

Queensland University of Technology Brisbane Australia

This is the author's version of a work that was submitted/accepted for publication in the following source:

White, Melinda, Dennis, Nicole, Ramsey, Rebecca, Barkwick, Katie, Graham, Christie, Kane, Sarah, Kepreotes, Helen, Queit, Leah, Sweeney, Annabel, Winderlich, Jacinta, Wong See, Denise, & Littlewood, Robyn (2015)

Prevalence of malnutrition, obesity and nutritional risk of Australian paediatric inpatients: A national one-day snapshot.

Journal of Paediatrics and Child Health, 51(3), pp. 314-320.

This file was downloaded from: http://eprints.qut.edu.au/78737/

© Copyright 2014 The Authors

This is the peer reviewed version of the following article: FULL CITE, which has been published in final form at Journal of Paediatrics and Child Health

Volume 51, Issue 3, pages 314–320. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

http://doi.org/10.1111/jpc.12709

Journal of Paediatrics and Child Health

Prevalence of Malnutrition, Obesity and Nutritional Risk of Australian Paediatric Inpatients: A National One Day Snapshot

Journal:	Journal of Paediatrics and Child Health
Manuscript ID:	JPC-2014-0093.R2
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	n/a
Complete List of Authors:	White, Melinda; Royal Children's Hospital, Department of Dietetics and Foodservices Dennis, Nicole; Royal Children's Hospital, Dietetics and Foodservices Ramsey, Rebecca; Queensland University of Technology, Barwick, Katie; Mater Children's Hospital, Graham, Christie; The Children's Hospital Westmead, Kane, Sarah; Queensland University of Technology, Kepreotes, Helen; Sydney Children's Hospital, Queit, Leah; Princess Margaret Hospital, Sweeney, Annabel; Women's and Children's Health Network, Winderlich, Jacinta; Monash Children's Hospital, Wong See, Denise; John Hunter Children's Hospital, Littlewood, Robyn; Royal Children's Hospital,
Keywords:	Nutrition, General Paediatrics
	·

1	Prevalence of Malnutrition, Obesity and Nutritional Risk of Australian Paediatric
2	Inpatients: A National One Day Snapshot
3	Authors:
4	Dr Melinda White (Corresponding Author)
5	Department of Dietetics and Foodservices, Lower Ground Floor, South Tower,
6	Royal Children's Hospital, Herston Road, Herston, QLD, Australia, 4029. Ph 07
7	3636 5078, Fax 07 3636 1883, Melinda_White@health.qld.gov.au
8	
9	Nicole Dennis
10	Department of Dietetics and Foodservices, Lower Ground Floor, South Tower,
11	Royal Children's Hospital, Herston Road, Herston, QLD, Australia, 4029. Ph 07
12	3636 5078, Fax 07 3636 1883, NicoleDennis@health.qld.gov.au
13	
14	Dr Rebecca Ramsey
15	School of Exercise and Nutrition Sciences, Nutrition and Dietetics Program,
16	Queensland University of Technology, Victoria Park Road, Kelvin Grove, QLD,
17	Australia, 4059. Ph 07 3138 5799, Fax 07 3138 3980,
18	Rebecca.Ramsey@qut.edu.au
19	
20	Katie Barwick
21	Department of Nutrition and Dietetics, Mater Children's Hospital, Raymond Tce,
22	South Brisbane, QLD, Australia, 4101. Ph 07 3163 6000, Fax 07 3163 2442,
23	katie.barwick@mater.org.au
24	
25	

26	
27	Christie Graham
28	Nutrition and Dietetics, The Children's Hospital at Westmead, Cnr Hawkesbury
29	Road and Hainsworth St, Westmead, NSW, Australia, 2145. Ph 02 9845 2245,
30	Fax 02 9845 2252, christie.graham@health.nsw.gov.au
31	
32	Sarah Kane
33	School of Exercise and Nutrition Sciences, Nutrition and Dietetics Program,
34	Queensland University of Technology, Victoria Park Road, Kelvin Grove, QLD,
35	Australia, 4059. Ph 07 3138 5799, Fax 07 3138 3980, sarahrkane@hotmail.com
36	
37	Helen Kepreotes
38	Department of Nutrition and Dietetics, Sydney Childrens Hospital, High Street,
39	Randwick, NSW, Australia, 2031. Ph 02 9382 1196, Fax 02 9382 1200,
40	Helen.Kepreotes@health.nsw.gov.au
41	
42	Leah Queit
43	Department of Nutrition and Dietetics, Princess Margaret Hospital, Roberts
44	Road, Subiaco, Perth, WA, Australia, 6008. Ph 08 9340 8440, Fax 08 9340
45	8922, leah.queit@health.wa.gov.au
46	
47	Annabel Sweeney
48	Nutrition Department, Women's and Children's Health Network, North
49	Adelaide, SA, Australia, 5006. Ph 08 81617233, Fax 08 81617481,
50	Annabel.Sweeney@health.sa.gov.au

