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Abstract

Parallelization of Data Intensive All-to-all Comparison (DIAC) in limited memory is

challenging and widely found in many scientific and generic applications. In an all-

to-all comparison, every data item in a group of data items is pair-wise compared with

the rest of the data items in the group. A large number of data items in a data set is

emphasised by the term “data intensive” in DIAC. In the class of DIAC targeted in

this research, the data items need to reside in memory to complete comparisons and

the process of loading data items to memory is significantly time consuming. Due to

the large number of data items, they may not all fit completely into memory. Thus,

data items generally need to be paged in and out more than once to complete a DIAC.

Therefore, increasing the speed of a DIAC in limited memory requires overcoming

two challenging problems. Firstly, the number of repeated loads of data items must be

minimized leading to an challenging problem to solve due to the large combinatorial

number of choices over the life-span of a DIAC calculation. Secondly, the amount of

comparisons completed in parallel must be maximized. This is an even more challeng-

ing problem because the number of parallel comparisons is limited by the available

memory capacity and the rate of bringing comparisons to memory is constrained by

the speed of the loads.

To solve the above mentioned two challenging problems, this research develops a

systematic approach to minimize the runtime of memory-constrained DIAC for uni-

processor and shared-memory multi-processor platforms through efficient utilization
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of available computing resources. The three main contributions of the thesis include:

first, a novel memory management (paging) algorithm is proposed for faster and scal-

able computing of DIAC through minimizing the loads of data items to memory. The

performance improvement of the approach over previous work ranges from 7% to 31.9

times improvement in speed and is demonstrated through benchmark examples. The

parameter settings for the proposed algorithm are derived theoretically and a theoret-

ical close-fitting lower bound is also established for the minimum number of loads

required to complete a DIAC. Second, novel parallelization technique is introduced.

Incorporating dynamic scheduling with static scheduling, it utilizes a problem specific

pattern developed based on the prior knowledge of the targeted problem abstraction.

This technique significantly minimizes the scheduling overhead of parallelizing com-

plex problems such as DIAC while still producing quality schedules. Implementing

this technique, a novel parallelization algorithm is presented which dramatically in-

creases the speed of bioinformatics DIAC computing in comparison with their sequen-

tial counterparts while efficiently managing the memory. In an octa-core system, a

test of our algorithm for a benchmark example shows a runtime of two weeks reduced

to less than two days. Furthermore, the parameter settings of the algorithm are theo-

retically derived for scenarios commonly found in general computing platforms. The

third contribution of this thesis is our development of a novel simulator and a parallel

framework for DIAC to assist evaluations of parallel algorithms including the one pro-

posed in this thesis. The simulation environment is fast and lightweight for simulation

of shared-memory multi-processor systems and exploits the advantage of the assumed

uninterrupted and continuous processor-task association of the proposed paralleliza-

tion algorithm. It can be used to simulate other parallelization algorithms with similar

properties as well. The framework facilitates rapid implementations of parallel algo-

rithms for DIAC. It clearly separates the decision making logic form implementation

details.
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Chapter 1

Introduction

This thesis focuses on parallelization and memory management in Data Intensive All-

to-all Comparison (DIAC) in limited memory conditions. In an all-to-all comparison,

every item in a group of data items is pair-wise compared with the rest of the items

in the group. An all-to-all comparison performed on a large number of data items is

emphasised by the term “data intensive” in DIAC.

DIAC is a class of problems found in many fields [Moretti et al., 2010]. For exam-

ple, it is a common pattern that appears throughout science and engineering in various

applications [Manber, 1994, Moretti et al., 2010]. It is also widely used in bioinformat-

ics [Altschul et al., 1990, Yu et al., 2010a], biometrics calculations and data mining. In

bioinformatics usually DIAC is performed on genomic sequences using a comparison

function such as sequence alignment. In biometrics calculations the data items can be

finger-print data or facial images, while the comparison can be a custom function such

as face recognition or finger print recognition. The output of the comparison is a single

value indicating the similarity between the compared pair of items.

While simple to state, achieving the optimum speed of DIAC in limited memory is not
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a trivial problem to solve. The problem remains non-trivial even without considering

the parallelization. The complication of solving the problem can be briefly explained

as follows. In limited memory, the memory may not be sufficient to hold all data

items at the same time. Therefore, some data items need to be swapped in and out of

memory multiple times to complete the DIAC. Each transfer of data item to memory

(load) causes an increase in the total execution time. Completing a DIAC with the

minimum number of loads yields the optimum speed for the DIAC in limited memory.

Solving this problem is challenging due to the large number of combinatorial choices

over the life-span of a DIAC. More challengingly, the data sets used in DIAC are huge.

For example, genomic sequences in the composition vector method [Yu et al., 2010a]

typically consist of hundreds of thousands input data items.

The overall aim of this thesis is to develop a systematic approach to significantly reduce

the runtime of DIAC in limited memory conditions. To achieve this goal both efficient

memory management and parallelization1 in shared-memory computers are used. In

the process, performance-related issues in DIAC in limited memory are identified and

strategies are developed to overcome the identified gaps in memory management and

parallelization. Then algorithms are designed and implemented to significantly im-

prove the performance of DIAC over the existing methods. The parameter settings

for the proposed algorithms are theoretically derived, and close-fitting performance-

related theoretical lower and upper bounds for DIAC in limited memory are estab-

lished. This research uses bioinformatics applications with DIAC such as the com-

position vector (CV) method [CVTree, 2011, Yu et al., 2010a] for case studies and

examples.

The rest of this chapter is organized as follows. Section 1.1 discusses the research

background followed by the motivation and significance of the research in Section 1.2.

Section 1.3 presents statement of the research problem. Contributions of this work are

1Parallelization refers to the process of converting or completely rewriting a computer application
designed to run sequentially, into a version which can exploit the power of a parallel computer.
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claimed in Section 1.4. Section 1.5 and 1.6 outline the thesis, and scope and limita-

tions of this research, respectively. Section 1.7 lists the publications during the PhD

research.

1.1 Research Background

The result of an all-to-all comparison can be presented in a matrix format which is

known as the correlation matrix or similarity matrix. Every value in a correlation ma-

trix indicates the output of the comparison function for a pair of data items. Figure 1.1

shows a sample correlation matrix resulting from an all-to-all comparison performed

on five data items. The correlation matrix considered in this research is a symmetric

matrix (as shown in Figure 1.1) because the pair-wise comparison is assumed to be

commutative.
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Figure 1.1: Correlation matrix based on all-to-all comparison of five data items. The
value of each element represents the dissimilarity between a pair of data items.

The DIAC problems addressed in this thesis consist of a non-trivial preprocessing,

which is conducted on the data items before the pair-wise comparison. The computa-

tional cost of a preprocessing of an item is significant relative to the cost of a pair-wise

comparison. For instance, in the bioinformatics CV method [Yu et al., 2010a], the

composition vectors are generated by preprocessing genomic sequences (data items)
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and the pair-wise comparisons are carried out between the composition vectors (pre-

processed data items). The method for calculating a composition vector based on a

genomic sequence is a computationally intensive process.

After preprocessing, the preprocessed data items are stored in memory. Only the pre-

processed data items in memory can be compared. In some applications, the prepro-

cessing phase mainly involves reading the data items from the disk to memory. In this

research, we abstract this preprocessing process as a significantly time-consuming op-

eration to bring the data items to memory for the comparisons. We call this abstracted

process as LOAD in algorithms and refer to it as load in text references.

The load process is not specific to each comparison. Therefore, while the preprocessed

data items are stored in memory, they can be reused for the comparisons related to the

data item. By maximizing these reuses, redundant preprocessing of data items can be

minimized in limited memory conditions.

Each data item in DIAC applications addressed in this thesis requires a significant

amount of memory to store after the load operation. The preprocessed data items can

be around 100 MB to 1 GB each (e.g. in CV method [Yu et al., 2010a]) and there

can be hundreds or even thousands of such data items for an all-to-all comparison

problem. The total size of such data sets in memory often exceed the memory capacity

of a typical shared-memory computer which typically ranges from 4 GB to 64 GB.

The tasks of DIAC (i.e. comparisons and loads) are independent from each other

and can be executed in parallel. In fact, comparisons depend on loads although no

comparison depends on each other and no load depends on each other. The tasks are

assumed to be non-separable further into subsections which can be executed in parallel.

However, a DIAC problem is still a good candidate for parallel execution because of

the independent nature of the tasks.
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If the time spent on bringing data items to memory (load) in an all-to-all compari-

son is negligible, the problem becomes embarrassingly parallel. However, if memory

capacity limits the number of data items stored in memory, the problem may not be

embarrassingly parallel. This thesis focuses on the problems where a load operation is

significantly time consuming relative to a comparison, not when time spent on bringing

data items to memory is negligible.

Minimizing the total execution time of DIAC in shared-memory systems using par-

allelization is challenging because of the load operations and the limited memory.

Redundant loads caused by the limited memory can increase the runtime due to the

time spent on loads. On the other hand, the limited number of data items in memory

also limits the number of available comparisons which can be executed in parallel. In

addition, the number of comparisons available in memory depends on the combination

of data items in memory as the data items loaded to memory can be shared between

processors in shared-memory computers. The time required for loads limits the rate of

incoming comparisons which eventually limits the rate of completing comparisons.

In summary, parallelization of DIAC with time-consuming load operations in memory

constraints is challenging. A combinatorial number of ways can be found to complete

all comparisons in a DIAC over the life-span of the application. A good solution in

this situation should not only manage memory efficiently but also look into increasing

the number of parallel tasks throughout the calculation. Therefore, finding the best

schedule for executing loads and comparisons to minimize the total execution time is

a hard problem to solve. This is the main theme of this thesis.
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1.2 Motivations and Significance

From the bioinformatics perspective, our research has a potential to make a signifi-

cant contribution towards reducing the runtime of many bioinformatics applications.

DIAC can be found in many bioinformatics applications such as the CV method [Yu

et al., 2010a] and BLAST [Altschul et al., 1990]. Many of these methods share the

same pattern of all-to-all comparison with a preprocessing stage before the compar-

isons, including the CV method and its variations listed by Wang [2009]. All proposed

solutions in this thesis are based on this basic pattern. Therefore, the solutions are

immediately beneficial to many DIAC applications based on similar pattern, such as

CVTree [CVTree, 2011].

Our motivation to this work is increasing the speed (decrease runtime) of two recent

applications by using parallelization. The application developed by Yu et al. [2010a]

comprises of a DIAC phase as the first step towards generating a phylogeny tree [Feng

and Doolittle, 1990] for a given set of genomic sequences. Since their main interest

is in the final results, the memory and computing resource management of the ap-

plication has not received much attention. For this reason, the application performs

many redundant loads even when a large memory is present, eventually causing a sig-

nificantly long runtime. Another application called CVTree [CVTree, 2011] uses an

improved memory management algorithm. It does not have the support for parallel

execution.

Furthermore, in the applications developed by Yu et al. [2010a] and CVTree [Xu and

Hao, 2009], higher-order calculations are prohibitively time-consuming and sometimes

impossible due to their much higher demand for resources. Yu et al. [2010a] suggest

that higher-order pair-wise comparisons may give better results than lower-order cal-

culations. By using our new algorithms it is possible to run higher-order calculations

significantly faster than their original applications.
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Parallelization of memory-constrained DIAC has only received a little attention in ex-

isting literature. The limited existing research reports on the problem of limited mem-

ory such as Wu et al. [2009] only present theoretical complexity analyses of the prob-

lem. However, due to the added complexity of managing limited memory, the existing

parallelization techniques are rendered ineffective. In addition, the unpredictability of

load and comparison times does not favour many existing scheduling algorithms as

most of them rely on accurate estimating of task runtimes. To the best of our knowl-

edge, research reports do not exist in the literature to propose solutions specifically for

parallelization of memory-constrained DIAC in shared-memory multi-core platforms.

Tools to visualize and simulate the behaviour of DIAC are important for analysing pur-

poses. Without such tools, it is hard to analyse and identify the problems in managing

memory for DIAC. This is for two reasons,

• While developing parallel algorithms, it is important to verify the intended be-

haviour by using visualizations.

• Since most of the applications used as examples in this research have prolonged

execution times, simulations are essential for developing the algorithms as well

as for the evaluation purposes.

Simulations are also used for the parameter predictions in the proposed parallel algo-

rithms. Therefore, the simulations are used as a part of scheduling algorithm and must

be lightweight and extremely fast not to hinder the performance of the scheduling al-

gorithms. To validate the theoretical results of this thesis, simulators should be able to

simulate theoretical behaviour of the proposed algorithm. Therefore, developing such

tools is beneficial not only to our research, but also to other research studies conducted

in the similar context.
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1.3 Statement of the Research Problem

The main objective of this research is: minimizing the runtime of memory-constrained,

data intensive all-to-all comparison for uni-processor and shared-memory multi-

core/multi-processor platforms by efficiently utilizing available computing resources.

The research questions addressed in this thesis are:

Research Question 1: How should memory be managed for DIAC in single-core

(uni-processor) platforms to minimize the time spent on I/O (load) operations?

Research Question 2: How can DIAC be parallelized in limited memory in conjunc-

tion with memory management, while keeping a proper balance between the

overhead of I/O operations and speed gain from parallel execution?

Research Question 3: How may the proposed algorithms be evaluated, their be-

haviour analysed under various conditions (dataset and system properties) and

theoretical results validated?

1.4 Main Contributions

To answer the three questions presented in Section 1.3, this thesis makes three major

contributions:

Contribution 1: A novel memory management (paging) algorithm is proposed to sig-

nificantly minimize the time spent on loads of data items to memory. It is em-

pirically demonstrated to substantially improve the computing performance over

the existing approaches (from 7% to 31.9 times improvement in speed). Fur-

ther, it is demonstrated to use minimum (optimum) number of loads by using

a brute-force technique for small number of data items to be compared. The
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optimum parameters for the algorithm are derived theoretically. A close-fitting

lower bound for the minimum number of loads required to complete a DIAC is

also theoretically derived.

Contribution 2: By incorporating dynamic scheduling with static scheduling, a novel

parallelization technique is introduced. It utilizes a problem-specific pattern de-

veloped for the targeted abstracted problem. This technique significantly mini-

mizes the scheduling overhead of complex parallelization problems where sig-

nificant prior knowledge of the abstracted problem is available (e.g. data depen-

dencies and tasks), while still producing dynamic schedules with good quality.

Implementing this technique, a novel distributed parallelization algorithm is pro-

posed to significantly reduce the runtime of DIAC in limited memory through

maximum utilization of available memory resources and computing power. The

algorithm targets shared-memory multi-core computers. It dramatically speeds

up existing bioinformatics applications (e.g. 7.86 speed-up in an 8-core shared-

memory system and 15.77 speed-up in a 16-core shared-memory system) com-

pared to their sequential counterparts while efficiently managing the memory

within the specified limitations. It is empirically shown to attain close to the

maximum utilizations of processors for comparisons. From our simulation stud-

ies, the optimum parameters for the algorithm are theoretically derived for typi-

cal scenarios commonly found in many applications.

Contribution 3: To assist evaluating the performance of parallel algorithms, includ-

ing the one proposed in this thesis, a novel simulator and a parallel framework

for DIAC are developed. The simulation environment is designed and imple-

mented from scratch for research on shared-memory multi-processor systems,

in order to exploit the advantage of the assumed uninterrupted and continuous

processor-task association of the proposed parallelization algorithm. It can be

used to simulate other parallelization algorithms with similar properties as well.

The simulation tool is light-weight and extremely fast to simulate long running

applications. It is used to simulate the developed algorithms, theoretical re-
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sult validations, optimum parameter prediction in runtime and to observe the

algorithms’ behaviours in various conditions. The novel parallelization frame-

work assists rapid implementation of parallel algorithms developed for DIAC

and clearly separates the decision-making logic from other implementation de-

tails.

1.5 Thesis Outline

The rest of this thesis is organized as follows.

• Chapter 2 is a comprehensive review of the existing research in related research

fields. It identifies and justifies the research context from which the research

questions have been derived.

• Answering the first research question (Contribution 1), Chapter 3 develops an

algorithm to manage memory for all-to-all comparison in single-core (uni-

processor) systems. A close-fitting lower bound for the minimum number of

required loads to complete a DIAC and optimum parameter settings for the pro-

posed algorithm are theoretically derived. It also compares existing memory

management strategies with the proposed memory management algorithm.

• Chapter 4 is a preparation to solve our DIAC problem in Chapter 5 and 6. In this

chapter, the DIAC parallelization problem under memory limitations is mod-

elled. An upper-bound for the maximum parallel speed-up of DIAC under lim-

ited memory is also derived. In addition, the proposed model is extended to

adapt existing parallelization techniques to solve our DIAC problem.

• Answering the second research question (Contribution 2), an algorithm for par-

allelization of DIAC with memory management in multi-core processors is de-

veloped progressively, utilizing a novel parallelization technique in Chapter 5.

Optimum parameter prediction techniques for the proposed algorithm are also
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theoretically developed.

• The algorithm developed in Chapter 5 is extended in Chapter 6 to address the

practical and implementation issues. The experiments for performance valida-

tion and behaviour analysis of the proposed algorithm are also conducted in this

chapter.

• Answering the third research question (Contribution 3), the simulation environ-

ment which is designed and implemented to assist our research and the parallel

algorithm is discussed in Chapter 7. It also describes the novel parallelization

framework which assists rapid implementation of parallel algorithms for DIAC.

A unique visualization tool developed to assists our research for analysing the

runtime behaviour of DIAC (using new graphical representations for DIAC) is

also discussed in this chapter.

• Finally, Chapter 8 concludes the thesis.

1.6 Scope and Limitations of the Thesis

This research targets shared-memory multi-core/multi-processor platforms for paral-

lelization of DIAC. The novel pattern-based parallelization technique which will be

proposed in the thesis has the potential to be used in other platforms as well, although

this capability is not demonstrated in this thesis. The DIAC-related memory manage-

ment and parallelization problems found in other computing platforms such as dis-

tributed computing systems are out of the scope of this thesis.

In the DIAC problems considered in the thesis, the time spent on the load operation

(includes preprocessing) has to be significant compared to the time spent on compar-

isons. Although the algorithms are aimed to speed-up DIAC applications with such

significantly time-consuming load operations, they can still be used to speed-up other

DIAC applications as well.
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This research does not assume the size of data items as a constant. Although some

intermediate algorithms assume that the size of data items is constant, an extended

version to handle variable sized data items is always presented. Similarly, the load

and comparison times are not assumed as constants. However, the theoretical results

assumes that the sizes of data items, size of memory and task runtimes are as constants.

The theoretical results are still useful with average values of variable data item sizes

and task runtimes.

1.7 Publications During PhD Research

During the PhD research, three papers have been published, including two journal

papers and 1 conference paper. They are listed as follows.

1. Krishnajith, A. P. D., Kelly,W., and Tian, Y.-C. (2014). Optimizing I/O cost

and managing memory for composition vector method based correlation matrix

calculation in bioinformatics. Current Bioinformatics. In press. — From the

findings in Chapter 3.

2. Krishnajith, A., Kelly, W., Hayward, R., and Tian, Y.-C. (2013). Managing

memory and reducing I/O cost for correlation matrix calculation in bioinformat-

ics. In proceedings of the 2013 IEEE Symposium on Computational Intelligence

in Bioinformatics and Computational Biology (CIBCB), pages 3643. — From

the findings in Chapter 3.

3. Han, G. S., Yu, Z. G., Anh, V., Krishnajith, A. P. D., and Tian, Y.-C. (2013).

An ensemble method for predicting subnuclear localizations from primary pro-

tein structures. PLoS ONE, 8(2):e57225. — Based on some of the findings in

Chapter 3.



Chapter 2

Literature Review

This chapter reviews the literature related to Data Intensive All-to-all Comparison

(DIAC), memory management of DIAC, parallelization of DIAC and existing sim-

ulation techniques. We start by investigating the properties of DIAC addressed in

this research and existing applications of DIAC. Then we discuss the existing mem-

ory management techniques and their findings for solving DIAC in limited memory.

Thereafter, existing solutions for the DIAC parallelization problem are examined. The

popular parallel computing strategies which were not proposed specifically for paral-

lelization of memory-constrained DIAC but have the potential of solving the problem

are discussed next. Then the various parallel computing platforms are briefly discussed

with their properties and differences, to clearly distinguish the platform-specific vari-

ations of strategies in parallelization. Thereafter, the existing simulation tools are re-

viewed to identify a suitable simulation platform for our research. Finally, the literature

reviewed in the chapter is summarised.
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2.1 All-to-All Comparison

This section extends the discussion in Chapter 1 on the properties and applications of

Data Intensive All-to-all Comparison (DIAC).

Algorithm 1 and 2 are two algorithms to perform a DIAC. In the algorithms, DIAC is

performed on a group of N data items. Gi denotes each data item in the group and

Vi denotes the loaded (i.e. preprocessed) Gi in memory, where 0 ≤ i < N . The

correlation matrix is denoted by C[i, j], where 0 ≤ i, j < N .

Algorithm 1 A procedure to complete a DIAC by loading all data items into memory
and performing a minimum number of loads

1: procedure DIAC1
2: for i = 0→ N − 1 do
3: Vi = LOAD (Gi)
4: end for
5: for i = 0→ N − 1 do
6: for j = i+ 1→ N − 1 do
7: C[i, j] =COMPARE(Vi, Vj)
8: C[j, i] = C[i, j]
9: end for

10: end for
11: end procedure

In Algorithm 1, all data items are first loaded into memory and then the pair-wise

comparisons are carried out between the items in memory. This algorithm requires

sufficient memory to load and keep all data items in memory. However, in the DIAC

problem addressed in this thesis, memory is insufficient to hold all data items. There-

fore, Algorithm 2 only keeps maximum of two data items in memory at a time. This

algorithm:

1. loads one data item;

2. then loads the rest of the data items (not compared earlier) one by one, compares

the new data item to the one in the memory, and then unloads the new data item;
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3. unloads all data items and

4. repeats the steps for every data item.

Even though this algorithm’s memory requirement is equal to the size of two data

items, it performs a large number of loads.

If the loads are carried out for each comparison (not sharing loaded data items) as in

Algorithm 2, the complexity of the loading phase is O(N2), where N is the number

of data items to be compared. Since the loads are significantly time consuming, the

time spent on this phase can be saved if every loaded item (Vi) can be kept in memory

for later use as in Algorithm 1. The complexity of the loading phase in Algorithm 1 is

O(N).

Algorithm 2 A procedure to complete a DIAC by loading a data item to memory for
every comparison and using a minimum amount of memory

1: procedure DIAC2
2: for i = 0→ N − 1 do
3: Vi = LOAD (Gi)
4: for j = i+ 1→ N − 1 do
5: Vj = LOAD (Gj)
6: C[i, j] =COMPARE(Vi, Vj)
7: C[j, i] = C[i, j]
8: UNLOAD (Vj) // Delete Vj from memory
9: end for

10: UNLOAD (Vi)
11: end for
12: end procedure

When the data items cannot all be held in memory at the same time, we have two

choices:

1. We can write the preprocessed data items (Vi) out to disk before the comparisons

begin and then read them back in prior to their use.

2. Alternatively we can re-compute composition vectors each time they are re-

quired.
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Which of these approaches we should use depends on the cost of re-computing a com-

position vector compared to the cost of reading it from disk. In most cases, reading

pre-calculated composition vectors from disk will be more efficient, but to avoid con-

fusion, we use “LOAD” in our algorithms and “load’ in text, to indicate that a com-

position vector is brought into the memory either by reading the disk or generating it

from the scratch. It is important to note that the algorithms proposed in this thesis do

not depend on this choice.

Typically, data items are required to be preprocessed at least once (where it can be

written out to disk), as a requirement of memory management. The reason is that the

memory requirement of preprocessed data items cannot be predicted in calculations

such as the composition vector method. More details on utilization of the disk will be

discussed in Section 3.4 and 5.2.

2.1.1 All-to-All Comparison in Composition Vector Method

This thesis uses Composition Vector (CV) method [Yu et al., 2010b] in bioinformatics

for case studies and examples. Therefore, this section concentrate on the details of

specific properties and attributes of DIAC in the CV method. However, it is noted

that the solutions proposed in this thesis are applicable to many DIAC problems with

similar properties. Some of such problems will be discussed in Section 2.1.2.

We introduced the correlation matrix briefly in Chapter 1. The correlation matrix has

following properties in composition vector (CV) method in bioinformatics. If the cor-

relation matrix is C[X, Y ] which represents the correlation between the genomic se-

quences X and Y , the following set of properties can be identified in it.

1. C[X, Y ] = C[Y,X]

2. C[X, Y ] ≥ 0; and C[X, Y ] = 0 if and only if X = Y
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The correlation matrix C[X, Y ] is said to be normalized if 0 ≤ C[X, Y ] ≤ 1 [Yu et al.,

2010b]. Let {G} = {Gi : i ∈ Z, 0 ≤ i < N} be a set of genomic sequences. The

pairs, (Gi, Gj) are compared to generate the distance matrix for the genomic sequence

set, for 0 ≤ i, j < N . According to above rule 1, C[i, j] is a symmetric matrix with

the distance (correlation) of (Gi, Gj) is at C[i, j] and C[j, i]. According to rule 2, the

diagonal of the matrix will always be zero. This leaves only a section of the matrix

C[i, j] = correlation(Gi, Gj) where 0 ≤ i, j < N and i < j, to be calculated. This

is a triangular region of pair-wise distances, similar to the correlation matrix shown in

Figure 1.1.

In the correlation matrix C, C[i, j] is an indication of the similarity between genomic

sequences Gi and Gj . To find this similarity, there are two main categories of com-

parison methods, alignment-based and alignment-free methods [Wang, 2009]. In the

alignment-based methods, to compare two sequences of length l, the computational

cost and the memory requirement are both O(l2) [Waterman, 1995].

Due to the higher demand of computation and memory resources to align these gnomic

sequences using alignment-based methods, alignment-free methods are developed for

the whole genome phylogeny instead of alignment-based methods. Alignment-free

methods can be divided into three classes; which are gene content method, data com-

pression method and Composition Vector (CV) method [Wang, 2009].

Phylogenetic analysis is an important problem in bioinformatics which involves an

DIAC. The phylogenetic tree, which is a hierarchical tree, can be calculated based on

the pair-wise phylogenetic distances in the correlation matrix (distance matrix) [Ra-

jasekaran et al., 2005]. It is used to analyse the phylogenies in various species and

phylogenetics is the study of evolutionary relationships among various groups of or-

ganisms. Phylogenies are discovered through molecular sequencing data and morpho-

logical data of the species [Wang, 2009].
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The DIAC for large sized genomic sequences is a part of the CV method. In this

method, the composition vectors are constructed for each species based on their whole

genomic sequences. Then, the distance between the composition vectors is used as the

distance between species.

The CV method has achieved a great success recently according to Wang [2009]. It

was proposed by Hao et al. [2003] for the whole-gnome-based prokaryotic phylogeny.

Their phylogenetic tree, generated by this method, provided a classification of the

three domains of life and the classification is consistent with those based on traditional

analysis. Since this method was successful, quite a few models have been proposed in

this direction [Chan et al., 2010]. Basically all models that use the CV method, have

the following steps in common.

1. Construction of the frequency vectors — This vector consists of the number of

occurrences of patterns in a sequence. The frequency vector is calculated as fol-

lows. Consider a genomic sequence of length l. A window with length K where

1 ≤ K ≤ l is slid through the sequence and frequency of sub-strings of size K

(K-strings) is recorded in the frequency vector. The length of the composition

vector depends on the number of nucleotides in the sequence. The number of

nucleotides can be either 4 or 20. As a result, the length of the frequency vector

is either 4K or 20K [Wang, 2009].

2. Construction of the composition vectors — The composition vector is calculated

based on the frequency vector. This is a vector which represents the correspond-

ing species. The evolution distance between the species can be measured directly

by the distance between their composition vectors [Wang, 2009]. Therefore, in

the CV method the comparison between genomic sequences are conducted be-

tween the composition vectors.

3. All-to-all comparison of composition vectors — The correlation matrix calcula-

tion is conducted in this phase by carrying out the pair-wise all-to-all compar-
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isons.

4. Construction of the phylogenetic trees — The phylogenetic tree, based on the

correlations calculated in step 3, is built in this phase.

Various ways exist to estimate the noise in step 2 and to take distance measures in

step 3. However, the basic steps in each method remains the same as listed by Chan

et al. [2010]. An application developed to calculate the correlation matrix should have

the three basic steps as listed below which correspond to the above mentioned steps

in CV method (e.g. Application written by Yu et al. [2010a]). These steps are briefly

described below.

• Step 1—The data from the genomic sequences are loaded into memory (Random

Access Memory). This step includes Disk I/O (Input/Output).

• Step 2—The composition vectors are calculated and stored in memory. Stor-

ing these long vectors require a significant amount of calculations and sufficient

memory to store them.

• Step 3—All-to-all comparison is performed on the composition vectors to build

the correlation matrix.

Step 1 and 2 can be considered as a single phase where genomic sequences are loaded

into the memory. Since Step 2 is a computationally intensive procedure, it is usually

faster to write the composition vector to the disk and load it whenever required.

2.1.2 Other All-to-All Comparison Problems

Genome assembly [Havlak et al., 2004, Huang et al., 2003] remains one of the most

challenging computational problems in bioinformatics [Moretti et al., 2010]. The out-

put of a sequencing device is used to produce genomic sequences. However, these

devices can only produce overlapping sub-strings of the targeted genomic sequence
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due to physical constraints of the device. The assembler must align all these hundreds

of thousands of sub-strings and produce the targeted sequence. The process involves an

all-to-all comparison of the sub-strings followed by several data grouping stages [Cor-

pet, 1988, Gotoh, 1993, Miller, 1993, Moretti et al., 2010].

Multiple Sequence Alignments (MSA) [Barton, 1990, Feng and Doolittle, 1987, Hig-

gins and Sharp, 1988, Jaap and Heringa, 1999, 2002, Notredame et al., 2000, Schuler

et al., 1991, Thompson et al., 1994] are an essential method for protein structure and

function prediction, and other common tasks in sequence analysis [Edgar and Bat-

zoglou, 2006]. The first stage for solving an MSA includes a calculation of the cor-

relation matrix between each pair of sequences. It is followed by determining the

alignment topology, and finally solving the alignment of sequences or clusters them-

selves [Rizk, 2005]. This correlation matrix calculation involves a DIAC. These meth-

ods yield useful results, though they are computationally intensive [Date et al., 1993].

Moretti et al. [2010] have shown the all-to-all comparison problem as a frequently

found problem in biometrics, data mining and bioinformatics [Moretti et al., 2010].

These applications were briefly discussed in Chapter 1.

According to Moretti et al. [2010], the Face Recognition Grand Challenge [Phillips

et al., 2005] is a typical DIAC problem in biometrics. The problem is to compare

4,010 images, each from the Face Recognition Grand Challenge [Phillips et al., 2005]

to all others in the set, using functions that range from 1 to 20 seconds of compute

time, depending on the algorithm in use [Moretti et al., 2010].

2.1.3 All-to-All Comparison in Bioinformatics Applications

We currently have access to source codes of two recently written applications of DIAC

using the CV method Yu et al. [2010a]. This section reviews these two applications.
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The performance evaluations of our proposed methods are based on these two applica-

tions. The two applications take a set of large (long) genomic sequences (DNA/RNA

or Peptide) as the input to DIAC. It is important to note that the two applications dis-

cussed in this section are developed primarily to demonstrate the bioinformatics meth-

ods proposed by the authors of the applications. Optimizing these applications using

parallelization or efficient memory management has not been their primary concerns

in the implementations.

The application developed by Yu et al. (2010b) is written to load two genomic se-

quences into the memory at a time, compare them, and then go to the next pair. The

process is repeated for every comparison. Thus, only two genomic sequences are kept

in the memory at a time, bearing in mind that a composition vector is created for each

genomic sequence before the comparison is completed. In this application, the length

of the composition vector is 4K (for DNA/RNA sequences) or 20K (for peptide se-

quences) where K is the order of the calculation [Yu et al., 2010b]. When the order

is 6 (K = 6), the memory required for a composition vector of a single genomic se-

quence is approximately 250Mb (4×206 bytes). This application by Yu et al. [2010a] is

unable to fully utilize the available memory to make the comparison faster by keeping

more genomic sequences in the memory. In addition, it does not support for parallel

execution and cannot take the full advantage of multi-core processors.

The second application is from the CVTree website [CVTree, 2011, Xu and Hao, 2009]

and has two versions. In one version, all genomic sequences are loaded into the mem-

ory and the comparisons are completed. Since this program may exceed available

memory capacity when the number of sequences is large, they developed another ver-

sion written to support a DIAC of a large number of genomic sequences in limited

memory. The later version is considered in this review since we are interested only in

situation where memory is insufficient to hold all genomic sequences.

In the later version of the CVTree [2011] applications, there are a few important de-
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sign decisions made by the authors. In the application, composition vectors are written

into the disk and retrieved later from the disk when needed. The authors [Xu and

Hao, 2009] have used a more advanced memory management algorithm than Yu et al.

[2010a]. The application takes a memory limit from the user as an input and is sup-

posed to run within the specified memory limit. It holds more than two genomic se-

quences in memory at a time, and takes the advantage of the available physical memory

to make the comparison faster by reducing the loads. However, because of the prob-

lems of the memory management algorithm, the CVTree [2011] application tends to

use memory over the user-specified limit. Furthermore, this program does not support

parallel execution. It is designed to be executed on personal computers, but it is un-

able to fully utilize the processing power of recent multi-core computers due to lack of

parallelism.

2.2 Memory Management in Single-core Computers

Wu et al. [2009] analysed a similar problem for the memory-constrained DIAC in

single-core processors. They proved that their problem is NP-complete. Although

their problem occurs in grid computing systems, it shares some properties of our DIAC

with limited memory. In their system, a group of jobs are dispatched to a uni-processor

node. The jobs share remotely stored data. To complete a job, the required data must

be received by and available in the working node before the job can commence. The

working node has a limited capacity to store received data, and the previously received

data may be deleted to accommodate new data.

Similarities between our DIAC problems with the problem addressed by Wu et al.

[2009] are shown in Table 2.1 and the differences are shown in Table 2.2. Even though

the two problems share many similarities as seen in Table 2.1, the differences seen in

Table 2.2 distinguishes the two problems. Therefore, the NP-completeness proof by
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Wu et al. [2009] for their problem where every job depends exactly on two data items,

does not prove that our problem is NP-complete.

Wu et al. [2009] prove that finding a Hamiltonian edge sequence in a graph is NP-

complete. This proof can be extended to our problem to prove that our problem is

NP-complete, if each comparison and load requires one time unit to complete and the

number of data items memory can hold is two (i.e. M = 2). However, under these

condition our DIAC problem is unrealistic. Therefore, the NP-completeness of our

DIAC problem still remains open for investigation.

Table 2.1: Similarities between the problem addressed by Wu et al. [2009] versus our
DIAC problem
Wu et al. [2009] DIAC
Relevant data must be available in the
node to start a job.

Relevant data must be available in the
memory to start a job (comparison).

