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ABSTRACT
This paper outlines the approach taken by the SAIVT- ADMRG
(Speech, Audio, Image and Video Technologies laboratory,
and the Applied Data Mining Research Group) in the 2014
MediaEval Social Event Detection (SED) task. We partic-
ipated in the event based clustering task (Task 1), and fo-
cused on investigating the incorporation of image features
as another source of data to aid clustering. In particular,
we developed a descriptor based around the use of super-
pixel segmentation, that allows a low dimensional feature
that incorporates both colour and texture information to be
extracted and used within the popular bag-of-visual-words
approach.

1. INTRODUCTION
The Social Event Detection (SED) at MediaEval 2014 [4]

is concerned with the ability to cluster, detect and describe
events from social media. A key component of this social
media is image and video data, which typically contains im-
ages or videos of the events taking place. However, in pre-
vious editions limited attention has been given to this data
source. For instance in the 2013 evaluation, only two of
the approaches sought to incorporate image features and in
both cases they simply applied well established techniques.
Motivated by this, we seek to investigate the use of visual
features to aid social event detection and clustering.

A limitation of existing widely used approaches such as
SIFT [2] is the high dimensionality (32 dimensions), which
leads to increased memory demands, and the need for large
codebooks when used in a bag-of-visual-words framework.
Furthermore, textual descriptors such as SIFT use grayscale
images, discarding colour information, and although SIFT
descriptors can be computed across multiple channels to in-
corporate colour, this further increases dimensionality. Mo-
tivated by this, we propose a new a low dimensional descrip-
tor that incorporates both colour and texture information
though the use of super-pixel segmentation. We combine
this approach with an existing text processing system [5]
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and evaluate the approach on Task 1 (event based cluster-
ing of the media collection). The remainder of this paper
is structured as follows: Section 2 outlines the proposed ap-
proach; Section 3 presents and discusses our results; and
Section 4 concludes the paper.

2. PROPOSED APPROACH
We seek to explore the use of image features and for social

event detection. We use the text processing based approach
of [5] to combine meta-data (text data, time-stamp, and lo-
cation information) and combine this with visual features.
We employ the bag-of-visual-words approach for generating
a visual descriptor. Our baseline approach uses the SIFT
descriptor extracted in dense manner (with a bin size of 4
and a step size of 8) with K-means used to generate a code-
book. A limitation with SIFT is it’s high dimensionality,
necessitating a large dictionary and high memory require-
ments, and the fact that it ignores colour information. To
alleviate this, we propose a new feature based on super-pixel
segmentation. Super-pixel segmentation aims to segment an
image into a set of related pixels, such that each super-pixel
is formed by a set of connected and similar pixels (see Figure
1). We use the SLIC approach of [1] to extract super-pixels,
and set the target super-pixel size to 20, to ensure that fea-
tures are extracted from a similar size image patch as dense
SIFT. From each resultant super-pixel, we extract a set of
features to describe it’s colour and texture. The colour com-
ponent is the average colour of the super-pixel in LAB colour
space divided by a normalisation factor, C. The role of C is
to ensure that the colour and texture information contribute
approximately equally to the feature vector, and is set em-
pirically using the development set. The texture component
is a HOG descriptor computed from all pixels in the super-
pixel. We use an 8-bin histogram, and do not perform any
normalisation prior to computing the HOG.

The resultant feature vector for each super-pixel can then
be given as:

F = {FL, FA, FB , FHOG,0, FHOG,1, FHOG,2,

FHOG,3, FHOG,4, FHOG,5, FHOG,6, FHOG,7},
(1)

where FL, FA and FB are the LAB colour features; and
[FHOG,0..FHOG,7] are the 8 bins of the HOG histogram.
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(a) (b)

Figure 1: An example of super-pixel segmentation
using the SLIC algorithm. Note that larger super-
pixels are shown here for visualisation purposes.

We utilise these features within the bag-of-visual-words
framework to build an image descriptor. A codebook is
trained (using K-means or Fisher Vectors [3]) using a fea-
tures extracted from several thousand images. Subsequent
images are then encoded using this codebook to generate
a descriptor that encapsulates the content of the images;
and these descriptors are compared to one another using
Euclidean distance.

Finally, text and visual features are combined in the fol-
lowing manner:

sim(d, p) = β1sim
cosine(d, p) + β2sim

time(d, p)+

β3sim
gps(d, p) + β4sim

image(d, p),
(2)

where simcosine(d, p), simtime(d, p) and simgps(d, p) are the
similarity of the text, timestamps and GPS locations as com-
puted by [5]; simimage(d, p) is the similarity of the image
features; and βi are weight parameters used to combine the
different data sources. These weight parameters are learnt
from the training data.

3. EVALUATION

3.1 Systems
Our five systems are as follows:

1. Metadata only: an implementation of [5].

2. Metadata + SIFT/K-means/1000: Meta-data combined
with an image representation using SIFT features and
a 1000 word K-means codebook.

3. Metadata + SP/K-means/1000: Meta-data combined
with an image representation using the proposed fea-
ture and a 1000 word K-means codebook.

4. Metadata + SP/K-means/125: As with system 3, ex-
cept the dictionary is now of size 125.

5. Metadata + SP/FV/125: As with system 4, except
Fisher Vector encoding [3] is used instead of K-means.

We use C++ and VLFeat [6] to encode images.

3.2 Results
Results for Task 1 are shown in Table 1. We note that the

incorporation of image data does lead to an improvement,
albeit only a small one, over the baseline with systems 2-5
all outperforming the text only system (1). Of note is that
system 4 outperforms that of 3, suggesting that the larger
codebook used in 3 resulted in overfitting and thus a poorer

System F1 NMI Div. F1
1 0.7443 0.8993 0.7426
2 0.7525 0.9018 0.7508
3 0.7517 0.9017 0.75
4 0.7523 0.9018 0.7506
5 0.7525 0.9018 0.7509

Table 1: Results for the five evaluated systems for
task 1. Refer to Section 3.1 system descriptions.

representation. The use of Fisher Vectors [3] instead of K-
means also leads to a small improvement, as can be seen by
the improvement from systems 4 to 5. It should be noted
that a Fisher Vector encoding could not be produced for the
SIFT features, even with a much smaller dictionary size,
due to the higher dimensionality of the feature and larger
memory requirements of the training process.

We observe that with the exception of system 5, the dense
SIFT approach of system 2 outperforms systems using the
proposed feature (3 and 4). However, the proposed ap-
proach has a much lower memory footprint than the SIFT
descriptor (for instance dense SIFT features extracted from
the training data require 254GB of storage, while using the
proposed approach requires only 10GB), leading to signifi-
cant improvements in computational efficiency when learn-
ing codebooks, and encoding features.

4. CONCLUSIONS AND FUTURE WORK
We have proposed a new feature representation for images

for use in the popular bag-of-words framework. This has
been shown to offer comparable performance to the SIFT
descriptor, at much greater computational and memory effi-
ciency. Future work will continue to investigate the proposed
approach. Factors such as the normalisation of colour and
HOG features, the number of orientation bins, and the size
of the super-pixels will all be investigated. Furthermore, the
method used to combine the visual data with the meta-data
will be further investigated and refined to better utilise the
visual information.
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