51	
52	Jacinta Winderlich
53	Department of Dietetics, Monash Children's Hospital, Clayton Road, Clayton,
54	VIC, Australia, 3168. Ph 03 9594 4180, Fax 03 9594 6928,
55	jacinta.winderlich@monashhealth.org
56	
57	Denise Wong See
58	Nutrition and Dietetics, John Hunter Children's Hospital, Newcastle, NSW,
59	Australia, 2310. Ph 02 4921 4787, Fax 02 4921 3599,
60	Denise.WongSee@hnehealth.nsw.gov.au
61	
62	Dr Robyn Littlewood
63	Department of Dietetics and Foodservices, Lower Ground Floor, South Tower,
64	Royal Children's Hospital, Herston Road, Herston, QLD, Australia, 4029. Ph 07
65	3636 9592, Fax 07 3636 1883, Robyn_Littlewood@health.qld.gov.au
66	
67	Short Title: Nutritional Status of Australian Paediatric Inpatients
68	
69	Non standard abbreviations: PYMS Paediatric Yorkhill Malnutrition Score, ATSI
70	Aboriginal and Torres Strait Islander.
71	
72	Address for correspondence: Dr Melinda White, Department of Dietetics and
73	Foodservices, Lower Ground Floor, South Tower, Royal Children's Hospital,
74	Herston Road, Herston, Queensland, Australia, 4029. Ph 07 3636 5078, Fax 07
75	3636 1883, Melinda_White@health.qld.gov.au

76	
77	Abstract
78	Aim: Low prevalence rates of malnutrition at 2.5% to 4% have previously been
79	reported in two tertiary paediatric Australian hospitals. The current study is the
80	first to measure both the prevalence of malnutrition, obesity and nutritional risk
81	of paediatric inpatients in multiple hospitals throughout Australia.
82	Methods: Malnutrition, -and obesity prevalence and nutritional risk prevalence
83	were investigated in 832 and 570 paediatric inpatients respectively in 8 tertiary
84	paediatric hospitals and 8 regional hospitals across Australia on a single day.
85	Malnutrition and obesity prevalence was determined using z scores and BMI
86	percentiles. High nutritional risk was determined as a Paediatric Yorkhill
87	Malnutrition Score of 2 or more.
88	Results: The prevalence of malnourished, wasted, stunted, overweight and
89	obese paediatric patients was 15%, 13.8%, 11.9%, 8.8% and 9.9% respectively.
90	Patients who identified as Aboriginal and Torres Strait Islander were more likely
91	to have lower height for age z scores (p <0.01) however BMI and weight for age
92	z scores were not significantly different. Children who were younger, from
93	regional hospitals or with a primary diagnosis of cardiac disease or cystic
94	fibrosis had significantly lower anthropometric z scores (p=0.05). Forty-four
95	percent of patients were identified as at high nutrition nutritional risk and
96	requiring further nutritional assessment.
97	Conclusions: The prevalence of malnutrition and nutritional risk of Australian
98	paediatric inpatients on a given day was much higher when compared to the
99	healthy population. In contrast, the proportion of overweight and obese patients
100	was less.

