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Under the NASA University Leadership Initiative (ULI) program, a team of universities 

are collaborating on the advancement of technologies a hybrid turboelectric regional jet, with 

an intent to enter service in the 2030 timeframe. In the previous studies of the ULI program, 

the in-service benefits of the technologies under development were analyzed by integrating the 

technologies of interest to a 2030 regional jet with a hybrid turbo-electric distributed 

propulsion system. As the program has progressed, the projected performances for each 

technology and subsystem have been updated. This paper presents an update in the sizing and 

performance analysis of the regional jet with the hybrid turbo-electric distributed propulsion 

system, by integrating the updated values of the technologies and subsystems to the vehicle.  

The updates in this paper include the DC/AC conversion links, efficiency of generator and 

cabling losses, weight of the wires, the battery cooling through the environmental control 

system, motor and inverter cooling by the thermal management system, and the redundancy 

strategy of the propulsion system. The updates of the results from the integrated model include 

the overall efficiency of the propulsion system, mission fuel savings, mission energy flow 

distribution, and the optimal hybridization rate in climb and cruise. The overall fuel saving 

benefit for the target 600-nmi mission is 19.9% compared to the baseline aircraft. 

I. Introduction 

Under the NASA ULI program, a team of researchers from The Ohio State University (OSU), Georgia Tech (GT), 

University of Wisconsin-Madison (UW), University of Maryland (UMD), and North Carolina A&T (NCA&T) are 

collaborating to develop and demonstrate electric propulsion technologies suitable for inclusion on a 2030 commercial 

regional jet. A previous paper assessed each technology’s benefit when evaluated in an integrated manner [1]. The 

updates to the program presented in this paper are incorporation of efficiency maps for the IMD unit, a study on the 

effect of increased electrical system mass or decreased efficiency, performance of the thermal management system 

for the IMD units, and an optimization on the operating point of the hybrid aircraft. The team members and their roles 

are summarized in Fig. 1. 
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Fig. 1 Team member roles 

The objectives of the ULI program consist of the development of two major turbo-hybrid-electric technology 

groups, an integrated motor drive unit (power electronics, electric machine, and thermal management), and a battery 

energy storage system. A full-scale system test is outside of the project scope; instead each subsystem will be tested 

at smaller demonstration sizes of 200 kW and then 1MW. Table 1 below shows the demonstration size for each 

subsystem and the full size on the ULI aircraft. As will be described later, a full-size regional jet with eight electrically 

driven fans would require 2.1 MW drives systems (each). Therefore, the 1 MW test is relevant in terms of size. All 

aircraft system analysis presented in this paper is with respect to the full-size aircraft. 

 

Table 1 Subsystem Demonstration Size and Full Size on Aircraft 

Subsystem Demonstration Size 
Full Size 

(each fan) 
Number per Aircraft 

IMD 

Power Electronics 1 MW 2.1 MW 8 

Electric Machine 200 kW & 1 MW 2.1 MW 8 

Thermal Management 200 kW & 1 MW 2.1 MW 8 

Battery Subscale Module ~1-2 MWh 1 

 

1. Integrated Motor Drive Unit 

The University of Wisconsin-Madison is developing and testing a 1 MW electric machine using an inner rotor 

surface permanent magnet configuration. The machine is designed to operate at voltages of more than 2,000 VDC 

while minimizing the risk of partial discharge at high altitudes. Current testing and development efforts have estimated 

an overall efficiency greater than 96%, with an active mass specific power greater than 23 kW/kg. University of 

Maryland and North Carolina A&T are designing the integrated thermal management system for the electric machine. 

The stator and surface mounted power electronics are oil cooled. The rotor is currently being evaluated for liquid and 

direct air-cooling options. 

OSU is developing and testing the power electronic modules that are to be integrated with the 200 kW and 1 MW 

electric machines. A part of the research has focused on quantifying the effects of low pressure, high altitude 

environments on partial discharge and possible mitigation strategies. These findings were incorporated into the latest 

power module selection, which is estimated to have an overall efficiency of 98% and specific power density of 55 

kW/kg. For cooling, the power modules use the same coolant loop as the electric machine stator.  

