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Text recognition approaches for indoor robotics: a comparison

Obadiah Lam, Feras Dayoub, Ruth Schulz, Peter Corke

ARC Centre of Excellence for Robotic Vision, Queensland University of Technology ∗ †

Abstract

This paper evaluates the performance of dif-
ferent text recognition techniques for a mobile
robot in an indoor (university campus) envi-
ronment. We compared four different methods:
our own approach using existing text detection
methods (Minimally Stable Extremal Regions
detector and Stroke Width Transform) com-
bined with a convolutional neural network, two
modes of the open source program Tesseract,
and the experimental mobile app Google Gog-
gles. The results show that a convolutional neu-
ral network combined with the Stroke Width
Transform gives the best performance in cor-
rectly matched text on images with single char-
acters whereas Google Goggles gives the best
performance on images with multiple words.
The dataset used for this work is released as
well.

1 Introduction

We live in a sea of information. We are surrounded by
text which we read almost unconsciously while we are
moving around our environment. It blends into our lives
to the point where we stop appreciating how valuable it
is. Granting the same reading abilities to a mobile robot
would improve the level of its performance and interac-
tion with humans to a great extent. These words and
symbols are cues the robot can use for localisation and
navigation. In addition to that, the text information
can be used by the robot to create web queries which
provide relevant information to augment its current sen-
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Fig. 1: Overall Process: the input image is cropped and
fed into one of four text recognition algorithms. The
results are shown in the bottom row of boxes.

sory data. It is an attractive source of information which
should not be ignored.

Reading text from scanned documents, optical char-
acter recognition (OCR), has come a long way and its
accuracy has reached a point where it is able to recre-
ate even the format of the original document including
fonts, colours and the layout. However, recognising text
in unconstrained images is still an open problem. The
problem arises from multiple factors including variation
of light conditions, cluttered background, and the height,
font, size, orientation, colour and texture of the text.



In this paper we compare multiple approaches for text
extraction from natural images (see Fig. 1) and we show
that the use of a convolutional neural network for optical
character recognition provides promising results when
combined with the state-of-the-art text detection meth-
ods. We investigate whether the current performance
of current unconstrained text recognition approaches is
sufficient in an environment where the text is floor-to-
ceiling and has challenging texture and lighting condi-
tions.

The rest of the paper is organised as follows. In Sec-
tion 2, we discuss related work in the field. Section 3
gives an overview for the different text recognition meth-
ods used in this work. Section 4 presents the experimen-
tal set-up and the dataset used for evaluation. Finally we
draw conclusions and discuss future work in Section 6.

2 Related Work

There is a large body of literature with many approaches
proposed to extract text information from natural im-
ages. Generally these approaches focus on one stage
in the text recognition process, with only a small pro-
portion of systems addressing the full text recognition
pipeline. The first stage is detecting text within the im-
age and finding its location. This text is then passed
into the character recognition stage, where the individ-
ual letters and numbers in the detected text are recog-
nised. Finally, a word detection stage takes the sequence
of recognised characters and corrects it, often with a dic-
tionary of possible words.

Recently, a fast method for text detection was intro-
duced in [Epshtein et al., 2010] called the stroke width
transform (SWT). The input image is first converted to
grayscale and then an edge detector is used to produce
a binary edge map. Parallel lines are then detected and
used to calculate stroke width for each pixel. Pixels with
similar stroke width are grouped together to form a sin-
gle character. The method is sensitive to the quality of
the extracted edges which in-turn depend on the level of
noise and blur in the input image.

Edge-based features have also been used successfully
for text detection in [Chen et al., 2004]. The method
is aimed at video frames and it utilised an added step
to verify detected text regions using machine learning
(ML) approaches. Two ML methods were tested, multi-
layer perceptrons (MLP) and support vector machines
(SVM), to verify candidate text regions. In [Yao et al.,
2007], a method based on geometrical features from con-
nected components is used to train an SVM in order to
be classified into characters or non-characters. In [Neu-
mann and Matas, 2012], colour and geometrical fea-
tures from detected maximally stable extremal regions
(MSERs) [Matas et al., 2004] were used to classify the
candidate text regions into character and non-character.

More details about other approaches for text detection
methods can be found in [Zhang and Kasturi, 2008].