-
·-
-
· •
tion
lion
)/.
/0.
nal
S
rv
,
P
0

2	
3	
4	
5	
6	
7	
8	
ğ	
10	
11	
12	
12	
13	
14	
10	
10	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

126	Introduction
127	It is well known that the nutritional status of children impacts on their immune
128	function, physical and cognitive development and clinical outcomes (1-4).
129	Therefore, it is critically important to identify the prevalence of malnutrition and
130	obesity of paediatric inpatients and those at nutrition risknutritional risk to
131	develop and implement timely and appropriate nutrition intervention and
132	treatment plans, support future health policy development and assist in
133	resource planning.
134	
135	The malnutrition and nutrition risknutritional risk prevalence of paediatric
136	inpatients has previously been reported between 2.5% and 19% in Europe, the
137	United States, the United Kingdom and Australia (5-10). The majority of the
138	malnutrition prevalence studies are limited to single site studies with the
139	exception of one large multi site study from the Netherlands which found the

140 highest malnutrition prevalence rate of 19% (10). Single centre studies in

141 Australian hospitals measuring malnutrition rates of paediatric inpatients have

reported relatively low rates between 2.5% and 4% (5, 6). Children who are

143 overweight or obese also have an increased risk of mortality and morbidity

144 when unwell (4). Prevalence of overweight and obesity in Australian paediatric

145 inpatients has previously been reported to be between 22% and 25% (5, 6)

146

The nutrition risknutritional risk of a child predicts the likely hood of a child
having or developing malnutrition and hence can indicate a need for nutrition
intervention. Paediatric inpatients are at a high risk of developing malnutrition
during admission which increases length of stay and the likelihood of

151	readmission (11). There are several validated paediatric nutrition risk nutritional
152	risk screening tools described in the literature which have been shown to be
153	effective in identifying children at risk of developing malnutrition (12-15). The
154	Paediatric Yorkhill Malnutrition Score (PYMS) is a paediatric nutrition screening
155	tool validated in both tertiary and regional hospitals. This tool was demonstrated
156	to be highly effective in identifying children at risk of malnutrition and produced
157	fewer false positives when compared to other screening tools which reduces the
158	number of patients who would require further nutrition assessment(15). PYMS
159	has also undergone secondary validation against other published screening
160	tools in children with inflammatory bowel disease and spinal cord injuries (16,
161	17).
162	
163	The malnutrition, obesity and nutrition risknutritional risk prevalence of
164	paediatric inpatients across Australian hospitals has not been studied and
165	remains unknown. The present study expands on the existing, limited
166	knowledge base, by determining the malnutrition <u>, and</u> obesity prevalence and
167	nutrition risknutritional risk prevalence of paediatric inpatients in multiple tertiary
168	and regional hospitals across Australia, and identifying demographic
169	characteristics that may be associated with malnutrition, obesity and nutrition
170	risknutritional risk.
171	
172	Materials and Methods
173	2.1 Patient population, recruitment and demographics
174	All children from term age (corrected for gestational age up to 2 years of age) to
175	19 years of age who were inpatients in 16 Australian hospitals (8 tertiary

176	paediatric hospitals and 8 regional hospitals) at 1000 hours local time on the 7 th
177	of March, 2013 were considered for the study. Ineligibility criteria are detailed in
178	Table 1.
179	
180	Each site had a nominated site lead who co-ordinated data collection at the
181	local level. To ensure consistency across sites, each site was given a study
182	manual with detailed instructions. A data collection pack was allocated for each

- 183 patient containing a study check-list, a script for introducing the study to carers
- and or patients, a data collection sheet and the PYMS screening tool. The data
- 185 collection sheet included the patient's date of birth, gestational age, gender,
- 186 Aboriginal and Torres Strait Islander (ATSI) status, primary diagnosis, reason
- 187 for admission and identified if the patient met any exclusion criteria. This
- 188 information was collected for all admitted patients. Patients identified as eligible
- 189 then proceeded to <u>anthropometric measurement and nutritional risk</u>
- 190 <u>screening</u>data collection_-
- 192 Ethical and site specific approval was obtained from the ethics committee from
- 193 each respective hospital. The ethics committees waived the requirement for
- 194 formal consent however verbal consent was sought from the caregivers and
- 195 patients could refrain from participation without consequences.
- 197 2.2 Anthropometry and nutrition risknutritional risk
- 198 Weight and height or length were measured using methods previously
- 199 described by the WHO (18). Each site ensured scales and stadiometers were
- 200 calibrated before the study. For children who were older than 2 years of age

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
11	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
31	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
50	
20	
5/	
58	
59	

60

201 and where a direct measure of height or length was not possible, height was 202 estimated from knee height (19). 203 204 Body Mass Index (BMI) for age, height for age and weight for age z scores 205 where calculated using WHO growth standards from 0 to 2 years of age 206 (www.who.int/childgrowth/standards/en) and the United States Centre for 207 Disease Control (CDC) 2000 reference population for 2 -20 years of age 208 (www.cdc.gov). Malnutrition, wasting and stunting were defined as $\leq -2 z$ 209 score for BMI for age, weight for age and height for age respectively (18).