The electric machine and thermal management systems will be demonstrated at both the 200 kW and 1 MW scale. 

The entire integrated motor drive (IMD) unit will be tested at the 1 MW scale at the NASA NEAT facility.  
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2. Energy Storage 

The Ohio State University is designing and testing a high-performance battery module as part of the ULI aircraft’s 

energy storage system. The team finished testing more than state-of-the-art lithium ion (NMC/graphite, with energy 

density ranging within 200-250 Wh/kg) cell samples. They are currently in the process of obtaining next-generation 

cells Li-Sulfur cells with energy density above 300 Wh/kg. The results obtained from many of these experimental 

tests were utilized to create models to perform pack design and simulation studies, predicting voltage, current, heat 

generation, cell-to-cell SoC and temperatures given a desired power profile and other operating condition, and are 

used by the GT team in the aircraft sizing and assessment process. 

 

II. Architecture of the Overall Systems 

A. Baseline and Next-Gen Architecture and Assumptions 

The ULI aircraft is a regional jet capable of carrying 86 passengers 1,980 nautical miles. Two reference aircraft 

were also modeled: the Baseline aircraft and the Next-Gen aircraft. The Baseline aircraft architecture has two 

conventional turbofans mounted under the wings and is intended to replicate the performance of a CRJ900 sized 

aircraft. In order to isolate the impact of turbo-hybrid electric propulsion, the Baseline aircraft was morphed into a 

Next-Gen aircraft by assuming +10-year technologies applied to the aircraft weights, aerodynamics, and 

turbomachinery efficiency and cooling. The values used were consistent with prior studies [2]. 

B. ULI Aircraft Architecture 

The ULI aircraft architecture is a hybrid turboelectric distributed propulsion (HTeDP) system with two wing tip 

mounted turbo generators providing electrical power to eight IMD driven fans. Fig. 2 provides an overview of the ULI 

aircraft architecture. The aircraft assumes the same technology improvements for the structural weight, drag, and 

engine components as the Next-Gen aircraft previously described. At shorter ranges, the aircraft does not need to carry 

as much fuel to complete the trip. As a result, it is then able to carry additional batteries, with the intention to decrease 

the block fuel consumption for these missions.  

There are two main types of thermal management systems (TMS) for the electric propulsion system. One of them 

is for the IMDs on each side of the wing, and the other is for the energy storage system (battery). Each IMD is cooled 

using an air-cooled oil cooler (ACOC) with the cooling air being supplied by fan duct. The battery packs stored in the 

floor of the aircraft are cooled using air from the existing environmental control system (ECS). Details regarding TMS 

modeling and impacts are found in Sec. II-E. 

C. Propulsion System Modeling 

The HTeDP architecture was modeled using NPSS and Georgia Tech’s GT-HEAT model. GT-HEAT is designed 

specifically for modeling and evaluation of unconventional, highly integrated aircraft concepts [3]. The propulsion 

architecture is shown below in Fig. 3. The turbo-generators were modeled as a two-spool architecture with an 

additional power-generating turbine on a free shaft. The orange components in Fig. 3 represent the electrical system 

unique to the ULI aircraft. OSU provided the battery pack model created using test data from a number of commercial 

and prototype cells. The motor and inverter efficiencies have been updated to use performance maps developed by 

UMD and OSU, this is explained in more detail below. Generator design is out of the scope of the ULI project, but it 

is assumed that many of the technologies developed for the IMD would transfer over in terms of benefit and efficiency 

levels. 
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Fig. 2 Illustration of ULI aircraft propulsion system architecture 

 

 

 
Fig. 3 HTeDP architecture as modeled in NPSS 

 

Previously, GT-HEAT had been using a first order analytical model for predicting motor efficiency throughout 

the mission. The new motor efficiency model uses a scaled efficiency map provided by UMD that is a function of the 

motor shaft speed and torque. The efficiency map is currently model based but will be updated to reflect experimental 

data once it becomes available. Fig. 4 shows the scaled efficiency map with an overlay of the off-design hybrid 
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mission. The key points throughout the mission are labeled on this figure. Note that a gearbox will be required, and 

fan speed is shown in the figure below, not motor shaft speed which is higher. 