Data is received by the node from a
remote server. This process is signif-
icantly time consuming.

Data is loaded to the memory by read-
ing the disk or by generating from the
scratch (the load process). Both pro-
cesses are significantly time consum-
ing.

There is an upper bound for the capac-
ity to store data in the node.

There is an upper bound for the capac-
ity to store data in the memory.

Files loaded to the node are shared be-
tween jobs.

Data items loaded to the memory is
shared between jobs (comparisons).

The objective is to schedule all jobs
within a minimum timespan.

The objective is to schedule all
jobs (comparisons) within a minimum
timespan.

Table 2.2: Differences between the problem addressed by Wu et al. [2009] versus our
DIAC problem
Wu et al. [2009] DIAC
Jobs with all data item available in the
node can be completed while data is
being received

Both comparisons (jobs) and loads has
to be carried out sequentially one af-
ter another since data items needs to be
preprocessed before comparisons

Time required to complete a job and to
receive a data item are same (i.e. 1 unit
of time)

Time required to complete a compari-
son and to complete a load can be un-
equal.
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Without considering the limited capacity scenario, Giersch et al. [2004] investigate a

similar problem to Wu et al. [2009]. Interestingly, they prove that, even if memory is

considered to be unlimited, the problem is still NP-complete when the jobs are inde-

pendent from each other and depend on at least three data items. Wu et al. [2009] prove

that there exists an optimum algorithm if the memory is unlimited and every data item

depends on only two data items. They present an algorithm for this scenario.

Mueen et al. [2010] have proposed a heuristic, called “Optimal Baseline Caching Al-

gorithm”, to solve the scheduling of DIAC in limited memory. In their algorithm, all

items to be compared are assumed to be uniform in size and the maximum number of

items fit in the memory is assumed to be a constant (i. e. M and N are constant). This

algorithm is depicted in Algorithm 3.

Algorithm 3 Memory management algorithm proposed by Mueen et al. [2010].
1: procedure MUEENMETHOD

2: for i = 0→ N − 1 step M − 1 do
3: A← {Gx : x ∈ Z, i ≤ x < Min(i+M − 1, N)}
4: LOAD (GA)
5: for j = i+M − 1→ N − 1 do
6: LOAD (Gj)
7: COMPAREALL (A ∪Gj)
8: UNLOAD (Gj)
9: end for

10: UNLOAD (GA)
11: end for
12: end procedure

Our memory management problem can also be modelled as a traditional virtual mem-

ory management problem [Aho et al., 1971]. The data items can be considered as

pages and memory can be divided into frames to hold them. The memory frames are

insufficient to hold all pages. The objective is to intelligently replace the unused pages

to reduce the number of misses in the future. There are many frequently used generic

page replacement algorithms such as Least Recently Used (LRU) [Aven et al., 1976],

Least Frequently Used (LFU) [Li et al., 2008], First In First Out (FIFO). There has
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been a widely accepted “informal principle of optimality” for the page replacement

policies: the page to be replaced is that which has the longest expected time until next

reference [Aho et al., 1971]. Accordingly, if an algorithm knows exactly which page

is going to be referenced last, it can handle page replacement optimally. A memory

management algorithm which uses the prior knowledge of the memory access patterns

of an application is aware of the best page to be replaced next. Without this knowl-

edge, any generic paging strategy (such as LRU) cannot hope to compete against an

algorithm such as that developed by Mueen et al. (2010).

Unlike the above mentioned direct memory management strategies, job pruning is an

indirect strategy to reduce the burden of load operations [Agrawal et al., 1993, Mueen

et al., 2010, Zhu et al., 2002]. In this approach predetermined unnecessary comparisons

are pruned, thereby reducing the cost of load operations. This is achieved by predict-

ing uncorrelated pairs, utilizing a certain threshold and using special pre-calculations

before calculating the accurate correlation. While this kind of prediction works well

for correlation-based similarity searches, it is not always applicable.

2.3 Specific Memory Improvements for the CV

Method

The memory complexity of storing a composition vector without any optimizations

is O(nK) where n is the size of the alphabet of the genomic sequence and K is the

order of calculation in the CV method. Typical values for n are 4 or 20 depending on

the type of the genomic sequence (DNA or protein sequence) and K ranges typically

from 6 to 20 [Yu et al., 2010a]. Due to significantly large memory usage, specific

memory optimization techniques have been proposed to make the CV method efficient.

Some of these techniques are used in our benchmark programs [CVTree, 2011, Yu
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et al., 2010a] together with our memory management algorithms for much enhanced

computing efficiency.

Wang [2009] proposed a method in which the memory required to store a composition

vector is O(l), where l is the length of the genomic sequence. He used a sparse data

structure called tables to store the index and frequency in columns. Since a typical

composition vector mostly contains zeros, this method reduces the size of the compo-

sition vectors by sparing the memory allocated for zeros. In addition to the reduction

of the memory required to complete a pair-wise comparison, this sparse structure in-

creases the speed of a comparison.

Steinbiss and Kurtz [2012] proposed another memory optimization, which is inde-

pendent of the programming language and can be used generally to store genomic

sequences. Their space-efficient data structure, GtEncseq, can be used to store multi-

ple biological sequences of a variable alphabet size. It includes customizable character

transformations, wild-card support, and an assortment of internal representations opti-

mized for different distributions of wild-cards and sequence lengths [20].

While the above strategies help minimize the amount of data required to store data in

memory, the problem of being unable to load all the composition vectors into the mem-

ory is not completely solved, particularly when N , the number of genomic sequences

is large. This thesis will address this problem.

2.4 Parallelization of All-to-All Comparison

There are many solutions proposed for the parallelization of DIAC in various com-

puting platforms. DIAC falls into the application category called data intensive bag

of tasks [Lee and Zomaya, 2006]. The applications in this category consist of a set
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of independent tasks which share data among them. Only a few solutions have been

proposed for the parallelization of data intensive bag of tasks. Those solutions are

also valid for the parallelization of the DIAC problem as well. Therefore, the solutions

proposed directly for parallelization of DIAC are discussed in the following subsection

(2.4.1). InSection 2.4.2, solutions proposed for the parallelization of bag-of-tasks and

tasks sharing data are discussed. The research discussed in this section are not limited

to a shared-memory platform.

2.4.1 Parallelization Specific to All-to-All Comparison

The earliest research to parallelize DIAC was carried out by Date et al. [1993]. Fo-

cusing on distributed memory systems, they proposed a farm-computing approach to

execute the DIAC in parallel. In this approach, one processor (the farmer) break the

large number of work-units into sub-sets and distribute the subsets to one of the other

processor (the worker). A work-unit is a pair-wise alignment (comparison). In a set

of N genomic sequences, N(N − 1)/2 work-units need to be completed. The work

is distributed dynamically. A work-unit is sent to a worker processor by the farmer

processor, and the worker processor accepts the work unit, if it is free. The result of

the alignment is sent back to the farmer processor upon completion. The worker pro-

cessors do not communicate with each other and all the communications are routed

through the farmer processor. Date et al. [1993] indicate two major reasons to use the

farm approach for parallelization of this particular problem:

1. The time to process a single work unit is significantly larger than the time to

generate and distribute work.

2. The order in which the results are collected is not important.

By using this approach, Date et al. have archived almost linear speed gain, when the

number of transputers increased from 4 to 64. They do not consider any limitation in
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memory in the transputers. The input data are not expected to cause significantly large

communication cost.

In 2002, Kleinjung et al. [2002] proposed a solution for parallelization of Multiple

Sequence Alignment (MSA). MSA has a DIAC as a part of the process. In their ap-

proach they use the Single Instruction Multiple Data (SIMD) architecture (refer to

Section 2.6). Their approach is to distribute all genomic sequences across the net-

worked computer nodes and let the nodes choose the tasks to execute. The pairwise

comparisons are executed simultaneously in every node and managed using internode

communications. They use the MPICH package [Lusk et al., 1996, Pacheco, 1997]

to handle the parallel execution of the tasks. This work does not consider memory

limitations in the nodes.

Another attempt of parallelization of DIAC of genome sequences targeted a cluster of

computers [Hill et al., 2008]. A cluster of computers is a tightly coupled network of

computers with distributed memories. To create batches of jobs to be distributed to

the nodes, the correlation matrix is divided into rows. Since the correlation matrix is

symmetric, the effective comparisons forms a upper triangular matrix. Therefore, the

length of a row decreases gradually from top to the bottom of the matrix. Each row

of comparisons is assigned to a node of the cluster. Since the batches of tasks (rows)

are non-uniform, they are dynamically assigned to the nodes. Once the comparisons

in a row are finished by a node, the next row is dispatched to the node. The approach

has not addressed the scenario where the number of rows are less than the number of

nodes in the cluster. Furthermore, it does not consider the opportunity to breaking the

rows or tile the matrix. In this situation, some nodes will be idle since there are no

rows to be assigned to the nodes. Furthermore, the approach does not take the memory

limitations into account.

Moretti et al. [2010] proposed new strategies for parallelization of DIAC in campus

grid environments. Targeting DIAC as an abstracted class of frequently found prob-
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lems in many fields, they focused on both data distribution through the campus network

and on the task allocation strategies. Since campus grids are extremely volatile and

unpredictable, they addressed the reliability aspect as well. The conventional cluster

schedulers usually distribute tasks in the same order as the tasks in the supplied or gen-

erated task queue. Instead, Moretti et al. proposed a new task organizer for both task

and data distribution called the All-pairs Engine. The All-pairs Engine re-organizes

the task queue and data distribution plan based on the data sharing patterns in the ab-

stracted problem. The task and data distribution are also aware of the topology of the

computer grid. Therefore, a new method called topology-aware spanning tree is also

proposed in Moretti et al. [2010] for faster data distribution. This method significantly

improves data distribution rate according to their reported experiments.

A recent attempt for parallelization of DIAC in a shared-memory system was made by

Katoh and Toh [2010]. It parallelizes the DIAC as a part of the parallelization of an ap-

plication for multiple sequence alignment (MSA), called MAFFT [Katoh et al., 2002].

In their particular attempt, the parallelization of DIAC phase is fairly straightforward

mainly because the genomic sequences that they consider are small and the system’s

memory is sufficient to hold all of them at the same time. They have assigned each

pair-wise comparison to a thread to calculate them simultaneously and independently.

Some of the attempts to parallelize DIAC, have investigated specific algorithmic par-

allelization techniques such as the work by Rajasekaran et al. [2005] and Pekurovsky

et al. [2004], which are not commonly applicable in all of the problems. These so-

lutions basically look for parallelism available within the pair-wise comparison algo-

rithm which may not be generally applicable to all DIAC problems.



30 2.4 Parallelization of All-to-All Comparison

2.4.2 Parallelization of Tasks Sharing Data

When the input data is large, tasks sharing data is a data intensive bag of tasks problem.

Bag-of-tasks is a set of independent tasks which share the input data. Lee and Zomaya

[2006] have analysed the categories of bag-of-tasks problems depicted in Figure 2.1. In

Figure 2.1, we have added our DIAC problem into the figure at the end of the categories

listed by Lee and Zomaya. As seen in the figure, each task depends only on two data

items in DIAC. Lee and Zomaya have shown that the tasks in the categories which

they have listed (i.e. Figure 2.1:(a), (b) and (c)) can be often grouped based on the high

affinity to certain input data. However, it is difficult to define such groups in DIAC,

since every data item is connected to each other through a task.

(a) One to many (b) Disjoint

(c) Random

Data

Tasks

(d) All-to-all comparison

Figure 2.1: Categories of bag-of-tasks problems [Lee and Zomaya, 2006]: (a) One to
many; (b) Disjoint; (c) Random; and (d) All-to-all comparison.

Lee and Zomaya [2006] have also proposed a method for parallel execution of tasks

sharing input data on grid systems. They specifically target the data intensive bag of

tasks problem. The targeted platform is a grid system comprising of sites, each of

which is a set of computational hosts participating in the grid. The method assumes

that the hosts in the same site are able to access each other’s data repository as if
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they were accessing their own [Lee and Zomaya, 2006]. As a result, the data in all

repositories in a site can be considered as a single repository placed on the site.

In the proposed parallelization method for data intensive bag of tasks, Lee and Zomaya

[2006] have paid more attention to taking the advantage of data sharing patterns of the

tasks. Their solutions has two major phases. Firstly, the tasks are grouped based on

the data shared among them. This grouping phase intends to reduce the data transfer

to each site by assigning tasks, which share similar data, into one site. Secondly, the

grouped tasks are dispatched to each site. Once a group of tasks is finished by a site,

remaining tasks of another group will be assigned to the site. The scheduling in the

second phase is dynamically handled simultaneously to the task execution. The tasks

listings are also organized dynamically and task replications are used to overcome the

problems arising from the dynamic nature of the grid systems.

Giersch et al. [2004] analysed the parallelization of tasks sharing files on heteroge-

neous master-slave platforms which form a distributed memory system. The tasks

depend upon files which are initially stored in the master node and later distributed

to the slave nodes. The tasks share input files. The scheduling problem is to select

which file is sent to which slave node and in which order, so as to minimize the to-

tal execution time. The files are sent to the slave nodes accordingly. Giersch et al.

[2004] concentrate on the scenario where files and tasks are uniform, but the slave

nodes are heterogeneous. Giersch et al. [2004] prove that this scheduling problem to

be NP-complete and have proposed a series of heuristics called “max-min”, “suffer-

age”, etc. to solve the problem. Each heuristic function selects which task is executed

next in which slave node. The heuristics have been experimentally verified for good

performance.

Wu et al. [2009] addresses the parallelization of tasks sharing files in the same way

as Giersch et al. [2004]. In addition, they also take the data storage limitations in

the nodes into account. However, their work only addresses the first step in solving
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the parallelization problem, which is data distribution to a single node. As a result,

they have not proposed any complete strategies to solve the scheduling problem for

parallelization of tasks sharing files in limited memory.

2.4.3 Summary of Parallelization of All-to-All Comparison

In this section we have discussed many solutions proposed for parallelization of DIAC

in various platforms. Among those solutions, only Wu et al. [2009] have addressed the

memory capacity limitations in the computational nodes. Unfortunately, they have not

proposed solutions beyond the point of data distribution to the computational nodes.

Nevertheless, the research by Wu et al. is by far the most closely related to our schedul-

ing problem.

As stated by Geng et al. [2010], only a small number of researches related to paral-

lelization were carried out targeting multi-core systems in the past. Only Katoh and

Toh [2010] have targeted the shared-memory platform among all work we have dis-

cussed. Since their problem is not data intensive and not bound by an upper limit in

memory, the parallelization is fairly straightforward.

Much research [Date et al., 1993, Giersch et al., 2004, Kleinjung et al., 2002, Lee and

Zomaya, 2006] for parallelization of data intensive bag of tasks has targeted distributed

memory systems. Shared-memory systems have received less attention in this research.

In our understanding, one reason for this choice is the lack of popularity of shared-

memory computers until recently. Other reason is the lack of availability of powerful

shared-memory systems until recently.

The parallelization strategies used for distributed-memory systems are generally differ-

ent from strategies used in shared-memory systems. Therefore, much of the research

discussed in this section is not directly applicable or comparable to the solutions pro-
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posed for our memory management problem. To the best of our knowledge, reports do

not exist in the literature to address a similar problem to ours on memory-constrained

DIAC in shared-memory platforms.

2.5 Analysis of Popular Parallelization Strategies

Application parallelization is a vast research area. Various strategies have been pro-

posed based on many factors, such as the nature of the problem, platform and targeted

objective. This section will briefly discuss some of these strategies, aiming at the par-

allelization of DIAC in shared-memory multi-core platforms. The relationship of the

methods discussed in this section to our DIAC parallelization problem is also discussed

very briefly. More details about parallelization of our DIAC problem is discussed in

Chapter 4.

The objectives of parallelization are not always the same. In many real-time systems

[Ramamritham et al., 1990], the objective is to meet the task deadlines. In many other

applications including our scheduling problem, the objective is to increase the speed of

the application (decrease the total runtime) by parallelization. Therefore, this section

will focus on strategies for increasing the speed of an application.

To utilize the full power of a multi-core system, it is important to evenly distribute

the load among the cores [Geng et al., 2010]. Efficient load-balancing is the key to

reducing the total runtime of an application in multi-core systems. Ullman [1975] has

stated that “Load-balancing is a classic combinatorial optimization problem and is an

NP-complete problem as difficult as the Hamilton problem” [Geng et al., 2010].

Scheduling algorithms can be divided into two main categories as static [Braun et al.,

2001] and dynamic [Amalarethinam and Mary, 2011, Geng et al., 2010, Lee and
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Zomaya, 2006]. Static scheduling algorithms operate based on the prior knowledge

of the tasks and environment. They do not react well to dynamic load imbalances that

might occur in the runtime. In comparison with dynamic approaches, less scheduling

overhead in the runtime is one of the biggest advantages of static scheduling.

Dynamic scheduling takes decisions in the runtime based on both the knowledge avail-

able during the runtime and prior to the runtime. The flexibility in the runtime is one

of the biggest advantages of using dynamic scheduling. However, due to the necessity

of collecting, storing and analysing of state information, dynamic scheduling causes

more overhead in the runtime than static approaches [Geng et al., 2010]. In our DIAC

problem, prior knowledge of the execution times of tasks is limited and a dynamic ap-

proach would be the suitable path to take. However, the full awareness of data sharing

patterns among the tasks makes it a good candidate for static scheduling as well.

In dynamic scheduling, the scheduling phase can be interleaved or over-

lapped [Hamidzadeh and Lilja, 1996]. When the scheduling phase is interleaved,

working processors may have to wait until the scheduling phase finishes to receive

newly assigned tasks. When the scheduling phase is overlapped, a dedicated proces-

sor can be assigned for scheduling [Amalarethinam and Mary, 2011, Hamidzadeh and

Lilja, 1996]. Otherwise, the scheduling process can be distributed among processors

that will take turns for scheduling tasks when they become idle.

In many scheduling problems, the tasks are independent from each other [Date et al.,

1993, Giersch et al., 2004, Hamidzadeh and Lilja, 1996, Kleinjung et al., 2002, Lee

and Zomaya, 2006]. However, when the tasks are dependent on each other, the Di-

rected Acyclic Graph (DAG) based solutions have received more attention in recent

research [Abdelkader and Omara, 2012, Amalarethinam and Mary, 2011, Meng et al.,

2013]. Firstly, the dependencies are presented in a DAG and then the scheduling of

tasks is performed based on the DAG. Our attempts to present a DIAC problem in a

DAG and its evaluation will be presented in Chapter 4.
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In dynamic scheduling, when a processor is not getting sufficient work to keep it busy,

an event must trigger to balance the load. This event may be triggered at the processor

that is becoming less loaded or idle and the processor can start looking for work. Al-

ternatively, the scheduler may see that the load assigned to a processor is getting low,

and thus assign more work to that processor [Amalarethinam and Mary, 2011, Date

et al., 1993, Hill et al., 2008]. In some cases, highly loaded processors may migrate

work to less loaded processors [Geng et al., 2010].

There are many dynamic scheduling strategies found in the literature. Among them,

there are several common strategies standing out and used by many researchers. Most

of these strategies are described in detail by Amalarethinam and Mary [2010]. Us-

ing a heuristic function to select which task to execute next in which processor is a

commonly found strategy [Berman et al., 1999, Casanova et al., 2000, Giersch et al.,

2004, Ramamritham et al., 1990, Xiangbin and Shiliang, 2003]. Self Adjusting Dy-

namic Scheduling (SADS) family algorithms are another commonly found strategy,

which is based on the branch and bound search algorithms [Hamidzadeh et al., 2000,

Hamidzadeh and Lilja, 1996]. Directed Acyclic Graph (DAG) based scheduling ap-

proaches have become popular for computing tasks with dependencies. In addition,

there are some applications which use genetic algorithms [Omara and Arafa, 2010].

Heuristic functions used for scheduling are mainly developed to target a specific prob-

lem. Based on the current state of the system, a heuristic function will provide a

representative value to help the scheduler to decide the task-processor affinity or next

action. It is usually developed to represent a combination of one or more ideas af-

fecting the objective (e.g. speed). For example, the “Max-min” heuristic developed

by Giersch et al. [2004] selects the best task as the one whose objective function, on

its most favourable processor, is the largest. The idea behind this heuristic is that a

long task scheduled at the end would delay the end of the whole execution [Giersch

et al., 2004]. Many existing heuristics are not applicable to our DIAC problem, due to
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the memory capacity constraints. We developed a heuristic function based approach to

evaluate the effectiveness of the technique and it will be presented in Chapter 4.

Self Adjusting Dynamic Scheduling (SADS) family algorithms are based on the branch

and bound strategy [Lawler and Wood, 1966]. In the SADS algorithms, a task proces-

sor assignments are built as a tree and each path in the tree represents a schedule. Each

node of the tree has a time-stamp and assigns a task to a processor. A separate proces-

sor works on building this tree of schedules based on the estimated execution times of

the tasks. The process for building schedules continues through all possible branches

of the search tree bound by specific constraints. In contrast to in the branch and bound

algorithms, the tree is not built until a complete schedule is produced. The schedule

building phase stops as soon as the least loaded processor becomes idle. Then the

best partial schedule developed so far will be selected and the tasks are assigned to

the processors according the partial schedule. The processors follow the schedule built

so far while the schedule building process continue to run concurrently. The schedule

building process continue from the end point of the previously selected schedule and

continue until the next stop point. The process is repeated until all tasks are assigned

to the processors.

We adapted the SADS algorithm to solve our scheduling problem. The adaptation

process and the evaluation of the technique will be discussed in Chapter 4.

2.6 Popular Parallel Computing Platforms

As seen in Section 2.5, the parallelization of DIAC has been addressed on various plat-

forms. Understanding specific properties and structure of these platforms can greatly

help to distinguish the platform specific strategies for parallelization. Therefore, this

section provides an overview of popular parallel computing platforms. A special at-
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tention is paid to shared memory multi-core platforms, which is the target platform of

this thesis.

A taxonomy of different computer architectures are shown in Figure 2.2. The broad

classification of parallel computer models, according to Flynn [1972], is Single In-

struction Multiple Data (SIMD) and Multiple Instructions Multiple Data (MIMD).

SIMD systems were widely used in early days of parallel computing, but are now

facing extinction. These systems consist of a large number (even thousands) of proces-

sors and each processor has a local memory. Every processor must execute the same

instruction over different data at each computing or ‘clock’ cycle. The complexity and

often the inflexibility of these systems has restricted their use mainly to special pur-

pose applications [Trelles, 2011]. In MIMD computers, each processor can execute

asynchronously and independently from other processors at its own speed on different

data. This flexibility has brought more attention to high performance parallel comput-

ing to MIMD systems. In addition, MIMD computing systems are more amendable to

bioinformatics [Trelles et al., 1998].

Until recently, the execution speed of all programs in general kept increasing in uni-

processor systems as the number of the transistors in the processor kept increasing.

After 2004, the execution speed of single-threaded applications (also know as sequen-

tial applications) did not increase at a rate as it did formerly, even though the number

of transistors in the processors was still increasing at the same rate. This situation oc-

curred due to two predominant factors. Firstly, the processor designers were unable to

increase the clock frequency of the processors at a same rate as it was earlier without

exceeding the thermal and power constraints. Clock frequency is a key factor directly

related to the execution time of an application. Secondly, even with the constant in-

crease of the number of transistors in a processor, processor designers were unable to

innovate new architectural designs to speed up the processor without overstepping the

thermal and power constraints [Bridges, 2008].
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Parallel Architectures

Single Instruction Multiple 
Data (SIMD)

Multiple Instruction Multiple 
Data (MIMD)

Shared Memory Distributed Memory Shared Distributed Memory

Massively Parallel Processors Multi Computers

Computer Grids Computer Clusters

Figure 2.2: Summarized parallel computer architecture taxonomy and memory mod-
els [Trelles, 2011]

As a solution for overcoming the limitations of increasing the clock speed, the popu-

larity of multi-core processors has increased rapidly in the recent years. At the present

time, most of the desktop or laptop computers are built with multi-core processors.

This popularity and availability has led our research to target the shared-memory,

multi-core platforms. The cores in a multi-core processor, can execute different in-

structions simultaneously on different data and they are categorized in MIMDs (Mul-

tiple Instruction Multiple Data). The cores usually share the same main memory and

all cores has direct access to a shared main memory.

Multi-core computers are categorized into two main categories as homogeneous and

heterogeneous [Geng et al., 2010]. In homogeneous multi-core systems, all cores have

the same structure and properties such as clock speed. In heterogeneous multi-core sys-

tems, cores have different structures. Usually these systems have a high-performance

core and numerous general cores [Geng et al., 2010]. Due to the wide availability of

homogeneous multi-core systems, our research targets homogeneous multi-core plat-
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Figure 2.3: A summary of memory models in parallel computers [Trelles, 2011]

forms only.

Multi-core computers fall into the shared-memory model. Figure 2.3 shows different

types of memory models used in parallel computing systems. A system is categorized

as shared-memory architecture if any process, running in any processor, has direct

access to any local or remote memory in the whole system. Otherwise, the system

is categorized as distributed memory architecture [Trelles, 2011]. Most general-use

multi-core computers have shared-memory architecture and are MIMDs.

Much of the research discussed in Section 2.4.1 [Date et al., 1993, Giersch et al., 2004,

Kleinjung et al., 2002, Lee and Zomaya, 2006] used distributed-memory systems as

the target computing platform. A major advantage of the shared-memory architec-
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ture over the distributed-memory architecture is that the processors or cores can share

data in the memory, which is generally much slower in distributed-memory systems.

In distributed memory architectures, each processor has its own local memory (see

Figure 2.3). A processor does not have direct access to any of the memories other

than its own. Each node of the system has a processor and a dedicated memory. The

nodes communicate through an external network. These external links are significantly

slower than the direct memory access (e.g. Ethernet based networks). In some sys-

tems, specially designed high speed connections such as InfiniBand [Yu et al., 2006]

are used to link the nodes to speed up the links between nodes. Therefore, minimizing

internode communication is one of the major concerns in developing parallelization

strategies for distributed memory systems. As a result, parallelization strategies de-

signed for distributed memory systems are typically twofold as data distribution and

task distribution.

Distributed memory systems are usually found in two different categories as clusters

and grids. In general, a cluster of computers is a closely coupled set of computers and

a computer grid is a loosely coupled network of computers which might expand over

a topologically wide area. An example of a cluster of computers is a set of computers

in a High Performance Computing (HPC) laboratory where all computer nodes are

connected to the same Local Aria Network (LAN), usually through high-throughput

connections [Giersch et al., 2004]. An example for a grid is a system which utilizes

all computers across a university network to solve computationally intensive jobs [Lee

and Zomaya, 2006, Moretti et al., 2010].

In addition to shared and distributed memory models, a new model called shared-

distributed memory is also emerging (see Figure 2.3). In this model, a set of shared-

memory computers with multiple processors or cores are connected by an external

network which is similar to a distributed-memory system. At the present time, many

cluster of computers can be categorised in to this model since the nodes of the clusters
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are usually multi-core shared-memory computers.

2.7 Simulators for Parallel Algorithms

Simulation of parallel algorithms is an important part of designing a parallel algorithm

through a rigorous research process. Analysis of the behaviour of an algorithm and per-

formance evaluations can be performed through a simulator. Higher execution speed is

one of the most important features of such simulators. This section discusses existing

simulation tools and their suitability for our research on the DIAC problem.

There are three categories of simulators to study the characteristics of parallel pro-

grams [Sudhakar, 2006]:

1. execution driven simulators,

2. trace driven simulators; and

3. event driven simulators.

Execution driven simulators are commonly found in the literature [Austin et al., 2002,

Ceze et al., 2003, Magnusson et al., 2002, Prakash and Bagrodia, 1998, Zhi et al.,

2010]. They run the actual program code after a preprocessing phase (i.e. a compiling

process), in a simulated parallel hardware environment similar to a virtual machine.

In the process instrumentation code is injected to the program to measure parameters,

such as the timing, count, frequency and type of instructions [Sudhakar, 2006]. There-

fore, the compiled machine code of the simulated program is executed at some point

to simulate the behaviour of the application. The execution time of a simulated task

depends on the code used to mimic the task or the actual code of the task. Therefore,

modifications are usually difficult to make for the runtime of the tasks.

Trace driven simulators [Mckinley and Trefftz, 1993, Reinhardt et al., 1993] are mainly
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useful for studying the performance characteristics of the cache coherence and memory

consistency protocols in a shared memory system [Sudhakar, 2006]. Hence they do not

meet our requirements in simulating the DIAC problem.

Event driven simulators [Pertel, 1992, Sudhakar, 2006] capture the special events such

as massage passing, I/O events and use these events in the simulation process. This

type of simulators better meet our requirements for the DIAC problem. However, most

of the existing simulators involve a code generation process to analyse a code, which

may be annotated, and generate the simulator code. They still do not take the advantage

of non-pre-emptive tasks and are usually computationally heavy in the runtime. In

addition, these simulators still use methods like counting instructions to determine the

execution time of the tasks. Therefore, modifying the task execution times based on

imagined or harvested values is complicated and can be inaccurate.

A list of expectations or requirements in our research from a simulator is given below.

1. Theoretical analysis and evaluation of the performance of parallel algorithms.

We should be able to emulate scenarios such as zero execution time for schedul-

ing.

2. Programmatical and easy change of exact execution times of loads and compar-

isons. We should be able to experiment with different scenarios with variations

of execution time of tasks.

3. Ability to simulate various number of cores and parallel read disks.

4. Being sufficiently lightweight and fast enough for use as a simulator for the

optimum parameter prediction in the algorithms (especially in the real-runtime

when parallel disk reads are feasible).

5. Ability to use simulations in conjunction with other applications such as the

application developed for Simulated Annealing.

6. Ability to reproduce the same scenario or behaviour over and over again for prob-

lem identification, validation and improvements of the algorithms (deterministic
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simulator).

7. The tasks are expected to have continuing and uninterrupted affiliation with the

processors until it is completed. Therefore, the simulator must be able to exploit

the performance gain by jumping from one CPU clock cycle to the next useful

cycle quickly.

The above discussion of the existing simulators makes it clear that some of the above

expectations are beyond what we can achieve from the existing simulators. Since our

objective is to design a scheduling algorithm for the DIAC problem, in the design

process and behavioural analysis process, our interest mainly lies in the theoretical

behaviour of the algorithm in a controlled environment. Utilizing existing systems in

general, which are based on instruction level simulations, poses a complicated process

and does not guarantee many of the above mentioned expectations or requirements.

A part of the optimum parameter selection process, which will be discussed in Sec-

tion 5.4, is based on simulations.

Chapter 7 of this thesis will develop a novel and flexible simulation environment spe-

cific to the context of our research. This simulator is flexible and can be easily adapted

by other research with similar expectations or requirements. Not only our research but

also much other recent work [Amalarethinam and Mary, 2011, Giersch et al., 2003,

2004, Wu et al., 2009] done in a similar context use specialized custom simulators

designed to suit their requirements in the experiments.

2.8 Summary of the Literature Review

The DIAC is an important and frequently found problem in data intensive bioinformat-

ics and other applications. The composition vector (CV) method is one of the many

applications which use DIAC. Our focus on the features of the CV method does not
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influence the generality of the solutions developed by us for parallelization of DIAC.

The DIAC can be categorized in the data intensive bag of tasks (DBoT) class of appli-

cation. Parallelization of DBoT has received more attention in recent researches.

Although there is much research on parallelization of DIAC, limited research exists

for shared-memory multi-core systems. Not only for DIAC, overall research target-

ing parallelization in shared-memory multi-core systems is limited compared to the

distributed-memory systems. To the best of our knowledge, research reports have not

been found on the research driven towards parallelization of DIAC in shared-memory

systems with limited memory. However, there are methods and strategies which can

be adopted with improvements to solve the DIAC parallelization problem.

At the present time, the shared-memory multi-core systems and shared-distributed-

memory systems have become popular and widely available. New parallelization

strategies need to be developed specifically targeting these systems. Since our research

targets DIAC in shared-memory multi-core platforms, many applications can benefit

from the proposed solutions.



Chapter 3

Memory Management in

Uni-processor Systems

As the first step of parallelization of Data Intensive All-to-all Comparison (DIAC) in

limited memory, we isolate the memory management problem. This chapter answers

research question 1 specified in Section 1.3. The question is how memory should

be managed for DIAC in single-core (uni-processor) platforms to minimize the time

spent on load operations. This chapter focuses only on memory management in single-

core (uni-processor) systems without considering the parallelization. If the memory is

assumed to be unlimited, there is no need for memory management since comparisons

can start after loading all data items to the memory, as performed in Algorithm 1.

Therefore, only the situation where memory is insufficient to hold all data items (i.e.

preprocessed items) is addressed in this chapter.

In limited memory, data items must be swapped in and out from the memory to com-

plete all comparisons. The number of loads used to complete all comparisons largely

depends on the sequence of loading them to, and unloading them from the memory. In

this process, if more redundant loads (i.e. loads which are over the minimally required
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loads to complete a DIAC) are performed, the runtime may unnecessarily increase.

The aim of this chapter is to develop heuristics which run fast and minimize the num-

ber of loads when memory is insufficient for holding all data items at the same time.

The algorithms are developed bearing in mind the scalability on different computer

platforms with different configurations.

The chapter is organized as follows. First, we state and model the memory manage-

ment problem. Then novel heuristics are developed and optimum parameters for the

proposed algorithms are proven. Next a close-fitting theoretical lower bound for the

minimum number of loads required for a DIAC to be completed under memory con-

straints is derived. Finally, the performance of the heuristics is validated experimen-

tally in comparison to other existing methods. A significant portion of this chapter has

been accepted as a journal publication [Krishnajith et al., 2014].

The main contributions of this chapter are:

1. A novel scalable memory management algorithm which minimizes the number

of loads for DIAC.

2. An analysis of different possible algorithms as well as theoretically selecting

optimal configuration parameters for the proposed algorithm.

3. A close-fitting theoretical lower bound for the minimum number of loads re-

quired for a DIAC to be completed under memory constraints.

3.1 Problem Formalization and Strategy Formulation

The load process of a data item is computationally intensive. In limited memory,

multiple loads of each data item are required to complete all comparisons. Therefore,

by intelligently loading data items in such a way that the number of loads is minimized
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will increase the speed of the DIAC significantly.

It is usually faster to read a preprocessed data item from the disk rather than prepro-

cessing it every time when loaded to the memory [Yu et al., 2010b]. Since there is

no reliable method to estimate the size of the data items before they are preprocessed

(for example, see Appendix A), for accurate memory management, the preprocessed

size of every data item must be known. Therefore, if the size of the preprocessed data

items are different from the original data items, each data item must be preprocessed at

least once before starting the comparisons. The preprocessed data items can be written

to the disk at this stage, for faster retrieval in later loads. This has already been dis-

cussed in details in Chapter 1 and Section 2.1. As a result, we assume that the memory

requirement of each data item is known.

Let the maximum number of data items which can be held in the memory be M and

the number of data items to be compared be N . The set of input data items are denoted

by Gi where 0 ≤ i < N . Since the correlation matrix results from a DIAC is sym-

metric, only N(N − 1)/2 comparisons are required to complete a DIAC, resulting in

a triangular region of pair-wise distances.