- 210 Obesity was defined according to Cole's internationally agreed standard cut off 211 points for overweight and obese (20).
- 212

213 Nutrition riskNutritional risk was determined using the PYMS for children > 12 214 months 1 year of age (15). The PYMS is a simple, validated scoring system to 215 identify children who are at nutrition risknutritional risk. The components of the 216 PYMS includeds calculation of BMI and comparison to cut offs, recent weight 217 loss, recent change in oral intake and whether the patient's diagnosis or 218 admission would affect nutrition risknutritional risk. The patients were given a 219 score according to the criteria, a total score of 1 identified medium nutrition 220 risknutritional risk and a total score of 2 or more identified high nutrition 221 risknutritional risk and need for further nutrition assessment.

222

223 2.3 Statistical analysis

- 224 Data were analysed using IBM SPSS version 20 (IBM corporation, Somers, NY).
- 225 Demographic, anthropometric, nutrition risknutritional risk characteristics and

Journal of Paediatrics and Child Health

prevalence were described using descriptive statistics. Chi-square was used to assess significant differences between eligible and non-eligible participants. Multiple linear regression was then used to investigate adjusted associations between <u>nutritional risk and anthropometric measuresnutritional status</u> and primary diagnosis, reason for admission, age, gender, hospital type and patients who identified as ATSI. The level of statistical significance was set at 5%.

234 Results

3.1 Patients

236	A total of 1175 patients were considered for the study, of which 832 were e
237	deemed eligible for further measurement. The primary reasons for ineligibility
238	were critical illness, unable to obtain an accurate weight or the patient or carer
239	declining the measurement (Table 1). Table 2 shows the demographic
240	characteristics of the eligible patients. The eligible group had significantly more
241	females (53.8% vs 46.2%), more children with cystic fibrosis as a primary
242	diagnosis (4.2% vs 0.6%) and a respiratory infection as their reason for
243	admission (14.5% vs 7.6%) than the ineligible group. The ineligible group had
244	significantly (p<0.01) more children with a surgical diagnosis as a reason for
245	admission than the eligible group.
246	
247	3.2 Anthropometry and Associations
248	A total of 832 patients had anthropometric measurements taken. Table 3
249	describes the anthropometric measurements and z scores of the study

250	population. Twenty-four patients had height estimated from knee height. One
251	hundred and twenty-two (15%) patients were malnourished, 113 (13.8%) were
252	wasted and 97 (11.9%) were stunted (Table 4). Seventy-one children (8.8%)
253	were found to be overweight and 80 (9.9%) obese.
254	Tables 5 and 6 presentssummarise the adjusted associations between patient
255	characteristics, hospital type and z scores <u>for</u> , malnutrition, wasting, stunting,
256	nutrition risknutritional risk and overweight/ obesity. Paediatric inpatients inof
257	regional hospitals were more than two-times more likely to be malnourished (p =
258	0.004) and wasted ($p = 0.008$), and were over 60% less likely to be overweight
259	or obese (p = 0.002). There was a significant positive relationship between age
260	and all anthropometric z scores. Patients who identified as ATSI were more
261	likely to be shorter and were nearly three times more likely to be categorised as
262	'stunted' compared to those who did not identify as ATSI ($p = 0.001$). Weight z
263	scores, BMI z scores, malnutrition, nutrition risknutritional risk and overweight or
264	obesity were not significantly associated with ATSI status. Patients who had a
265	primary diagnosis with a surgical origin were significantly more likely to have a
266	higher BMI and weight for age z score, and were over three times more likely to
267	be overweight or obese compared to children in the 'other diagnosis' category
268	(p = 0.009). Children with a primary diagnosis of cardiac disease or cystic
269	fibrosis had significantly lower anthropometric z scores with the exception of
270	height for age z scores observed in the patients with cystic fibrosis. Those with
271	a cardiac diagnosis were four times more likely to be malnourished and five
272	times more likely to be wasted compared to those in the diverse 'other' category,
273	while children diagnosed with cystic fibrosis were 99% less likely to be
274	overweight or obese (p = 0.02) compared to the 'other' diagnosis group. Finally,