After detecting the text regions in an image, the next
step is character recognition. Two approaches emerge in
the literature to handle this step. The first one takes the
output of the detection step and binarises it then feeds
it to a traditional Optical Character Recognition (OCR)
engine such as Tesseract [Smith, 2007], which has a long
history in the application of OCR and has been used
very successfully for a very large scale document under-
standing on a massive scale [Vincent, 2007]. However,
when it comes to natural images, the results of our ear-
lier work in [Posner et al., 2010] showed its accuracy is
low and severely compromised by the variation of possi-
ble textures. The success of this earlier work relied on a
probabilistic error correction algorithm to correct errors
such as single character substitution, additional spaces,
and missing spaces. Even with this correction algorithm
‘texture words’ were still found in images with no text,
for example, from the textures in a brick wall.

The second approach treats the problem as an ob-
ject recognition problem. One of the promising al-
gorithms under this latter approach is the PhotoOCR
algorithm [Bissacco et al., 2013] released recently by
Google and quickly becoming one of the leading bench-
marks. PhotoOCR uses Convolutional Neural Networks
(CNN) [LeCun et al., 1998] trained with over 2 million
images. Convolutional neural networks are also used
in [Wang et al., 2012; Opitz et al., 2014] for the text
detection stage. In [Ciresan et al., 2011] a committee of
several neural networks vote on the output.

An alternative approach is to skip the character recog-
nition stage entirely and use convolutional neural net-
works to perform word detection. This has been shown
to be successful for large dictionaries of tens of thousands
of words [Jaderberg et al., 2014].

We would like to point out that most existing work
focuses on improving the performance of text extraction
for specific datasets such as those from ICDAR (Interna-
tional Conference on Document Analysis and Recogni-
tion) 2003, 2005 and 2011. This has driven an improve-
ment in performance by a few percentage points on these
datasets but the general problem is still unsolved. In
this work we are not aiming to solve the general prob-
lem of text information extraction from natural images
but rather achieving reliable performance in the context
of our own environment (i.e. door labels and directional
signs on a university campus, see Fig. 4).

3 Approach

In this section we describe the text recognition tech-
niques used in this paper. First, we describe our method,
which combines standard methods for detecting regions
of text within an image with a Convolutional Neural Net-



work for character recognition. We also give an overview
of the benchmark techniques used: two different modes
of Tesseract (an open-source OCR package) and Google
Goggles (an image-based search app for Android de-
vices).

3.1 Stroke width Transform and
convolutional neural network,
SWT-CNN

Our method uses the Minimally Stable Extremal Regions
detector (MSER) for text detection, then the Stroke
Width Transform (SWT) for character segmentation,
and a Convolutional Neural Network (CNN) for char-
acter recognition. Word detection is not implemented.

The method begins by using some of the ‘character-
ness’ cues outlined in [Li et al., 2013] to detect and
subsequently extract the text from the image. First,
the Minimally Stable Extremal Regions detector is used
as a region detector [Matas et al., 2004]. The Stroke
Width Transform is performed on the regions that were
detected with MSER [Epshtein et al., 2010], skeletonised
to improve computation speed. Regions with a consis-
tent stroke width that satisfy weak geometric constraints
such as aspect ratio are tagged as text.

The recognition phase is performed with a CNN which
has been trained on the 74k dataset [de Campos et al.,
2009]. This dataset is labelled with 62 classes of upper
case letters, lower case letters, and digits. The synthe-
sised computer font subset of the dataset was used, com-
prising 62992 character images. Due to the similarity
between characters such as ‘l’ and ‘1’, aggregate classes
have been used, resulting in a total of 46 classes (see
Table 1 for a list of the aggregated classes). The aggre-
gate classes were chosen to deal with the scaling problem
of character cases. That is, without prior knowledge of
expected scale or context from surrounding characters,
lower and upper case characters such as ‘c’ and ‘C’ are
visually identical.

We use a convolutional neural network architecture
proposed by [Simard et al., 2003]. The CNN has 4
layers, with 2 convolutional layers and 2 fully-connected
layers. The sizes of the layers was 5-50-100-46. The
output layer is the set of 46 classes, with the chosen
class for a given input being the output neuron with the
highest value.

The CNN was trained for 25 iterations (epochs) on
the character images in the 74k font dataset with small
random affine distortions. Training used backpropaga-
tion with an initial learning rate of 0.001, decreasing
by a factor of 0.794 every 4 epochs. At this point, the
CNN was then trained for 3 additional epochs on non-
distorted training images at a constant learning rate of
0.0002. The performance on the training set was 3.3%
error.