There is a condition in order to complete a correlation matrix calculation: ∀i, j ∈

[0, N); i < j, Gi and Gj must be present in the memory together at least once through-

out the calculation. Following this condition, we propose following conceptual proce-

dure to complete all comparisons in a DIAC:

1. Load an initial set of M data items into memory.

2. Compare all pairs of data items that are currently in memory that have not al-

ready been compared.

3. Decide which set of items to load into memory and which set of items to unload

(to make way for the new items).

4. Return to Step 2 until all comparisons are complete.
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By using the above procedure, an algorithm will be progressively developed in the next

few sections for scalable computing with efficient memory utilization. In the process of

developing the algorithm, an intermediate algorithm will be presented first which can

only handle uniformly sized data items. Then the intermediate algorithm is extended

to the final algorithm which is capable of handling non-uniformly sized data items

and practical problems such as fluctuations in free memory. Please note that simple

strategies such as blocking the correlation matrix into rectangular regions designed to

fit into memory do not by themselves lead to optimal results.

3.2 Algorithm Development

In considering which sets of sequences to load and unload in the above general pro-

cedure, we have a combinatorial number of possibilities to consider (over the lifetime

of the DIAC calculation). To reduce the number of possibilities we use a heuristic

approach in which the set of data items in memory are divided into two subsets set A

and set B. Once we have compared all pairs of sequences currently in memory (i.e.

A ∪B), we keep the subset set A in memory, unload the current set in set B, and load

in a new set B. We continue this until we have compared the items in set A with all

other items; we then load a new set A. So, set A is the set that we choose to keep in

memory for a longer term, while the set B is rapidly swapped in and out.

3.2.1 Algorithm

The data items are indexed from 0 to N − 1. Thus, set A and set B will be represented

as contiguous ranges of indexes in our algorithms. They have the sizes of α and β,

respectively. The proposed intermediate algorithm is depicted in Algorithm 4 and

numerically illustrated in Figure 3.1.
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Algorithm 4 General algorithm to calculate all comparisons
1: procedure COMPAREALL(N,M,α, β) // α and β are sizes of set A and set B
2: initialize global matrix[N ][N ] with −1;
3: B ← {Gx : x ∈ Z, 0 ≤ x < β}
4: LOAD data items in set B
5: Set flag forward = true
6: Set A to be empty
7: for p = 0→ N − β − α step α do
8: UNLOAD all data items in set A
9: A← {Gx : x ∈ Z, p ≤ x < p+ α}

10: if forward == true then
11: A′ = A−B // Data items in A and not in B
12: LOAD data items in set A′

13: for i = p+ α→ N − 1 step β do
14: B ← {Gx : x ∈ Z,Min(i, N − β) ≤ x < Min(i+ β,N)}
15: if i > p+ α then
16: B′ ← {Gx : x ∈ Z, i− β ≤ x < Min(i, N − β)}
17: UNLOAD all data items in set B′

18: end if
19: B′′ ← {Gx : x ∈ Z,Max(i, p+ β) ≤ x < Min(i+ β,N)}
20: LOAD all data items in set B′′

21: COMPAREALL (A,B)
22: end for
23: else
24: LOAD all data items in set A
25: for i = N → p+ α + 1 step β do
26: if i < N then
27: B ← {Gx : x ∈ Z,Max(i− β, p+ α) ≤ x < Max(i, p+ α+

β)}
28: B′ ← {Gx : x ∈ Z,Max(i, p+ α + β) ≤ x < i+ β}
29: UNLOAD all data items in set B′

30: B′′ ← {Gx : x ∈ Z,Max(i− β, p+ α) ≤ x < i}
31: LOAD all data items in set B′′

32: end if
33: COMPAREALL (A,B)
34: end for
35: forward =!forward // Reverse forward flag

Continued on the next page...
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36: end if
37: q = p
38: end for
39: UNLOAD all data items in set A
40: if forward == true then
41: A′ ← {Gx : x ∈ Z, p+ β ≤ x < N} // p is it’s last value in the for loop
42: else
43: A′ ← {Gx : x ∈ Z, p ≤ x < N − β}
44: end if
45: LOAD all data items in set A′

46: COMPAREALL (A′, B)
47: end procedure
48: procedure COMPAREALL(A,B)
49: COMPARE (x, y) ∀x, y where x, y ∈ A ∪B
50: end procedure
51: procedure COMPARE(i, j)
52: if matrix[i][j] == −1 then
53: matrix[i][j] = matrix[j][i] = COMPARISONFUNCTION (Gi, Gj)
54: end if
55: end procedure

It is seen from Algorithm 4 that the set B initially sweeps from left to right across the

columns of the matrix. However, once we reach the right edge of the matrix (and need

to load a new set A), rather than unloading set B and moving back to the start of the

next row, we instead keep set B in memory and reuse it for the next set A. Set B then

sweeps backwards from right to left across the next row. In line 8, the previous set A is

unloaded from memory. Set A is empty in the first iteration. Lines 12 or 24 then loads

the next set A. However, if the previous iteration has moved set B backwards (i.e.,

forward = true), a subset of the new set A will already be in memory because of the

‘bringing forward’ of set B. Therefore only a subset A′ of set A (that is not already

loaded) needs to be loaded in line 12.

The loops starting at lines 13 and 25 move set B forward and backward, respectively.

Within these loops, lines 17 and 29 unload the previous set B. Furthermore, lines 20

and 31 load the next set B. The inner loops for set B terminate after they get within

β (the size of set B) from the (left or right) end of the row. If the remainder for set B
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in the last inner loop iteration is less than β, it will be slid, so that a maximally sized

set B is preserved for the next iteration. To conduct this sliding, when set B is at a

boundary, only a subset of previous set B, B′, is unloaded at lines 17 and 29. Also,

when this sliding happens only a subset of set B, B′′, is loaded at lines 20 and 31.

3.2.2 Graphical Illustration of the Algorithm

An illustration of our algorithm is shown in Figure 3.1, where N , the number of data

items, is 14; M , the maximum number of data items that can be held in the memory, is

5; and the sizes of set A and set B are α = 3 and β = 2, respectively. The data items

are indexed from 0 to 13. In Figure 3.1, each square represents a comparison between

the data items corresponding to the column and row numbers. The number inside a

square represents the iteration number of the loop starting at line 7 in Algorithm 4.

3.2.3 Illustrative Example of the Algorithm

In the following, Algorithm 4 is further illustrated using the example in Figure 3.1.

• At line 4, an initial set B ({G0, G1}) is loaded. Set A for the first iteration is

{G0, G1, G2}.

• Since the current set B, which is a subset of set A, is already in memory, only

A−B ({G2}) is loaded at line 12.

• At this stage, set B should be moved forward because the forward flag is true.

• The first set B is loaded adjacent to set A. The first five sets loaded to set B

in the loop starting at line 13 are {G3, G4}, {G5, G6}, {G7, G8}, {G9, G10} and

{G11, G12}.

• In the loop starting at line 13, each set B is loaded and then all uncompleted

comparison with the current set A and set B are completed at line 21.
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• After the first five sets in set B, the remaining data items are insufficient for a

full set B. Therefore, instead of loading a full set B, the remainder is loaded

and a number of data items equivalent to the remainder are unloaded from the

beginning of the current set B. In this case the number remaining is 1; and G11

is unloaded and G13 is loaded. Thereafter, set B becomes {G12, G13}. We call

this process “sliding” set B. The sliding process preserves a full set of set B for

the next iteration. The sliding process is the reason to use B′ instead of B at

line 17 to unload set B. B′ is always similar to the previous set B, unless sliding

is in place.

• Similarly, B′′ at line 20 which loads the next set B, is always similar to the next

set B unless sliding is in place. Importantly, the last set in set B is not unloaded

in both inner loops.

• For the next iteration, the forward flag is set to false at line 35.

• Set A is stepped by α and a full set A is loaded at line 24 which is {G3, G4, G5}.

• The loop starting at line 25 moves set B backward (since forward is false) and

for each set B all uncompleted comparison with the current set A and set B are

completed at line 33. The next four sets of set B are {G12, G13}, {G10, G11},

{G8, G9} and {G6, G7}.

• It is noted that the first set B ({G12, G13}) is already in the memory from the

previous iteration. The “if” condition at line 26 avoids loading this set.

• If the remainder for the last set B is less than β (this is not the case here), the

set B is slid (’sliding’ process) by unloading the last data items at the end of

the set B and loading the remainder to the front. Note again that the last set in

set B is not unloaded. This last set in set B ({G6, G7}) will be a subset of next

set A (G6, G7, G8) and will be excluded from loading at 13 (A− B) in the next

iteration.

• The loop at line 7 is repeated until the remainder of the data items after the latest

set A is less than M. At lines 40-45, if the remainder is not zero, the remainder

is loaded to set A excluding the current set B which was preserved from the last
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iteration.

• Then, all uncompleted comparisons with the current set A and set B are com-

pleted at line 46.
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Figure 3.1: The comparisons completed in each iteration in Algorithm 4. The number
at each square shows the iteration number. This depiction shows a comparison of 14
data items, assuming that a maximum of 5 data items can be held in the memory. The
sizes of the sliding sets A and B are α = 3 and β = 2 respectively.
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3.2.4 Discussion on Algorithm 4

Algorithm 4 does fewer loads than the algorithm proposed by Mueen et al. [2010]

(depicted in Algorithm 3). The main improvement in our approach is the ‘bringing

forward’ of set B from one iteration to another thus saving some loads of the next

iteration.

As M represents the maximum number of data items that the memory can hold at a

time, it should be noted that the following condition must hold:

2 ≤ α + β ≤M. (3.1)

For the full utilization of memory at any given time, we use the following condition in

Section 3.3.1:

2 ≤ α + β =M. (3.2)

The preprocessing phase (load process) in some applications [CVTree, 2011, Yu et al.,

2010a] requires a significant amount of memory. We assume that the memory require-

ment of a load process does not exceed the final size of a preprocessed data item. It

is important to note that M , the maximum number of data items that can be held in

the memory, is decided after taking into account other memory requirements such as

memory required for the program itself.

3.3 Theoretical Results

This section develops theoretical results related to Algorithm 4 and memory manage-

ment in the our DIAC problem. The results are categorized in three subsections and

8 theorems. Section 3.3.1 developed theorems for deciding optimum parameter set-
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tings for Algorithm 4. Section 3.3.2 derives a lower bound for the number of loads

required to complete a DIAC under memory constraints. Section 3.3.3 presents a time

complexity analysis of Algorithm 4.

3.3.1 Theorems for Algorithm 4

This subsection theoretically derives optimum parameter settings for Algorithm 4.

Theorems 1 and 2 give the expression L, the number of loads in terms of different

memory utilizations. Theorem 3 establishes the lower and upper bounds of L. The-

orem 4 derives the optimal β value that gives the minimal L, for M < 2N+1
3

; while

Theorem 5 deals with the case of M ≥ 2N+1
3

for the minimal L value.

Theorem 1. When α and β are set such that the condition in Equation (3.1) is met, the

number of loads L, of Algorithm 4 is:

L = N(t′ + 2)− β(t′ + 1)− 1

2
α(t′ + 1)(t′ + 2), (3.3)

where

t′ =

⌊
N − α− β

α

⌋
. (3.4)

and bxc is a floor function which rounds down x to the nearest integer.

Proof. According to the proposed algorithm (Algorithm 4) in Section 3.2, the follow-

ing series can be identified to count the number of loads. There are t′ + 1 iterations in

the algorithm in the loop at line 7.

• For a general iteration (of the loop starting at line 7), set B is brought forward

from the previous iteration, but in the first iteration no data items are in the

memory, so at line 4, a new set B is loaded (β loads);

• When set B is stepped forward within the loop starting at line 13, N − (p + α)

data items are loaded. If α ≥ β, a subset of set A is taken from the last set B of
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the previous iteration and the rest (A′) is loaded at line 12. Therefore, to load set

A, only α− β loads are needed. Thus when α ≥ β, the number of loads in each

iteration of the loop on line 13 is:

(N − p− α)︸ ︷︷ ︸
While Moving set B

+ α︸︷︷︸
For set A

− β︸︷︷︸
Brought Forward

= N − p− β;

If α < β, the full set A is in the memory from the last set B of the previous

iteration and no load is done at line 12. In the loop starting at line 13, a subset

of size β − α of the first set B is also already in the memory from the previous

set B. Therefore, when α < β, the number of loads in each iteration is:

[N − (p+ α)− β] + α = N − p− β.

• When setB is stepped backward within the loop at line 25,N−(p+α) data items

are loaded. However, since the first set B is taken from the last set B of previous

iteration, the actual number of loads while stepping set B is N − (p + α) − β.

To load set A at line 24, α loads are needed. Thus the number of loads in the

iteration is:

[N − (p+ α)− β] + α = N − p− β.

• The iteration variable p marks the start of the current set A and its values are

{0, α, 2α, . . . , t′α}; After t′ + 1 iterations, if there are any remaining data items,

it is insufficient for a normal iteration. So, the remaining data items are used

to partially fill the current set A at line 45. The current set B which is a subset

of the new set A is already in the memory. So, current set B is skipped when

loading the new set A at lines 41 and 43. Thus, the number of loads for this

section of code is: [N − β − t′α].
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Therefore, we have

L = β +
t′∑
i=0

(N − i× α− β) + [N − β − t′α]

= N +
t′∑
i=1

(N − i× α− β)− t′α

= N(t′ + 2)− β(t′ + 1)− 1

2
α(t′ + 1) (t′ + 2) .

This completes the proof.

Following Theorem 2 gives an alternative expression of the number of loads L.

Theorem 2. If α and β are chosen such that the Condition Equation (3.2) is met, then

the number of loads L of Algorithm 4 is:

L = N(t+ 2)− β(t+ 1)− 1

2
(M − β)(t+ 1)(t+ 2), (3.5)

where

t =

⌊
N −M
M − β

⌋
. (3.6)

Proof. From Equation (3.2), we have

α =M − β. (3.7)

Substituting Equation (3.7) into Equations (3.3) and (3.4) gives Equations (3.5) and

(3.6), respectively.

The following Theorem 3 establishes lower and upper bounds of the number of loads

L of Algorithm 4.

Theorem 3. If α and β are chosen such that Equation (3.2) is met, then the number of
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loads L of Algorithm 4 is bound by a lower-bound L and an upper-bound L i.e.,

L ≤ L ≤ L

L = N +

(
N −M

2

)(
N − β
M − β

)
L = N +

(
N −M

2

)(
N − β
M − β

)
+

1

8
(M − β) (3.8)

Proof. From Equation (3.6), we have

t =

(
N −M
M − β

)
− ε ; where 0 ≤ ε < 1 (3.9)

Substituting Equation (3.9) to Equation (3.5) yields

L = N +

(
N −M

2

)(
N − β
M − β

)
+

1

2
(M − β)(ε− ε2)︸ ︷︷ ︸

error =E

(3.10)

E =
1

2
(M − β)(ε− ε2)

0 ≤ E ≤ 1

8
(M − β) (3.11)

because

0 ≤ ε− ε2 ≤ 1

4
.

The lower and upper bounds of L in Equation (3.8) are derived by substituting E as

defined in Equation (3.10) into Equation (3.11). This completes the proof.

Following Theorem 4 establishes the value of β for minimum L when M < 2N+1
3

.

Theorem 4. If α and β are chosen such that the Condition (3.2) is met, and if

M <
2N + 1

3
, (3.12)

then the number of loads L of Algorithm 4 reaches its minimum Lmin at βmin = 1 and

Lmin = N(t+ 2)− (t+ 1)− 1

2
(M − 1)(t+ 1)(t+ 2), (3.13)
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where

t =

⌊
N −M
M − 1

⌋
. (3.14)

Proof. In Equation (3.10), β is not a continuous variable, so we cannot differentiate L

with respect to β. So, let k be a continuous variable (over the range 1 . . .M − 1) that

equates with β at discrete points. From Equation (3.11); we have

0 ≤ E ′ ≤ 1

4

where E ′ = ε − ε2 which is independent of k. Substituting k for β in Equation (3.10)

yields
dL

dk
=

1

2

(
N −M
M − k

)2

− 1

2
E ′ (3.15)

Substituting 0 ≤ E ′ ≤ 1
4

in Equation (3.15) gives

1

2

(
N −M
M − k

)2

− 1

8
≤ dL

dk
≤ 1

2

(
N −M
M − k

)2

(3.16)

If dL
dk
> 0, then L increases as k increases. If we consider only the range of k, then the

right side of Equation (3.16) is always greater than zero:

1

2

(
N −M
M − k

)2

> 0.

If the left side of Equation (3.16) is positive:

1

2

(
N −M
M − k

)2

− 1

8
> 0. (3.17)

then either:

k > 3M − 2N, (3.18)

or

k < 2N −M. (3.19)

Since M ≤ N , Equation (3.19) is always true within the limits of k. Therefore, if

Equation (3.18) is satisfied, dL
dk

> 0 is satisfied within the range of k. By applying
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the lowest limit of k which is 1, for Equation (3.18) to find the condition for Equa-

tion (3.18) to be satisfied, we get Equation (3.12).

Therefore, when the condition in Equation (3.12) holds, dL
dk

> 0 for all the k of its

range. In this case, L increases as k increases within its range, as shown in Figure 3.2.

L takes its minimumLmin at k = 1. Lmin in Equation (3.13) is achieved by substituting

β = 1 into Equation (3.5) in Theorem 2.

L

L =181min 

1

Figure 3.2: L versus β for N = 100 and M = 40. In this case M < 2N+1
3

and L
reaches its minimum Lmin = 181 at β = 1.

Following Theorem 5 establishes the value of β for minimum L when M ≥ 2N+1
3

.
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Theorem 5. If α and β are chosen such that Condition (3.2) is met and

M ≥ 2N + 1

3
, (3.20)

then the number of loads L of Algorithm 4 reaches its minimum Lmin at a βmin such

that

1 ≤ βmin ≤ 3M − 2N. (3.21)

In this case, Lmin is narrowly bound by an upper bound Lmin and a lower bound Lmin:

Lmin ≤ Lmin ≤ Lmin (3.22)

where

Lmin = N +

(
N −M

2

)(
N − 1

M − 1

)
Lmin = 2N −M.

Proof. Following the idea of the proof for Theorem 4, when Equation (3.12) is not

satisfied, we need to consider the upper and lower bounds of L to find Lmin. After

substituting k for β in Equation (3.8), we have

dL

dk
=

1

2

(
N −M
M − k

)2

(3.23)

dL

dk
=

1

2

(
N −M
M − k

)2

− 1

8
(3.24)

According to Equation (3.23), dL
dk
> 0 is always satisfied for the range of k. As a result,

mink L is at k = 1.

By reusing the results of Equation (3.17) to solve the inequality dL
dk
> 0 we get

dL

dk


< 0; for 1 ≤ k < 3M − 2N

= 0; for k = 3M − 2N

> 0; for 3M − 2N < k ≤M − 1

(3.25)
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According to Equation (3.25), when k increases, L decreases in the range 1 ≤ k <

3M − 2N and increases in the range 3M − 2N < k ≤ M − 1. Therefore, mink L is

at k = 3M − 2N .

As proven above, under the condition of Equation (3.20), L reaches its minimum at

k = 1, while L reaches its minimum at k = 3M − 2N , as shown in Figure 3.3).

Therefore, Lmin resides between mink L and mink L as shown in Equation (3.22).

This completes the proof.

L

L = 115min 

55

_

L =108.8min _

1

Figure 3.3: L versus β for N = 100 and M = 85. In this case M > 2N+1
3

. As
β increases, the lower bound of L increases; while the upper bound decreases first
and then increases with its minimum at β = 3M − 2N = 55. 1 ≤ βmin ≤ 55 and
108.8 ≤ Lmin ≤ 115.
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Since Theorem 5 only gives a range for βmin (i.e. value of β when L is at the mini-

mum), a simple search technique is used to find βmin when M > 2N+1
3

. Firstly, this

technique tries all β values in the range given by Theorem 5 and calculate L for each

β using Theorem 2. Then the β value which produces minimum L (Lmin) is decided

as βmin.

In addition to the above proofs, by using a brute-force method that tries all possible

combinations of load patterns, we have also proven that Algorithm 4 with β = 1 is one

of the combinations with a minimum number of loads. Any other combination could

not produce better results than the proposed algorithms up to N = 9 with all possible

M values. Since the number of combinations grows exponentially with N , we only

ran this test up to N = 9.

We have developed a greedy algorithm as follows: every time a new data item needs to

be brought in, one data item is unloaded and one new data item is loaded such that the

swap brings the most possible uncompleted comparisons. This algorithm also could

not beat the number of loads achieved by Algorithm 4 with β = 1. We ran this test up

to N = 85 with all possible M values.

3.3.2 Lower bound of Required Loads for All-to-All Comparison

This sections derives a close-fitting lower bound for the minimum number of loads

required to complete an all-to-all comparison. The results are summarized in three

theorems. Theorem 6 and Theorem 7 derive the maximum possible comparison a

single load can bring into memory in terms of the number of data items already loaded

into memory. Then Theorem 8 establishes the lower bound for the minimum number of

loads required to complete an all-to-all comparison. The number of loads performed

by Algorithm 4 with β = 1 will be compared with the derived lower bound later in this

section.
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Theorem 6. If m number of data items are already loaded to memory, a new load can

make available a maximum of m comparisons.

Proof. In all-to-all comparison every single data item has only one comparison with

every other data items and no comparison with itself. Therefore, a newly loaded item

which has not completed any comparison with the already loaded items, brings m

comparisons. It is the maximum number of comparisons a single load can bring. This

completes the proof.

Theorem 7. Let N be the number of items to be all-to-all compared and M be the

maximum number of data items which can be stored in memory. A single load can

bring maximum of M − 1 comparisons to memory.

Proof. To load an item to memory, a memory slot must always be free. Therefore,

if a load of an item is possible then a maximum of M − 1 items can be already in

memory. Therefore, maximum of M − 1 comparisons can be bought in by a single

load according to Theorem 6.

Theorem 8. At least Ltmin number of loads are required to complete an all-to-all

comparison, where:

Ltmin =

⌊
N(N − 1)

2(M − 1)
− M

2
+ 1

⌋
+M − 1 (3.26)

Proof. Our objective is to find the maximum possible number of comparisons a single

load can bring to memory at each load. Assuming that such a sequence of loading

items exists, then we can derive the minimum number of loads required to complete

all comparisons.

Theorem 7 proved that only a maximum of M − 1 comparisons can be brought into

memory by a single load. However, to bringM−1 comparisons to memory, there must

beM−1 items already loaded to memory. When the memory is empty initially, clearly
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there is no possibility to load M − 1 items at once. The loads must be carried out one

after another until M − 1 items are loaded to memory before reaching the maximum

possible comparisons by a single load, M − 1. Until this point, Theorem 6 can be

used to derive the maximum possible comparisons which can bought into memory at

each stage. Thus, the following sequence gives the sum of the maximum possible

comparisons that can be brought into memory, Cinit, until the memory can be filled

with M − 1 items.

Cinit = 0 + 1 + 2 + · · ·+M − 2 =
M−2∑
i=1

i (3.27)

=
(M − 1)(M − 2)

2

There are total of N(N−1)
2

comparisons to be compared. After the first M − 1 loads,

there are Crem number of comparisons remaining to be completed where:

Crem =
N(N − 1)

2
− Cinit. (3.28)

Substituting Equation (3.27) in Equation (3.28) gives,

Crem =
N(N − 1)

2
− (M − 1)(M − 2)

2
. (3.29)

After memory is filled with M − 1 items, we assume that there exists a sequence of

loading items to memory such that each load can bring the maximum possible num-

ber of comparisons. Therefore, thereafter each load brings M − 1 comparisons (i.e.

the maximum a load can bring according to Theorem 7). Since each load brings the

maximum possible number of comparisons, there should be at least sufficient loads to

bring all remaining comparisons (Crem) to memory. Therefore, any sequence to load

the items must be at least perform more or equal to the number of loads to Lrem where:
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Figure 3.4: The number of loads of Algorithm 4 (from Equation (3.13)) and the theo-
retical lower bound of minimum required loads (from Equation (3.26)) plotted versus
M for N = 100.
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Lrem =

⌊
Crem

M − 1

⌋
. (3.30)

To fill the memory to M − 1 items initially, there should be a minimum of M − 1

loads. Therefore, the minimum number of loads required to complete an all-to-all

comparison, Ltmin is

Ltmin = Lrem +M − 1. (3.31)

Substituting Equation (3.29) in Equation (3.30) and then substituting Equation (3.30)

in Equation (3.31) gives Equation (3.26). This completes the proof.

Figure 3.4 shows a comparison between the number of loads required by Algorithm 4

(with β = 1 ) versus the theoretically minimum required loads to complete an all-to-

all comparison from Theorem 8 for all possible M values. It is seen from Figure 3.4

that the number of loads in Algorithm 4 stays very close to the theoretical lower bound

of the minimum required loads.

The small deviation of the number of loads performed by Algorithm 4 from the theo-

retical minimum required loads is caused by the loads performed at the beginning of

each row in Algorithm 4. The loads at the beginning of a row does not bring M − 1

comparisons to memory with each load. Therefore, this small difference causes Algo-

rithm 4 to have a slightly higher loads than the lower bound where it is assumed that

there exists a such sequence that brings the maximum possible number of comparisons

(M − 1) by each load, after the first time the memory is filled with M − 1 items.

3.3.3 Time Complexity of Algorithm 4

In Algorithm 4, the number of loads depends on the number of total data items, N

and the maximum number of data items memory can hold, M . Equation (3.6) from
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Theorem 2 gives L, the number of loads in Algorithm 4. Since L increases when M

decreases, the worst case scenario for loads is when M is at the minimum which is

M = 2. Therefore, the complexity of loads in Algorithm 4 is O(N2) which is also

the time complexity for loads. The time complexity for comparisons is also O(N2)

since the number of comparisons is N(N−1)
2

. Therefore, the overall time complexity of

Algorithm 4 when β = 1 is O(N2).

3.4 Scalable Memory Management Algorithm

The theoretical results in Section 3.3.1 assumes that the maximum number of data

items that can be loaded into the memory is a constant (i.e. M is a constant). This is

reasonable for a set of data items which are similar in size and are loaded into a fixed

size memory. However, in some applications [CVTree, 2011, Yu et al., 2010a], the size

of preprocessed data items (e.g. composition vectors in CV method [Yu et al., 2010a])

varies considerably. Also, the available memory of a computer system may vary con-

siderably over time due to other background processes in the system. Therefore, in

practice the number of data items that can fit into memory at a time varies throughout

the computation.

The results in Section 3.3.1 lead us to conjecture that β = 1 gives best results even

when M is not a constant. Such a claim is difficult to formally prove given the ran-

dom nature of M . We have, however, developed an extended algorithm (depicted in

Algorithm 5) which addresses the challenge introduced by a variable M . In addition

to assuming β = 1, following significant changes are also made in this algorithm.

Change 1: Algorithm 5 has a variable size for set A, so in the loop starting at line 21,

set A is filled until the memory is only sufficient for the largest item to be loaded

to set B. The algorithm is designed to leave a fixed percentage (say 10%) of
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Algorithm 5 Scalable computation of correlation matrix.
1: procedure COMPAREALL(N )
2: for i = 0→ N − 1 do
3: size[i] = PREPROCESSEDSIZE (Gi);
4: end for
5: Sort data items by size[i] in descending order;
6: p = 0; // Index of last data item in set A
7: Set flag forward = true and step = 0;
8: LOAD data item G0

9: while p < N − 1 do
10: for i = p− step→ p− 1 do
11: UNLOAD data item Gi;
12: end for
13: if forward then
14: q = p+ 1
15: max A = N ;
16: else
17: q = p
18: max A = N − 1;
19: end if
20: Reset step = 0;
21: while q < max A do
22: mem next = size[q]
23: if q < N − 1 then
24: mem next = mem next+ size[q + 1]
25: end if
26: f mem =FREEMEM()−(TOTALMEM()∗0.1)
27: if mem next > f mem then
28: break // Terminate the while loop
29: end if
30: LOAD data item Gq;
31: Increment step;
32: Increment q;
33: end while
34: if forward == true then
35: for i = p+ step→ N − 1 do
36: if i 6= p+ step then
37: LOAD data item Gi;
38: end if

Continued in the next page...
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39: for j = p→ step+ p− 1 do
40: COMPARE (i, j);
41: end for
42: if i 6= N − 1 then
43: UNLOAD data item Gi;
44: end if
45: end for
46: else
47: for i = N − 1→ p+ step do
48: if i 6= N − 1 then
49: LOAD data item Gi;
50: end if
51: for j = p→ step+ p− 1 do
52: COMPARE (i, j);
53: end for
54: if i 6= p+ step then
55: UNLOAD data item Gi;
56: end if
57: end for
58: end if
59: for i = p→Min(step+ p,N)− 1 do
60: for j = i+ 1→Min(step+ p,N)− 1 do
61: COMPARE (i, j);
62: end for
63: end for
64: Increment i by step;
65: forward = inverse of forward;
66: end while
67: end procedure
68: procedure COMPARE(i, j)
69: matrix[i][j] = matrix[j][i] = COMPARISONFUNCTION (Gi, Gj)
70: end procedure

the total physical memory unused, to avoid the virtual memory system slowing

performance.

Change 2: The data items are sorted by size in descending order at line 5. This sorting

helps to quickly calculate the amount of memory required for the largest upcom-

ing data item for set B at line 24. It also improves the performance as described

in Section 3.5.7.
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Change 3: In some applications, the final size of a data item after preprocessing is

hard to predict in advance (Appendix A). Therefore, if required, Algorithm 5

preprocesses and records the sizes of data items before the comparisons begin

(within the loop of Algorithm 5 starting at line 2) to accurately decide the amount

of memory required before a load is done.

When a data item is preprocessed for the first time, it can be written to the disk to

avoid preprocessing again. However, reading a previously written data item from the

disk is not always faster than generating it from scratch. Our experiments show that

when a data item becomes larger, typically at a certain size, preprocessing a data item

becomes faster than reading a data item from the disk. This threshold size depends on

many factors such as the speed of the memory, the speed of the disk and the speed of

the processors. As a result, this threshold size is hard to predict.

If preprocessing a data item is faster than reading it from the disk, it can be repeatedly

generated in each load in Algorithm 5. Otherwise, if the data items are written to the

disk, the best place to do this in Algorithm 5 is within the loop starting at line 2. Right

after preprocessing a data item to determine its size, the data items can be written to

the disk before being discarded from the memory.

Since we assume that the memory requirement of a load process does not exceed the

final preprocessed size of a data item, the choice of reading the preprocessed data item

from memory or re-calculating it for each load does effect our algorithms. The reason

is that Algorithm 4 and 5 allocate total memory required to store the preprocessed data

item at the beginning of a load. Therefore, these two scenarios have not been addressed

separately.
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3.5 Experimental Validation

This section implements the proposed algorithm on existing DIAC applications in

bioinformatics and experimentally validates the performance of the algorithm. We

will introduce benchmark examples first followed by experimental settings and exper-

imental design. Then the experiments and results are presented for all aspects, which

will be discussed in experimental design section.

3.5.1 Benchmark Examples

The experiments are conducted on two applications discussed in Section 2.1.3 that have

been developed for CV method based calculations [CVTree, 2011, Yu et al., 2010a].

The compared data items in these applications are genomic sequences and the prepro-

cessed data items are called composition vectors.

For the experiments, we will use two different datasets that are found in the literature

[Yu et al., 2005, 2010a]:

• Data Set 1—109 prokaryotes and eukaryotes which are used in [Yu et al., 2005].

These genomic sequences are relatively long. As a result, the sizes of the cor-

responding composition vectors are relatively large and range from 2.4MB to

482.8MB (averaging 214.5MB) when in memory.

• Data Set 2—124 large dsDNA viruses used in [Yu et al., 2010a]. These ge-

nomic sequences are relatively short. As a result, the sizes of the corresponding

composition vectors are small and range from 3.0MB to 110.7MB (averaging

17.03MB) when in memory.

Genomic sequences are usually represented using a sequence of single-letter codes.

The alphabet for these sequences consist of 4 (for DNA/RNA) or 20 (for Protein)
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letter-codes [Tao, 2012]. The datasets that we selected for the experiments in this

paper have an alphabet of 20 letter-codes and are stored in FASTA formatted files.

In the following, we apply our memory management algorithms to the two CV method

algorithms developed by Yu et al. [2010a] and Qi et al. [2004], which have been de-

scribed in Section 2.1.3.

3.5.2 Experimental Settings

The following settings are used for the experiments:

Platform: Linux (Ubuntu 10.04)

Processor: CoreTM2 Duo (E8400)

CPU Single Core Speed: 3.00 GHz

Number of Cores: 2

Cache: 6MB

FSB Speed: 1333 MHz

RAM: 4GB

Hyper Threading: Disabled

HDD Average Read Speed: 62.2 MB/s

K value of k-string: 6

Programming Languages Used: C/C++

3.5.3 Experimental Design

The following aspects are validated in the experiments:

• the performance of our proposed memory management algorithm versus the vir-

tual memory management by the operating system;
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• the performance of the CV method [Yu et al., 2010a] algorithms with and without

our memory management optimizations;

• the performance of our memory management approach compared to generic pag-

ing algorithms (such as LRU);

• the influence of sorting data items by their size on the performance of the algo-

rithm; and

• the scalability of the proposed solution.

We have improved the original program of Yu et al. [2010a] and have rewritten most of

the sections before applying our memory management algorithm. We call the program

Yu et al. refined by us in which we keep its memory management algorithm unchanged.

Then, we apply our memory management algorithm to this program to improve its per-

formance by allowing it to utilize the available physical memory. We call this program

Our Algo. 5 with Yu et al. For the CVTree application, we have obtained the code

from the authors and applied our memory management algorithm to their program to

experiment with the performance.

3.5.4 Virtual Memory

The best performance of the program can be expected when all genomic sequences

are loaded into the physical memory and are kept in memory until all comparisons

are completed as in Algorithm 1. In the process of loading data items, if the program

exceeds the available physical memory capacity, the operating system allocates part of

the virtual memory to the program. The virtual memory is typically slower than phys-

ical memory. Therefore, our memory management algorithm is developed to manage

the memory usage within the available physical memory, and the following experiment

is designed to prove that it is reasonable to refrain from using virtual memory.

Experiment: A data set of 24 large genomic sequences, which produces composition
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vectors totalling 7.7 GB after loading into the memory, is used (Physical Memory: 4

GB). In Case I, all genomic sequences were loaded at once, forcing the operating sys-

tem to manage the memory usage over the physical memory by using virtual memory.

In Case II, the loading process of genomic sequences is managed by our proposed al-

gorithm to prevent memory from entering into the virtual memory (see Section 3.5.10

for the techniques to prevent virtual memory).

Results: As seen in Table 3.1, managing memory using our algorithm is extremely fast

than utilizing virtual memory (in this case 107 times faster than using virtual memory).

Table 3.1: Comparison between virtual memory managed by the operating system and
program itself

Method Execution time (sec.)