Journal of Paediatrics and Child Health

275	children had significantly lower BMI z scores if they were in the diverse 'other'	
-----	---	--

276 category as a reason for admission. Examples of reasons for admission in this

- 277 category included fractures, seizures and type 1 diabetes.

279 3.3 Nutrition Risk Nutritional risk

280	A <u>smaller number of patients</u> (N=total of 570)-patients were assessed for
281	nutrition risnutritional risk compared to patients who had anthropometric
282	<u>measures (N=832)k due to -p This is significantly less than the number of</u>
283	patients who had anthropometric data collected (n=872) primarily due to
284	patients who were <12 months of age beingbeing ineligible for assessment by
285	PYMS. Seventy- two (12.8%) patients were below the BMI cut-off for a nutrition
286	risknutritional risk score, 232 (40.7%) patients had a history of recent weight
287	loss, 216 (36.0%) patients had reduced nutritional intake and 29 (4.8 .0 %) had
288	no intake over the previous week. One hundred and eighty-three (30.5%)
289	patients had a condition or reason for admission which would reduce their
290	intake and/_or increase requirements and/_or increase losses for the proceeding
291	week. Only 77(1.2%) patients had a condition or reason for admission that
292	woulde result in no intake for at least the next week. Overall there were 251
293	(44%) patients defined as being at high nutrition risknutritional risk and requiring
294	further nutrition assessment. Children with an oncologyrelated (p=0.003) or
295	gastroenterologyrelated (p = 0.04) diagnosis were approximately twotimes
296	more likely to be identified as 'at nutrition risknutritional risk' by the PYMS tool,
297	compared to other children, while children diagnosed with cystic fibrosis were
298	65% less likely to be at nutrition risknutritional risk (p = 0.04), (Table 6).

299	
300	Discussion
301	This is the first study in which the prevalence of malnutrition , and obesity and
302	nutrition risknutritional risk of paediatric inpatients in multiple Australian
303	hospitals has been investigated. This nation-wide study provided a snapshot of
304	the anthropometrics and nutrition risknutritional risk of Australian paediatric
305	inpatients on a single day. <u>C-It provided comprehensive anthropometric data for</u>
306	over two thirds of admitted patients and complete nutrition risknutritional risk
307	screening data for almost half of the inpatients in <u>a majority ofevery</u> tertiary
308	paediatric hospital <u>s</u> in Australi <u>aa with the exception of one</u> and several regional
309	hospitals <u>has been provided</u> .
310	
311	Within this study the overall prevalence of malnutrition infor paediatric inpatients
312	was 15%, 13.8% <u>of patients</u> were identified as being wasted and 11.9% <u>of</u>
313	patients identified as stunted. A comparable study in a single tertiary paediatric
314	Australian hospital of 157 children reported that 2.5% were malnourished, 4.5%
315	were wasted and 8.9% stunted (5). These findings are in agreement with a
316	previous single site study in another tertiary paediatric Australian Hospital (6).
317	Both hospitals in the earlier studies were included as sites in the current study
318	and found an increase in prevalence of malnutrition, wasting and stunting in the
319	current study compared to previously. This is possibly due to differing study
320	design in regards to data collection periods and exclusion criteria resulting in
321	patients that were younger and sicker and more likely to be malnourished being
322	included in the current study population.

