 rules for scalable performance in’simple opera-
tion’datastores. Communications of the ACM 54(6), 72–80 (2011)

[25] Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Hel-
land, P.: The end of an architectural era:(it’s time for a complete rewrite). In:
Proceedings of the 33rd international conference on Very large data bases, pp.
1150–1160. VLDB Endowment (2007)

[26] Stonebraker, M., Pavlo, A., Taft, R., Brodie, M.L.: Enterprise database appli-
cations and the cloud: A difficult road ahead. In: 2014 IEEE International
Conference on Cloud Engineering, Boston, MA, USA, March 11-14, 2014, pp. 1–6
(2014)

[27] Tilkov, S., Vinoski, S.: Node. js: Using javascript to build high-performance
network programs. IEEE Internet Computing 14(6), 0080–83 (2010)

[28] Vogels, W.: Eventually consistent. CACM 52(1), 40–44 (2009)

[29] Völzer, H.: A new semantics for the inclusive converging gateway in safe processes.
In: Business Process Management, pp. 294–309. Springer (2010)

[30] Wynn, M.T., Edmond, D., van der Aalst, W.M., ter Hofstede, A.H.: Achieving a
general, formal and decidable approach to the or-join in workflow using reset nets.
In: Applications and Theory of Petri Nets 2005, pp. 423–443. Springer (2005)

35