 

 
Fig. 4 Scaled motor efficiency map overlaid with typical off-design hybrid mission (%) 

 

The new inverter efficiency model is based on an efficiency curve provided by OSU CHPPE that is a function of the 

output power. This efficiency map is also model based but will be updated to reflect experimental data once it becomes 

available. Fig. 5 below shows the scaled efficiency map with an overlay of points from the off-design hybrid mission; 

the key points throughout the mission are also labeled. 

 
Fig. 5 Scaled inverter efficiency map overlaid with off-design hybrid mission 

 

The GT-HEAT model includes fixed efficiency values for the DC/AC conversion links, generator, and cabling 

losses since their design is not in the scope of this project. Each electrical component’s mass is also determined using 

1. Idle 

2. Takeoff 

3. Start of Climb 

4. Top of Climb 

5. Cruise 

6. Start of Descent 

7. End of Descent 
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a fixed specific power value and the design power it is sized at. The estimates for these values represent the current 

state-of-the-art for these components and is shown below in Table 2. The overall specific power of the entire system 

is estimated at 5.46 kW/kg. 

 

Table 2 Electrical System Component Efficiencies and Specific Power 

Component Efficiency 

Generator 97% 

Rectifier 99% 

Bus 99% 

Inverter From Map 

Motor From Map 

Cabling 100% 

In the case that the fixed efficiency values are lower than estimated or component mass is higher than estimated, a 

trade study was run to determine their effect on overall aircraft performance, specifically block fuel burn. Instead of 

doing a parametric study on each electrical component, the overall efficiency and specific power values were 

decreased by a certain percentage. Since this study requires the use of a sized aircraft, the results are shown below in 

Sec. III-C.  

D. Power Generation and Distribution System 

A bus multi-feeder architecture of the power generation and distribution system (PGDS) is selected for the current 

ULI aircraft because it has the lowest weight penalty, of which the architecture is presented in Fig. 6. 

 

Fig. 6 Architecture of the bus multi-feeder PGDS 

E. Thermal Management System Modeling  

Two aircraft level TMS, namely, the battery TMS and the IMD unit TMS, were modeled for the ULI aircraft. The 

overall TMS architecture is shown in Fig. 7. The battery pack is air cooled using the existing environmental cooling 

system (ECS) on the aircraft. The battery pack is allowed to heat up over the mission with an imposed temperature 

limit of 45°C to preserve battery life. An ECS similar to the architecture of a CRJ700/900 ECS was modeled in NPSS, 

and any excess cooling capacity from the ECS is used to cool the battery if required. Details on the ECS can be found 

in the previous version of this paper [1]. The modeling approach of the ECS can be found in previous work [4]. The 

ECS architecture is illustrated in Fig. 8. 
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Fig. 7 Architecture of the overall TMS 

 

Fig. 8 Environmental control system architecture 

 

Each IMD unit is cooled using a dedicated air-cooled oil cooler (ACOC) loop with fan duct bleed air as the cooling 

flow. The ACOC heat exchanger is modeled in NPSS using the 𝜀-NTU method [5]. The ACOC heat exchanger is 

assumed to be a one pass tube-fin type heat exchanger, with flat tubes containing Polyalphaolefin (PAO) fluid that is 

cooled by fan duct air that passes through the fins, of which the detailed implementation can be also found in the 

authors previous work [4].  PAO fluid was chosen instead of jet engine oil, mainly because of the lower operating 

temperatures of electric motors and inverters (jet engine oil would be too viscous at lower temperatures). The heat 

exchanger model was integrated into the system level GT-HEAT model to ensure that the fans are properly sized to 

account for the pressure drop and temperature rise of air passing through the heat exchanger. The sizing condition for 

the IMD TMSs is at takeoff (0 ft, Mach 0.3). Heat loads and target temperature limits for each electrical component 

were provided by the partner universities and used to size the ACOC. The corresponding TMS architecture is shown 
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in Fig. 9. The heat generation and heat removal performances for a typical mission (600 nmi and 38 passengers) for a 

single IMD (there are 8 IMD in total for the whole aircraft) is shown in Fig. 10(a), and the corresponding power 

difference between the heat removal and the generation is presented in Fig. 10(b). It can be discovered from these 

figures that the generated heat cannot be fully removed during early mission segments where the thermal load of the 

IMD is at the peak. The total heat that cannot be removed for this selected mission for the whole vehicle is 40,736 kJ. 