323	
324	Our study observed similar malnutrition prevalence rates to a Dutch national
325	study of paediatric inpatients in 44 hospitals which reported a malnutrition
326	prevalence of 19%. (10). A wide variety of malnutrition prevalence rates have
327	been reported by previous studies ranging from 2.5% to 19% (5-10). The
328	heterogeneity of the criteria used to define malnutrition, the patient sampling
329	methods, subject age and hospital type make these studies difficult to compare.
330	As previously identified this highlights the need for agreed and evidence based
331	criteria for the diagnosis of malnutrition and risk offor malnutrition (21).
332	
333	Despite the difficulty in comparing the results to previous studies we observed a
334	significant increase in the proportion of children in hospital who are
335	malnourished compared to the free living healthy population. This study found
336	15% of children had a BMI z score of ≤ -2 compared to 2.3% in a normally
337	distributed healthy population. The number of children with BMI z score of \leq -3
338	was 5.5% with normal distribution being 0.14%. The presence of children with a
339	BMI z score of \leq -3 is concerning as the current clinical capabilities and tools of
340	a skilled workforce should prevent any child from developing severe malnutrition
341	despite being unwell-from severe malnutrition. Based on the international cut
342	off point of \leq -2 z score to classify malnutrition, this study identified that children
343	with a cardiac or cystic fibrosis diagnosiis, and those who were inpatients in
344	regional hospitals, were significantly more likely to be malnourished.

It has been identified that there is a lack of a uniform definition for malnutrition for paediatric inpatients which may directly support the under recognition of its prevalence (22). The statistical methods used to define malnutrition for this study employed recommendations by WHO (16). In Australia, the current Diagnosis Related Groups (DRG) reimbursement criteria to define malnutrition is a weight for age z score of \leq -1 (23). If this were incorporated in the malnutrition definition for the current study 29.6% of the patients would have a diagnosis of malnutrition which would contribute substantially to financial reimbursement for hospitals. This study found 18.7% of Australian paediatric inpatients to be overweight or obese where as population based studies report the prevalence to be around 24% (24). Prevalence of overweight and obesity in Australian paediatric inpatients has previously been reported to be between 22% and 25% (5, 6). These studies excluded children less than 2 years of age. Given the significant relationship between age and BMI z score, it is expected there would be significantly less overweight and obese children in this age category. Our findings suggested that children with a surgical_-related diagnosis were over three times more likely to be overweight or obese. To our knowledge, this is the first Australian study which has investigated and described the prevalence of malnutrition, obesity and nutritional risknutritional

- **status** of paediatric inpatients of ATSI descent. Children who identified as being
- 369 of ATSI descent were more likely to be shorter than their peers, however no

difference in BMI or weight z scores was observed. Previously, it has been documented that in the healthy population, children who identify as ATSI are shorter than their non-ATSI counterparts, but have a similar average weight compared to the overall of the population of Australian children resulting in significantly increased BMI z scores (25, 26). The increased BMI z scores were not observed in the current study. This indicates that children who identify as ATSI and who are admitted to hospital are less likely to be overweight and obese than their peers. It is proposed that the low height for age z score is an indicator of chronic malnutrition (16). Similar findings have been observed in other studies where paediatric inpatients with non--white ethnicity have a significantly higher rate of chronic malnutrition (10). It is possible that the incidence of chronic malnutrition was over estimated in the ATSI group as population specific growth standards were not used for these children.

The multiple diagnoses and reason for admissions for the study population made it difficult to categorise resulting in almost half of the children allocated into the 'other' category. As previously described by other studies, children with a primary diagnosis of cardiac disease or cystic fibrosis were found to have a higher incidence of malnutrition when compared to other inpatients (11, 27, 28). Growth failure in these diagnosis groups has been found to be related to increased mortality which clearly emphasises the importance of disease specific targeted nutritional intervention (28, 29). This study also concluded that the groups of patients who had previously been reported at high nutrition risknutritional risk such as those with an oncological illnesses and gastro intestinal disease were not found to be significantly malnourished (22), however

395	these groups were significantly more likely to be identified as 'at nutrition
396	risknutritional risk' compared to others.
397	
398	Within the current study forty-four percent of patients were identified as being at
200	
399	nutrition risk nutritional risk and requiring further nutritional assessment by the
400	PYMS. Due to the nature of the PYMS assessment of nutrition risknutritional
401	<u>risk</u> was limited to children > 12 months of age. The percentage of children
402	identified as being at nutrition risk<u>nutritional risk</u> is likely to be higher if infants
403	were included. The primary contributors to nutrition risknutritional risk were no
404	or reduced nutrition intake and recent weight loss highlighting the importance of
405	being proactive in the prevention of the development of malnutrition and not
406	simply relying on routine anthropometric measures of anthropometric data of
407	patients.
408	
409	The aim of this study was to provide a comprehensive description of the
410	prevalence of malnutrition, obesity and nutrition risknutritional risk of paediatric
411	patients admitted to Australian hospitals on a given day. To ensure the study
412	population was a representative sample, demographic data was collected on all
413	inpatients. Some discrepancies were found between eligible and ineligible
414	patients with respect to gender, reason for admission and primary diagnosis.
415	Gender and-a respiratory infection as a reason for admission, were found to
416	have no effect on malnutrition and obesity prevalence nutritional statush
417	however patients with a surgical reason for admission were more likely to be
418	taller and patients with cystic fibrosis malnourished Furthermore The ineligible