Case I Using virtual memory 36,346

Case II Applying the proposed algorithm 339

3.5.5 Performance of the Algorithm

To validate the performance of our memory management algorithm, we apply it to Yu

et al. [2010a] and CVTree [2011] and conduct experiments with different data sets.

Experiment: The versions of the application of Yu et al. [2010a], which are described

in Section 3.5.1 are executed with Data Set 1 and Data Set 2. For each run, the execu-

tion time is recorded for comparison of performance.

Results: Table 3.2 shows the execution times for different data sets and versions of

the application with the physical memory limit imposed. As shown in the results,

our algorithm has achieved a dramatic speed-up over the original program ( 6.5 times

faster for Data Set 1 and 130.5 times faster for Data Set 2). Compared to the Yu et

al. refined by us program, by applying our memory management algorithm, we have
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also achieved significant speed-up (2.2 times faster for Data Set 1 and 31.9 faster for

Data Set 2).

Table 3.2: Analysing performance of Algorithm 5 with the program by Yu et al.
[2010a]

Data Set Program Memory limit (GB) Execution time (sec.)

Set 1 Yu et al. original – 27,968

Yu et al. refined by us – 9,434

Our Algo. 5 with Yu et al. 1.0 5,672

2.0 4,264

Set 2 Yu et al. original – 29,764

Yu et al. refined by us – 7,272

Our Algo. 5 with Yu et al. 1.0 228

2.0 220

Experiment: The modified CVTree application with our memory management algo-

rithm and the original CVTree application acquired from the website are executed with

Data Set 1 and Data Set 2. For each run, the execution time is recorded for comparison

of performance.

Results: Table 3.3 shows the results of the experiment. For the CVTree program we

specified the memory limit of 1 GB with Data Set 1, and it used a peak memory of

1.35 GB at runtime. After applying our memory algorithm to their program, it always

stayed within the specified memory limit. Then, we tested the CVTree application with

our algorithm, applying a 1.35 GB memory limit which was the actual peak memory

used by the original CVTree program. From the results, it is evident that our algorithm

has significantly reduced the execution time of the program, while staying within the

specified memory limit (7.2% faster with the 1.35 GB memory limit specified in our

program for Data Set 1 and 17.8% faster for Data Set 2).
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Table 3.3: Comparing Algorithm 5 with CVTree program’s algorithm
Program Data Set Imposed Memory Execution Peak Memory

Limit (GB) Time (sec.) Used (GB)

CVTree original Set 1 1.00 957 1.35
This work Set 1 1.00 972 0.98

Set 1 1.35 893 1.31

CVTree original Set 2 0.5 12.6 0.52

This work Set 2 0.5 10.7 0.45

3.5.6 Comparison with Generic I/O Optimization Algorithms

Experiment: Least Recently Used (LRU) I/O optimization algorithm is applied to Yu

et al. refined by us application. This version is experimented with Data Set 2. Since

the performance of LRU algorithm depends on the memory access pattern, we have

created two versions of access patterns. In the first version, the access pattern (Access

Pattern 1) is similar to Algorithm 1. In the second version (Access Pattern 2), the

correlation matrix is divided into equal sized square shaped blocks and comparisons in

each block are completed one block at a time. The experiment is also conducted with

different block sizes.

Results: Table 3.4 shows the results of the experiment. Compared with the application

using LRU with Access Pattern 1, our algorithm achieves 1.6 times faster performance.

When compared to the application using LRU with Access Pattern 2, our algorithm still

achieves better performance (though the performance improvement is small), when the

block size is 45. However, the problem with using LRU with Access Pattern 2 is the

difficulty of predicting the optimum block size. When the size is inadequate such as 5

and 55, the performance of LRU becomes very poor in comparison with our algorithm.

Adapting a generic algorithm such as LRU in this specific problem does not always

guarantee better performance; whereas our algorithm is aware of the context of the

problem and always gives good performance.
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Table 3.4: Comparing Algorithm 5 with LRU I/O optimization algorithm - Data Set 2
with 1 GB memory limit

Program Length of a Square Execution Time (sec.)

LRU with Pattern in Algorithm 1 - 377.4

LRU with Partitioned Matrix 5 355.7

15 235.9

25 232.8

35 231.8

45 229.5

55 304.0

This work - 228.1

3.5.7 Effect of Sorting of Composition Vectors

Sorting the genomic sequences by the size of their data items affects the execution

time. To experiment with the effect of sorting, we have tested Yu et al. program with

our memory management algorithm in different sorting orders.

Experiment: Different versions of the memory management algorithm (i.e. amended

Algorithm 5) are written with sorting order ascending, descending and without re-

ordering. These algorithms are applied to Yu et al.’s program and each version experi-

mented with Data Set 1 and Data Set 2.

Results: Table 3.5 shows the effect of different sorting orders on the computing perfor-

mance. As shown in the results, when the preprocessed data items are large, sorting in

descending order improves the performance. Sorting brings forward bigger data items

that take longer time to load. As a result, these data items are loaded fewer times than

when they are at the end of the list. Also, the space reserved for the upcoming data

item in set B becomes smaller and smaller when proceeding forward in the list. So,

the memory available for the bigger set (set A) increases and more data items can be

held in the memory.
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Table 3.5: Effect of ordering genomic sequences in Algorithm 5
Data Set Memory (GB) Sorting method Execution time (S)

Set 1 1.4 Ascending 9,679

Unsorted 7,715

Descending 5,807

Set 2 0.5 Ascending 231

Unsorted 233

Descending 231

However, when the data items are smaller, there is no significant variation in the time

to load genomic sequences into memory, regardless of their size. So, the sorting order

does not make much difference in this situation. It is worth mentioning that the time

taken to sort the data items is negligible compared to the execution time of the program.

3.5.8 Performance with Different Memory Sizes

The proposed algorithm is expected to utilize all available physical memory to make

the computation faster. So, the execution time should decrease when the size of the

available physical memory grows; thus, the solution scales well on different platforms.

To validate this, we have conducted the following experiment.

Experiment: Execution times for the same data set (Data Set 1) in different available

physical memory sizes are recorded.

Results: Figure 3.5 shows how the execution times changes versus the available mem-

ory when our algorithm is applied to a program (Data Set 1 is used with Our Algo.

5 with Yu et al. application in this case). The results show that, when the available

memory increases, the execution time decreases significantly.
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Figure 3.5: Behaviour of the execution time of Algorithm 5 versus the available mem-
ory capacity.

3.5.9 Data Structure Used for Composition Vectors

This section briefly discusses the data structure that we used to store the composition

vectors in the modified Yu et al.’s program (the version “Yu et al. refined by us”). The

data structure is depicted in Figure 3.6.

A composition vector consists of index/value pairs. In a typical composition vector,

most of the values are zeros. To avoid wasting memory for storing index/value pairs

with the value of zero, we have used a sparse data structure with two arrays. One array

stores the indexes of non-zero values (Array 1) and the other array stores the non-zero

value corresponding to each index (Array 2). Array 1 is sorted in ascending order.

Since the algorithm developed by Yu et al. [2010a] accesses the data item indexes

sequentially starting from zero, our data structure can quickly determine indexes with

zero values using Array 1. The non-zero values can also be retrieved quickly with the

help of Array 2.
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When writing a data item to the disk, the two arrays of the data structure are written to

a binary file with the size of the arrays (both arrays are similar in size). This allows us

to read and write the files faster by mapping the arrays directly to the file.

The CVTree [CVTree, 2011] application uses the standard C++ vector implementation

(i.e. std::vector) to store the data items. We did not modify the data structure used in

their application even after applying our memory management algorithm.

0 3 

1 50 

2 345 

3 512 

Array 1
(non-zero indexes) (non-zero values)

0 1.32 

1 2.31

2 1.25

3 1.15

3 1.32

50 2.31

345 1.25

512 1.15

Array 2 Composition Vector
(excluded indexes are zeros)

Figure 3.6: The data structure developed and used in the applications for CV method,
which is based on the solutions from Wang [2009].

3.5.10 Avoiding Virtual Memory

Following methods are used to prevent memory from entering into virtual memory:

1. When root permission is available in the computers, the mlock() method found in

sys/mman.h system library is used to prevent virtual memory. When mlock() is

called on a memory range (typically on a data array), the data is prevented from

being paged to the swap area (i.e. written into virtual memory). In addition,

virtual memory can be completely disabled by using swapoff -a command in

Linux.

2. When the root permission is not available in the computers, previous experi-

ments are used to determine the memory usage threshold on which the virtual
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memory comes into play. Keeping system’s memory usage below this point

avoids virtual memory.

Usually when our applications keep the overall system memory usage 90% or less of

the total system memory, the particular Linux version used for experiments did not

allocate the virtual memory.

3.5.11 Summary of the Experimental Results

The results in this section so far confirms that the proposed algorithm in this chapter

makes the computation of memory-constrained DIAC significantly faster than the ex-

isting algorithms. They also demonstrate that the algorithm is a scalable solution with

efficient memory management.

In addition, we have analysed how the sorting order of data items before the calcula-

tion affects the speed of calculations. It is seen from the experiments that, when the

data items are larger in size, ordering them in descending order makes the calculation

significantly faster in the experimented applications.

3.6 Summary of the Chapter

This chapter has proposed a novel memory management (paging) algorithm which is

both efficient and scalable for DIAC calculation in limited memory. The optimum

parameters for the algorithm have also been determined theoretically. The proposed

algorithm has been experimentally verified to have better speed compared with the

existing memory management algorithms. It has made the computation of existing

DIAC applications up to 31.9 times faster starting from 7%. A close-fitting theoretical
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lower bound for the number of loads required for a DIAC in limited memory has also

been derived.

The algorithms proposed in this chapter do not address the challenges of memory man-

agement when the tasks are executed in parallel. This will be the main topic of the next

chapter.



Chapter 4

Preparation to Solve the DIAC

Parallelization Problem

This chapter lays the foundation for presenting a solution for DIAC parallelization

problem in Chapter 5 and 6. It first models our DIAC parallelization problem and

then extends the model to show that the existing general parallelization techniques are

ineffective in solving the problem. This chapter also derives theoretical results useful

for designing parallelization algorithms for DIAC.

Over the past few decades, many scheduling techniques for parallel computing have

been published. Some of them are potentially applicable to solve our scheduling prob-

lem. Five of such existing techniques are evaluated in this chapter based on their abil-

ity to solve our DIAC parallelization problem. In the process, the DIAC parallelization

problem is formalized and a new model for the problem is proposed. This model is

then extended to adapt the existing technique with potential to solve our DIAC prob-

lem. The model can also be used in the future researches to solve the problem. Finally,

this chapter establishes a theoretical upper bound for the maximum parallel gain of a

DIAC under memory constraints. This upper bound is useful to guide design decisions
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in the process of developing parallelization algorithms for DIAC and to understand the

experimental results of the proposed algorithms.

This chapter provides valuable insights into solving the DIAC parallelization problem

and also motivates to propose a new parallel algorithm in Chapter 5. The following

incremental contributions are claimed from this chapter:

• The parallelization problem of memory-constrained DIAC is modelled based on

several representations.

• Using our models of DIAC, existing parallelization techniques which have po-

tential to solve our DIAC problem are extended and evaluated to solve the DIAC

problem.

• A theoretical upper bound for the maximum speed gain from parallel execution

of memory-constrained DIAC is derived for shared-memory systems.

4.1 Modelling the DIAC Parallelization Problem

This section evaluates existing techniques which are potentially capable of solving

the DIAC problem. To use existing techniques for solving the DIAC problem under

memory constraints, two steps are required:

• modelling the DIAC parallelization to be compatible with the target technique

and

• adapting/extending the existing technique to solve the DIAC problem under

memory limitations.

Therefore, in the following subsections, DIAC is modelled specifically to match each

targeted technique and is followed by the adaptation process of the technique. Then the

feasibility of using the technique and its effectiveness are evaluated. The evaluations
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will show that the methods discussed in this section do not lead to effective solutions

for the DIAC parallelization problem.

4.1.1 Modelling as a Scheduling Problem

This section evaluates the feasibility of using solutions proposed for traditional re-

source constrained scheduling problems for DIAC parallelization. To begin with, it

models the parallelization problem of DIAC under memory limitation as a resource

constrained scheduling problem. This new model will be used in the rest of the the-

sis to describe the DIAC problem. This model includes every aspect of solving our

DIAC problem in shared-memory systems. After presenting the model, it will be used

to identify the difference between traditional resource constrained scheduling problem

and our DIAC problem.

In Section 2.1, we discussed the characteristics of the DIAC problem which is ad-

dressed in this thesis. In brief, before each comparison, the data items needs to be in

memory. The process of bringing the data items to memory (called a load) is assumed

to be a significantly time-consuming process relative to the pair-wise comparisons.

Since memory is limited to hold all data items in memory, some items needs to be

swapped in and out from the memory to make room for other data items. We call the

operation of deleting an item from memory an unload.

The parallelization of DIAC can be modelled as a resource constrained scheduling

problem since the memory, processors and disks as resources limit the concurrent ex-

ecution of the tasks. In the model, the data items are denoted by Gi where 0 ≤ i < N .

Memory and processors are the two main constraints in solving the DIAC paralleliza-

tion. We have already explained how memory limitation effect the load operation. The

memory as a resource is required by the load operations and also after the load oper-

ation to keep the data item in memory. The processors are required by each operation
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such as a comparison or load. Therefore processors as a resource is required for every

operation in a DIAC.

Before describing the model, it is worthwhile to briefly discuss the effect of the limi-

tations of the disks in the load operation. Some load operations use disks intensively.

For instance, sometimes in the CV method [Yu et al., 2010a], the pre-calculated data

items are read from the disk and the operation requires intensive I/O from the disks.

Such disk intensive load operations are subjected to the limitations of the disk storage

systems.

Some disks can only efficiently handle sequential reads while some can efficiently

perform a finite number of parallel reads from the disk. Therefore, the capability of

parallel reads of a disk can be interpreted as a resource. For example, if a disk is

capable of two parallel reads, then it can be interpreted as two disk resources. When

the load operations only lightly use disks and the overhead is negligible, the resource

of the disks can be considered to be unlimited or very high.

In the model, the dependencies between the operations (load, compare, unload) are not

expressed explicitly. The dependencies are expressed based on the status of the data

items. These dependencies may imply indirect dependencies between the operations.

The Basic Scheduling Model

Each data item can have three statuses: in memory and in use, in memory and not in

use and not in memory. If the data item is in either in memory and in use or in memory

and not in use status, it indicates that the item has completed its load operation and

resides in memory. If the data item is in not in memory status, it has never been in

memory or has been removed from memory. If it has in memory and in use status, the

item is being used by one or more comparisons.
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There are three types of resources required for a DIAC:

1. RP represents a processor.

2. RM represents a byte of memory. RM(Gi) represents the amount of memory

(i.e. RM ) required to load Gi and keep it in memory.

3. RD represents the capability of the disk to do parallel loads. If load operations

are disk intensive, then RD is the number of channels that are present in a disk

for parallel reads. Otherwise, RD is considered to be unlimited.

In a DIAC there are three operations (i.e. tasks). Each operation changes the status of

a data item and requires certain resources to complete:

1. Operation Li: Represents load of Gi. The resources RM(Gi) of RM , one of

RP and one of RD are required. Non-zero tl time is required to complete the

operation. RM(Gi) of RM is held even after completing the operation but the

other resources are released. Once the operation is completed, Gi goes into in

memory and not in use status.

2. Operation Ci,j: Represents the comparison between the data items Gi and Gj .

One of RP is required. Non-zero tc time is required to complete the operation.

Gi and Gj go into in memory and in use status for the period of the operation or

if they are already in in memory and in use status they remain in the same status.

Upon completion of the comparison operation, Gi goes into in memory and not

in use status, if and only if Gi does not belong to any active comparison. The

same applies to Gj as well.

3. Operation Ui: Represents unloading Gi (Gi is deleted from memory). One of

RP is required. The time required to complete the operation is negligible. When

the operation is completed, RM(Gi) of RM is released and Gi goes into not in

memory status.

The operation Li does not release the allocated resource of RM after completing the
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operation (resources RP and RD are released). The memory resource (RM ) held after

the operation Li is released by the operation Ui.

The dependencies between the operations are presented based on the status of the data

items. To start each following operations, the conditions in the right side must be

satisfied.

1. Li ⇒ Gi must be in not in memory status.

2. Ci,j ⇒ Both Gi and Gj must be in either in memory and in use or in memory

and not in use status.

3. Ui ⇒ Gi must be in in memory not in use status.

The objective is to schedule all comparison operations (i.e. Ci,j∀i, j ∈ {x : 0 ≤ x <

N} and i < j) within a minimum timespan not violating both resource constraints and

dependencies. The operations are allowed to be completed simultaneously.

Discussion on the Model

In this model, loading the input data to memory and deleting is split into two operations

as Li and Ui due to the input data sharing between the comparisons. In-between those

operations the resource RM(Gi) is held and the all available comparisons related to

Gi (i.e. Ci,j∀j ∈ {x : Gx in in memory in use OR in in memory not in use statuses} )

can be completed. Due to the unload (Ui) operation’s ability to delete a loaded data

item from memory, there can be infinite number of schedules. To avoid this problem it

is important but not necessary to complete at least one comparison in-between a load

(Li) and unload (Ui) operations. A few sample sequence of operations are listed in

Table 4.1. The validity of the sequence according to the model is shown next to each

sequence. These samples help better understand the model.
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Table 4.1: Sample sequences of operations with their validity according to the model
Sequence Validity Status After the Sequence

Lk → Lk Invalid

Lk → Uk → Uk Invalid

Uk Invalid

Lk → Uk︸ ︷︷ ︸
RM (Gk) is held

→ Lk → Uk︸ ︷︷ ︸
RM (Gk) is held

Valid Gk is in not in memory status

Lk → Uk︸ ︷︷ ︸
RM (Gk) is held

→ Lk︸︷︷︸
RM (Gk) is held

Valid Gk is in in memory not in use status

Lp → Lq → Cp,q → Uq Valid Gp is in in memory and not in use status
and Gq is in not in memory status

Using Traditional Resource Constrained Scheduling Techniques

As seen from the model, our scheduling problem deviates from traditional resource

constrained scheduling problems. The reason for this deviation is the input data shar-

ing between tasks through the shared memory. If the data sharing is ignored, both

operations Li, Lj will be a part of the operation Ci,j , and Ci,j will require the resources

RM(Gi) + RM(Gj) of RM (memory) and 1 of RP (processor). Most importantly, the

acquired amount of RM will be released as soon as Ci,j is completed in this situation.

Therefore, when data sharing is ignored, the scheduling problem is similar to a tradi-

tional resource constrained scheduling problem where the resource required for a task

is held throughout the task and released upon completion of the task.

4.1.2 Self-Adjusting Dynamic Scheduling (SADS)

This section evaluates the effectiveness of SADS technique to solve our DIAC prob-

lem. SADS family algorithms are powerful for solving various parallelization prob-

lems. As we described earlier in Section 2.5, SADS is based on branch and bound

search for a solution. Unlike the branch and bound algorithm, SADS algorithms do
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not find a complete schedule by searching all possible solutions. Instead, whenever a

processor become idle, the branch and bound search stops and a best solution devel-

oped until then is picked from the already developed incomplete but feasible sched-

ules. Then the processors are scheduled with the newly found solutions. The branch

and bound search continues from that point until next time a processor becomes idle.

When adopting SADS approach to solve our problem, there are four key problems to

address:

1. How to model a DIAC schedule in a search tree structure.

2. What are the decision points where new branches of the search tree start from?

3. What different operations (branches) possibly start at each decision point?

4. How to select the best node from the partial schedules.

The Basic SADS Model

To solve the DIAC problem using the SADS technique, the scheduling of DIAC tasks

must be modelled based on a search tree. Our model is an extension of the model pro-

posed by Hamidzadeh et al. [2000] for their SADS algorithm. In their algorithm, each

node of the search tree completes only one task-processor mapping since they target

heterogeneous processors. Instead, our model merges several task-processor mappings

into one node as we are dealing with homogeneous processors. This method helps to

identify duplicate nodes before spending time to process or extend them. Merging is

possible since the execution time of a task does not depend on the processor which

executes the task. In our model, a new node is added only at a decision point which is

described in the next section. A portion of an example presentation of a DIAC using

our tree model is depicted in Figure 4.1.

The Decision Points: A decision point is a node in the search tree. One or more
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processors are assigned new tasks at a decision point. Once scheduling starts, an initial

task mapping for the processors must be performed. Since memory is initially empty,

the first mapping will have only load operations. Thereafter, next decision point can

be at any point because the processors can wait without starting a task. This way

infinite number of decision points can be created by applying various wait times for

each processor. To prevent this, the next decision point is assumed to be at the next

system status change. The status of the system changes only when a load, comparison

or an unload is completed by any of the processors. Since, new decisions become

available only after the system status changes, this decision is reasonable.

It is useful to understand the reasons why completion of each of load, unload and

comparison (tasks) triggers a system status change. An unload changes the status of

the system by removing an item from memory, although it has a negligible execution

time. Completion of a load brings more comparisons to memory and changes the

system status. A completed comparison could potentially free up locked items which

were locked to memory while performing the comparison, therefore causes a system

status change. In addition, all tasks completions free a processor and which changes

the potential of the system to complete work.

Decisions Taken at a Node: At each decision point there can be four different opera-

tions that can be started by a processor; load, compare, unload and wait.

The following process is used to create children of a node at each decision point. The

feasibility of each task (e.g. sufficient memory and disk resources for a load; both data

items are in memory for a comparison) is evaluated and feasible tasks are added to a

list. Then, all free threads at the decision point are identified. Thereafter, non-repetitive

combinations of length which equals to the number of free threads are created from the

list of feasible tasks. For example, if there are 3 free threads and 5 feasible tasks, non-

duplicate combinations of size 3 are created using the 5 tasks. In the following we will

further discuss each of the four actions.
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Load: The load operation is a special operation as it is bounded by the available mem-

ory and disk resources. The feasibility of a load always depends on the availability of

memory and disk resources. For example, let us assume that the load operations of

G1, G2 and G3 are feasible and the data items are dissimilar in size. Memory is suffi-

cient to loadG1 andG2 together but ifG3 is loaded first, there is no space for eitherG1

or G2 to be loaded. Given that two processors are free at the decision point, only the

combinations listed below are feasible (please note that both processors are identical).

Lx represents load operation of Gx, and W represents making the thread wait until the

next decision point:

Processor 1 Processor 2

L1 L2

L3 W

If all possible combinations are considered:

Processor 1 Processor 2

L1 L2

L1 L3 Infeasible and produces either L1 W or L3 W

L2 L3 Infeasible and produces either L2 W or L3 W

As seen in the example above, it is important to avoid duplicate combinations which

could result from memory constraints. If a node has only one task-processor mapping,

duplicate schedules will be created when the schedule is extended further, as seen in

the last two combinations above.

Comparison: A comparison is only feasible if both data items required are in memory.

Once a comparison is started, both items required for a comparison will be locked to

the memory until the comparison is completed. A locked item cannot be unloaded.

Unload: Unload is considered as a special event. At each decision point (i.e. node),

unloads are performed to form all possible combinations from data items in the mem-
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ory by unloading one or more items for each combination. For example, assume that

in the current node, G1, G2 and G3 are in memory and no item is locked. The combi-

nations are as follows.

G1 G2 G3

G1 G2

G1 G3

G2 G3

G1

G2

G3

For each of these combinations, a duplicate of the current node is made and unload

operations to produce each of the combinations will be applied on the duplicates (as

seen in Node (b) to (e) and (d) to (h) in Figure 4.1). Then each child is extended from

that point onwards. When extending the schedule, the new nodes which are duplicates

of the existing nodes in the tree are eliminated. Two nodes that have all following

similarities are called duplicates in our model:

• same uncompleted comparisons

• same data items in memory

• same on-going tasks each of which have spent same time to the similar task in

the other node.

In Figure 4.1 node (e) is a duplicate of (a), and (h) is a duplicate of (c). The time of the

node can be different in two duplicate nodes.

Wait: the wait operation has two different applications. First one is when the maxi-

mum possible operations in a combination are less than the number of free threads, the

rest of the threads must wait. The other type of waiting is used to preserve the branches

that could lead to better schedules. For example if there are two possible loads G1 and
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G  G G1 2 3

C  C13 23
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d

f g h

e

Items in memory

Remaining comps

Tasks in progress

Time at the node

Figure 4.1: A sample search tree generated for a DIAC with settings N = 5, P =
2, LP = 1 and M = 3. Please note that only a few branches at each level are shown
and only the comparisons within first three data items are shown in the nodes for
simplicity. Lx represents the load of Gx; Cxy represents the comparison between Gx

and Gy; and T (X) represents the time required for the task X; T (L3) < T (C12).

G2, and there are two free threads, loading G1 and G2 in the two threads seems to be

the only possible combination. However, there are three more combinations. Those

are:
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Processor 1 Processor 2

L1 W

L2 W

W W

In those combinations, the threads are waiting until the next decision point, although

there are sufficient combinations available to accommodate all free threads. Also, if

there are other busy threads, all free threads can wait until the next state changes. We

call this kind of waiting as extreme waiting (e.g. node (g) in Figure 4.1). Extreme

waiting may lead to better schedules. In particular, it could be efficient to avoid some

unnecessary loads or comparisons, in order to make a schedule faster. For example,

starting the last comparison with a data item in memory blocks the unload operation

of the data item until the comparison is completed. Since only one comparison has a

relationship to the data item, it could be efficient to unload it and then load another

data item that could potentially make more threads busy.

Solving the Problem Using the Model and SADS

The feasibility of using SADS algorithm to solve the DIAC problem (using the model

that we developed) is significantly restricted by the long execution time in scheduling.

In our experiments (based on Data Set 1 and Data Set 2 described in Section 3.5.1),

the SADS method exceeded the runtime of the sequential program only on schedul-

ing. The number of combinations at each node is a typical factor for the fast execution

of the SADS algorithm. In our DIAC problem, memory constraints and sharing data

among tasks makes the number of children of a node considerably high compared to

scheduling independent tasks in an unconstrained situation. The following mathemat-

ical development demonstrates that the number of nodes at each level is extremely

large.
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The following equation can be used to calculate the number of children of a node,

Nch, in the worst case scenario assuming that the data items are uniformly sized (with

extreme waiting).

Nch =
m∑
r=1

[
m!

(m− r)!r!

]
︸ ︷︷ ︸

Combinations created from unloads

+

Pf∑
r=1

[
t!

(t− r)!(r!)

]
︸ ︷︷ ︸

Combinations created from available loads and comparisons

(4.1)

where Pf is the number of free processors at the node, m is the number of data items

in memory and t is the number of all feasible tasks which is:

t = Lfeasible︸ ︷︷ ︸
Number of feasible loads

+
m(m− 1)

2︸ ︷︷ ︸
Number of comparisons

(4.2)

Lfeasible is defined as:

Lfeasible

 = N −m; m < M

= 0; m =M
(4.3)

The following example gives a rough idea of the number of children of a node in a

typical scenario. If N = 100,M = 5,m = 4 and Pf = 4 the number of children

in the node will be 4.426 × 106. This is a large number of child nodes and in many

real scenarios where the dataset is large, SADS algorithm fails to produce a sufficiently

long incomplete schedule before the processors become idle. This is a major drawback

of employing SADS to solve our DIAC problem. The memory constraints and data

sharing among tasks significantly lowers the performance of SADS by creating a huge

number of possibilities at each node. Because of the huge number of children created in

each level, SADS algorithm becomes an inefficient method to deal with real datasets.

In the experiments, most of the time the scheduling algorithm could not complete a

single level of the search tree before a processor become idle.
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4.1.3 Directed Acyclic Graphs (DAG)

In recent years, DAGs have become popular to handle scheduling problem with depen-

dencies [Abdelkader and Omara, 2012, Amalarethinam and Mary, 2011, Meng et al.,

2013]. Since the comparisons have a dependency on loads in our problem, this section

investigates the feasibility of DAG to our scheduling problem.

The Basic DAG Model

The first step of solving a problem using DAG is to represent the problem in a DAG.

Figure 4.2 shows a graphical representation of our problem in a DAG, ignoring the

memory constraints. The nodes (i.e. circles) represent the tasks and the directional

edges (i.e. arrows) represent the dependencies. A task pointed by an arrow depends on

the task from which the arrow starts. Li represents the load of Gi and Cx,y represents

the comparison betweenGx andGy. As seen in the figure, the Data Intensive All-to-all

Comparison (DIAC) can be represented by a DAG.

Under the memory constraints, the DAG shown in Figure 4.2 is still valid. However, a

constraint has to be applied over the DAG, which is the sum of the data items loaded to

memory cannot exceed the memory capacity. Assuming that all data items are similar

in size and the maximum of M data items can be held in memory, more than M loads

cannot be completed without unloading a data item in between the loads. As a result,

the solutions based only on the DAG are not valid under this constraint.

Solving the DAG

None of the existing work based on the DAGs [Abdelkader and Omara, 2012,

Amalarethinam and Mary, 2011, Meng et al., 2013] have considered a DAG with extra
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L0
C0,2

C0,3

C1,3

C2,3

C1,2

C0,1

L1

L2

L3

Figure 4.2: The DAG represents our DIAC parallelization problem assuming unlimited
memory available.

constraints for parallelization. Therefore, existing methods based on the DAG cannot

be applied to our problem.

4.1.4 Heuristic Functions Based Scheduling

A solutions based only on heuristic functions to make scheduling decisions on DIAC

parallelization is evaluated in this section. Heuristic functions have been used very

frequently to solve parallelization problems in the past [Berman et al., 1999, Casanova

et al., 2000, Giersch et al., 2004, Ramamritham et al., 1990, Xiangbin and Shiliang,
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2003]. As we described in Section 2.5, a heuristic function calculates a representative

value based on the current state of the system, to help the scheduler to decide the task-

processor affinity or next action. Heuristic functions are usually developed to represent

a combination of one or more ideas which are likely to affect the objective.

Since there is no existing heuristic function based method which is capable of handling

memory constraints in the DIAC problem, a new model is developed in this section.

This model combines multiple strategies aimed to make DIAC parallelization efficient

and build a single decision making approach. This approach was the basis for building

our proposed pattern based algorithm presented in Chapter 5 (Algorithm 7). Some of

the key decisions taken in the task completion pattern for Algorithm 7 are inspired

by the results of these heuristic functions. A comparison of the decisions made by

heuristic functions and Algorithm 7 developed in Chapter 5, under a similar status in

the system will be conducted at the later part of this section. However, the model only

based on the result of the heuristic function is live-lock prone and computationally

intensive in runtime. Therefore, this section aims only at building a decision making

model based on heuristic functions to help identify a data loading/unloading pattern to

solve DIAC parallelization problem.

The Basic Heuristic Function Model

Since our objective is a combination of managing memory, data sharing and increasing

speed, many of the conventional heuristics functions such as ‘longest job first’ cannot

be used efficiently. Therefore, a new model based on five decisions is developed first.

Each decision to start a task (load, comparison and unload) must be sure to meet the

constraints in the model presented in Section 4.1.1. The following are the decisions to

be made using heuristic functions:

• Should a load be started?
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• Should a comparison be started?

• Which data item should be loaded next?

• Which comparison should be started next?

• Should one or more data items be unloaded and what are they?

A decision-making procedure for DIAC parallelization based on the these decisions is

depicted in Figure 4.3.

Solving the Problem using Heuristics

The heuristics used for making the decisions are summarized in five tables as follows.

As seen in the heuristic functions, they are designed to meet the constraints in the

model presented in Section 4.1.1.

• Table 4.2—Should a load be started?

• Table 4.3—Should a comparison be started?

• Table 4.4—Which data item should be loaded next?

• Table 4.5—Which comparison should be started next?

• Table 4.6—Should one or more data items be unloaded and what are they?

In each table, there are several different heuristics presented for each decision. The

combined final value of the heuristics for a decision will be a weighted average of each

of the sub heuristics. Each heuristic function returns a value between 0 and 1.
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load_score = Calculate score for a load

compare_score = Calculate score for a comparison

load_score > LOAD_THRESHOLD
AND load_score > compare_score

AND parallel_loads not full

Found GS with scores more than zero?

Calculate load scores for each individul GS and sort. Pick 
the item with the highest score

Calculate and sort unload score for each loaded GS
which are not being used. Unload every GS

which has more unload score than the threshold.

Any item unloaded?

compare_score > COMPARE_THRESHOLD

N

Y

N

Load the item
Y

Calculate compare scores for each individul uncompleted comparison
and sort. Pick the comparison with the highest non-zero score.

Y

N

Found comparison?

Start the comparison

Y

Wait

N

N

Y

Figure 4.3: Procedure for making decisions based on the heuristic functions
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Table 4.2: Heuristic functions used for the decision of starting a load. The heuristics
to decide which data item must be loaded is discussed in Table 4.4

Heuristic Function Description

Sufficient space to load the data item To load a data item there should be suffi-
cient memory available. If this condition
is not met, the heuristic function for the
decision returns 0.

More free memory:

h2 =
Free Memory
Total Memory

To make full use of available memory, it
has to be full most of the time through-
out the calculation. Therefore, more free
memory encourages loads.

Small number of available comparisons:
Let the number of currently available
comparisons be Cavail and maximum
possible available comparisons which
may reside in the memory be Cmax avail.

h3 = 1− Cavail

Cmax avail

Small number of available comparisons
indicates the need for more possible
loads to increase the availability of com-
parisons for threads.
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Table 4.3: Heuristic functions used for the decision of starting a comparison

Heuristic Function Description

Higher number of summation of avail-
able comparisons and number of busy
threads: Let the number of currently
available comparisons be Cavail; max-
imum possible available comparisons
which may reside in the memory be
Cmax avail; the number of currently busy
threads be Pbusy and the total number of
threads be P .

h1 =
Cavail

Cmax avail

+
Pbusy

P

More busy cores suggests that more
comparisons are being completed.
Therefore, if the summation of available
comparisons and busy threads is high,
it suggests that more comparisons are
pending to be completed. Therefore,
comparisons are encouraged in this
situation.

One or more comparisons are available
between memory locked items:

h2 =

{
1; If available

0; Otherwise

When comparisons are available be-
tween the data items which are already
locked to memory (comparisons are on-
going with them), it is a good opportu-
nity to start another comparison without
conceding memory. Therefore, if com-
parisons between memory locked data
items are available, those are encouraged
to be completed.

More number of data items are locked to
memory:

h3 =
Locked to memory

Total loaded

When more data items are locked to
memory, comparisons must be encour-
aged to take advantage of already locked
data items if possible.
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Table 4.4: Heuristic functions used for the decision of what to load

Heuristic Function Description

Memory is sufficient to load. Memory must be sufficient to load a data
item. Therefore, if this condition is not
met, the final value of the heuristic for
the data item will be zero.

More comparisons brought in: Let the
number of comparisons brought in by
loading the data item be Cin and the
maximum possible comparisons could
be brought by loading a data item be
Cin max.

h1 =
Cin

Cin max

If a data item can bring more compar-
isons to memory than others, it has the
advantage of making more threads busy
with less memory consumption.