 

Fig. 9 Thermal management system architecture 

Fig. 10 Performance of heat removal and generation for the selected mission (600 nmi and 38 passengers) 

Therefore, a solution by implementing additional PAO to handle such peak thermal load is proposed. The 

architecture of the peak thermal load solution is presented in Fig. 11. There is a cold oil reservoir (55 oC) and a hot oil 

reservoir (67 oC). The cold reservoir supplies the cooling oil to the IMD heat exchanger, which the oil that can be 

cooled to the target temperature (55 oC) is also looped in. For the portion of the oil that cannot be cooled, it is directly 

transmitted to the hot oil reservoir. Such architecture can maximize the heat storage capacity of the PAO because it 

maximizes the oil temperature in the hot oil reservoir. More details regarding the TMS as well as the heat absorption 

solution can be found in the accompanying paper [6], which discusses the details of the design and analysis of the 

TMS. The performances of the IMD heat generation and removal for a single IMD with the proposed heat absorption 

solution using additional PAO for a single IMD is plotted in Fig. 12. The required additional PAO flow for a single 

IMD through the mission is shown in Fig. 13. Comparing Fig. 10(a) and  Fig. 12, it can be seen that the heat that 

cannot be handled during early mission segments can be removed by the proposed heat absorption solution. However, 

implementation of such a solution adds penalty weight to the aircraft due to the additional PAO. The additional weight 

for the thermal mass and systems is estimated to be around 3,600 lbm, where the computation approach is also shown 

in the accompanying paper [6]. It should be noted that the current results do not include the impacts of the heat 

absorption architecture in IMD TMS which utilizes additional PAO because the ULI team is still working on the 

development of the IMD TMS to identify the optimal solution to handle the heating problem during early mission 

segments.  

 

 

 
 

(a) Heat removal and generation for a single IMD 

through the selected mission 

(b) Power difference between heat removal and 

generation for a single IMD 
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Fig. 11 Additional PAO to absorb heat during early mission segments 

 

Fig. 12 Heat removal and generation for a single IMD with heat absorption solution using additional PAO  

 

Fig. 13 Additional PAO mass flow rate for a single IMD 

The IMD TMS also influences the mission-level performance in the following ways: an additional pressure drop 

occurs to the cooling fan bleed as it passes through the ACOC heat exchanger which affects the thrust produced by 

the fan; additional weights are also added due to the installation of the heat exchangers, ducts and the coolant reservoir, 

as well as the weight of the PAO, which all contribute to additional aircraft weight. The pressure drop in the cooling 

fan bleed, the weight of PAO in the ACOC heat exchanger, the weight of the heat exchanger are calculated using the 

heat exchanger model which is created based on Kays and London’s book [5]. The PAO volume in the IMD HX is 

given by the team from University of Maryland, which is 6.5 L for a 1-MW IMD. Assuming the same volumetric 

density, this number is scaled to a 2.1-MW IMD by simply multiplying 2.1, where the 2.1-MW IMD is supposed to 
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be applied for a full scale ULI aircraft. All these influences of the IMD TMS on the mission-level performance can be 

seen from the resulted block fuel burn, which will be discussed in Sec. III-A and Sec. III-B. 

F. Updates in Engine Sizing Problem Setup 

The engine sizing setup and corresponding results at top-of-climb (35k ft, Mach 0.8) are shown in Table 3. The 

setup and results for Baseline, Next-Gen, ULI Aircraft sized in 2019 (ULI 2019) configurations were accomplished 

in the work published last year [1]. The updates from the last paper until now are summarized under ULI 2020. The 

changes are resulted from the updated efficiency maps of inverter and motor. It should be noted that these 

specifications do not include battery system weight as the aircraft is sized to operate without the benefit of installed 

batteries.  