419	group being significantly more likely to have a surgical reason for admission
420	may have impacted on height for age z score., the categorisation of surgical
421	patients used in this study is broad and the type of surgery Thwould have
422	impacted on the nutritional status of patients. is study did not investigate if the
423	surgery was elective or for more acute diagnoses which may have impacted on
424	nutritional status. Multiple data collectors may have resulted in variations in data
425	collection despite written instructions provided. A criterion for ineligibility was 'a
426	condition that impacts on growth' however it can be argued that diagnos <u>e</u> is with
427	chronic health problem such as cystic fibrosis or cardiac disease do impact on
428	growth. These conditions where included in the study population as growth
429	failure can be the result of poor nutrition.
420	

This study found that the prevalence of malnutrition and nutrition risknutritional risk of Australian paediatric inpatients is much higher when compared to the healthy population. In contrast, the number of overweight and obese patients is less. The significant findings of this research should direct policy and planning of nutrition related healthcare by providing evidence for the implementation of national paediatric nutrition screening and incorporation of nutrition into mandatory hospital accreditation standards to achieve improved clinical outcomes for our paediatric inpatients.

440 Acknowledgements

441 Our thanks go to all the participating children and their parents for their

442 cooperation, as well as all the participating hospitals and their study

443	coordinators. We thank Dr L McKinlay and Dr Kristie Bell and The Royal
444	Children's Hospital; Jane Cairney and Townsville Hospital, Kristina Service and
445	Cairns Base Hospital, Justin Wright and Nambour General Hospital, Janet
446	Howells and Royal Hobart Hospital, Natasha Murray and Alice Springs Hospital,
447	Jenny Colebourne and Canberra Hospital, Louise Moodie and Royal Darwin
448	Hospital, Hayley Parker and Joondalup Health Campus, the Mater Children's
449	Hospital, Sydney Children's Hospital, The Children's Hospital Westmead, John
450	Hunter Children's Hospital, Monash Children's Hospital, Women and Children's
451	Hospital and the Princess Margaret Hospital. We would also like to thank the
452	Paediatric Dietetic Managers Group for their advice and consultation.
453	
454	Statement of Authorship
455	MW led the study design, coordinated the study nationally, participated in data
456	collection, analysis and drafted the manuscript.
457	ND assisted in study design and coordination of ethics approvals nationally,
458	participated in data collection and analysis.
459	RR performed the statistical analyses and helped draft the manuscript.
460	SK collated data from each study site and assisted in data analysis.
461	KB, CG, HK, LQ, AS, JW, DWS contributed to study design, ensured ethics
462	approval and lead the study at their specific site and contributed to the
463	manuscript.
464	RL conceived of the study, and participated in its design and coordination and
465	helped to draft the manuscript.
466	All authors read and approved the final manuscript.
467	

468	The authors have no conflict of interest and funding sources to declare.
469	
470	
471	
472	
473	
474	
475	
476	References
477	1. Cunningham-Rundles S, McNeeley DF, Moon A. Mechanisms of nutrient
478	modulation of the immune response. J Allergy Clin Immunol 2005;
479	115(6): 1119-1128.
480	2. Pawellek J, Dokoupil K, Koletzko B. Prevalence of malnutrition in
481	paediatric hospital patients. Clin Nutr 2008; 27: 72-6.
482	3. Corbett SS, Drewett RF. To what extent is failure to thrive in infancy
483	associated with poorer cognitive development? A review and meta-
484	analysis. J Child Psychol Psychiatry 2004; 45(3): 641-654.
485	4. White M, Murphy A, Hallahan A, Ware R, Fraser C, Davies PSW.
486	Survival in overweight and underweight children undergoing bone
487	marrow transplantation. Eur J Clin Nutr 2012; 66: 1120-1123.
488	5. Aurangzeb B, Whitten KE, Harrison B, Mitchell M, Kepreotes H, Sidler M,
489	Lemberg DA, Day AS. Prevalence of malnutrition and risk of under-
490	nutrition in hospitalised children. Clin Nutr 2012; 31: 35-40.
491	6. O'Connor J, Youde LS, Allen JR, Baur LA. Obesity and under-nutrition in
492	a tertiary paediatric hospital. J Paediatric Child Health 2004; 40: 299-304.