The output of the recognition phase is the individual
character that was recognised in each of the text regions
detected in the image. In future implementations of the
method, a word recognition stage will choose the correct
character out of the aggregated options based on the
context of the surrounding characters.

3.2 Tesseract

We use two modes of the open-source Tesseract OCR
Engine 1 [Smith, 2007] as benchmarks for text recog-
nition. Tesseract, like most available OCR packages,
has been developed for integration with word-processing
tools rather than robots. Text found in images obtained
from robots often has geometric distortion. Tesseract
can deal well with such skewed baselines and has been
used successfully for OCR in images obtained by robots,
when combined with an additional probabilistic error
correction algorithm [Posner et al., 2010].

As Tesseract was designed for performing OCR on
scanned printed text, poor text recognition performance
is the result unless text detection has been initially per-
formed on the images. We manually crop the images
around the text visible in the image to simulate a text
detection stage and pass the cropped text regions into
Tesseract. We use two of the available page segmenta-
tion modes: Mode 4 (the default mode which assumes
a single column of text of variable sizes) and Mode 6
(which assumes a single uniform block of text, similar to
the test images in the cropped dataset images).

3.3 Google Goggles

Google Goggles 2 is an image-based search app for An-
droid devices running Android 2.2 and above that en-
ables users to search the web using photos. Google
Goggles attempts to find useful information about the
submitted image, returning web results, similar images,
and text. In this experiment, we only consider the
text results returned. Preliminary experimentation with
Google Goggles indicated that it is very successful with
text detection in natural images. As Google Goggles
does not currently have an available API for use, an An-
droid device is required. Each image in the dataset must
be manually loaded into the Android application and the
results must be manually recorded.

4 Experiments

In this section we describe the dataset and experimental
setup.

1 “tesseractOcr”, http://code.google.com/p/tesseract-
ocr/, last accessed on 07-August-2014

2 “Google goggles”, http://www.google.com/mobile/goggles/,
last accessed on 07-August-2014



Tab. 1: List of aggregate classes. Each column is aggregated to the label on the top row.

0 1 C J K M N P S U V W X Y Z
O/o L c j k m n p s u v w x y z

Fig. 2: Example images where all the methods fail

Fig. 3: Example images where only our method has succeeded

Tab. 2: The output for an image containing a longer piece of text (29 characters)

Approach Output Edit Distance Success
Ground Truth QUT Z BLOCK BUSINESS BUILDING 0 1.0
Our approach a T r HU0GK BUSI ESS BUILhDV G 11 0.62

Tesseract (Mode 4) BUSINESS BUILDING 12 0.59
Tesseract (Mode 6) z MK 3H?L”b”uEuiSicSs 26 0.10

Google Goggles QUT Z BLOCK BUSINESS BUILDING 0 1.0

4.1 Dataset

A series of 81 photos were taken around QUT Gardens
Point Campus with text in each image. The images con-
tained either building names (single letters e.g. ‘S’), floor
levels (digits e.g. ‘4’), room names (letter followed by
room number e.g. ‘s408’), or longer pieces of text includ-
ing words (e.g ‘QUT Z BLOCK BUSINESS BUILDING’
as in Figure 9). As Tesseract expects the images to be
cropped around the text, cropped images were used for
all techniques to allow a fair comparison (see Fig. 4 for
an example image and its three cropped images). We
manually crop the images instead of using an automatic
bounding box method such as a sliding window approach
to ensure the regions are correctly cropped and contain
the label text.

The resulting dataset of cropped images has 103 im-

ages containing text3. The cropped images were clas-
sified, according to the type of text visible in them, as
Class 1: one or two characters (building names and floor
numbers), Class 2: door labels (a single letter followed
by three or four numbers), and Class 3: strings of text
containing multiple words.

4.2 Experimental setup

The 103 cropped images were presented to each of
the four approaches, with the resulting text outputs
recorded. The text result, t, was compared with the
ground truth, g, using Levenshtein edit distance [Leven-
shtein, 1966], D(g, t). We define a measure of success,
S(t, g) as:

S(t, g) =

{
0, if D(g, t) >= L(g)

(L(g) −D(g, t))/L(g), if D(g, t) < L(g)

3 The dataset is available at http://tinyurl.com/ot6ypab



Fig. 4: An example image and its three cropped images
in the dataset (Ground Truth: ‘Computer Lab’, ‘Z412’,
‘Z412’)

where L(g) is the length of the ground truth. This suc-
cess measure scales with L(g) to allow comparison of
results between images with ground truths of different
string lengths.