More relationships to uncompleted com-
parisons: Let the number of relation-
ships the data item has with the uncom-
pleted comparisons be Runcomp and the
total number of data items be N .

h2 =
Runcomp

N

Loading a data item that has more re-
lationships to uncompleted comparisons
increases the chances of its future contri-
bution to bringing in more comparisons.
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Table 4.5: Heuristic functions used for the decision of what to compare

Heuristic Function Description

Both data items of the comparison are in
memory

If this condition is unsatisfied the final
value of the heuristic function for this
decision is zero.

Number of items locked to the memory:
Let the number of data items locked to
memory be Nlocked.

h1 =
Nlocked

2

When more data item of a comparison
is already locked to memory (i.e. com-
parisons are ongoing with the same data
items), memory will be shared among
more comparisons by starting the com-
parison. This increases the efficient uti-
lization of memory.

More connections through both data
items of the comparison to the already
available comparisons. Let the num-
ber of connections from both data items
to the already available comparisons be
Ravail and the number of data items cur-
rently loaded to memory be m. If m <=
1, h2 = 0.

h2 =
Ravail

2m− 2

Starting a comparison which has more
shared data items with other available
comparisons increases the chances of
completing the comparison parallel to
the other connected comparisons and re-
leasing the data items quickly.

Small chance of re-introduction (data
items do not relate to many uncompleted
comparisons). Let the number of con-
nections to each uncompleted compari-
son through both data items beRucon and
the number of data items to be compared
be N .

h3 = 1− Rucon

2N − 2

The comparisons are less likely to be
brought into memory again if it has only
few shared data items with uncompleted
comparisons. On the other hand, since
the comparison does not share data items
with many uncompleted comparisons,
completing it later may require loads
dedicated for the comparison.
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Table 4.6: Heuristic functions used for the decision of unloading data items

Heuristic Function Description

Not locked to memory. If the data item
is locked to memory final value of the
heuristic function for this decision will
be 0.

If a data item is being used by a compar-
ison, it cannot be unloaded.

Low number of relationships with un-
completed already available compar-
isons. Let the number of related com-
parisons to the data item be Crelated and
the total available comparisons beCavail.

h1 = 1− Crelated

Cavail

If a data item is unloaded while more
uncompleted comparisons in memory,
there is a high chance of wasting the
load.

Low number of relationships with un-
completed but half available compar-
isons (one data item in memory). Let
the number of relationships of the data
item to the uncompleted and half avail-
able comparisons be Rhalf and the total
half available comparisons be Chalf .

h2 = 1− Rhalf

Chalf

If the data item has relationships to un-
completed comparisons which has one
item already in memory, there is a good
chance of more comparison becoming
available with the data item soon.

Low number of relationships with un-
completed comparisons. Let the num-
ber of related uncompleted comparisons
to the data item be Rucomp and the total
number of uncompleted comparisons be
Rtotal ucomp.

h3 = 1− Rucomp

Rtotal ucomp

If many comparisons related to the data
item is still uncompleted, there is a good
chance of a comparison becoming avail-
able soon with the data item.
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The output of each of the heuristic functions is a good indication of the next proper

decision to make, as it will be seen from the algorithm (presented in Chapter 5) based

on the decisions. The idea of developing these heuristics was inspired by the work of

Giersch et al. [2004]. However, our approach is different from their approach since

they only use one criterion in every heuristic function, while we combine a few criteria

for each decision. On the other hand, to solve our DIAC problem we have to make

more decisions rather than just deciding the processor task affinity and the order of

tasks.

However, an algorithm purely based on the heuristic scores tends to be live-lock prone

although the scores are good indications of the next proper decision to make. This is

because the decisions taken from the heuristics are sometimes short-sighted and lead

to more greedy solutions and end up in never ending cycle of task loops. On the other

hand, most of the listed heuristics have higher computational complexity compared to

our pattern based scheduling algorithm (i.e. Algorithm 7) which will be presented in

Chapter 5. Because of this, an algorithm based only on these heuristics spends more

time on scheduling.

Therefore, we didn’t use the this heuristics based model as a scheduling algorithm

in runtime. Instead, the scores calculated from the heuristic functions were used to

help designing the loading pattern used in Algorithm 7. This is because the decisions

based on the heuristics are, most of the time, good indications of the proper decision

to make. Figure 4.4 shows the percentage of the matches of the heuristic functions

based decisions taken by the model (depicted in Figure 4.3), to the decisions taken by

Algorithm 7 at a similar system status.

As seen in the figure, only two scenarios Figure 4.4 (c) and (d) show a deviation of

the heuristic functions based decisions from the decisions made by Algorithm 7. This

deviation is mainly in picking up the correct comparison when the queue size is greater

than one. In this situation, the heuristic functions tends to complete the comparisons
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(d) tc = 60, tl = 100, Q = 2

Figure 4.4: Comparison of decision making based on heuristic function to Algorithm 7
in different settings. Setting are N = 200 and M = 20.
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loaded last as all comparisons in set B have similar scores. When several comparisons

have similar scores to the highest, picking up the first comparisons in the available

comparisons list is specific to the implementation. The decisions made by the Unload

heuristic functions do not match with the decisions of Algorithm 7. The reason is that

the most of decisions to unload data items made by the heuristic are short sighted and

cause redundant loads. Therefore, we ignored this heuristic functions scores while

developing Algorithm 7. Instead, we were able to adapt the algorithms developed in

Chapter 3 successfully to handle unloads in Algorithm 7.

4.1.5 Using Local Search with Traditional Memory Management

Techniques

This section develops an approach to solve the DIAC using a local search technique.

The aim is to develop an algorithm regardless of the time taken for scheduling, to

produce a schedule as a reference for designing a new algorithm. Very briefly, the

strategy is to repeatedly modify a schedule over a long period of time to approach a

refined solution closer to the optimum. SADS [Hamidzadeh et al., 2000] and heuristic

function [Giersch et al., 2004] approaches failed to produce a conclusive solution even

after running for a long time. Therefore, this section proposes a method by combining

traditional memory management algorithms such as First In First Out (FIFO) with

simulated annealing [Shroff et al., 1996] to search for a solution in a long run. The

new model used in this section is an extension to the model proposed in Section 4.1.4.

First In First Out (FIFO), Least Frequently Used (LFU) and Least Recently Used

(LRU) are some of the popular memory management techniques used for paging data

in memory. When we evaluated performance of these algorithms specific to solving

our memory management problem (in Chapter 3), we found that the performance of

the algorithms depend on the data access pattern of the DIAC application. For in-
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stance, we developed a data access pattern for DIAC in Chapter 3 by tiling the matrix

into squares and carrying out comparisons in each square one after another. In this

algorithm, when the comparisons in the matrix were tiled to the correct size, the LRU

algorithm performed nearly as fast as our memory management algorithm.

To achieve a better solution, our aim is to progressively improve a schedule to produce

data access patterns better suited for the memory management algorithm. We use a

technique based on simulated annealing [Shroff et al., 1996] to progressively improve

the memory access pattern by using random modifications.

In simulated annealing, an initial candidate solution is built and successive random

modifications are made to the solution. A fitness value which represents the suitability

of a solution is used to determine the acceptance of the solutions. If a modified solu-

tion is accepted, it is retained and the current solution is discarded. A variable called

temperature is used to control the acceptance of the modified solutions. The tempera-

ture parameter is gradually decreased (cooled) at each time a new solution is created.

Solutions with better fitness value will be accepted always. If a solution has a lesser

fitness value than the current solution, it may be accepted with a probability directly

related to the current temperature. When the temperature cools down, the probabil-

ity of accepting less fit solutions decreases. In the long run, the simulated annealing

algorithm is able to reach towards an optimum solution [Shroff et al., 1996].

The Basic Model

With regard to our DIAC problem, a solution is a complete schedule which completes

all comparisons without violating the resource and task constraints in the model pre-

sented in Section 4.1.1. Typically in simulated annealing the current solution is ran-

domly modified to create the next solution. However, in our case, a schedule cannot

be modified always by delaying tasks or interchanging tasks, because of the tasks that
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depend on the previous tasks. Such modification violates the feasibility of the sched-

ule. For instance, if a load is delayed as a result of a modification, all comparisons

related to the load must be delayed. Then, the tasks following the comparisons must

be delayed too, which results in a completely different schedule.

C0,1C2,3C4,1

Updates on data acesses What to unload

Memory Manager

Comparison List

Controller

Threads

Update of task completions Next action

Take the five decisions based on 
the input task list and memory 
manager’s output

Figure 4.5: Model for producing schedules based on the order of a supplied sequence
of comparisons.

To overcome this issue, we use the order of the completion of comparison as the base

for developing a schedule. The model is depicted in Figure 4.5. The controller takes the

five decisions of the model described in Section 4.1.4. It is not allowed to violate the

given sequence of comparisons while building a schedule. To progressively modify

the memory access pattern, for each repeated run, the order of the comparisons are

randomly modified by swapping two positions in the sequence. The schedule produced

by using the new comparison sequence is slightly different from the current schedule.

If the memory is insufficient to load a data item which is required to start the next

comparison in the supplied list, the controller requests an ordered list of data items to
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be unloaded (best to the least best) from the memory manager. The memory manager

uses an algorithm like LRU. It has access to the order of comparisons in the given

sequence and receives updates on data item access. Based on the list of data items to

be unloaded and returned by the memory manager, the controller takes a decision as

described in the next section.

Solving the Problem Using Traditional Memory Management Techniques

We have experimented with two different variations of the memory management al-

gorithms. The first one is the LRU algorithm which performs well in the experiments

conducted in Chapter 3. The second algorithm is called the Future Aware (FA) algo-

rithm, which we designed specifically for this situation based on a widely accepted

“informal principle of optimality” for page replacement. The principle is that the page

to be replaced is that which has the longest expected time until next reference [Aho

et al., 1971]. As we are aware of the order of completing comparisons, the next soon-

est referral for each data item can be determined easily. Therefore, before unloading a

data item, the FA algorithm can decide the optimum data item to be unloaded.

Then we developed two variations of both the LRU and FA algorithms because the

data item which is most favoured by the memory management algorithm to unload can

be sometimes in use.

• The first variation waits until the most favoured data item completes its compar-

isons and then unloads it. The threads have to wait until the most favoured data

item becomes free to unload, and then load the data items required by the next

comparison in the sequence.

• The other variation considers unloading only the data items which are not locked

to memory. It picks the most favoured data item from the non-locked items as

suggested by the memory management algorithm, and unloads it immediately.
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Finally, we extended the later variation (unloading immediately) of LRU and FA al-

gorithms to make it flexible when following the given sequence of comparisons. In

this extended algorithm, whenever it is not possible to start the next comparison in the

given sequence of comparisons, threads are allowed to start other available compar-

isons. However, as soon as the next comparison is available to be started, the next free

thread must start it. Which data item is loaded next is still determined by the compar-

isons in the given sequence. The data item to be loaded next is always one of the data

items required for the next comparison in the supplied sequence. Therefore, changing

the order of the input comparisons sequence still affects the schedules created.

Table 4.7 shows the total runtime of the best schedule produced by each variation after

two days and the runtime of the schedule produced by Algorithm 8 presented in Chap-

ter 6. The LRU and FA variations strictly follow the given sequences of comparisons.

The Fast LRU and Fast FA variations are flexible in following the given sequence of

comparisons as described in the previous paragraph. Wait and No Wait variations of

above algorithms show weather the algorithms wait and unload the best data item to

be unloaded or unload the best data item which is not busy immediately.

The results show that after two days of runtime, Fast FA algorithm found a solution

very close to Algorithm 8 for Data Set 2. It also beats Algorithm 8 by 3.6% for

Data Set 1. In the Data Set 1, Algorithm 8 cannot make all threads busy due to the

parallel loads restriction. In this kind of situation, there can be a slightly better so-

lutions for arranging the comparisons than how Algorithm 8 does. More importantly

the data items have non-uniform sizes and can result many different combinations that

can be slightly better than Algorithm 8. However, it should be noted that these SA

algorithms took 2 days to find a better result while Algorithm 8 spent less than 1.5 and

3 seconds for Data Set 2 and Data Set 1 respectively in the simulator. Section 3.5.1

describes the data sets and only one parallel load is allowed in these tests.
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Table 4.7: Best runtime of schedules produced by the different variations of generic
memory management algorithms combined with simulated annealing after two days
of running (The number of maximum efficient parallel loads, LP = 1).

Data Set Variation Pseudo memory Best schedule’s

limit (MB) runtime (s)

Data Set 1 LRU (No wait) 5120 17186.8

LRU (Wait) 5120 17319.1

FA (No wait) 5120 16167.1

FA (Wait) 5120 16219.4

Fast LRU (No wait) 5120 4488.2

Fast FA (No wait) 5120 2710.0

Algorithm 8 in Chapter 6 5120 2812.3

Data Set 2 LRU (No wait) 500 31.39

LRU (Wait) 500 31.61

FA (No wait) 500 30.65

FA (Wait) 500 62.06

Fast LRU (No wait) 500 15.73

Fast FA (No wait) 500 15.71

Algorithm 8 in Chapter 6 500 14.53

4.2 Upper bound for the Parallel Performance Gain

This section focuses on deriving a theoretical upper bound of the gain in speed by

using parallel execution when a system is only capable of sequential loads. Due to

limitation of the disks, computers which are only capable of sequential loads (i.e. inef-

ficient in concurrently reading data) are commonly found. To derive the upper-bound,

we assume that a computer with unlimited number of processors exists. Although,

this assumption is not realistic for many applications, the result derived from the the-

oretical analysis provides good estimations of the theoretical upper bounds for system

performance, and are useful to guide system design and implementation.
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The results are summarised in two theorems. Theorem 9 derives the theoretical mini-

mum time required to complete an all-to-all comparison with parallel execution. Then

Theorem 10 establishes the theoretical upper bound for the maximum gain in speed

with parallel execution.

Theorem 9. Let M denote the maximum number of data items can be held in memory,

tl the time required for a load and N the number of data items in a data set. Lower

bound of the time required to complete an all-to-all comparison in a shared-memory

computer which is only capable of sequential loads is tpmin, where,

tpmin = tl

(⌊
N(N − 1)

2(M − 1)
− M

2
+ 1

⌋
+M − 1

)
. (4.4)

Proof. The proof is based on the Theorems 6, 7 and 8 established in Section 3.3.2.

After parallelization, an algorithm at least requires time to complete minimum required

loads, even if the time required to complete the comparisons is ignored (if all compar-

isons are available in memory, they can be completed simultaneously since there are

unlimited number of processors). As a result, the loads can be carried out sequen-

tially one after another in the best case. Theorem 8 established the minimum number

of loads required for an DIAC. In the process, it considered a sequence that brings

maximum possible number of comparisons at each load. A similar sequence brings

comparisons at the maximum rate possible at each stage since it brings the maximum

possible comparisons within tl at each stage. The minimum number of loads required

to complete an all-to-all comparison, according to Theorem 8 is:

Ltmin =

⌊
N(N − 1)

2(M − 1)
− M

2
+ 1

⌋
+M − 1. (4.5)

Therefore, lower bound of time required to complete a DIAC with parallel execution

tpmin is:

tpmin = tlLtmin. (4.6)



4.2 Upper bound for the Parallel Performance Gain 117

Substituting Equation (4.5) into Equation (4.6) gives Equation (4.4). This completes

the proof.

Theorem 10. Let tl denote the time required for a load and, tc the time required for

a comparison. An upper bound of the maximum speed gain, Smax, of an all-to-all

comparison by using parallel execution in a shared-memory computer capable only

of sequential loads, compared to the best possible sequential all-to-all comparison

algorithm running in a uni-processor system (assuming that no tasks can be executed

in parallel) with similar properties is:

Smax = 1 +
Ntc(N − 1)

2tl

(⌊
N(N−1)
2(M−1) −

M
2
+ 1
⌋
+M − 1

) . (4.7)

Proof. The minimum time required to complete an all-to-all comparison without par-

allelism, tsmin, is the time spent on minimum required number of loads (from Equa-

tion (8)) and the time to complete the comparisons. Therefore,

tsmin = tl ∗ Ltmin +

(
N(N − 1)

2

)
tc (4.8)

From Equation (4.4), the best parallel algorithm at least consume tpmin time according

to Theorem 9. Therefore,

Smax =
tsmin

tpmin

(4.9)

Substituting Equations (4.8) and (4.4) into Equation (4.9) gives Equation (4.7). This

completes the proof.

Figure 4.6 shows a comparison between speed-up of our proposed parallel algorithm

(Algorithm 8 in Chapter 6) and the upper bound of speed-up (from Theorem 10). The

speed-ups are calculated relative to the best possible sequential algorithm’s time from
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Figure 4.6: The speed-up of Algorithm 8 (presented in Chapter 6) and upper bound of
speed-up (from Theorem 10) plotted versus M for N = 100, tl = 100 and tc = 10.
The speed-ups are calculated relative to the best possible sequential algorithm’s time
from Equation (4.8). 100 threads are used in the simulation of Algorithm 8

Equation (4.8). The number of processors are assumed to be unlimited which is the

basic assumption of Theorems 9 and 10. As seen from Figure 4.6 of the speed-up,

the actual speed-up is bound by the theoretical upper bound. The upper bound for the

parallel gain is caused by the limitation of memory and the data throughput.
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The theoretical results obtained in this section show that there is an upper bound for

the speed gain of a DIAC under limited memory and disk throughput regardless of the

availability of processors. The theoretical result will be important for understanding

some of the experimental results in Chapter 6 which shows a limited speed-up regard-

less of the number of available processors.

4.3 Summary of the Chapter

This chapter modelled the DIAC parallelization problem as a resource constrained

scheduling problem. Additionally, the model was extended to four new models to

be used with existing parallelization techniques to solve the DIAC problem. Some

existing parallelization techniques were capable of solving the problem after extending

to use our models.

The effectiveness of each existing parallelization technique was evaluated based on the

solutions created by adapting the technique. Our DIAC problem deviates from tradi-

tional resource constrained scheduling problems as seen after modelling it as a resource

constrained scheduling problem. The SADS based solution spends unacceptable time

in scheduling a DIAC with a typical sized dataset in limited memory. It is unable to

handle large data sets due to the exponentially increasing complexity with the size of

a data set. The existing work for DAG based parallelization [Abdelkader and Omara,

2012, Amalarethinam and Mary, 2011, Meng et al., 2013] cannot solve the DIAC par-

allelization problem presented in a DAG because of the constraints added by memory

limitations. The solutions purely based on heuristic functions tends to be live-lock

prone and unable to produce a complete schedule. It also spends significant time on

scheduling due to the complex heuristic functions. The local search technique devel-

oped for DIAC by combining simulated annealing and our Future Aware (FA) memory

management algorithm created a successful schedule after two days of runtime.
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Although, these techniques are not effective in solving our DIAC problem, the process

of adapting existing techniques and modelling DIAC developed useful insights into

solving the problem. For instance, the Heuristic Function model produced a valuable

reference decision making process to solve the problem and the local search model

developed a reference schedule after running for a long period of time. The lack of

effectiveness of the existing techniques seen in the chapter motivated us to develop a

novel parallelization technique by eliminating the problems in the current techniques.

The next chapter will develop this novel algorithm.

This chapter also established a theoretical upper bound for the maximum parallel gain

which can be achieved by parallelization of DIAC under memory and disk throughput

constraints. The theorem provides insight into the limitations in designing paralleliza-

tion algorithm for DIAC. The upper bound can also be used to explain the outcomes in

experimental results of parallelization algorithms for DIAC.



Chapter 5

Parallelization and Memory

Management in Multi-core Systems

As we have seen in Chapter 3, the problem of managing memory to minimize run-

time alone (without parallelization) is challenging to solve. Parallelization of DIAC in

limited memory is an even more challenging problem to solve due to the added com-

plexity of load balancing. Chapter 4 showed that none of the existing parallelization

techniques which have potential to solve our DIAC problem are effective enough un-

der memory and data throughput constraints. The parallelization must address both

memory management and task parallelization. The underlying memory management

has a significant influence on the quality of the scheduling. Therefore, this chapter

focuses on developing a combined memory management and parallelization algorithm

for DIAC in limited memory. A novel parallelization technique is developed in the

process of developing the algorithm. This algorithm further extends and utilizes the

algorithms developed in Chapter 3.

The algorithm development is based on several key strategies designed to overcome

the gaps identified in Chapter 4. Firstly, each of these strategies are presented paired
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with the challenge to overcome. Then, the algorithm is presented as a step-by-step

development explaining utilization of underlying strategies. Then, the optimum pa-

rameter settings for the algorithm are derived theoretically for the commonly found

system parameters.

This chapter contributes a novel parallelization technique which combines static and

dynamic scheduling. The static scheduling is guided by a specific pattern developed

based on the prior knowledge of the abstracted problem. This technique significantly

minimizes the time spent on scheduling for complex parallelization problems such as

DIAC where significant prior knowledge of the abstracted problem is available (e.g.

data dependency and task information). Implementing this technique, a novel schedul-

ing algorithm for the memory management and parallelization of DIAC in shared-

memory multi-core platforms is designed. The algorithm is empirically shown to reach

very close to the maximum utilizations of processors for comparisons. In addition, the

optimum parameter settings for the proposed algorithm are also theoretically derived

for commonly found scenarios.

The experiments and implementation details of the algorithm proposed in this chapter

is presented in Chapter 6.

5.1 Development of Scheduling Strategies

We have identified four key aspects for solving the DIAC scheduling problem. Each

aspect is addressed in a subsection.

In this section, the term ‘redundant loads’ is used often. The term is defined as follows.

Let the minimum number of loads required to complete a DIAC under a memory

limitation beX . If an algorithm to complete the DIAC performsL loads whereL ≥ X ,
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under the same memory limitation, there are L − X number of ‘redundant loads’ in

the algorithm.

5.1.1 Aspect 1: Maximizing Comparisons and Minimizing Loads

In this aspect there are two challenges to overcome. Therefore, two strategies are

developed to overcome the challenges.

Challenge 1: Handling resource sharing between the loads and comparisons is com-

plex. Each load has a cost associated with it because a load requires memory and a

thread allocated as soon as the operation started. However, due to memory limitations,

multiple loads of some data items are essential to complete all comparisons. On the

other hand, completing more loads does not necessarily complete the target workload

(comparisons). Therefore, the balance between loads and comparisons is important to

efficiently handle parallelization of DIAC. To address this aspect of the DIAC problem,

the following strategy is introduced.

Strategy to Overcome Challenge 1: The strategy is to balance the rate of bringing

comparisons to memory and the rate of completing comparisons. This strategy is uti-

lized as the key for developing further strategies to address other aspects as well.

Finding the best balance between the rates of bringing comparisons and completing

comparison is difficult. Let P , tc and tl be the number of threads, average time for

a comparison and average time for a load respectively. In the best case, tc(M − 1)

work can be loaded to the memory within tl time, if we assume no parallel loads are

possible. In the best case, by P threads Ptc work can be finished within tc time.

However, the problem is that these best rates cannot be maintained continuously. The

reason is that while n number of loads are being done, only P −n threads are available

for comparisons and other threads might have to wait until a load is completed to start
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comparisons. Therefore, the strategy for balancing the rates is that to first decide the

rate of loads which can just keep all threads busy with comparisons (if possible) and

still try to avoid redundant loads as much as possible.

When the items are read from a disk that is incapable of parallel reads, the loading

of items usually becomes the bottle neck. In this case, loads have more adverse af-

fect on the total runtime, since the loads have to be carried out one after another, and

more loads directly increases the runtime. Therefore, balancing the rate of loads and

completing comparisons properly is even more important when parallel loads are im-

possible.

Challenge 2: There are two key limitations in parallelization of DIAC due to the

memory constraints:

1. The number of comparisons available in memory.

2. The number of comparisons a load can bring into memory.

The two limitations are explained in the following.

If the maximum number of data items which can be held in the memory is denoted

by M , then the maximum number of comparisons which can be available in memory

is M(M − 1)/2. This happens only if the comparison between the set of data items

loaded are not yet completed. On the other hand, a single load can bring the maximum

of M − 1 new comparisons to memory. This occurs only when M − 1 data items are

already in memory and none of the comparisons between the newly loaded data item

and the data items already in the memory have been completed.

The two limitations mentioned previously limit the amount of work available in mem-

ory at a given time. They also limit the rate of bringing new comparisons to memory.

Therefore, these limitations need to be taken into account in the parallelization DIAC.
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Strategy 2: The strategy to overcome this problem is intelligently choosing the com-

bination of data items remaining in memory and continuously changing it to bring new

comparisons in a flow. Whenever possible, the combination of data items in memory

should try to provide sufficient work to the threads while still allocating resources for

loads to continue the flow of incoming new comparisons.

To match the rate of completing comparisons, the rate of loading data items should be

constantly monitored to avoid starvation of threads for comparisons. If the continu-

ous change of combination of data items in memory could be performed with fewer

redundant loads, there is a good chance of developing a quality schedule.

5.1.2 Aspect 2: Using the Knowledge of DIAC Problem

As we have abstracted the DIAC and memory management problem clearly, there is

useful knowledge available about the characteristics of the problem. The knowledge

of the tasks and their data dependencies are available in advance to be used for making

the scheduling decisions.

Mueen et al. [2010] and our algorithm developed for memory management in Chap-

ter 3 utilized a pre-defined data loading pattern to minimize the scheduling overhead

in the runtime. This method can significantly reduce the scheduling overhead com-

pared to a completely dynamic algorithm. For example, consider the SADS dynamic

scheduling algorithm [Hamidzadeh et al., 2000, Hamidzadeh and Lilja, 1996] which

is based on a branch and bound search. As we saw in Section 4.1.2, such schedul-

ing algorithm suffers from a significant dynamic scheduling overhead compared to the

pattern based algorithm proposed in Chapter 3. Therefore, it is important to take advan-

tage of already available knowledge prior to the runtime to reduce dynamic scheduling

overhead.
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Even though we have complete knowledge of problem abstraction there is information

that is not available prior to the runtime. Importantly, we do not have accurate esti-

mations for the completion-time of either loads or comparisons. Although the load

time can be measured prior to the runtime, it may vary due to unexpected random

fluctuations of the computing platforms during the runtime.

Strategy: The strategy to address this aspect is to utilize a dynamic scheduler guided

by a static schedule. A specific pattern to complete loads and comparisons needs to be

developed with three aspects in mind. The pattern must:

• be able to dynamically adjust the rates of completing comparisons and loading

comparisons;

• be able to withstand on fluctuation of estimated runtimes for the tasks; and

• should encourage continuous execution of comparisons.

The development of the pattern to load and complete comparisons utilizes the knowl-

edge available prior to the runtime. The pattern acts as a static schedule guiding the

dynamic scheduling.

5.1.3 Aspect 3: Minimizing Synchronization Overhead

In our DIAC problem, the load times and comparison time are not uniform. As a

result, two comparisons which are started at the same time might finish at different

times. This makes centralized scheduling inefficient as some of the threads might have

to wait at barriers until other cores finishes the jobs. To minimize this synchronization

overhead, following strategy is introduced.

Strategy: The strategy is to distribute decision making into the threads. Each thread is

responsible for making decisions of its behaviour based on the guidelines and the state
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of the system. The thread can decide to start a load or comparison, or wait until the

state of the system changes (i.e. wait until a comparison or load is completed, or until

one or more data items are unloaded from the memory).

Distributed scheduling also helps overlap the scheduling process without dedicating a

separate core for scheduling only. In addition, this method promotes thread reuse since

the threads do not die until all comparisons are completed. The threads themselves de-

cide the next action each time when it completes a job or ends a wait (a wait ends when

a waiting thread is notified by another thread). Thread re-use prevents the overhead of

repeated thread creation in the operating system (OS). It also helps to improve overall

system performance.

5.1.4 Aspect 4: Time Spent on Scheduling

The computational complexity of a scheduling algorithm is a factor which has a sig-

nificant effect on overall runtime. Even if a scheduling algorithm can produce quality

schedules, if its complexity is high it may make the threads wait for a long period.

Therefore, it is important to focus on reducing the complexity of the proposed schedul-

ing algorithm. As already mentioned, the help of the static algorithm can significantly

reduce the dynamic scheduling overhead in the runtime. We trimmed Algorithm 5

(see Chapter 3) so that the complexity could be reduced without sacrificing significant

performance loss. Unlike in the single-core algorithm, the scheduling algorithm runs

very often in our multi-core design, since every thread runs a self decision making

process. Therefore, our aim is to keep the computational complexity of the algorithm

at a minimum level.
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5.2 Algorithm Design

Based on the strategies developed in Section 5.1, this section designs an algorithm. The

designing begins with developing a task (loads, unloads and comparisons) completion

pattern. The final algorithm is then developed based on the pattern. The algorithm

design is presented progressively starting from naive parallel algorithms to our final

algorithm. Therefore, several intermediate algorithms are presented in the process of

developing our final algorithm.

A new constant, LP is introduced for parallel algorithms, which is mainly calculated

based on the performance of the disk system of the host computing platform. LP rep-

resents the number of efficient parallel load operations. If load operations are disk

intensive, LP directly correlates to the number of RD introduced in Section 4.1.1 (i.e.

the number of disk resources in a system). In this case, LP is the number of chan-

nels which are present in a disk for parallel reads similar to RD. Otherwise, LP is

considered to be limited only by the available memory.

Determining the value of LP is based on the ability of a hard disk system to read

the disk in parallel. The value of LP is generally 1 for most of the commonly found

hard drive systems. We assume that LP is an integer based on the number of separate

reads a disk system can perform. For example, if the target computing platform has

a RAID (Redundant Array of Independent Disks) drive [Feng et al., 2010] with two

independent drives, LP is considered to be two. This is under the assumption that a

data read rate of F × LP can be achieved by LP number of threads, if a single thread

can achieve a data read rate of F .

Before presenting the first parallel algorithm, it should be noted that the choice of

reading pre-written data items from the disk or re-calculating them for each load, does

not effect the parallel algorithms. As we discussed in Section 3.4, we assume that
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a load operation does not require more memory than what is required to keep the

final preprocessed data item in memory. Similar to memory management algorithms

targeted uni-processor platforms, our parallel algorithms also allocate memory for the

preprocessed data item before the load operation begins. Therefore, the only difference

between to two scenarios is how LP is determined. When data items are re-calculated

for each load, the value of LP is only limited by the available memory because the

load operations are not disk intensive. However, when the data items are read from the

disk for each load, LP is determined based on the system’s disk performance.

5.2.1 Designing the Pattern

Our initial attempt is to apply parallelism to the algorithms proposed in Chapter 3,

which manage the memory efficiently for the DIAC (Algorithm 5). Algorithm 5 forms

groups of rows in the correlation matrix, which are called rows in the algorithm as

seen in Figure 5.1. Height of a row in the algorithm is M − 1 (i.e. the row is formed

by combining M − 1 rows of the matrix), where M is the maximum number of data

items that can be held in the memory. Since the sizes of data items are not uniform, M

varies based on the combination loaded to the memory. Therefore, the rows may have

different heights.

In Algorithm 5, each row is divided into two sections as set A and set B. Set A is the

firstM−1 data items in the row, and they are not unloaded until all comparisons in the

row is completed. The rest of the data items in the row are one-by-one loaded into set

B until all comparisons in the row are completed. However, the last data item loaded

to set B in a row is kept in memory and will be reused as the next row. This reusing is

called ‘bringing forward’ mechanism.

When we parallelize Algorithm 5 the ‘bringing forward’ mechanism is ignored. This

is done to keep the complexity of the algorithm at a minimum level and to improve
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Row 1

set A Loaded into set B one by one

Row 2

set A Loaded into set B one by one

Figure 5.1: How the correlation matrix is divided into rows and how a row is divided
into two sets set A and set B

the ease of further extending the algorithm. The cost of extra loads caused by ignoring

‘bringing forward’ mechanism is nullified by the reduced parallel scheduling overhead

as we will see later in this section. Since there is no ‘bringing forward’, all data items

loaded for a row are unloaded from memory before a new row begins (i.e. memory is

emptied before each row begins). The resulting algorithm is closer to the one proposed

by Mueen et al. [2010] (see also Algorithm 3) except that the rows in our case have

non-uniform heights.

In Algorithm 5, the comparisons are completed after each load. The simplest way to

parallelize this algorithm is as follows. While loading set A, one or more threads load

the data items and the rest of the threads complete the newly introduced comparisons

as they are loaded. The number of threads allocated for loading set A is limited by

the maximum parallel loads allowed (i.e. the maximum parallel reads that can be done

efficiently in the system). Once set A is completely loaded, the rest of the data items

are loaded to set B one at a time by a thread. Each time a new data item is loaded to

set B, all threads start completing the comparisons. While loading a data item to set

B, all other threads except the thread loading the item wait until the load is complete.
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The above described parallel algorithm is depicted in Algorithm 6. In this section, M

is considered to be a constant, for the simplicity of presenting and explaining the inter-

mediate algorithms. However, these algorithms can be modified to handle variable M

by simply modifying the margins of set A and set B. We initially present intermediate

algorithms assuming thatM is a constant but our final algorithm will be presented with

a variable M .

Algorithm 6 Pseudo-code representation of the simple parallel algorithm based on
Algorithm 5; N is number of items; M is maximum number of items fit into memory;
LP is maximum number of efficient parallel loads; P - is number of threads.

1: procedure COMPLETETASKS(N,M,P, LP )
2: r ← 0
3: while r < N do
4: A← {Gx : x ∈ Z, r ≤ x < r +M}
5: [LP Threads] Load all items in {x : x ∈ Z, r ≤ x < r +M}
6: [P − LP Threads] Complete comparisons as introduced // Run parallel to

step at line 5
7: for all {i : i ∈ Z, r +M ≤ i < N} do
8: [Single Thread] Load Gi

9: [P − 1 Threads] Complete remaining comparisons within set A // Run
parallel to step at line 8

10: [All Threads] Complete all new comparisons with Gi

11: [Single Thread] Unload Gi

12: end for
13: [All Threads] Complete all remaining comparisons within set A
14: [Single Thread] Unload all in set A
15: r ← r +M − 1
16: end while
17: end procedure

To explain the behaviour of Algorithm 6, snapshots of thread and matrix diagrams are

shown in Figure 5.2. Before using these diagrams, the keys to read the diagrams are

as follows.

Figure 5.2 (a) shows how each thread behaves over the time in a DIAC. Each row in

the graph shows what task (load, compare, unload or wait) the thread is performing at

a given time. The task can be distinguished by referring to the colour in the legend.
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Since, an unload consumes a negligible amount of time, it is shown as a vertical line

at the time it occurred. The data item number or numbers involved in each action is

shown inside it.

A matrix diagram is used to show the system status at a moment of time. Figure 5.2 (b)

shows two snapshots of the system status at T1 and T2 marked in Figure 5.2 (a), respec-

tively. A matrix diagram shows a part of the correlation matrix. In the matrix, both

columns and rows are numbered from 0 to N−1, where N is the number of data items

to be compared. Alongside the top and left of the column and row numbers (outside

the matrix), the status of each data item is shown in a square. If the square i is filled

with dark grey (labelled “Completed” in the legends), the data item Gi is in memory

(i.e. the data item is loaded). If the square is white, Gi is not in memory and if it is

light grey (labelled “In progress” in the legend) Gi is being loaded. For each data item,

the status is shown in both the column and row for faster referrals.