 

 

 

Table 3 Comparison of Propulsion System Metrics at Top of Climb (Per Turbofan / Per Wing) 

Metric Units Baseline Next-Gen ULI 2019 ULI 2020 

Thrust per turbofan/wing lbf 3,699 3,181 3,293 3,299 

Overall Pressure Ratio (OPR) - 34.6 53.9 59.3 58.54 

Fan Pressure Ratio (FPR) - 1.66 1.57 1.34 1.325 

Bypass Ratio (BPR) - 4.8 5.9 19.5 19.9 

Specific Fuel Consumption (SFC) lbm/lbf/hr 0.701 0.622 0.522 0.516 

Turbine Inlet Temperature (T41) °R 2,890 2,858 3,415 3,333 

Generator Power hp            -            - 5,828 5,859 

Power per IMD hp            -            - 1,358 1,371 

Electric Propulsion System Weight lbm            -            - 6,770 7,274 

Engine Weight lbm 8,800 6,300 5,990 5,450 

Total Propulsion System Weight lbm 8,800 6,300 12,760 12,724 

 

 

III. Updated Results 

A. Design Mission Impacts 

The performance metrics of the vehicle are illustrated in Table 4, where the results for Baseline, Next-Gen, and 

ULI 2019 have been presented in the last paper [1], while the metrics under ULI 2020 are the updates from last year.  

The results for the Baseline and Next-Gen vehicles were obtained by optimization during the work in the last year, 

and the updates in ULI program do not influence them. Thus, the metrics for these two configurations do not change. 

The changes between ULI 2019 and ULI 2020 are caused by updates of the efficiency maps of the inverter and the 

motor, as well as the added penalty weight of the IMD TMS. Such influences will be considered in the future work 

once the final architecture is selected. 

Table 4 Comparison of Performance Metrics for Design Mission  

Aircraft Metric Units Baseline Next-Gen ULI 2019 ULI 2020 

Design Mission Range nmi 1,980 1,980 1,980 1,980 

Design Payload lbm 18,060 18,060 18,060 18,060 

Operating Empty Weight lbm 47,250 40,770 46,705 47,294 

Takeoff Gross Weight lbm 85,000 73,160 75,094 75,734 

Block Fuel @ Design Mission lbm 15,578 12,051 10,673 10,661 

Mission Fuel @ Design Mission lbm 19,690 14,329 13,286 13,288 

 

The breakdown of the block fuel burn savings obtained in last year is shown in Fig. 14, and the updated breakdown 

of the block fuel burn savings in this year is shown in Fig. 15. From these two figures, it is discovered that the benefits 

achieved by HTeDP in ULI 2020 is improved from the results obtained in ULI 2019. This is because the motor and 
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inverter efficiencies were demonstrated in 2020 to be higher than the values used in 2019. However, due to the 

penalties caused by IMD TMS, which is a 0.8% increase of the mission block fuel burn, the total block fuel burn 

savings is almost the same to values from last year’s analysis. It also should be noted that the hybridization is not 

considered for the design range mission since the aircraft is sized to operate without batteries if required or optimal 

for cost or CO2 reasons.  

 

Fig. 14 Block fuel burn savings for max payload/design range mission for ULI 2019 

 

Fig. 15 Block fuel burn savings for design range mission for ULI 2020 

B. Impact of Hybridization at Shorter Ranges 

The ULI aircraft is designed to accommodate reconfigurable battery modules in the floor of the aircraft. For 

shorter-range flights where the aircraft is not typically at its MTOW, these battery modules will be used to further 

improve the block fuel burn savings. These batteries would not be swapped between flights, but rather the concept of 

operations is that each aircraft would be configured with a certain number of modules optimized for its typical daily 

flight schedule, similar to how conventional aircraft have add auxiliary cargo-hold fuel tanks for longer range flights. 