From this performance measure, we classified each re-
sult as ‘failed’, ‘partial’, or ‘match’:

Failed S(t, g) = 0

Partial 0 < S(t, g) < 1

Match S(t, g) = 1

Fig. 5: Overall performance

5 Results

For the 103 cropped images, SWT-CNN matched 20,
Tesseract (Mode 4) matched 12, Tesseract (Mode 6)
matched 18, and Google Goggles matched 27 (see Fig. 5).
Our approach had an additional 53 images that were par-
tial matches, with only 30 failed, while the failures for

Fig. 6: Images containing one or two characters

Fig. 7: Images of door labels

Fig. 8: Images containing strings of text with multiple
words



Fig. 9: Example of an image with a long string (multiple
words) of text

the other methods were 68 for Tesseract (Mode 4), 48
for Tesseract (Mode 6), and 39 for Google Goggles.

Our method outperformed the other approaches on
Class 1 images (one or two characters), with 9 matches
out of 35 images, while the other approaches had at most
one match (see Fig. 6 and 3). Class 1 images for which all
methods failed often had issues such as large geometric
distortion or extra lines within the character (see Fig. 2).

Performance on Class 2 images (door labels) was sim-
ilar between our approach and Google Goggles which
both outperformed Tesseract: our approach and Google
Goggles had fewer ‘failed’ results than the Tesseract ap-
proaches (see Fig. 7). All approaches had many partial
matches for the 26 images, with 14 partials for our ap-
proach, 8 for Tesseract (Mode 4), 12 for Tesseract (Mode
6), and 14 for Google Goggles. Common errors in the
door label images for all approaches include replacing
the letters for numbers and vice versa, for example re-
placing ‘S’ with ‘3’ or ‘5’. Given an appropriate lexicon
of expected formats for room names, these errors could
be reduced.

Google Goggles outperformed the other approaches on
Class 3 images (strings of text), with 17 matches out of
42 images, 23 partials, and only 2 failures (see Fig. 8).
Our approach had only one match, but had 39 partial
matches and only 2 failures. Once again, the majority
of the results returned were partial matches because of
the character ambiguity mentioned previously, as well as
the lack of a lexicon correction stage.

A typical example of an image containing longer

strings of text was Figure 9, where the ground truth
‘QUT Z BLOCK BUSINESS BUILDING’ contained 29
characters. Google Goggles achieved a match for this im-
age, and our approach, Tesseract (Mode 4), and Tesser-
act (Mode 6) achieved a partial match, with edit dis-
tances of 11, 12, and 26 respectively (see Table 2). Our
approach found many of the individual characters cor-
rectly, and potentially could be corrected if the word
recognition step was included. Tesseract (Mode 4) found
two of the five words, probably due to differences in font
and size between the other words. Tesseract (Mode 6)
found only a few of the characters correctly.

Google Goggles is a text recognition tool with high
performance rates, but as there is no API or description
of how it works (although [Bissacco et al., 2013] might
be relevant), it is not available for use in a robotic plat-
form. However, the results provide an existence proof
that these performance levels can be reached.

These results show that our method performs well
compared to benchmarks, particularly for difficult sin-
gle character text recognition.

6 Conclusion and Future work

We have evaluated the performance of different text
recognition techniques for the application of label text
recognition by a mobile robot in an indoor environment.
The tested methods were: our own approach using stan-
dard text detection methods (Minimally Stable Extremal
Regions detector and Stroke Width Transform) com-
bined with a convolutional neural network, two modes
of Tesseract, and the experimental mobile app Google
Goggles.

Our early work, using a convolutional neural network
combined with the Stroke Width Transform, correctly
recognises the most text in the single characters cat-
egory. Google Goggles gives the best performance on
long strings of text containing multiple words. Neither
of these methods can currently achieve practical per-
formance on our dataset, which includes scenes with
complex lighting and translucent text. None of the ap-
proaches are currently practically useful for robotic ap-
plications but their performance can be improved by re-
stricting font and text size in the urban environment.

We are currently working on implementing our
method for our mobile robot. This is part of a larger
project to detect and extract semantic information from
its surroundings and utilise this information to improve
navigation in unknown environments.

Future work will also look at different convolutional
neural network architectures and larger training sets for
better character recognition. A word recognition stage
will be added to our text recognition method.
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