In the matrix diagram, each square within the matrix represents a comparison between

the data item numbered as in the row and column, i.e. COMPARE(Grow, Gcolumn). The

correlation matrix is symmetric and the diagonal is zeros. Therefore, the comparisons

to be completed take the shape of an upper triangular matrix without the diagonal. The

lower triangular matrix and the diagonal in Figure 5.2 (b) are hatched to indicate that

the comparisons in that area are not required to be completed. This hatch is not shown

in the future matrix diagrams, but it must be noted that only the comparisons in the

upper triangular matrix are required to be completed. The matrix diagram only shows

the status of the comparisons in the upper half of the matrix for clarity. If a comparison

shown by a square is white, then the comparison is not yet started; if it is colour “In

progress”, the comparison is being completed; and if it is colour “Completed”, the

comparison has been completed.

Algorithm 6 has the advantage of a lower number of loads. As we will be discussing,

there are situations where this algorithm is better due to low number of loads. In the
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Time

Comparing

Waiting

Unloading

Loading

T1 T2

(a) Thread Diagram

Completed

In progress

G  is in 2

memory
G  is being9

 loaded

Item not in memory/Uncompleted comparison

(G , G ) comparison0 3

 is completed
(G , G ) comparison4 8

is being completed
(G , G ) comparison0 9

 is not completed
G  is not6

in memory

Snapshot at T  in (a)1 Snapshot at T  in (a)2

(b) Matrix Diagram

Figure 5.2: The behaviour of Algorithm 6 explained in a matrix diagram and a thread
diagram. The settings are N = 20,M = 7 and P = 4.
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current row of the algorithm shown in the Figure 5.2, set A is {G0 . . . G5} according to

Figure 5.2 (b). In Algorithm 6, the threads have to wait until the loads are completed

after loading set A, as shown in Figure 5.2 (a). This wait time increases even further if

the load time is considerably longer than the comparison time. For the whole period,

while each load is performed, only one thread is busy and that thread is also not per-

forming useful work (useful work is comparisons). This prolonged wait time is one of

the two disadvantages of this algorithm. The other disadvantage is that it cannot take

the advantage of parallel loads. After loading set A, memory is just sufficient for a

data item only. Therefore, sufficient memory is not left for two or more parallel loads.

To overcome the problem of the prolonged thread waiting in Algorithm 6, the algo-

rithm has to be improved. However, modifications need to be done without going far

from its major advantage which is the lower number of loads it requires. In Algo-

rithm 6, set B has room for only one data item. As a result, it is unable to load next

data item while doing the comparisons. Therefore, increasing the size of set B to two

or more to allow loads while doing comparisons could solve this problem.

As seen in the Figure 5.2 (a), while G8 is compared with set A, G9 could be loaded

if there was sufficient memory remaining. Once comparisons with G8 are completed,

it can be unloaded and G10 can be loaded while G9 is compared with set A. To con-

tinue this pattern the comparisons with the data item loaded first to the set B must be

completed first (i.e. G8 and then G9, etc.). Therefore, we made the set B a queue

through which the data item are pipelined. The comparisons related to the front most

data item loaded to set B queue are started first. Once they are all completed, the data

item is unloaded. This new extended algorithm is capable of significantly decreasing

the wait time for data in some scenarios (specially with much longer load times than

comparison times) as seen in Figure 5.3 (a) where size of the set B queue is two. The

scenarios where this algorithm is efficient are discussed later in this chapter.

In Figure 5.3, only 5 comparisons are completed after each load to set B, compared
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Time
Comparing

Waiting

Unloading

Loading

T1 T2

(a)

Completed

In progress

Item not in memory/Uncompleted comparison

Snapshot at T  in (a)1 Snapshot at T  in (a)2

(b)

Figure 5.3: The matrix and thread diagrams showing the behaviour of Algorithm 6
when it is extended to use a pipe-lined set B of size two. The settings are N =
20,M = 7 and P = 4.

to 6 in Figure 5.2. This means that overall more number of repeated loads need to be

carried out to complete a DIAC, when the size of the set B increases to two from one.

Figure 5.3 (b) shows that the height of a row has decreased from 6 to 5 in compari-
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Row 1

set U

Row 2

set Uset V set V

Figure 5.4: In Algorithm 7, how the correlation matrix is separated into rows and each
row into two sets as set U and set V .

son with the non-extended algorithm implying that the number of rows has increased,

and consequently the number of overall loads increases to complete all comparisons.

There is always a trade-off between increasing the available tasks and minimizing the

repeated loads. It is important to balance these two factors, for optimum results. In the

next section a formal algorithm is presented using the pattern developed in this section.

5.2.2 Algorithm Development

This section develops a formal algorithm based on the load pattern developed in the

previous section. The algorithm is depicted in Algorithm 7 but the locks used for

thread-safety (synchronization) in the algorithm are not presented for simplicity. This

algorithm is called “data pipeline” algorithm. It is a distributed scheduling algorithm.

The main procedure COMPLETETASKS() is started by all threads in the system after

the initializations of global variables from line 1 to 4. The number of threads depends

on the total number of cores or processors in the system, or a number that the user

prefers. This algorithm is similar to Algorithm 6, where the value of Q (size of Vim) is
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set to one.

To describe this algorithm, each row in the correlation matrix is divided into two sec-

tions called set U and set V as seen in Figure 5.4. The set of data items remaining in

the memory for the whole period of completing a row is called the set U . The rest of

the data items in the row after set U is called set V . The set Vim is a subset of set V

and only contains data items in memory. If the sizes of set U and set V are u and v

respectively and the length of a row is r, v is set such that v = r − u. Typically, u is

less than v.

Algorithm 7 creates a pipeline of data items through memory to load set V data items.

The pipeline is started after loading set U to memory. The pipeline mechanism serves

the two strategies addressed in Section 5.1.1.

1. The pipeline is capable of creating a continuous flow of new comparisons to

memory even under limited memory.

2. By adjusting the size of the pipeline, the balance between the rates of completing

and incoming comparisons can be optimized as we will discuss later.

Algorithm 7 uses a FIFO queue of comparisons, compV and Vim to create the pipeline.

The process is as follows. The data items in set V are loaded from left to right in a row

(i.e. Gi with i ascending order). When a new data item in set V completes loading,

the new comparisons between set U and the new item are added to the queue compV .

The newly loaded item is added to Vim list for future references. The threads complete

the comparisons from compV in the order they were added (just before a comparison

is started, it is removed from compV ).

As a result, the first data item entered Vim is likely to finish all its comparisons with set

U before other items in Vim. This happens most of the times unless a comparison takes

an unusually long time to finish. Each thread checks Vim for data items which doesn’t
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Algorithm 7 Data Pipeline Algorithm: Decentralized algorithm for each thread. The
algorithm is run by each thread in the system. A load, comparison and unload com-
pletion awakes all waiting threads. N - number of data items to be compared; M -
maximum number of data item fit into memory; Q - The maximum number of data
items kept in memory from set V (i.e. the maximum size of Vim).

1: Set U and V to be empty
2: Vim ← ∅ // Intialize the sub set of currently loaded items from V to be empty
3: compsU ← ∅ // Intialize list of available comparisons within U to be empty
4: compsV ← ∅ // Intialize queue of available comparisons within V ∩ U to be empty
5: procedure COMPLETETASKS(N,M,Q)
6: row start← 0 // Intialize current row’s start position to be zero
7: row height←M −Q // Calculate the height of a row
8: loadingU ← true // If true set U is being loaded
9: INITIALIZESETS(row start, row height,N )

10: while uncompleted comparisons remaining do
11: if max parallel loads limit reached then
12: COMPAREORWAIT()
13: else
14: if all comparisons in the current row are complete then
15: Unload all data items in memory
16: row start← row start+ row height // Go to next row
17: loadingU ← true // Indicate to load the next set U
18: INITIALIZESETS(row start, row height,N )
19: end if
20: if loadingU then
21: item = next not loaded and not being loaded data item in U
22: if item is the last data item in U then
23: loadingU ← false // Finish loading set U
24: end if
25: LOAD (item);
26: Add comparisons between loaded data items in U and item to

compsU
27: else
28: for all item in Vim do
29: if item has completed all comparisons with U then
30: UNLOAD (item)
31: Remove item from Vim
32: end if
33: end for
34: item = Next never loaded data item in V for current row start
35: if memory is sufficient to load item then // Higher priority for loads
36: LOAD (item)
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37: Add item to Vim
38: Add comparisons between item and U to compV queue
39: else
40: COMPAREORWAIT()
41: end if
42: end if
43: end if
44: end while
45: end procedure
46: procedure INITIALIZESETS(row start, row height,N )
47: U ← {Gx : x ∈ Z, row start ≤ x ≤ row start+ row height}
48: V ← {Gx : x ∈ Z, row start+ row height < x < N}
49: Set Vim, compsU, compsV to be empty
50: end procedure
51: procedure COMPAREORWAIT

52: if compV is not empty then // Higher priority for comparison from V

53: comp = front most comparison in compsV queue
54: Remove comp from compsV
55: COMPLETE (comp)
56: else if compU is not empty then
57: comp =A comparison in compsU list
58: Remove comp from compsU
59: COMPLETE (comp)
60: else
61: Wait until notified by another thread on a system state change
62: end if
63: end procedure

have any pending comparisons to be completed with set U and if found they will be

unloaded to make room for new data items. When a data item in set V is unloaded, the

load for the next data item of set V is started by a thread while other threads complete

comparisons of previously loaded data items. In this way, the data items are pipelined

through memory while some threads are working on comparisons and other threads

constantly looking to keep the flow of new comparisons to memory.

This mechanism can also minimize the effect of fluctuations in runtime of comparisons

and loads. Assume that a load takes longer than usual to complete. Instead of waiting

for the struggling load to finish, a successor data item in set V which finished loading
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early can add its comparisons to compV to be completed. As soon as the comparisons

are completed with the successor data item, it can be unloaded allowing a new data

item to be loaded. Therefore, even if the data item are started to load following the

order of left to right, the order in which they finish loading does not confuse or block

the flow of new comparisons brought into memory. In addition, a comparison which

takes longer than usual to finish does not hold back other successor comparisons from

finishing, since a comparison is removed from compV just before it is started. The data

item related to the struggling comparison has to wait in the Vim until the comparison

is finished. The adverse effect of this waiting is minimized by the successor data items

loaded to memory which can manage to prevent the flow of incoming comparisons

from completely blocking.

Algorithm 7 has a maximum size for Vim (Q). The size of set U which is also the

height of a row is calculated as M − Q, where M is the maximum number of data

items which can be loaded to memory. Therefore, there is room for Q number of data

items from set V to be loaded into memory. The memory is allocated for a load as

soon as the load started. So, the sum of loaded and load in progress data items must be

less than or equal to Q.

In the algorithm, the decision making process runs repeatedly within the loop at line 10,

until all comparisons in the DIAC are completed. Since the loads are the bottleneck

in many situations, the algorithm gives priority to loads. Completion of a load on

time is always important to continue the flow of bringing comparisons. Therefore, the

algorithm initiates a comparison only if no load is possible. The condition at line 11

and 35 serves this purpose.

If the condition at line 11 is satisfied, the procedure COMPAREORWAIT() is activated.

The procedure starts the front most comparison from compsV queue, if it is not empty.

Priority is given to the comparisons related to the data items in set V . The reason is

that the comparisons within set U are always available throughout the completion of
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a row, and they can be completed at any-time during the completion of the row. As

a result, whenever a thread cannot find data items to load or a comparison from set

V , it can complete a comparison within set U . So, if queueV is empty and compsU

is not empty, a thread will start a comparison from compsU . It can be argued that

delaying comparisons in compsU may later become a hindrance to finishing the row.

However, the threads waiting for data items in set V to be loaded can instead complete

comparisons from compsU . This is more effective than finishing them first as we

will see in Section 5.3.1. On the other hand, regardless of the position where the

comparisons in compsU are completed, the same amount of computational time is

needed for them and so completing them, when threads could have waited otherwise,

is always effective.

If neither load nor a comparison is possible, the thread will wait until the system status

changes. A system state change occurs in the following three scenarios.

1. A comparison finishes and one of the data items in the comparison becomes

available to unload.

2. A load completes.

3. An unload occurs.

When one of above events occurs all waiting threads are notified to resume.

Once all comparisons in the row are completed the next row must begin. This is done

inside the condition at line 14. This code is executed once by a thread at the completion

of all comparisons in a row. After moving to the next row, all data items in memory are

unloaded and all queues and lists are cleared. The flag indicating that set U is being

loaded is set to true since next row’s set U must be loaded next.

Inside the condition at line 20, the current set U is loaded. If the maximum number of

parallel loads permits, every thread is allowed to start a load, since memory is sufficient
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to load all data items in set U . It is important to note that if the threads have reached

the maximum number of allowed parallel loads, the condition at line 11 will prevent

any more threads from starting another load. Once the last data item in set U is started

loading, the flag loadingU is set to false indicating that the set U is completely loaded

or being loaded, and set V must be loaded here onwards. Every time a load of a data

item in set U is completed, the comparisons it brings with currently loaded data items

in set U are added to compsU at line 26. This ensures that whenever a thread is unable

to start a load, it has comparisons to complete in compsU list.

The code starting from line 27 (else of the condition at line 20), is responsible for

loading and unloading process of set V . First it checks whether any data item in Vim

has completed all comparisons with set U . If so, the data item is unloaded to allow

another load. Then it checks if memory is sufficient to load the next data item in set

V . If memory is sufficient, the data item is loaded.

At line 35, if memory is sufficient to load the next data item from set V , it will be

loaded. Otherwise, a process similar to the one occurs when no load is possible due

to reaching the maximum parallel loads will be activated (i.e. call to COMPAREOR-

WAIT()). At the end of this process, a comparison will be chosen to be started if

possible or the thread will wait until the next system change.

5.3 Analysis of the Algorithm Behaviour

This section discusses a few examples to give an insight into the behaviour of the

algorithm. It also discusses the factors affecting the behaviour of the algorithm and

their influence on the algorithm behaviour.
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5.3.1 Examples for Understanding the Behaviour of the Algorithm

Before deeply discussing the factors affecting the behaviour of the algorithm, it is

important to have a good understanding of the behaviour of the algorithm. We will

consider the most common scenario where parallel loads are inefficient (when data

items are read from a sequential read disk). For the convenience of presentation, small

values are used for N , P and M in the figures.

Figure 5.5 shows the behaviour of the algorithm when Q, the size of Vim changes:

• Figure 5.5 (a) shows that when Q = 1, all threads wait until a data item is loaded

to the memory.

• When Q increases to 2 the wait time of the threads decrease as seen in Fig-

ure 5.5 (b) because the data is starting to pipeline through Vim.

• When Q further increases to 3, the wait time decreases slightly more as seen in

Figure 5.5 (c).

It is noted that when Q is three, the loads are continuously carried out. The reason is

that at any given time there is a free memory slot to load the next set V item, since

comparisons with a previous data item can be completed and unloaded, before Vim

becomes full. Therefore, the rate of loading data items has reached its maximum.

When Q is increases to 4, the wait times increases as seen in Figure 5.5 (d). For the

configurations shown in Figure 5.5, scenario Q = 2 is better than other Q values.

The criterion to choose the better Q for the row is the rate of completing comparisons

(i.e. number of comparisons completed in the row divided by the time spent to com-

plete the row). Even though Q = 3 still has slightly less wait times in threads, Q = 2

has a higher rate of completing comparisons in the row. The reason is that the reduc-

tion in wait time when Q = 3 is insufficient to compensate for the increased number of

repeated loads because of the decreased row height. It is noted that increasing Q has
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(d) Q = 4; Matrix diagram snapshot at T4

Figure 5.5: The matrix and thread diagrams showing the behaviour of Algorithm 7
with Q = 1 (a), 2 (b), 3 (c) and 4 (d). The settings are N = 20,M = 7 and P = 4.
The maximum number of parallel loads is limited to one.
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an adverse effect of increasing the repeated loads. Methods to pre-determine optimum

Q will be discussed later in this section.

Figure 5.6 shows another scenario where relatively high number of data items can be

held in memory compared to the scenario shown in Figure 5.5. As seen in Figure 5.6 (a)

when Q = 1 some threads still wait for loading data. But when Q is set to two, no

thread is waiting for data or comparisons as seen in Figure 5.6 (b). Every thread is

working continuously in this situation.

Importantly, in Figure 5.6 (b) there is no clear pattern in the order of completing com-

parisons explicitly specified in Algorithm 7. Since the threads are allowed to make

decisions independently, Algorithm 7 is designed in a way that a proper order of com-

pleting comparisons is gradually formed among threads which eventually keeps the

data pipeline flowing continuously.

When Q increases to 3, there is not much difference in the thread diagram shown in

Figure 5.6 (c), since all threads are busy continuously same as Figure 5.6 (b). However,

it is important to look at the behaviour of this scenario in the grid diagrams shown in

Figure 5.7. The figure shows three snapshots of three critical places. In figures 5.7 (a)

and (b),G16 is not used when it is at both left and middle positions in Vim. Then,G17 is

not being used in Figure 5.7 (c) even if it is loaded and ready to be used. The meaning

of ‘using’ a data item is that the comparisons related to the data item are currently

being performed. Once all threads become busy with work at a value of Q (at Q = 2

in this case), increasing Q will not create further gain. The extra data items in Vim will

be unused and cause more redundant repeated loads. As a result, Q = 2 is the best Q

in this scenario.

The examples so far in this section produce schedules with prolonged wait times if

Q = 1. However, there are two scenarios where Q = 1 is better than other Q values in

Algorithm 7 (a theoretical analyses on this will be conducted in Section 5.4).
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(a) Q = 1

(b) Q = 2

Comparing

Waiting

Unloading

Loading

(c) Q = 3

Figure 5.6: The thread diagrams showing the behaviour of Algorithm 7 when Q is 1
(a), 2 (b) and 3 (c). The settings are N = 50,M = 15 and P = 8. The maximum
number of parallel loads is limited to one.

• The first scenario is when load time is extremely low compared to the compari-

son times and as a result the wait time for data is significantly low.
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Loaded but not being used

(a) At T1 (0 < T1)

Loaded but still not being used

(b) At T2 (T1 < T2)

Loaded but not being used

(c) At T3 (T2 < T3)

Figure 5.7: Few snapshots of the grid diagram showing the behaviour of Algorithm 7
when Q = 3. The settings are N = 50,M = 15 and P = 8 same as Figure 5.6. The
maximum number of parallel loads is limited to one.

• The second scenarios is when the comparisons within set U cannot be completed

at the same rate as they are bought in.

The second scenario is shown in Figure 5.8. The first diagram in Figure 5.8 (a) shows
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that there are still uncompleted comparison within setU when loading setU is finished.

When there are comparisons remaining within set U , whenever a thread has to wait for

a load of set V , it can start a remaining comparison from set U . This can be seen

in Figure 5.8 (b) where comparisons from set U are completed in between each load

of set V . However, the comparison within set U are all completed when G26 of set

V is loaded. Thereafter, the threads have to wait for loads from set V similar to as

seen previously in Figure 5.6 (a). In some scenarios where there large number of

uncompleted comparisons remain just after loading full set U , the threads do not wait

for data in a major portion of a row even if Q = 1, where it could be better than Q = 2.

5.3.2 Factors Affecting the Behaviour of the Algorithm

After looking at the behaviour of the “data pipeline” algorithm (Algorithm 7), this

section discusses the factors that affect the behaviour of the algorithm. There are four

such factors:

1. the ratio between load time and comparison time (i.e. tc/tl where tc is the time

required for a comparison and tl is the time required for a load);

2. the maximum number of data items that can be held in memory (M );

3. the number of threads (P ); and

4. the maximum number of parallel loads (LP ).

The behaviour of the algorithm mainly depends on the rate of completing work and

rate of introducing work. The ‘work’ means the time to complete comparisons. For

example, if a load brings in n comparisons, it brings n× tc work. When the ratio tc/tl

is higher, a single load brings more work (n × tc) within less time (tl). Only the ratio

between these two affects the behaviour of the algorithm, not their actual values.
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(b) In between T1 and T2 in Figure (a) above

Figure 5.8: The snapshots of the grid and thread diagrams showing the behaviour of
Algorithm 7 when Q = 1 and it is still effective. The settings are N = 50,M = 15
and P = 4. The maximum number of parallel loads is limited to one.

When M increases, the number of comparisons which a load can bring in increases.

This makes the threads do more work (comparisons) for a smaller number of loads.

So, the increased number of incoming comparisons eventually affects the behaviour of

the algorithm. Often, with higher M values, smaller Q values tend to produce better

schedules, since the rate of introducing work is high when M is large.
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When the number of cores, P increases, the system’s maximum capable rate of com-

pleting comparisons increases. Therefore, to produce better schedules, the rate of

bringing comparisons must also be increased. For higher P vales the algorithm has

to settle for a higher Q values more often to make more work available to threads.

Even if the height of the row decreases when Q increases, the number of comparisons

available can be increased up to certain limit by increasing Q, as we will see in the

experiments.

Similar to M , LP has the potential of increasing the rate of introducing comparisons.

Whenever the rate of completing comparisons is ahead of introducing comparisons,

increasing Q will provide an opportunity for parallel loads to supplement the rate of

bringing comparisons. A scenario that allows more than one parallel loads is shown in

Figure 5.9. As seen in Figure 5.9 (b), when Q = 2 the rate of bringing comparisons

does not match the rate of completing comparisons. In comparison, when Q is set to

Q = 3 in Figure 5.9 (c), no thread is waiting. In this case the ability to do load in

parallel makes all threads busy by matching the rate of bringing comparisons to the

rate completing comparisons. Q = 3 is optimum in this case, because there is no

further gain for increasing Q after all threads become continuously busy.

5.4 Determination of Algorithm Parameters

It is important to determine the proper parameter settings for Algorithm 7 to ensure

proper load balancing among the threads for optimum performance. While examin-

ing the behaviour of Algorithm 7 in Sections 5.2, it is noted that predicting the pat-

tern in which the threads carry out comparisons is difficult. Therefore, mathematical

modelling to find optimum parameter settings becomes extremely complex in certain

scenarios, especially when parallel loads are possible. As a result, we limit our math-

ematical modelling only to the systems in which only single parallel load is efficient.
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(a) Q = 1

(b) Q = 2

Comparing

Waiting

Unloading

Loading

(c) Q = 3

Figure 5.9: The snapshots of the thread diagrams showing the behaviour of Algo-
rithm 7 (a) Q = 1, (b) Q = 2 and Q = 3. The other settings are N = 50,M = 15 and
P = 4. The maximum number of parallel loads is limited to two.

Such systems are most commonly found. For other scenarios, we introduce a fast

simulation technique to determine the parameter settings.
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5.4.1 Maximum Size of Vim (Q) in Algorithm 7

In Algorithm 7, the size of Q is the only adjustable parameter. Even though it uses

a similar Q size for each row for simplicity, optimum way would be to dynamically

determine Q for each row. Let Qopt denote the best Q value for a row. It is important

to determine an upper bound for Qopt to help determining Qopt by trying different Q

values in simulations. This section develops a method to decide an upper bound for

Qopt for a row which is called Qmax. Qmax is defined so that the best Q, Qopt is

1 ≤ Qopt ≤ Qmax.

Qmax depends directly on the maximum efficient parallel loads, LP . The reason is that

the only purpose of increasing Q is to encourage loads. When Q is high, there is room

for more parallel loads in memory. Therefore, we develop a theory for calculating

Qmax in this section.

Theorem 11. In Algorithm 7, let Qopt denote the best Q for a row, Qmax denote the

upper bound of Qopt (i.e. 1 ≤ Qopt ≤ Qmax) and LP denote the maximum number

of efficient parallel loads. If LP = 1 and either Equation (5.1) or Equation (5.2) is

satisfied, then Qmax = 2.

tl ≥
⌈
M − 2

P − 1

⌉
tc (5.1)

tl ≤
⌊
M − 2

P − 1

⌋
tc. (5.2)

Proof. When Equation (5.1) is satisfied, the system is capable to finish all comparisons

with the last loaded data item to Vim (Gx) within tl (load time of a data item) as seen

in Figure 5.10. In this case, the load of the next data item (Gy) to Vim can be started

as soon as Gx finishes. When this happens, the system is carrying out loads contin-

uously. Therefore, even if Q is increased further, there is no opportunity to increase

the rate of completing loads. The system has reached its maximum rate of completing

comparisons. Therefore, Qmax = 2 in this scenario.
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When Equation (5.2) is satisfied, the system is unable to finish all comparisons with

Gx within tl, it must wait for the comparisons to finish before starting to load Gy.

In this case, increasing Q over two cannot increase rate of completing comparisons

since the system cannot handle more comparisons than it is already receiving within

tl. Increasing Q will only decrease the rate of completing comparisons because it will

decrease the size of set U (M − Q) and decrease the number of comparisons a single

load brings in. It can be argued that whenQ is increased largely over 2, the system will

be able to finish comparisons more quicker because of the decrease of comparisons a

single load brings in, which might eventually increase the rate of loading up to the rate

which occurs when loads are carried out continuously. However, as we will see in the

following proof, increasing Q over 2 decreases the rate of completing comparisons.

In Algorithm 7, to move to the comparisons with the next data item in Vim, all available

comparisons with the previously loaded data item must be started (and completed to

threads to become free). Therefore, if all comparisons brought in by a data item cannot

be completed within tl (i.e. Equation (5.2) is satisfied), the system will have to wait

for them to finish, before it starts the next set of comparisons with the newly loaded

data items, even though the later comparisons are already in memory. When Q ≥

2, the time taken over tl to finish all comparisons brought by a load is denoted by

tx > 0. While a load is in progress, one thread is busy with the load and the rest

of the threads carry out comparisons. Once the load is done all threads finish the

comparisons. Hence, when Q ≥ 2,

tc(M −Q)︸ ︷︷ ︸
Work brought in by a load

− tl(P − 1)︸ ︷︷ ︸
Work completed within tl

= Ptx︸︷︷︸
Remainder of the work after tl

(5.3)

If the rate of completing comparisons is R, then

R =
(M −Q)
tl + tx

. (5.4)
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By applying tx from Equation (5.3) to Equation (5.4) we get:

R =
P (M −Q)

tl + tc(M −Q)
. (5.5)

Let q be a continuous variable (over the range 2 . . .M − 1) that equates with Q at

discrete points. To decide the behaviour of R versus Q, R is differentiated against q.

Note that in Equation (5.3), Q is not a continuous variable, so we cannot differentiate

R with respect to Q.

dR

dq
=

−tl · P
(tl + tc(M − q))2

(5.6)

dR
dq
< 0 is always satisfied according to Equation (5.6). Therefore, whenQ is increased

beyond 2 the rate of completing comparisons, R decreases if the system is unable

to complete all comparisons within tl time (i.e. when Equation (5.2) is satisfied).

Therefore, Qmax is two for when Equation (5.2) is satisfied as well. This completes

the proof.

The results of Equation (5.6) do not mean that increasing Q will always decrease the

rate of completing comparisons. According to the conditions of Equation (5.3) it means

that once all threads are continuously busy with work, increasingQwill reduce the rate

of completing comparisons. In the next theorem, Theorem 11 is extended to address

LP values greater than one.

Theorem 12. In Algorithm 7, let Qopt denote the best Q for a row, Qmax denote the

upper bound of Qopt (i.e. 1 ≤ Qopt ≤ Qmax) and LP denote the maximum number

of efficient parallel loads. If either Equation (5.1) or Equation (5.2) is satisfied then

Qmax = 2LP .

Proof. When LP > 1 every single channel for loading can be considered separately as
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whenLP = 1 andQ = 2. Therefore, the system reaches is full potential for completing

comparisons either by:

• continuously loading data items in every channel or

• not being able complete the comparisons at the rate they are brought in;

when each channel has its own extra slot in memory to continue loads according to

Theorem 11. When two slots of memory is allocated for each channel, the loads can

continuously flow through each channel if the system is capable of completing com-

parisons at this rate. Therefore, Qmax is Qmax ≤ 2LP . This completes the proof.

Theorem 11 and Theorem 12 are experimentally validated in Section 5.4.4.

5.4.2 Optimum Size of Vim (Q) in Algorithm 7

As we have already mentioned, when LP is higher than one, determining the optimum

queue size becomes increasingly complex. This section develops a mathematical solu-

tion to determine the optimumQ value, Qopt when LP = 1, which is the most common

scenario for most of the systems. According to Theorem 11, the optimum Q could be

either 1 or 2 for LP = 1. Therefore, our approach is to develop mathematical equations

to estimate the runtime of each row when Q = 1 and Q = 2 and determine Qopt by the

highest rate to completing comparisons for the row.

The mathematical modelling is divided into scenarios tl ≥
⌈
M−2
P−1

⌉
tc and tl ≤⌊

M−2
P−1

⌋
tc. Each of the two scenarios has a clearly different behaviour in the runtime

based on the properties of the system and the dataset.
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Scenario 1:

In Scenario 1, Equation (5.1) is satisfied. Figure 5.10 shows an instance of this sce-

nario. As seen in the Figure 5.10, the threads can finish the maximum number of

comparisons brought by a single load (M − Q) within tl, causing following two phe-

nomena to occur.

• All comparisons within set U are compared as soon as set U finishes loading.

• When Q = 2, the next load starts as soon as the previous load finishes through-

out the row (i.e. loads are carried out continuously).

For this scenario we develop the following theorem to decide the optimum value of Q.

Theorem 13. If Equation (5.1) is satisfied andLP = 1, the optimumQ,Qopt, is derived

such that:

Qopt

 = 1; R′S1 ≥ R′′S1

= 2; R′S1 < R′′S1

(5.7)

where

R′S1 =
(M − 1)(2ri −M)

2
[
tl(M − 1) + (ri −M + 1)

(⌈
M−1
P

⌉
tc + tl

)] , (5.8)

and

R′′S1 =
(M − 2)(2ri −M + 1)

2
[
tlri +

⌈
M−2
P

⌉
tc
] , (5.9)

where ri denotes the length of the current row (i.e. remaining data items to be com-

pared).

Proof. When Q = 1, the time taken to complete the row, t′s1: (see Figure 5.10 (a)):

t′s1 = tl(M − 1)︸ ︷︷ ︸
Loading set U

+ (ri −M + 1)︸ ︷︷ ︸
Number of set V loads

(⌈
M − 1

P

⌉
tc + tl

)
︸ ︷︷ ︸

Loading data item to set V and completing its comparsons

Let nq1 denote the number of comparisons in a row when Q = 1, we have

nq1 =
1

2
(M − 1)(2ri −M)
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(a) Q = 1

Comparing

Waiting

Unloading

Loading

(b) Q = 2

Figure 5.10: The snapshots of the thread diagrams showing the behaviour of Algo-
rithm 7 when Equation (5.1) is satisfied (Scenario 1) (a) Q = 1 and (b) Q = 2. The
settings are N = 50,M = 15, P = 5, tc = 50s and tl = 100s. The maximum number
of parallel loads is limited to one.

Therefore, the rate of completing comparisons for the row is R′S1:

R′S1 =
nq1

t′s1
(5.10)

When Q = 2, the time taken to complete the row, t′′s1: (please refer Figure 5.10 (b)):

t′′s1 = tlri︸︷︷︸
Contineously loading all data items in the row

+

⌈
M − 2

P

⌉
tc︸ ︷︷ ︸

Completing comparisons with the last data item in the row

Let nq2 denote the number of comparisons in a row when Q = 2

nq2 =
1

2
(M − 2)(2ri −M + 1). (5.11)
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Therefore, the rate of completing comparison for the row is R′′S1:

R′′S1 =
nq2

t′′s1
(5.12)

If R′S1 ≥ R′′S1, Q = 1 has higher or equal rate of completing comparisons compared

to Q = 2. When R′S1 = R′′S1, Q = 1 has a slight edge over Q = 2 because of

the lower complexity in the scheduling algorithm for lower Q values. Therefore, if

R′S1 ≥ R′′S1, Qopt = 1 for the row. Otherwise, Qopt for the row is Q = 2. This

gives Equation (5.7). Equation (5.10) and Equation (5.12) give Equation (5.8) and

Equation (5.9) respectively. This completes the proof.

Scenario 2:

Scenario 2 is when the Equation (5.2) is satisfied. An instance of this scenario is

depicted in Figure 5.11. In this scenario, the maximum number of comparisons a load

brings (M −Q) cannot be completed within tl. Therefore, three phenomena occur.

• All comparisons within set U cannot be completed while loading set U .

• When Q = 2, every thread is busy after loading set U .

• When Q = 1, the comparisons remaining from set U are used to fill the gaps

when threads are waiting for set V data items to load.

For this scenario, we have the following theorem for Qopt.

Theorem 14. If Equation (5.2) is satisfied and LP = 1, the optimum Q, Qopt is

Qopt


= 1; Wwait ≤ Wrem

= 1; Wwait > Wrem and R′S2 ≥ R′′S2

= 2; Wwait > Wrem and R′S2 < R′′S2

(5.13)

where

Wwait = (M −N + 2)

[
tl(P − 1) + tc

⌈
M − 1

P

⌉
− tc(M − 1)

]
, (5.14)
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t1

(a) Q = 1; while loading set U

t2

(b) Q = 1; after loading set U

Comparing

Waiting

Unloading

Loading Time

(c) Q = 2; after loading set U

Figure 5.11: Snapshots of the thread diagrams showing the behaviour of Algorithm 7
when Equation (5.2) is satisfied (Scenario 2). Sub-figure (a) and (b) shows two sections
of the same thread graph when Q = 1 and sub-figure (c) shows Q = 2. The other
settings are N = 50,M = 15, P = 5, tc = 50s and tl = 80s. The maximum number
of parallel loads is limited to one.

Wrem =
Mtc(M − 1)− (P − 1)(2tlM − 2tl − t1)

2
, (5.15)
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R′S2 =
(M − 1)(2ri −M)

2
[
tl(M − 1) + (ri −M + 1)

(⌈
M−1
P

⌉
tc + tl

)] , (5.16)

and

R′′S1 =
P (M − 2)(2ri −M + 1)

2ritl + (P − 1)(t1 + 2tl) + tc(M − 2)(2ri −M + 1)
, (5.17)

where ri denotes the length of the current row (i.e. remaining data items to be com-

pared). t1 is defined as:

t1 =
t2l
tc
(P − 1) + tl. (5.18)

Proof. Let t1 be the time when all threads become busy while loading set U , as seen in

Figure 5.11 (a). The value of t1 is calculated by using the following method. The rate

of bringing work is calculated first while loading set U . When the rate is equal to the

system’s capacity to complete comparisons, all threads becomes busy at the estimated

value of t1. After loading the first data item in the row, each ith load brings i number

of comparisons. If t = 0 when the row begins, after t = tl at each t = itl, itc work is

brought in. Since the time for a load is tl and i = 0 at t = tl,

i =
t− tl
tl

. (5.19)

At i, the rate of bringing in comparisons for set U is denoted as Ra. We have

Ra =
itc
tl

(5.20)

Substituting Equation (5.19) to Equation (5.20) yields

Ra =
tc
t2l
t− tc

tl
. (5.21)

Since the loads are performed continuously by a thread while loading set U , the system

is capable of completing comparisons at the rate of P − 1. Therefore, t = t1 when

Ra = P − 1. By solving Ra = P − 1 using Equation (5.21) we get Equation (5.18).