A trade study was performed on the ULI aircraft to determine the benefit of using battery power on a 600 nmi. 

flight with a typical payload of the average flight for a regional jet [7]. The study was performed using a conservative 

energy density estimate of ~200Wh/kg at the pack level (depends on usage profile of the battery). The fraction of 

power coming from the battery when measured at the bus was varied between 0-30% for climb and 0-50% for cruise. 

These fractions mean the percentage of energy is supplied by the battery for climb or cruise. Fig. 16 shows a contour 

plot of fuel burn savings compared to a non-hybrid mission (still HTeDP configuration). Two constraints were also 

considered. First, the takeoff weight of the aircraft including batteries must not exceed the maximum takeoff weight 

of the aircraft. This MTOW constraint is denoted by the red constraint line. As power usage from the battery increases, 

more power is needed from the battery, which may lead to a larger battery weight, making the MTOW violate the 

constraint. The second constraint was that the ECS must be able to keep the battery below the 45°C temperature limit 

through the whole mission. The two yellow lines in this figure denote the maximum temperature constraint. In ULI 

2020, The operation schedule of the battery TMS (ECS), was optimized in terms of different batter usages to minimize 

the battery cooling penalties which include engine bleed extraction and the intake of additional ram air, while the 
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battery cooling penalties were fixed for any battery power usages in year 2019. The star in the figure (climb battery 

power fraction = 0.17, cruise battery power fraction = 0.235) denotes the optimal battery usage fraction among climb 

and cruise that minimizes the block fuel burn. As a result of considering the battery TMS impacts in terms of different 

battery usages, the resulted optimal power fraction is far away from the battery temperature limit, minimizing the 

battery cooling penalties.  

 

 
Fig. 16 Block fuel burn reduction compared to non-hybrid mission with different battery usages (Δ%) 

 

 
Fig. 17 Battery heat generation through the mission for different battery usages (MJ) 

With the all the updates as mentioned above and the obtained optimal battery usage fraction, the updated block fuel 

burn saving can be obtained. The breakdown of the block fuel burn saving for the selected 600-nmi off-design mission 

for ULI 2019 is presented in Fig. 18, and the updated results for the same off-design mission is illustrated in Fig. 19. 
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The baseline and the Next-Gen performances do not change as they are not influenced by the updates in ULI 2020. 

The HTeDP fuel burn reduction is improved from -7.0% to -8.7% due to updates in engine component modeling. 

However, an additional 1.0% block fuel burn penalty is added by including the IMD TMS.  

 

Fig. 18 Block fuel burn savings for typical payload /600-nmi off-mission for ULI 2019 

 

Fig. 19 Block fuel burn savings for typical payload /600-nmi off-mission for ULI 2020 

C. Electrical System Weight and Efficiency Study 

A sensitivity study was performed to determine the impact on aircraft performance in the case that the actual 

component efficiencies or specific power is lower than the estimates. This could account for any inefficiencies or 

additional weight from components that were not included in the model. The overall system efficiency was decreased 

up to -10% and specific power was decreased up to -50%, representing a doubling of the electrical system weight. A 

sweep of these two variables was evaluated in GT-HEAT to see their impact on mission fuel burn for both the design 

and off-design mission. Fig. 20 below shows the fuel burn delta of the ULI aircraft from the Next-Gen aircraft for the 

design mission. The upper right-most portion of the plot represents the nominal point for the ULI aircraft. Moving to 

the left of that represents a decrease in specific power and any point below represents a decrease in efficiency. The 

bolded block line represents the point where there is no fuel burn change from moving from the Next-Gen aircraft to 

the HTeDP system on the ULI aircraft. Fig. 21 shows the fuel burn delta of the ULI aircraft from the Next-Gen aircraft 

for the off-design, hybrid mission. 
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Fig. 20 Block fuel burn savings from Next-Gen aircraft for design mission (%)  

 

 
Fig. 21 Block fuel burn savings from Next-Gen aircraft for off-design hybrid mission (%) 
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IV. Conclusions and Future Work 