When Q = 1, while loading set V , the threads wait for other threads to complete their

comparisons and to load next set V data item, as seen in Figure 5.11 (b). If this wait
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time can be completely filled with the remaining work from comparisons within set U ,

Q = 1 is the best Q value since Q = 1 does more comparisons in a row. If a schedule

with Q = 1 does not have any thread waiting times after loading set U , it does more

comparisons with fewer loads (at a higher rate than Q = 2). Therefore, we first look

for the scenario whereQ = 1 and the thread wait time,Wwait is less than the remaining

work from set U , Wrem (i.e. Wwait ≤ Wrem).

Wwait = (M −N + 2)︸ ︷︷ ︸
Repetitions of the pattern

 tl(P − 1)︸ ︷︷ ︸
Wait time for loads

+ tc

(⌈
M − 1

P

⌉
− (M − 1)

)
︸ ︷︷ ︸

Wait time while other
threads completing comparisons

 (5.22)

Simplifying Equation (5.22) gives Equation (5.14). Loading the first M data items

finishes at t = t2, as seen in Figure 5.11 (b).

Wrem =
Mtc(M − 1)

2︸ ︷︷ ︸
Work available till t2

−

(P − 1)(t1 − 2tl)

2︸ ︷︷ ︸
Work completed till t1

+ (P − 1)(Mtl − t1)︸ ︷︷ ︸
Work completed from t1 to t2

 (5.23)

Simplifying Equation (5.23) gives Equation (5.15).

Therefore, when Wwait ≤ Wrem, Qopt = 1. When Wwait > Wrem and Q = 1, the wait

times of threads are filled partially with Wrem. However, the time to complete the row

is similar to Scenario 1 (Q = 1), since only the gaps are filled with Wrem. Therefore,

the rate of completing comparisons when Q = 1 in Scenario 1, R′S1 is similar to R′S2

when Wwait > Wrem. So, Equation (5.10) gives Equation (5.16) for Scenario 2, when

Q = 1.

To calculate the rate of completing comparisons when Q = 2, R′′S2, we take the fol-

lowing approach. In this case, all threads are continuously busy with work after t1.
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Therefore, we sum the total work including the loads which are carried out by the

threads after t1 and divide the sum by P to calculate the runtime of the row after t1. If

the total work completed by all threads in the row after t1 is Wt1, we have

Wt1 =

(
ri −

t1
tl

)
︸ ︷︷ ︸

Time spent on loads after t1

+ tc

(
(M − 2)(M − 3)

2
+ [ri − (M − 2)](M − 2)

)
︸ ︷︷ ︸

Total work from comparisons in the row

− (P − 1)(t1 − 2tl)

2︸ ︷︷ ︸
Work from comparisons completed till t1

(5.24)

The total completion time for the row, t′′S2 is

t′′S2 = t1 +
Wt1

P
(5.25)

Since the number of comparisons in the row, nq2, can be taken from Equation (5.11),

the rate of completing comparisons, R′′S2 is:

R′′S2 =
nq2

t′′S2
. (5.26)

Solving Equation (5.26) using Equations (5.24) and (5.25) gives Equation (5.17).

When Wwait > Wrem and R′S2 ≥ R′′S2, Q = 1 has a higher or equal rate of com-

pleting comparisons than Q = 2. When the rates are equal, Q = 1 has a slight edge

over Q = 2 because of the lower complexity in the scheduling algorithm for lower Q

values. Therefore, if R′S2 ≥ R′′S2, Qopt = 1 for the row. Otherwise, Qopt = 2 for the

row. This gives Equation (5.7). This completes the proof.

5.4.3 Determination of Optimum Q by using Simulations

As seen in the previous section, it is complex to decide the optimum value of Q, Qopt,

mathematically. Therefore, to take a decision on Qopt, a simulation technique is also

proposed for scenarios which have not yet been addressed mathematically. This tech-

nique is more useful when the sizes of the data items are non-uniform or more than
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one parallel loads are allowed. The simulation mechanism will be described in more

details in Chapter 7 together with our simulations tool development.

In brief, each row is simulated withQ values from 1 toQmax according to Theorem 11.

The sample load and comparison times are taken from a brief benchmark test prior to

the execution, as will be discussed further in Section 6.1.2. Then Gaussian distribu-

tion [Stein, 1981] is used to extrapolate the data and the simulations are run on the

extrapolated data. The simulations are sufficiently fast so that the influence on the total

runtime is negligible.

5.4.4 Validating Theoretical Results

In this section, experiments are used to validate the theories developed in Section 5.4.1

and 5.4.2 for mathematically calculating optimum Q. Simulations are used for the

experiments in this section. A detailed discussion of the simulator tool that is used for

the experiments is presented in Section 7.1.

According to Theorems 11 and 12, the optimum value of Q, Qopt, is in the range

1 ≤ Qopt ≤ 2LP where LP is the maximum number of efficient parallel loads.

Figure 5.12 (a) shows that Qopt always stays within the range 1 ≤ Qopt ≤ 2LP

for all M values for each LP in the experiment. Figure 5.12 (b) shows the same

in a critical period of tc
tl

ratio. In Figure 5.12 (b), Qopt stays within the range

1 ≤ Qopt ≤ 2LP when the conditions of the theorem are met (Equation (5.1) or Equa-

tion (5.2)). When decidingQopt with simulations, the row is simulated with all possible

Q values, and the Q value that produces the highest rate of completing comparisons

for the row is selected as Qopt. The rate of completing comparisons is calculated by
number of comparisons completed in the row

time spent for completing the row . It is seen from Figure 5.12, that Theorems 11 and 12

stands in the experiments.
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Figure 5.12: Value of optimum Q, Qopt for the first row of Algorithm 7 (a) against
the memory capacity, M (b) against tc

tl
ratio for different LP values. Settings are

N = 1000, P = 16, for (a) tc
tl
= 0.02 and for (b) M = 250.

Theorems 13 and 14 estimate the value of Qopt mathematically by using some approx-

imations. Figure 5.13 shows that the estimated values using the theorems are similar

to the values produced by simulations. Therefore, Theorems 13 and 14 stands in the
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experiments.
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Figure 5.13: Value of optimum Q, Qopt for the first row of Algorithm 7 (a) against the
memory capacity, M (b) against tc

tl
. Settings are N = 1000, P = 8, LP = 1, for (a)

tc
tl
= 0.1 and for (b) M = 250.
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5.5 Summary of the Chapter

This chapter progressively developed a novel parallelization technique in the pro-

cess of developing a new algorithm (Algorithm 7) for parallel execution of memory-

constrained DIAC in shared-memory multi-core computers. The novel parallelization

technique combines static and dynamic scheduling, and the scheduling is guided by a

specific pattern developed based on the prior knowledge of the problem. The new par-

allelization technique was developed based on the strategies to overcome the problems

in existing parallelization techniques to parallelize DIAC.

As we have seen in the case studies so far, the new algorithm (Algorithm 7) designed

based on our parallelization technique has the potential of handling any DIAC problem

efficiently. We will see in the next chapter (Chapter 6) that the extended version of Al-

gorithm 7 is empirically shown to achieve near optimum efficiency in the experiments.

In addition, the optimum parameters for the proposed algorithm were theoretically

derived for the most frequent scenarios. The theorems were experimentally verified.

For the scenarios which are not addressed by the theoretical results, a technique to

determine the optimum parameter settings by fast simulations was also proposed.



Chapter 6

Algorithm Implementation and

Experiments

In the process of practical implementation of Algorithm 7 (in Chapter 5), there are a

few problems to address, such as non-uniform data item sizes and unpredictable task

runtimes. Therefore, this chapter proposes an extended version of the Algorithm 7 to

address the practical implementation issues. A section of special techniques to improve

implementation of the algorithm are also discussed. Followed by the implementation

details, an algorithm designed specifically to parallelize preprocessing stage of the CV

method in bioinformatics [Yu et al., 2010a] is also presented.

This chapter also experimentally verifies the performance of the proposed algorithm

for parallelization of DIAC. The experiments are conducted on state-of-the-art shared-

memory computer systems and by simulations.
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6.1 Extending Algorithm 7 to Solve Practical Problems

This Section discusses the practical problems that occur while implementing the pro-

posed Algorithm 7 in real world applications. Firstly, handling non-uniform sizes of

data items is addressed and secondly, handling unpredictable load and comparison

times is addressed. This section extends Algorithm 7 to Algorithm 8 which is capable

of handling the practical issues in runtime.

6.1.1 Handling Non-uniform Sizes and Variable Q

As we already mentioned in Chapter 3, the maximum number of data items which can

be held in memory, M , is not a constant. In a practical implementation of Algorithm 7,

this issue must be considered for efficient computation of the DIAC. In addition, we

have seen that the optimum size of Q, Qopt is variable for each row. Therefore, this

section extends Algorithm 7 to address these issues.

The extended Algorithm 7 is depicted in Algorithm 8. In this algorithm, the procedure

INITIALIZE (N ) is called before creating the threads. The new procedure, INITIAL-

IZE (N ) sorts the data items in descending order by the sizes of preprocessed data

items. The loop at line 54 calculates height of each row. Within the loop, first it de-

cides the optimum Q value, Qopt using one of the methods discussed in Section 5.4.

Then the maximum number of data items which can be loaded to the memory, M

(from the next data items in the sorted list) is calculated for the row. The height of

the row is calculated by deducting its Qopt from its M . Then it records the heights in

an array to be used at line 20. The value of Qopt is not recorded. The reason is that

once the row height is known which is the size of set U for the row, sufficient mem-

ory to load at least Qopt data items for set V (at line 39) will be always spared. After

finishing INITIALIZE (N ), similar to Algorithm 7, each thread executes the procedure
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COMPLETETASKS (N ).

Importantly,Qopt is only the minimum value ofQ for a row. The size of Vim can always

increase if sufficient memory is present. There is a major advantage of this method

when the loaded data items have non-uniform sizes. When Vim progresses through

the row, loaded data items get smaller (since the data items are sorted in descending

order by their size) allowing more of them to be loaded to Vim. This can increase the

performance by allowing more work to reside in memory. The usage of dynamic Vim

size, also allows to choose lower Qopt for the row as it is increasing towards the end of

the row. Assume a situation is as following; When Q = 1, there are remaining set U

comparisons to fill the gaps until the row is half completed. Then, due to the smaller

sized data items towards the end of the row, Vim increases to two or more. In this

situation, the algorithm takes advantage of dynamic sized Vim by selecting a smaller Q

value and higher row height (fewer repeated loads).

Calculating and storing row heights statically and storing them before the comparisons

begin, reduces the complexity of the algorithm implementation. For the most part,

prior knowledge of the height of the each row allows the algorithm to use counters

instead of loops to decide completion of a row and status of a set V data item. More

information on this is discussed later in Section 6.2.

Algorithm 8 sorts the data items by their preprocessed sizes. As we have already seen

in Chapter 3, sorting data items can significantly reduce the total time spent on loads

when the loaded data items are large. However, this decision is adapted to the parallel

algorithm based on three factors other than the advantages we have already seen such

as dynamic Q:

1. Fewer repetitions for longer jobs The idea is to load the data items which take

longer to load, less number of times by finishing all comparisons with them first.

Typically the data items with larger sizes take longer to load than the data items



170 6.1 Extending Algorithm 7 to Solve Practical Problems

Algorithm 8 Scalable Data Pipeline Algorithm (Decentralized algorithm for each
thread): The extended Algorithm 7 to handle non-uniform sizes. The algorithm is
run by each thread in the system. A load, comparison and unload completion awakes
all waiting threads. N is the number of data items to be compared.

1: Set U and V to be empty
2: Vim ← ∅ // Intialize the sub set of currently loaded items from V to be empty
3: compsU ← ∅ // Intialize list of available comparisons within U to be empty
4: compsV ← ∅ // Intialize queue of available comparisons within V ∩ U to be empty
5: row heights = new Array() // Pre-calculated row heights
6: INITIALIZE(N )
7: procedure COMPLETETASKS(N )
8: row ← 0 // Initialize current row count to be zero
9: row start← 0 // Intialize current row’s start position to be zero

10: row height← row heights[row] // Retrieve the height of the current row
11: loadingU ← true // If true set U is being loaded
12: INITIALIZESETS(row start, row height,N )
13: while uncompleted comparisons remaining do
14: if max parallel loads limit reached then
15: COMPAREORWAIT()
16: else
17: if all comparisons in the current row are complete then
18: Unload all data items in memory
19: Increment row by one // Go to next row
20: row height← row heights[row]
21: loadingU ← true // Indicate to load the next set U
22: INITIALIZESETS(row start, row height,N )
23: end if
24: if loadingU then
25: item = next not loaded and not being loaded data item in U
26: if item is the last data item in U then
27: loadingU ← false // Finish loading set U
28: end if
29: LOAD (item);
30: Add comparisons between loaded data items in U and item to

compsU
31: else
32: for all item in Vim do
33: if item has completed all comparisons with U then
34: UNLOAD (item)
35: Remove item from Vim
36: end if
37: end for
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38: item = Next never loaded data item in V for current row start
39: if memory is sufficient to load item then // Higher priority for loads
40: LOAD (item)
41: Add item to Vim
42: Add comparisons between item and U to compV queue
43: else
44: COMPAREORWAIT()
45: end if
46: end if
47: end if
48: end while
49: end procedure
50: procedure INITIALIZE(N )
51: Sort all Gi by their preprocessed size in descending order
52: row start = 0
53: i = 0
54: while row start < N do
55: Q = Calculate optimum Q for this row
56: M = Maximum number of data items can be loaded from Grow start

57: row heights[i] =M −Q
58: row start← row start+ row heights[i]
59: i++
60: end while
61: end procedure
62: procedure INITIALIZESETS(row start, row height,N )
63: U ← {Gx : x ∈ Z, row start ≤ x ≤ row start+ row height}
64: V ← {Gx : x ∈ Z, row start+ row height < x < N}
65: Set Vim, compsU, compsV to be empty
66: end procedure
67: procedure COMPAREORWAIT

68: if compV is not empty then // Higher priority for comparison from V

69: comp = front most comparison in compsV queue
70: Remove comp from compsV
71: COMPLETE (comp)
72: else if compU is not empty then
73: comp =A comparison in compsU list
74: Remove comp from compsU
75: COMPLETE (comp)
76: else
77: Wait until notified by another thread on a system state change
78: end if
79: end procedure
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with smaller sizes [CVTree, 2011, Yu et al., 2010b]. Therefore, the data items

are sorted in descending order of their sizes, so that the first few set U are filled

with data items with longer load times and all comparisons with them finishes

first.

2. More memory for set V When large data items are at the end of a row, memory

must be allocated for them to load throughout the calculation of the row. When

those are completed first, the memory available for the rest of the calculation to

load data items gradually increases.

3. Complexity of Scheduling When designing the algorithm, we took special care

to reducing the computational complexity. When the data items are sorted in

descending order, the sum of the first set in Vim queue is always the largest

for the row. Therefore, once sufficient memory is spared for the first Vim, the

algorithm does not have to manage memory for the rest of the data items to be

loaded into Vim. This reduces the amount of calculations that the scheduling

algorithm must perform for memory management.

6.1.2 Unpredictable Load and Comparison Times

Handling unpredictable load and comparison times is important for the practical imple-

mentations of Algorithm 8. The runtime for loads and comparisons are unpredictable

due to many factors which are beyond our control. Therefore, this section discusses

how to overcome this challenge. Algorithm 8 is designed so that each thread has

sufficient control over its own behaviour. As a result, the runtime behaviour of the

algorithm is flexible allowing it to adjust for the variable runtime of comparisons and

loads. For example, if one thread is taking longer than expected time to finish a job,

other threads will try to manage with the available resources.

Figure 6.1 shows two snapshots of a thread diagram demonstrating the behaviour of



6.1 Extending Algorithm 7 to Solve Practical Problems 173

Algorithm 8. It has been drawn from actual data recorded in a log file. The thread

diagrams show how the algorithm manages to withstand variation in the completion

time of comparisons and loads without hindering performance. In Figure 6.1 (a), the

threads are not receiving sufficient work to reach the system’s full potential due to the

bottleneck of loads. In Figure 6.1 (b), the system receives sufficient work to make all

threads continuously busy. The diagrams also show that the threads are not waiting for

any other thread unnecessarily.

(a) The system is unable to bring comparisons to memory at a sufficient rate to keep all threads busy

(b) The system is capable of bringing comparisons to memory at a sufficient rate to keep all threads busy

Figure 6.1: Two snapshots of the thread diagram for running Algorithm 7 in a computer
with 8 cores.

Even though the runtimes are unpredictable, to choose the best Q value, we have to

use estimated runtime for comparisons and loads. When the total runtime for a dataset
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seems to be significantly long (say more than half a day), our algorithms will spend

more time on benchmarking, so that more accurate simulations can be run to decide

better Q values for each row.

In the applications which are used for the case studies and examples [CVTree, 2011,

Yu et al., 2010a] in this thesis, the load time of a data item is strongly associated with

its size. Therefore, the sample runtimes are taken after sorting the data items by the

size or, if available, by the size after preprocessing (if the preprocessed data items

have been written to the disks). The samples are chosen at the same intervals from

the sorted list, and load times are measured for the samples. Then the non-measured

load times in the dataset is extrapolated using the standard deviation and mean of the

measured samples. Gaussian distribution [Stein, 1981] is used to extrapolate the data.

For the comparison times, the mean of the measured comparison times is used since

the variance of comparison times is small in the example applications [CVTree, 2011,

Yu et al., 2010a].

6.2 Algorithm Implementation

While implementing Algorithm 8, a ’read-write’ lock must be used to avoid race condi-

tions between the threads while taking decisions. The lock should only allow a thread

to enter into the decision making segments in the routine COMPLETETASKS(N). The

lock should be released before starting a load or comparison within the routine. Af-

ter finishing the work, the thread should acquire the lock again to modify the system

status. As the unloads takes negligible time to complete, they can be completed while

holding the lock. More details about the usage of the locks is discussed in Section 7.2

while describing our framework used for the implementation.

In Algorithm 8, there are two key decisions frequently made by each thread. The
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decision process can be computationally intensive if not implemented properly. The

first decision is whether or not all comparisons in the row have finished (at line 17). If

a global task queue is used, all remaining tasks must be searched to take this decision.

Because of the prior awareness of the row height, our approach is to use a ‘counter’

to assist the decision. When a new row is initialized within the condition at line 17,

the counter is set to zero, and the number of comparisons in the row is calculated

and stored. When a thread completes a comparison, the counter is incremented by

one. Once the counter reaches the number of comparisons in the row, the threads have

finished all comparisons in the row. We use a similar mechanism with a counter to

decide whether all comparisons have competed or not at line 13.

The second decision is that before unloading a data item in set V (Vim) from memory,

it must be certain that all comparisons with the item are completed (at line 33). Instead

of searching through a remaining tasks queue for each data item to decide whether all

comparisons with the data item is finished or not, we use an array of counters for this.

An array of counters, each of which corresponds to a data item in the dataset, is initial-

ized first. Upon completion of the load of a data item, the value of the corresponding

counter is initialized to the number of comparisons related to the data item (equal to

the height of the row), if it is in set V . Then each time a comparison related to the data

item is completed, the corresponding counter is decremented by one. Therefore, when

the corresponding counter of a data item in Vim is zero, all comparisons with the data

item have been completed and the data item can be unloaded.

Because of the optimizations and the lower complexity of the scheduling algorithm,

the time spent on scheduling is significantly low as we will see in the experimental

results. In Figure 6.1, it cannot be seen that a thread is delayed for decision making

process. It is not visible due the very small value compared to others.



176 6.3 Preprocessing Data Items in Bioinformatics CV method

6.3 Preprocessing Data Items in Bioinformatics CV

method

This section focuses only on the applications that we used for case studies and exam-

ples [CVTree, 2011, Yu et al., 2010a]. These applications are for the CV method [Yu

et al., 2010a] calculations on a set of genomic sequences (GSes) as discussed in Sec-

tion 2.1.3. In the load process, composition vectors are generated based on the genomic

sequences. The composition vectors are then pair-wise compared to a DIAC to gener-

ate the output correlation matrix.

Loading pre-written composition vectors from the disk is faster in many systems than

preprocessing them from scratch each time when it is loaded. One of the challenges

of the preprocessing phase of the CV method [Yu et al., 2010a] is that the required

memory cannot be estimated prior to calculating the composition vector. However, it

is important to manage the memory also in this phase within the physical memory limi-

tations. Using memory over the available physical memory will encourage the usage of

virtual memory. As we have seen in the experiments in Section 3.5.4, involvement of

virtual memory can significantly hinder the execution speed. This is more challenging

specially when composition vectors are calculated in parallel. This is because when

more threads are performing preprocesses, more memory is required and the chance of

exceeding the available memory increases. We assume that every system has sufficient

available memory to preprocess at least one genomic sequence (GS) at a time.

This section proposes a parallel algorithm to overcome the challenges in parallel pre-

processing. Typically, longer GSes require more memory in the preprocessing stage.

Therefore, we use a heuristic that processes data items requiring less memory first and

keeping more threads busy initially. Then the data items that require more memory

are processed at the end, by a smaller number of threads if memory is limited. This

decentralized algorithm is presented in Algorithm 9.
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Algorithm 9 Parallel Algorithm to preprocess data items (Decentralized algorithm for
each thread). Each thread in the system executes this algorithm. N - number of data
items to be preprocessed.

1: procedure PREPROCESSALL(N )
2: Sort data items by their length
3: continue = true
4: while continue and data item are remaining do
5: Gi = next data item in ‘to be preprocessed’ list
6: Remove Gi from ‘to be preprocessed’ list
7: continue = PREPROCESS (N )
8: if continue == false then
9: Add Gi back to the ‘to be preprocessed’ list

10: Reallocate memory to other threads
11: else
12: while limit for parallel disk writes is reached do
13: Wait until notified
14: end while
15: Write Gi to the disk
16: Reset used memory of the thread
17: Notify all waiting threads
18: end if
19: end while
20: end procedure
21: procedure PREPROCESS(Gi)
22: if REQUESTMEMORY (Memory required next) == false then // If memory

required is not granted
23: Release memory acquired so far
24: return false
25: end if
26: . . .
27: if REQUESTMEMORY (Memory required next) == false then
28: Release memory acquired so far
29: return false
30: end if
31: . . .
32: return true
33: end procedure

Continued in the next page...
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34: procedure REQUESTMEMORY(required)
35: if the allocated memory for the thread is insufficient for requiredmemory then
36: Increase used memory of the thread by required
37: return true
38: else
39: return false
40: end if
41: end procedure

Before the process begins, the GSes are sorted in ascending order by their size at line 2.

Initially the total available memory is divided equally and allocated to each thread. The

idea is to make more threads busy initially, since front most GS in the sorted list require

less memory. The loop at line 4 continues until the thread terminates due to insufficient

memory or the application completes preprocessing all GSes. The variable continue

will get false if the memory allocated for the thread is not sufficient.

As seen in the procedure PREPROCESS(Gi), each time the process goes to require

memory it has to be checked against the allocated memory for the thread (line 22

and 27). This check is done in large chunks of memory (i.e. infrequently), so

that the overhead created is insignificant. If the memory allocated to the thread is

insufficient to allow the required memory (i.e. procedure REQUESTMEMORY re-

turns false), the process pre-empts and releases any memory it is holding. Then

the failure is propagated to the main procedure (PREPROCESSALL(N )). The pro-

cedure REQUESTMEMORY(required) remembers previously successful memory re-

quests and checks the available allocated memory for the thread against the requested

memory.

If preprocessing procedure fails due to low memory (i.e. procedure PREPRO-

CESS returns false), the thread will terminate and the memory allocated to the

terminating thread is equally reallocated to the remaining threads. The procedure

REQUESTMEMORY(required) uses locks so that if a thread is terminating, other

threads wait until the termination and the memory re-allocation finishes before pre-
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empting another preprocessing thread on insufficient memory. This ensures that the

threads does not terminate when sufficient memory is going to be allocated soon.

If the preprocessing is successful the thread will wait until it gets access to the disk.

Usually the disks are capable of sequential writes. As a result, too many parallel write

requests can hinder their performance. Therefore, the main procedure wait until any

other thread releases the disk and notifies it. Once, it get access to the disk, the prepro-

cessed GS is written to the disk and all threads waiting for the disk are notified.

As will be seen later in the experimental results, this algorithm can increase the prepro-

cessing rate reasonably, given that sufficient memory is present for all cores to work

simultaneously. When memory is limited, especially towards the end of the prepro-

cessing phase, threads starts terminating due to low memory. However, due to ini-

tial parallel execution of calculations, the algorithm still manages a good performance

gain in limited memory conditions, even when the disks are only capable of sequential

reads. The most important quality of the algorithm is that the application never ex-

ceeds a specified memory limit. Also the memory limit can be increased or decreased

at runtime while threads are still working. To reduce the memory limit, one or more

threads can be terminated by setting their allocation to zero. After reducing, if memory

limit increases later, more threads can be created.

6.4 Experimental Results

The experiments to be carried out have two objectives:

• investigating the performance and behaviour of the proposed algorithm (Algo-

rithm 8) in various conditions; and

• demonstrating the performance of the Algorithm 8 in real computing platforms.
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We use three different computers with a memory (RAM) of 4 GB, 64 GB and 256

GB and cores 2, 8 to 16. The Intel R© Hyper ThreadingTM technology is disabled on

these computers for more accurate performance evaluation. To emulate a system with

less memory such as 8 GB and 24 GB, the experiments are conducted in the same

computers with a pseudo memory limit.

6.4.1 Behaviour of Algorithm 8

Most of the experiments in real computing platforms take very long time to complete

(days or weeks). In addition, access to some system resources such as disks capable of

parallel disk reads is limited. Therefore, to analyse the behaviour of the algorithm, sim-

ulations are used. The analysis is based on the four factors which affect the behaviour

of the algorithm and are discussed in Section 5.3.2.

The speed-up, S is calculated using Equation (6.1) where Tp is the runtime of the

parallel algorithm (Algorithm 8) and Ts is the runtime of the sequential algorithm

(Algorithm 5).

S =
Ts
Tp

(6.1)

Since we demonstrated that Algorithm 5 is faster than existing sequential memory

management algorithms for DIAC, we use it as the reference for calculating the parallel

algorithm’s speed-up. In each experiment, both algorithms use the same system and

dataset properties. Algorithm 8 uses the optimum Q value for each row based on the

theories developed in Section 5.4. It should be noted that the sizes of the data items, tc

and tl, are uniform for the simulations in this section. The simulator tool is discussed

in more details in Section 7.1.



6.4 Experimental Results 181

The ratio between load time and comparison time

The ratio between load time (tl) and comparison time (tc) is one of the major factors

effecting the parallel gain of the algorithm. Therefore, we analyse the speed-up of the

parallel algorithm against the tc/tl ratio, while keeping other factors unchanged.

To examine the effect of maximum parallel load limit, LP , we have drawn three graphs

with LP ranging from 1 to 3. As seen in Figure 6.2, when the ratio tc/tl increases the

system approaches near optimum efficiency. The reason is that when the comparison

times dominate, more work is available for the threads, even though the memory is

limited. Therefore, the effect of the memory and I/O bottleneck gradually diminishes

when the amount of work a single load brings increases. When load time dominates,

threads do not get sufficient work since the memory is limited (i.e. available compar-

isons are limited) and the loads become the bottleneck.

When LP increases, the bottleneck of loads gradually diminish. As a result the rate

of bringing comparisons to memory increases. Therefore, the system approaches near

optimum efficiency at a lower tc/tl ratio at higher LP values compared to the lower

LP values.

The effect of memory capacity

Similar to Algorithm 5 for uni-processor platforms, Algorithm 8 is designed to take

the full advantage of the available memory. However, Algorithm 8 benefits more from

memory than Algorithm 5 since Algorithm 8 can execute comparisons in parallel. Fig-

ure 6.3 shows the speed-up (S) of Algorithm 8 versus the available memory (maximum

number of data items memory is capable of holding, M ). It can be seen in Figure 6.3,

when more memory is available threads are working more on comparisons and in-

creases the speed-up due to the increasing number of comparisons available in mem-
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ory. Similar to Figure 6.2, the rate of increasing the speed-up rises when LP increases

because the throughput of loads increases when LP increases. After a certain memory

size, the rapid increase in speed-up stops and starts to gradually approach near opti-

mum speed-up. The point where the rate of increasing speed-up with M slows down

is when all threads becomes continuously busy throughout the row after loading set U .
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Figure 6.2: Speed-up of Algorithm 8 against tc/tl ratio for different LP values. Set-
tings are N = 350,M = 15 and P = 8.
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Figure 6.3: Speed-up of Algorithm 8 against the memory capacity (i.e. the maximum
number of data items which can be held in memory, M ) for different LP values. Set-
tings are N = 350, P = 8, tc

tl
= 0.2.

Number of threads

According to Amdahl’s law [Amdahl, 2013], generally the speed-up of a parallel im-

plementation should increase when the number of processors increases. Also, the rate

of increasing the speed-up should decrease when the number of processors increases.

However, in memory-constrained DIAC the rate of bringing comparisons into memory

is limited by the maximum throughput of loads and the tasks (i.e. loads and com-

parisons) cannot be further divided into parallelly executable fractions. Therefore, as
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seen in Figure 6.4, the speed-up does not increase after a certain limit even though

the number of processors increases. This limit occur when the system has saturated

the maximum rate of bringing comparisons to the memory. At this saturated state, the

loads are carried out continuously in each parallel channel of loads. Understandably,

when more memory is available, the point of saturation of speed-up increases.

6.4.2 Performance of the Proposed Algorithm 8

In this section experiments are conducted using the real implementation of the pro-

posed algorithm in real computing platforms. Algorithm 8 is implemented in C++

programming language and GCC compiler with optimization level three is used. As

we discussed in Section 3.5, we improved the original application written by Yu et al.

[2010a]. For these experiments we use a version (in both sequential and parallel pro-

grams) with further improved internal memory management by implementing Wang’s

proposals. The optimizations proposed by Wang [2009] significantly reduces the mem-

ory required for preprocessing genomic sequences (i.e. generation of composition vec-

tors).

Every implementation in this section uses the method of writing the composition vec-

tors to the disk and reading them from the disk later. As seen from the profiling data in

Table 6.1 acquired from the two different computer set-ups where the experiments are

run, it can be clearly seen that reading a previously generated composition vector from

the disk is much faster than generating it repeatedly. As our memory management

algorithm requires accurate sizes of the composition vectors prior to the comparisons

begin (to avoid over using memory), the composition vectors are written to the disk

when each composition vector is generated for measuring the size.

We used two different powerful computers from two of the high performance comput-

ing laboratories. One is from the laboratory called ‘Big Data’ and other one is from
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Figure 6.4: Speed-up of Algorithm 8 against the number of processors with different
LP and M . Settings are N = 700, tc

tl
= 0.2 (a) LP = 1 and (b) LP = 2.

the ‘QUT HPC’ [QUT, 2014] laboratory. We call them ‘Big Data’ and ‘HPC’ here on-

wards. We also ran the experiments on a typical desktop computer with strictly limited

memory which is called ‘Desktop’ here onwards. Table 6.2 lists the properties of these

computers.
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Table 6.1: Comparison between average time spent for generating a composition vector
from scratch and time spent for reading it from the disk

Data Set Computer Generation (sec.) From Disk (sec.)

Data Set 1 HPC 163.613 24.623

Big Data 180.339 6.451

Data Set 2 HPC 42.094 0.015

Big Data 23.415 0.009

Table 6.2: The properties of the computers which are used for the experiments

Property Big Data HPC Desktop
Operating System: Red Hat En-

terprise Linux
Workstation,
release 6.4

SUSE Linux,
version 3.0

Ubuntu version
11.04

Processor: Intel R© Xeon R©

Processor E5-
2609

Intel R© Xeon R©

Processor E5-
2670

Intel R© CoreTM2
Duo Processor
E8400

Number of Cores: 8 16 2
Single Core Speed: 2.40 GHz 2.6 GHz 3.00 GHz
Processor Count: 2 2 1
Cache: 10 MB 20 MB 6 MB
RAM: 256 GB 64 GB 4 GB
Hyper Threading: Disabled Disabled Disabled

Data Sets

Our experiments are based on the same data sets that we described in Section 3.5

(Data Set 1 and Data Set 2). However, we generated a few bigger data sets based on

Data Set 1 and Data Set 2. It was done by randomly combining sub-genomic sequences

from base data set’s input files into new input files. Since every sub sequence in the

input files of a data set represent a genomic sequence of a species, the generated data

sets represent real data sets in large scale. In the data generation process, the mean,

standard deviation, minimum and maximum of input file sizes in all generated data

sets are kept similar to the base data set by using Gaussian distribution [Stein, 1981].
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Table 6.3 lists all data sets that are used for experiments with a name to be used for

later references.

Table 6.3: The list of data sets used in the experiments and their properties

Base Data Set Name Number of Files Aprox. Size in Memory (GB)

Data Set 1 Set 1x 900 300

Data Set 2 Set 2xs 700 20

Data Set 2 Set 2x 2000 56

Data Set 2 Set 2xl 11000 300

Experiments

Since we experimentally validated in Chapter 3 that our single-core memory manage-

ment algorithm is better than existing algorithms for DIAC, we compare the speed-up

of our memory management algorithm compared to our single core algorithm (Algo-

rithm 5). We are not running experiments with the original algorithm used by Yu et al.

[2010a] which only hold two genomic sequences in memory, due to extensively long

runtime with large data sets.

Table 6.4 shows the speed-up in various set-ups. The results are visualized in Fig-

ure 6.5. The maximum memory of the HPC computer is 64 GB. However to avoid

virtual memory we used a memory limit of 57.6 GB (i.e. 90% of 64 GB) according the

experiments conducted earlier. For other experiments we used a pseudo memory limit

for demonstration purpose in low memory situations.

Table 6.4 shows that our algorithm has achieved a good speed-up with both data sets in

Big Data computers. 7.81 and 7.86 speed-ups have been achieved by Algorithm 8 in a 8

core system. The combined speed-up is slightly less because of the lower parallel gain

in preprocessing by Algorithm 9. The main reason for the lower parallel gain while
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Table 6.4: A comparison between our sequential memory management algorithm (Al-
gorithm 5) and our parallel algorithm (Algorithm 8).
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Set 1x Big Data 57.6 8 33.64 4.85 1.81 7.81 6.94

Set 1x HPC 57.6 16 87.34 21.39 14.89 3.77 4.08

Set 2xl Big Data 24 8 327.42 43.31 4.30 7.86 7.80

Set 2x HPC 8 16 13.45 0.91 7.40 15.77 14.78

Set 2xs Desktop 3.12 2 1.62 0.97 1.26 1.72 1.67

preprocessing is the slower speed for data writing to the disk than reading speed. In the

16 core system in HPC with Data Set 2x, Algorithm 8 has achieved 15.77 speed-up.

As seen in the results, Algorithm 8 with Data Set 1x has achieved 7.81 speed-up in

the Big Data computer. Even with the slower disk throughput in HPC (slower loads),

Algorithm 8 achieved a speed-up of 3.77 with the same data set and the same memory

limit. Achieving a closer to the number of cores speed-up shows the efficiency of

our algorithm. It also shows the lower scheduling overhead created by the scheduling

algorithm as a result of the lower complexity of the scheduling algorithm.

6.5 Summary of the Chapter

This chapter developed Algorithm 8 which addresses the practical implementation is-

sues by extending Algorithm 7. Algorithm 8 achieved near optimum efficiency as seen
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Figure 6.5: A visualization of the performance of Algorithm 8 based on the results
shown in Table 6.4.

in the experiments. The algorithm significantly increased the speed of existing DIAC

applications. For instance, our algorithm reduced the runtime of the application by Yu

et al. [2010a] with a large data set to nearly 2 days from nearly 14 days (two weeks)

with an impressive 7.86 speed-up in a 8-core shared-memory system. In another in-

stance, our algorithm achieved a 15.77 speed-up in a 16-core shared-memory system

reducing nearly 16 hours of runtime to nearly 1 hour.

The proposed algorithm scales well in different computer systems as seen in the exper-

iments. It is scalable in the sense that it can efficiently manage memory while taking

the advantage of the available computing resources, in any shared-memory multi-core

system with different settings. The scalability of the algorithm and its behaviours un-

der various settings were also verified by using simulations. Our algorithm’s ability to
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take advantage of disks capable of efficient parallel reads makes it scalable in advanced

systems with such disk systems. Overall, the proposed algorithm minimizes the affect

of limited memory on the parallel gain of DIAC applications by efficiently utilizing

memory, disks and processors while strategically handling loads.



Chapter 7

Simulators, Visualizers and

Frameworks

The cycle of analysing, developing strategies, experimenting and improving is the

methodology followed by us to solve the complex DIAC parallelization problem. This

chapter discusses a simulation environment and a parallelization framework for DIAC

developed to aid the analytical and experimental phases of the research. This chapter

answers the research question 3 specified in Section 1.3. The question is: how to evalu-

ate the proposed algorithms, analyse their behaviour under various conditions (dataset

and system properties) and validate theoretical results.

The chapter is organized as follows. First, the simulator tool which achieves an ex-

tremely fast simulation speed based on the specific contexts of our research is pre-

sented. Then the parallel framework is presented for the rapid modification and im-

plementations of scheduling algorithms for DIAC parallelization, and which clearly

separates the decision making logic from the implementation concerns. Then a unique

visualization tool is presented which is useful for analysing parallel algorithms de-

signed for DIAC.
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The contributions of this chapter are as follows.

• A novel fast simulator tool is designed and developed to exploit the advantage

of assumed uninterrupted and continuous processor-task association of the pro-

posed parallel algorithms. The tool is lightweight and extremely fast to simulate

long running applications, and also flexible to be utilized by other research in the

similar context as our research.

• A novel parallelization framework specifically designed for DIAC to separate

decision making logic from other system concerns such as thread-safety is de-

signed and developed. The framework also allows dynamic adaptation of differ-

ent scheduling strategies in the runtime.

• A unique visualization tool is also developed to analyse the behaviour of DIAC

in runtime.

7.1 The Simulator

Simulators are important tools to analyse the characteristics of an algorithm and evalu-

ate its behaviour. Faster execution of the simulations than the actual implementation of

an application is a key advantage of using a simulator. In addition, the simulators are

capable of emulating theoretical environments such as zero execution time for a code

segment.

As discussed in Section 2.7, all of our expectations from a simulator cannot be fulfilled

by using an existing simulation environment. Therefore, we design and develop a novel

simulation environment to meet all our requirements. The flexible design of the new

simulator allows easy modifications and utilization by other researches with similar

requirements. The following is a list of expectations from a simulator in our research,

which are addressed by the proposed simulator:
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Speed Typically the bioinformatics programs that we use for case studies run for a

very long time. Some data sets take days or weeks to complete. In addition, the

simulations are used to estimate the optimum parameters for the proposed paral-

lel algorithm as discussed Section 5.4. To minimize the overhead of scheduling,

the simulations must be extremely fast.

Theoretical Behaviour The simulator should be able to theoretically simulate timing

of some sections of the simulated program such as zero scheduling cost. This

feature allows validations of theoretical results using the simulator.

Flexibility Ability to change the simulated program is an important feature in a sim-

ulator, so that various implementations can be transformed to the simulation

conveniently.

Using External Timing The simulator should be able to accurately use user-provided

timing for each task, so that the imagined and harvested task execution times can

be used for the simulations for experiments.

Deterministic Simulation Multi-threaded programs usually do not behave in the

same way twice and the bugs and other problems are difficult to reproduce. How-

ever, two simulations should behave exactly the same way if the inputs are the

same.

Lightweight To use simulations for optimum parameter prediction in real runtime, it

must be lightweight and should not use excessive amount of memory, since the

scheduler’s memory usage has to be tightly limited to achieve better memory

management.

Estimations Estimating the total runtime of an application is important in many sce-

narios. For instance, High Performance Computing facilities expect users to

provide a realistic runtime estimation for job scheduling purposes. Therefore,

given the sample runtime of the tasks, the simulator must be able to predict the

total runtime of an application.

Intergration The simulated annealing techniques discussed in Section 4.1.5 utilise

the simulator environment to build random schedules. Therefore, the simulator
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must have the ability to integrate with other applications.

To meet above listed requirement, a simulation environment is designed in the next

section.

7.1.1 Simulator Design

The simulator is implemented as a sequential program without using threads. The de-

bugging process is far simpler in a sequential program than debugging a multi-threaded

version of the simulator. Moreover, sequential implementation better suits our design.

The simulator uses its own clock which controls the execution of the tasks in every

thread. The basic time unit of the simulator is called a tick here onwards. A tick

can represent any amount of time. Usually it represents 1 millisecond in actual time.

The threads can schedule a task to finish at a certain tick. For example, if a comparison

which has a runtime of 5 ticks starts at 100th tick it will be scheduled to finish at the start

of 105th tick. The scheduler in the simulator ensures that the code after the comparison

is executed at 105th tick.

It should be noted that, to achieve extremely fast simulations of long running programs,

we try to make the simulator as simple as possible. We take the advantage of two

properties of the proposed algorithms to increase the speed of the simulations. Firstly,

the tasks does not change the system status while it is being executed (only at the start

and the end it changes the system status). Secondly, the algorithms assume that once

a task is started by a thread, it is assigned to a single processor until it finishes. It is

assumed that the tasks are not interleaved or interchanged between processors.

The assumption of that the system status changes occur only at the start and end of a

task can be justified as follows. The long running tasks in the DIAC are the tasks load,
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comparison and scheduling (if the time spent in scheduling process is accountable).

Assume that a task starts at tick A and finishes on B. The task executes between time

A and B (inclusive) in the real runtime. However, no change to the system is done by

any of the above mentioned tasks in between A and B. At the end of a load, a new GS

is bought into memory and at the end of a comparison, the comparison is removed from

the system and the results are stored. Even though the unloads are performed within

the scheduling process, the changes are only effective in system after it’s completion,

since locks only allow one thread to enter the decision making process. As a result,

in the simulations the representative code for completing a task can be executed at

finishing tick (B) without effecting the behaviour of the execution. This way a huge

increase in speed in the simulation process can be achieved by skipping the CPU cycles

in between the tasks and is discussed later in this section. Due to this improvement, an

application which runs weeks in a real system, usually take less than 30 seconds in the

simulator.

Figure 7.1 shows how a program to be simulated is implemented in our simulator. The

figure shows an implementation of a sample code within a thread. The code is broken

into blocks by long running tasks. At the end of each block a long running task is

started. In the interval between two code blocks the execution of the long running

task is emulated by skipping ticks equal to the length of the task. The finishing tick

for the long running task is calculated by adding runtime of the long running task to

the current tick of the simulator. The code after the task is scheduled at the calculated

finishing tick. As stated in the previous paragraph, the finishing code of the task also

should be included at the beginning of the code executed after the task. The simulator’s

scheduler is responsible for calling the scheduled code block at the finishing tick.

For a clearer picture, a sample implementation of the thread code is given in Figure 7.1.

Each thread is an instance of a class called ‘SimulatorThread’. Each thread instance has

a method called ‘run()’ which is invoked by the scheduler. When the ‘run()’ method
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Some Code

Task 1: A Long Task

Schedule Code After Task 1Schedule Code After Task 1

Some Code

Task 2: A Long Task

More likely the code to be executed after 
Task 1

Schedule Code After Task 2Schedule Code After Task 2

Some Code

More likely the code to be executed after 
Task 1

0:

10:

20:

// If this is the last line
// terminate the thread by calling
// terminate(); or loop back to a
// previous code block

label

label

Figure 7.1: A depiction of how simulator executes a code and simulate long running
tasks in between.

is invoked by the scheduler, it passes an integer value which indicates the label of the

code block that should be executed next. The code within the run method is separated

into blocks in a ‘switch’ statement. Based on the label passed in, the ‘switch’ chooses

the code to be executed next (i.e. the code within the relevant case statement). At the

end of a code block, a call is made to ‘schedule()’ method to inform the scheduler that

the next code block’s label and the scheduling time. Loops which go across multiple

code blocks can be formed by scheduling a previous code block (if necessary with the

current tick, so that it runs immediately). The initial code block must always have the
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label of ‘0’, since the initial call to ‘run()’ method passes block ‘0’. All variables which

must persist the value through code blocks are declared as class level variables, so that

they retain their value in every call to ‘run()’ method.

The scheduler uses a clock skipping technique to increase the speed of a simulation.

At the end of each tick the simulator examines all active threads and finds the start tick

of the next soonest scheduled task. As mentioned earlier, since the tasks cannot be

pre-empted there will be no execution in between the current tick and the next soon-

est scheduled task’s start tick. Therefore, the scheduler jumps from the current tick to

the next soonest scheduled task’s start tick. This significantly increases the speed of

the simulation, compared to evaluating the threads in each tick. Many existing sched-

ulers are unable to exploit this speed-up due to their complex underlying architecture

designed to support more complex simulations.

Figure 7.2 shows a part of the class hierarchy of the simulator which is responsible for

simulating threads. Each thread in the simulator is a children of the ‘SimulatorThread’

class. The children can have its (thread’s) code within the ‘run()’ method. An instance

of the child class can register in an instance of the ‘Scheduler’ class (there is only

one ‘Scheduler’ instance for a simulation). The corresponding ‘Scheduler’ instance

is responsible for calling each registered thread’s ‘run()’ method at the correct tick.

Therefore it keeps a list of the registered threads. The ‘Scheduler’ instance accesses

the next tick and the label stored in every registered child class instance of ‘Simula-

torThread’ (i.e. thread). If a thread is terminated, a flag is set in the corresponding

thread instance once the ‘terminate()’ method is called. The ‘run()’ method of a termi-

nated thread will never be called again and the terminated thread is unregistered from

the ‘Scheduler’. Upon registration the caller can schedule the first code block, based

on the current tick in the simulator.

This design gives the flexibility to start a thread at any given time in the simulation

and execute custom code in the simulator by extending ‘SimulatorThread’ class. How-
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Scheduler

+ registerThread (thread: SimulatorThread)
+ unregisterThread (thread: SimulatorThread)
+ start();

- threads: list

SimulatorThread

+ run (label: Integer) // abstract
+ schedule (label: Integer, time: Tick)
+ terminate()

- nextRuntime: Tick
- nextLabel: Integer
+ alive: Boolean

1..*

1

AlgoThread1

+ run (label: Integer)

- privateVars: Various
...
...

AlgoThread2

+ run (label: Integer)

- privateVars: Various
...
...

Figure 7.2: The class hierarchy of the simulator implementation that allows any code
to be executed in the simulator.

ever, every algorithm that we proposed in this research re-uses threads. Therefore, for

each different algorithm, we extended ‘SimulatorThread’ and created a thread which

contains the implementation of the algorithm. The flexibility in the design to support

custom code allows fast and easy modifications and improvements to the simulated

program.
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Locks and Waiting

‘Read-write’ locks are necessary to prevent more than one thread entering into a crit-

ical section of a program. In our proposed algorithm, the decision making process is

executed in a ‘read-write’ lock. However, in our simulations we assume that the deci-

sion making process has a negligible runtime compared to the other tasks. It is a valid

assumption since our experiments show that the decision making process is extremely

fast and spends only a negligible fraction of the time compared the other long running

tasks. Therefore, in our algorithm simulations we do not use any ‘read-write’ locks,

although this type of locks can be still implemented in a similar manner to the barrier

type locks described next.

For our algorithms, we use a conditional wait barrier (i.e. pthread cond wait in pthread

library). This kind of barrier is used to make threads wait until an specific event occurs.

All threads which wait on a barrier can be notified by another thread, which wakes up

all the waiting threads. This kind of waiting is achieved in the simulator by scheduling

a code block to a smaller tick than the current tick. An instance of a class named ‘Lock’

stores all waiting threads on a barrier. When it needs to start waiting on a barrier, a

thread should register on the corresponding ‘Lock’ instance for the barrier. Once the

‘Lock’ is notified, ‘run()’ methods of all threads in the waiting list are called in the

current tick.

7.2 The Parallelization Framework

Developing our final proposed algorithm is a result of number of improvements and

changes over time. To facilitate these changes without much overhead of parallel pro-

gramming, we developed a framework. The framework manages most of the com-

plexities introduced by thread management and thread-safety. It also clearly separates
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scheduling logic from thread management, ensuring a better decision making process

with easier improvements and amendments.

The framework is developed as a distributed scheduling algorithm. Similar to the pro-

posed algorithms in Section 5.2, each thread runs a decision making procedure to de-

cide its behaviour. Each thread decides its next actions, when the thread becomes idle

or waken up by another thread.

The decisions to be taken are:

• the next task to choose from the loading, comparing, waiting or terminating; and

• if it has decided to load or compare, the best GS to load or the best comparison

to start.

Our aim is to separate the process of making these decisions from thread management

and other concerns of the application such as race conditions. Therefore, we introduce

a concept called Rules. The Rules are the output of the scheduling algorithm which is

followed by each thread. Each thread consults the Rules to make a decision on their

behaviour. The Rules act as a black-box which is aware of the current system status and

makes decisions combining the current system status with its underlying instructions.

Figure 7.3 shows an illustration of the Rules as a black-box for decision making. The

Rules constantly receives updates on the actions performed by the threads. It also has

access to the system and dataset properties such as available memory capacity and

sizes of the data items in memory. The Rules outputs three decisions each of which

can be followed by a thread. Based on the action output by the Rules, the thread will

ask for the properties related to the action. For instance, a thread instructed to start a

load will consult the Rules to find out which data item it should load.

Figure 7.4 shows how a thread behaves under the guidance of Rules. Each thread in the

system follows the same process simultaneously, as we discussed in the algorithm de-
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Load Completed

Load Started

Comparison Completed

Comparison Started

Next Best Action

Best Data Item to Load

Best Comparison

Rules

System and data set 
properties such as sizes of 
data items and available 

memory capacity

Figure 7.3: The Rules acts as a black box which takes current system status with
changes to the status as inputs, and outputs decisions for the threads.
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velopment. The regions drawn with continuous lines operates within a read write lock.

Only one thread can enter to these regions to avoid race conditions during decision

making. It is important to note that every call to Rules is made within the read write

lock. Thus, the implementations within Rules do not have to deal with any thread-

safety concerns. In addition, conditional waiting of threads is also handled external to

the Rules. Therefore, Rules clearly separates decision making process from system’s

other concerns. As a result, modifications and improvements to the algorithms can be

completed faster and easily without effecting the rest of the system.

In the implementations, the Rules is developed as an interface. Therefore, different

implementations of the Rules can be dynamically changed according to the situation.

For instance, a system with a sufficient memory to hold all data items, can utilize a

different Rules implementation rather than using the same Rules designed for limited

memory.

A remaining issue is how the unloads are handled in the framework, and we address

it here. The unloading process is moved into Rules. Since decision making is done

in a thread-safe manner and an unload has a negligible computational cost, unloading

process is triggered within the Rules. It makes decision making process faster by

allowing required unloads to perform quickly while making decisions. For instance,

assume that there is a data item which does not relate to any comparison in memory.

When Rules take the next decision, it can unload the data item immediately and ask

the thread to start the next load rather than asking it to unload the item and then again

asking it to load the next item.
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Rules: Next Best Action

Start

Rules: Best GS to Load Rules: Best Comparison EndWait Until Notified

Load

Compare Wait

Terminate

Rules: Call
Load Starting

Rules: Call 
Comparison Starting

Complete Load Complete Comparison

Rules: Call
Load Completed

Rules: Call
Comparison Completed 

Notified

Figure 7.4: The flowchart of the framework which uses Rules as the decision maker.
Every thread follows this procedure.
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7.3 Visualizers

To analyse the behaviour of an algorithm or to troubleshoot, visualizing the behaviour

is immensely helpful. We developed two unique visualizations for the DIAC problem.

Those are the ‘matrix’ and ‘thread’ diagrams. We described these two types of dia-

grams in detail, in Section 5.2.1. While explaining our algorithms, we constantly used

these two diagrams throughout the thesis. A screen-shot of the visualizer tool which

was used to create these diagrams is shown in Figure 7.5.

The visualizer tool is based on our own log file format. The log file records: when a

load, unload and comparison started and finished; details of each recorded task; and

which thread completed which task. It also contains meta-data related to recorded

instance, such as dataset name, computer name and memory limit used (these infor-

mation is valuable when running the program in a computer). Once a log file is loaded

into the visualizer tool, the information inside is used to create the diagrams. The wait-

ing time of the threads in the thread diagram is derived by using the start and finish

time of the tasks. In the tool, the diagrams can be further investigated by zooming and

scrolling them. The labels on the task show the properties of the task for fast referral

when there is sufficient room to display within the task. If the room is insufficient, it is

hidden and can be viewed by hovering the mouse on the task. In the thread diagram,

time between two events can be measured by using the time-stamp displayed while

hovering the mouse over the diagram.

Another important feature in this tool is the ability to export these diagrams in

postscript (ps) format. The exported diagram can be included in PDFs (Portable Doc-

ument Format) as vector graphics. All thread and matrix diagrams in this thesis were

generated by using this tool.

The visualizer not only helpful to analyse simulations but also helpful to analyse run-
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Figure 7.5: The visualizer tool that is used to support algorithm analytical and experi-
mental phases in the research.
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time implementations of our algorithms in real computer systems. The real imple-

mentations can also optionally generate log files in the runtime. These log files are

extremely helpful to analyse the behaviour of the algorithm in various systems. The

visualizer is designed to handle partial log files, so that it can assist in the detection of

crashes, diagnosing the problems and identifying problems in algorithms and imple-

mentations.

7.4 Summary

In this chapter, we presented a novel, fast and lightweight simulator tool which exploits

the advantages of the specific properties of the algorithms developed in this research.

The simulator tool is flexible and can be used by other research with requirements

similar to this research.

We also presented a parallel framework designed to separate decision making logic

of scheduling in DIAC, from the thread-management and other system concerns. The

framework facilitates the rapid implementation of the new proposed algorithms, and

fast and convenient amendments to existing implementations. The major advantage of

using the framework is that it reduces the overhead of implementation concerns such

as race conditions and thread-safety, while developing the scheduler’s logic. In addi-

tion, it also permits dynamic change of the decision making instructions (scheduling

algorithm) in the runtime, based on the system and dataset properties.

Finally, we presented a unique visualization tool which is specifically designed to anal-

yse the runtime behaviour of a DIAC based application. The simulator, the framework

and the visualizer tools were extensively used in our research in the analytical and

experimental phases.
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Conclusion

Data Intensive All-to-all Comparison (DIAC) problem is a frequent problem for many

scientific and generic applications. We discussed many of these problems found in

various fields such as bioinformatics, image processing and data mining in Chapter 2.

The increasing popularity of multi-core systems has emerged the need for solutions

to parallelization of DIAC in shared memory multi-core computers. The nodes in

many High Performance Computing clusters such as HPC in QUT [QUT, 2014], are

shared-memory multi-processors systems. Even personal computers at the present time

have multiple cores with a shared-memory. Therefore, solutions for parallelization of

DIAC in shared-memory systems are needed to efficiently run a wide range of DIAC

problems in these systems.

The ability of a program to operate within a certain memory limit is important in many

scenarios. Mainly, typical shared-memory systems have a limited memory capacity

for data. From the examples used for the experiments in Chapter 3 and 6, it is evi-

dent that some DIAC programs face this limited memory capacity problem with large

data sets. In addition, many High Performance Computing facilities such as HPC in
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QUT [QUT, 2014], requires the users to specify the maximum memory requirement

of their programs. When a program exceeds the specified limit it may be killed by the

batch processing software. Highly data intensive applications like DIAC poses a chal-

lenge to the users of these systems to exploit reasonable parallelism in their programs

while staying within the specified memory limit.

Slow speed of the virtual memory for computationally intensive applications is another

reason for staying within the system’s physical memory. As we experimentally anal-

ysed in Section 3.5.4, the performance of an application can be dramatically hindered

with the involvement of virtual memory. Although, virtual memory is an excellent

option for handling excessive memory usage over the physical memory capacity, this

negative effect can painfully hinder performance of computationally intensive applica-

tions. Therefore, limiting the memory usage of an application is a better option than

letting the program slip into the virtual memory.

The parallelization of DIAC is a difficult problem to solve in limited memory. Even in

its simplest form (i.e. with uniform sizes and runtime) there are huge number of combi-

natorial solutions (over the life span of the application) in limited memory conditions.

As shown in Section 4.1.2, there are large number of different paths to choose at every

system state throughout the life span of the execution. The main reason for these huge

number of combinations in solutions is the data item sharing pattern in DIAC and the

limited memory.

As we discussed in Chapter 2 there are some attempts to parallelize DIAC. Only few

among these attempts target parallelization of DIAC in shared-memory systems. None

of them have attempted parallelization of memory-constrained DIAC. There exist only

one research report targeting to solve the memory handling problem in DIAC in limited

memory conditions. However, they only provide theoretical complexity analyses of

solving the problem and propose solutions for unlimited memory scenario.



209

We also investigated the effectiveness of existing parallelization techniques to solve

the memory-constrained DIAC problem in Chapter 4 by extending these existing tech-

niques to solve the problem of parallelization of DIAC in limited memory. However,

due to the complexity introduced by memory limitations, these existing techniques

rendered ineffective.

To deal with the complicated parallelization problem, we divided and conquered it in

two manageable phases. First, we focused only on memory management problem in

Chapter 3, leaving the parallelization aside. Chapter 3 successfully developed a mem-

ory management algorithm which significantly increased the speed of our benchmark

applications compared to the existing algorithms. Then, the second phase that is for

parallelization of DIAC was successfully completed in Chapter 5 and 6 based on the

memory management strategies in the first phase. In this phase a novel parallelization

technique was developed. Based on this parallelization technique a new algorithm to

parallelize DIAC in limited memory was developed which also efficiently manages

memory. We designed, implemented and evaluated the proposed algorithm in a sim-

ulation environment and in real computing platforms. This algorithm dramatically

improved the speed of our benchmark applications in comparison to their sequential

counterparts.

A simulation environment, parallel framework and visualization tool were specifically

designed to be used in our research in Chapter 7.

The summary of the research contributions is as follows. The major contributions are

listed in detail in Section 8.1 and the minor and incremental contributions related to

the major contribution are listed in Section 8.2.
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8.1 Major Contributions

The following are the three major contributions of this thesis.

• In the first phase of the research (in Chapter 3), we proposed a novel efficient

memory management (paging) algorithm to increase performance by minimiz-

ing the loads in a DIAC, for uniformly sized data items. We demonstrated this al-

gorithm as one of the optimum algorithms up to N = 9 for memory-constrained

DIAC for all possible M values, by using a brute-force method that tries all

possible combinations. Then we extended this algorithm to a scalable memory

management algorithm which can handle non-uniformly sized data items and

the variations of free memory due to other background processes. This scal-

able algorithm was experimentally proven to be more efficient and accurate than

existing algorithms. The accuracy refers to not over using memory than a speci-

fied limitation. The experiments showed that our algorithm improved the speed

of our benchmark applications from 7% to 31.9 times compared with existing

methods to manage memory.

• In the second phase of the research, a novel parallelization technique was devel-

oped to exploit the advantage of prior knowledge of the targeted problem. This

technique was developed in the process of developing a parallelization algorithm

to solve our DIAC problem. This parallelization technique combines dynamic

scheduling with static scheduling and utilizes a pattern developed based on the

known properties of the targeted problem abstraction. Due to the combination

of dynamic scheduling guided by a pattern based static scheduling strategy, the

computational complexity and the time spent on scheduling is kept at a mini-

mum level while still keeping the ability to adjust dynamically to variations in

the application runtime. In comparison to the existing parallelization techniques

(evaluated in Chapter 4), our parallelization technique is capable of minimizing

the runtime overhead of scheduling algorithms to solve complex parallelization
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problems such as DIAC, where significant prior knowledge of the problem ab-

straction is available (e.g. knowledge on data dependencies and tasks). Based on

our parallelization technique, a new algorithm (Algorithm 7) was developed for

parallel execution of memory-constrained DIAC in shared-memory multi-core

computers. The algorithm scales well in various multi-core and multi-processor

shared memory platforms as shown by the experiments. The algorithm dynam-

ically adjusts well, even in the absence of accurately estimated comparison and

load times, as shown by the experimental results. The experiments also show

that the algorithm achieves near optimum processor utilization for completing

comparisons when sufficient memory is present. The algorithm dramatically in-

creases the speed of existing bioinformatics computing applications in compar-

ison with their sequential counterparts while efficiently managing the memory.

For instance, in an octa-core system, a test of our algorithm for a benchmark

example shows a runtime of two weeks reduced to less than two days.

• To assist evaluating the performance of the proposed algorithms, a simulator

and a parallel framework was developed. The simulation environment was de-

veloped with flexibility in a such a way that it can be adapted to simulate par-

allelization algorithm with similar properties to our algorithms. The simulator

exploits the advantage of assumptions in our algorithms which are continuous

processor task affiliation and uninterrupted task execution in a processor. There-

fore, it is light-weight in runtime and extremely fast in simulating long running

applications. The simulator is also capable of emulating theoretical behaviour

of the algorithms such as zero computational cost for scheduling. This feature

is useful for theoretical validations. The framework was designed and imple-

mented for rapid implementation of different parallelization strategies for DIAC

in shared-memory systems. The framework clearly separates implementations

concerns such as thread-safety from the decision making process in schedul-

ing. This framework also allows to change the parallelization algorithm (i.e.

scheduling strategies) dynamically in the runtime based on the system and data
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set properties.

8.2 Minor and Incremental Contributions

The following is a list of minor and incremental contributions related to the major

contributions in the same order as they appear in the thesis.

• A close-fitting theoretical lower bound was derived for the minimum number of

loads required to complete a DIAC in limited memory for uni-processor systems.

• For the algorithm developed for memory management in DIAC for uni-processor

systems, optimum parameters for its best performance were theoretically de-

rived. Five theorems were developed to mathematically derive the optimum pa-

rameters for the algorithm.

• The problem of parallelizing memory-constrained DIAC is modelled as a re-

source constrained task scheduling problem. The reason for modelling the prob-

lem as a resource constrained scheduling problem is that the memory, processors

and disk constraints as resources limit the execution of comparisons. The opti-

mization problem to be solved in the model is scheduling all tasks in a DIAC

within a minimum time-span while meeting all resource constraints and task de-

pendencies. After modelling, the scheduling problem was identified as deviating

from traditional scheduling problems. The deviation occurs since the load oper-

ation holds memory resources even after completion, and a different operation

(i.e. an unload) is required to release the held memory resources.

• We examined a number of generic and specific existing parallelization tech-

niques in the literature. Out of them, four techniques were selected, namely DAG

based, self adjusting dynamic scheduling (SADS), heuristic functions based

scheduling and local search. The resource constrained scheduling based model

was extended to develop four new models to be compatible with each of the four
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selected techniques. None of the methods are sufficiently effective in solving

our DIAC problem due to one or more of the following three reasons; 1) their

excessive computational cost, 2) infeasibility to present memory constraints and

3) producing incomplete solutions. However, the heuristic functions based ap-

proach was heavily utilized as a guidance while developing our algorithm. For

the local search technique we developed a new model by combining existing

generic memory management techniques and Simulated Annealing (SA). The

aim was to build a reference schedule by running a search algorithm for a long

time, to be utilized in the algorithm development process. The approach was

successful in building a reference schedule.

• A theoretical upper bound for the maximum gain by using parallel execution

was derived for the memory-constrained DIAC. The derivation of the upper-

bound shows that the limitation of the memory always limits the maximum speed

gain that can be achieved in a DIAC, regardless of the available processors. The

upper bound also explains the limitations of parallel gain in the proposed parallel

algorithms.

• A fast mathematical approach was developed for estimating the parameters for

the optimum result of our parallel algorithms. The approach addressed most

frequent scenarios found in general computing platforms. For other scenarios,

simulations are used to estimate the optimum parameters.

• Two visualization diagrams called ‘matrix’ and ‘thread’ diagrams were devel-

oped to analyse the behaviour of the algorithm in the simulator and real com-

puting platforms. These diagrams together with the visualization tool was im-

mensely helpful for identifying the problems, finding possible improvements

and validating the intended behaviour of the algorithms. The visualization tool

generates ‘matrix’ and ‘thread’ diagrams based on a specific log file format gen-

erated by a DIAC application and enables the users to examine the two diagrams

easily.
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8.3 Limitation and Future Work

This research only focuses on shared-memory systems. Shared-memory systems have

the advantage of data sharing among the cores and faster communication between cores

(processors). We successfully demonstrated that shared-memory computers with suf-

ficient memory and large number of cores can significantly increase the speed of Data

Intensive All-to-all Comparison (DIAC) problem using our algorithms. However, our

solution is limited to the number of cores which reside in a single node of a large

computing facility. In some scenarios with huge data sets, it could be beneficial to

distribute computation to multiple nodes despite the communication overhead of dis-

tributing data and repeated preprocessing of data items.

Moreover, there can be even larger data sets that does not fit into a single node’s

disk storage. On the other hand, the speed gain from the cores in a single shared

memory computer may not be sufficient. Therefore, as the next leap of this research,

shared-distributed memory computers must be supported. As described in Section 2.6,

shared-distributed memory systems are a network of shared-memory computers con-

nected through an external network. Most high performance computing facilities at

the present time have this architecture. So, our parallel algorithm is still useful in

these kinds of systems to handle memory management and parallel execution within

the nodes. In these situations, frameworks like Hadoop [Kurazumi et al., 2012] can

be incorporated with our memory management solution to take the full advantage of

shared-distributed memory systems.
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Estimating Load Times and

Composition Vector’s Size

This appendix presents some of the bioinformatics composition vector specific anal-

yses on predicting the composition vector size and load time from the disk. This ap-

pendix is based on the composition vector method proposed by Yu et al. [2010a].

The load time estimations of a composition vector is two fold as calculating the com-

position vector from the scratch and reading a pre-calculated composition vector from

the disk. First we look into the estimation of calculating a composition vector. The pre-

processing algorithm consists of five considerably time-consuming loops. Table A.2

describes each step and its time consumption estimations. The total time is the sum of

the time spent in all of these major steps. All the notations used in the Table A.2 are

described in Table A.1.

As seen in the Table A.2, execution times for three steps of the preprocessing are pre-

dictable based on the length of a gene sequence. Tthe length of the genomic sequence

is the only parameter which can be retrieved without spending significant amount of
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Table A.1: Notations used in Table A.2.

K: Order of comparison

A: Alphabet size (4 or 20)

S: Size of the genome file

Ci: Arbitrary constants

V : Number of non-zero values in the T vector

time. In the runtime for a large dataset, by only analysing few composition vector cal-

culations (profiling), C0, C1 and C2 can be easily determined as they are constants for

a system.

However, the last two steps mainly depends on the context of the gene sequence. Fig-

ure A.1 shows the variation of time spent on generating T Vector versus the file size of

the sequences. The two circled sequences are nearly similar in file size, being 98 kb

and 100 kb in size. However, the time spent in T Vector generation is largely different

even if the loop runs AK times every time. Since the loop in the T Vector generation

step has the same number of iterations irrespective of the file size, the loop was profiled

for the two particular gene sequences.

Figure A.2 shows the comparison of profiling of T-Vector generation of above two gene

sequences. It shows the Line 188 has a major difference in the execution time. Since,

the number of times the line 188 is executed depends on the content of the sequence,

it has made a significant difference of the time consumed for this step. The final loop

iterates number of times equals to the non-zero values in the T Vector. Therefore the

time spent on this step depends on the content of the genomic sequence. Due to the

incapability of predicting the time consumption of the last two steps, the time spent to

calculate a composition vector cannot be quickly estimated accurately.
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Table A.2: Steps in calculating a composition vector and complexity analyses of each
step. Please see Table A.1 for the notations.

Step Time Estimation Complexity Complexity Description

with S with K

Initializing
Vectors

C0(A
K + AK−1) O(1) O(kn) Creating and initial-

izing long vectors
with a length. Con-
stant for calculations
with a same order of
calculation.

Reading
File

C1 × S O(n) O(n) Reading file is linear
to the file size and
experimentally veri-
fied.

Second
Vector
Totals

C2 × AK−1 O(1) O(k(n−1)) Constant for a same
order of calculation.

T Vector
Generation

C3 × AK O(1) O(kn) Depends on the con-
tent of the gene se-
quence. Highly un-
predictable. De-
scribed in more de-
tails later.

Final Vec-
tor Gener-
ation

C4 × V O(?) O(?) Linear to the
non-zero values
produced in the T
Vector and exper-
imentally verified.
Depends on the
composition of the
gene sequence.
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The accurate sizes of the composition vectors in memory is essential for accurate mem-

ory management. If the size of the composition vector can be predicted by using the

genomic sequence significantly faster than calculating the composition vector, there is

no requirement to pre-calculate all composition vectors to determine their size before

starting the comparison. So, we look into the composition vector method to find out

whether any quick and accurate estimation is possible or not. Table A.2 lists the steps

of composition vector calculation. The step ‘T Vector Generation’ depends on the con-

tent of the genomic sequence. Therefore, the number of non-zero values depends on

the content of the genomic sequence which cannot be estimated accurately. There-

fore, the length of the final composition vector depends on the content of the genomic

sequence and highly unpredictable.

Figure A.3 shows how the load times varies with the size of the composition vector

when loaded from the disk. We tested two computer setups with Data Set 2 listed

in Section 6.4.2. It can be seen from the graph that, the loading times are mostly

unpredictable and not distributed linearly. However, when size increases the load time

generally increases.
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Figure A.1: Significant difference in time of nearly similar sized genomes in T Vector
calculation
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Figure A.2: Profiling of T-Vector generation step of two nearly similar sized gene
sequences
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