This paper summarizes the updates from the work done in 2019 on projected performances of technologies and 

subsystems of an analysis of a 2030 hybrid turboelectric regional jet under the ULI program. The major updates on 

the propulsion system were that the efficiencies of the motors and inverters are calculated from the efficiency maps 

developed from ULI teams from multiple institutes instead of the fixed values as used in the last year. Such updates 

on the propulsion system improved the fuel economy performance of the HTeDP configuration compared to the results 

from the last year. Regarding the power generation and distribution system, two new strategies were proposed, and 

the corresponding weight penalties were also assessed for the all six strategies. In terms of the system integration, the 

IMD was integrated with its TMS to analyze the cooling capability of the IMD TMS and the corresponding system-

level and mission-level impacts. It was discovered that the heat generated by the IMD cannot be fully removed by the 

TMS during early mission segments where the thermal load is the largest. Therefore, a heat absorption solution for 

such mission segments may be required. In addition, the IMD TMS poses an additional pressure drop to the fan flow 

as well as adding penalty weight to the whole system due to installation of ACOC heat exchangers and PAO coolant. 

This paper has shown that such impacts increased the empty weight of the vehicle and leaded to an increase in the 

block fuel burn in both design and off-design missions. The battery cooling is still conducted by using additional ECS 

cooling power, and the corresponding cooling architecture is the same as previous work. However, the dependencies 

between the penalties due to battery cooling and battery power usage were considered in this year while such 

dependencies were not included in 2019. The resulted optimal battery usage profile in this year presented an overall 

fuel burn benefit over the one obtained in the last year when consider battery cooling, indicating neglecting these 

dependencies may lead to a suboptimal battery usage decision. A breakdown of the block fuel burn savings considering 

all the updates this year is also presented in contrast to the results from the last year, illustrating the mission-level 

changes as the ULI program progresses.  

The Georgia Tech ULI team will continue updating the assessment of the aircraft as refined technology 

development information becomes available. Another research avenue is to investigate further in searching for the 

optimal heat removal solution during early mission segments. 
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Appendix A: Aircraft Specification Sheet 

 

Propulsion Architectural Schematic 

 

 
 

ULI Aircraft Concept 
 

 

Propulsion Architecture Metrics 

(35k ft / Mach 0.8 / Top of Climb Power) 
ULI 

 SI Units 

Baseline  

SI Units 

ULI 

 Imperial Units 

Baseline 

Imperial Units 
Delta 

Specific Thrust (N/kg or lbf/lbm) 4.31 8.13 0.44 0.83 -38% 

Thrust Specific Fuel Consumption (lbm/lbf-hr)   0.50 0.69 -25% 

Global Chain Efficiency (-) 35.0% 28.0%  

Typical Mission Profile Power Management, Allocation and Control Strategy 
Stage Length (nm) 600  

Taxi-out (min.) 26 Idle power 

Take-off (min.) 0.75 Max takeoff power 

Climb (min.) 13 Max climb (full fan flow, keep gas generator thrust to minimum) 

Cruise (min.) 52 Thrust = Drag 

Descent (min.) 21 Idle power 

Approach (min.) 2 Idle power 

Taxi-in (min.) 5 Idle power 

Diversion (nm) 100 Same as regular mission 

Aircraft Design Weights 
ULI 

SI Units 

Baseline 

SI Units 

ULI 

Imperial Units 

Baseline 

Imperial Units 
Delta 

Maximum Take-Off Weight (kg or lbm)      33,352      38,555 75,734 85,000 -11% 
Operat. Weight Empty or Basic Oper. Weight (kg or lbm)      21,452      21,432 47,296 47,250 0.1% 
Maximum Payload Weight (kg or lbm)      10,594       10,594  23,350 23,350 - 
Max Fuel Weight (kg or lbm)       7,072       8,934  15,493 19,690 -21% 

Aircraft Sizing Parameters and Metrics  

Reference Wing Area (m2 or sq.ft) 69.9 69.6 753 749 0.5% 
Reference Wing Aspect Ratio (-)   8.29 - 
Conditions Describing Total Maximum Thrust or Power Rolling Takeoff (Mach 0.25 / ISA + 18 F (10 C)) 

Total Maximum Thrust (kN or lbf) 102.5 115.0 23,048 25,846 -11% 
Total Maximum Power (kW or hp) 19,617 - 26,307 - - 
Max. Non-propulsive Power / Total Max. Power (-) ~2% ~2%  

Peak Battery Thermal Load (kW or hp) 1,486 - 1,993 -  

Peak IMD Thermal Load (kW or hp) 880  1,180   

Operational Performance 
ULI 

SI Units 

Baseline 

SI Units 

ULI 

Imperial Units 

Baseline 

Imperial Units 
Delta 

Payload (kg or lbm) 

Specified ISA Deviation (C) 

Specified Airport Elevation, AGL (ft)  

8,194 

+0 

0 

8,194 

+0 

0 

18,060 

+0 

0 

18,060 

+0 

0 

- 

 

 

Maximum Operating Altitude (ft)  41,000 41,000 - 
Climb Speed Schedule (KCAS/Mach) 

 

250 [0.8] 250 [0.8]  

Maximum Rate-of-Climb, MTOW b.r., ISA, SL (fpm)  2,560 
2,000 – 3,000* 

Depends on battery usage 
 

Depends on 

hybrid 
sched. 

Time-to-Climb to Initial Cruise Altitude (min.) 31.0 40.0  10 min 
Initial or Fixed Cruise Altitude, MTOW b.r., ISA (ft) 

 
30,000 35,000  

Typical Cruise Speed, Mach [KTAS] 0.8 [461] 0.8 [461] - 
Typical Cruise Lift-to-Drag (-) ~16.2 ~16.0  1% 

InEngStart

InEng CmpL D22 CmpH B3 D35 Brn TrbH TrbL TrbGD45 B41 D5
Noz-
Pri

Noz
Pri
End

B13a B14a
Inter-
stage
Bleed

B41 B45 D46

OverBrd9

OverBrd7

ShH

ShL

ShG

CmpFanInEng D15 Noz-
Sec

Noz-
Sec-
End

Generator

ShF

Motor Inverter
Motor-
Cable

Bus

Supply-
Cable

Batt

Generator 
Cable

FusEng

InFanStart
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Range (nmi or km) and [PAX]  3,667 [78]  1980 [78]   

Payload (kg or lbm) 8,194 8,194 18,060 18,060 - 
Block Fuel (kg or lbm) 4,836 7,068 10,661 15,578 -32% 
CO2-Emissions (kg or lbm) 18,123 26,716 39,955 58,883 -32% 
Block Fuel per PAX (kg/PAX or lbm/PAX) 62 90 137 199 -32% 
CO2-Emissions per PAX (kg/PAX or lbm/PAX) 232 343 512 755 -32% 
Block Energy (MWh or MBTU) 55.70 84.69 179.59 289 

-32% 
Block Energy per PAX (MWh/PAX or MBTU/PAX) 0.71 1.09 2.43 3.71 

Miss. Energy Index (Wh/kg.km or BTU/lbm.nm) 1.93 2.82 5.53 8.08 -32% 

Degree-of-Hybridisation for Block Energy (-) 0.0 0.0  

T
y
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ay
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ad
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Stage Length (nmi or km) and [PAX]  1111 [38]  600 [38]   

Payload (kg or lbm) 3,686 3,686 8,127 8,127 - 
Block Fuel (kg or lbm) 1,538 1,950 3,443 4,300 -20% 
CO2-Emissions (kg or lbm) 6,632 7,372 14,663 16,253 -9.8% 
Block Fuel per PAX (kg/PAX or lbm/PAX) 41.1 51.3 90.6 113 -20% 
CO2-Emissions per PAX (kg/PAX or lbm/PAX) 174.5 194.0 385.9 427.7 -9.8% 
Block Energy (MWh or MBTU) 20.3 22.5 69.2 76.4 

-9.5% 
Block Energy per PAX (MWh/PAX or MBTU/PAX) 0.53 0.59 1.82 2.01 

Mission Energy Index (Wh/kg.km or BTU/lbm.nm) 4.96 5.48 14.18 15.68 -9.5% 

Degree-of-Hybridization for Block Energy (-) 
17% climb / 

23.5% cruise 
0%  
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