493	7. Hendricks KM Duggan C, Gallagher L, Carlin AC, Richardson DS, Collier
494	SB, Simpson W, Lo C. Malnutrition in hospitalized pediatric patients:
495	Current prevalence. Arch Pediatr Adolesc Med 1995; 149: 1118-22.
496	8. Sermet-Gaudelus I, Poisson-Saloman A, Colomb V, et al. Simple
497	paediatric nutritional risk score to identify children at risk of malnutrition.
498	Am J Clin Nutr 2000; 72: 64-70.
499	9. Moy RD, Smallman S, Booth IW. Malnutrition in a UK children's hospital.
500	<i>J Hum Nutr Dietetics</i> 1990; 3: 93-100.
501	10. Joosten KF, Zwart H, Hop WC, Hulst JM. National malnutrition screening
502	days in hospitalized children in the Netherlands. Arch Dis Child 2010; 5:
503	141-5.
504	11. Kelleher DK, Laussen P, Teixeira-Pinto A, Duggan C. Growth and
505	correlates of nutritional statues among infants with hypoplastic left heart
506	syndrome (HLHS) after stage 1 Norwood procedure. <i>Nutrition</i> 2006;
507	22(3): 237-244.
508	12. McCarthy H, Dixon M, Crabtree I, Eaton Evans M, McMulty H. The
509	development and evaluation of the Screening Tool for Assessment of
510	Malnutrition in Paediatrics (STAMP) for use by healthcare staff. Journal
511	of Human Nutrition and Dietetics 2012; 25: 311-318.
512	13. Hulst JM, Zwart H, Hop WC, Joosten KF. Dutch national survey to test
513	the STRONG(kids) nutritional risk screening tool in hospitalized children.
514	<i>Clin Nutr</i> 2010; 29: 106-11.
515	14. Sermet-Gaudelus I, Poisson-Saloman A, Colomb V, et al. Simple
516	paediatric nutritional risk score to identify children at risk of malnutrition.
517	<i>Am J Clin Nutr</i> 2000; 72: 64-70.

518	15. Gerasimidis K, Keane O, Macleod I, Flynn D M, Wright CM. A four stage
519	evaluation of the paediatric yorkhill malnutrition score in a tertiary
520	paediatric hospital and a district general hospital. Br J Nutr 2010; 104(5):
521	751-6.
522	16. Wisken AE, Owens DR, Cornelius VR, Wootton SA, Beattie RM.
523	Paediatric nutrition risknutritional risk scores in clinical practice: children
524	with inflammatory bowel disease. J Hum Nutr Diet 2012; 25(4): 319-22.
525	17. Wong S, Graham A, Hirani SP, Grimble G, Forbes A. Validation of the
526	Screening Tool for the Assessment of Malnutrition in Paediatrics
527	(STAMP) in patients with spinal cord injuries (SCIs). Spinal Cord 2013;
528	51(5): 424-9.
529	18. World Health Organization. Physical status: the use and interpretation of
530	anthropometry. Report of a WHO Expert Committee. In: WHO technical
531	report series 854. Geneva: World Health Organization; 1995.
532	19. Chumlea W, Guo S, Steinbaugh, M. Prediction of stature from knee
533	height for black and white adults and children with application to mobility-
534	impaired or handicapped persons. <i>J Am Diet Assoc.</i> 1994; 94(12): 1385 -
535	1390.
536	20. Cole T J, Bellizi M C, Flegal K M, Dietz W H. Establishing a standard
537	definition for child overweight and obesity worldwide: international survey.
538	<i>Br Med J</i> 2000; 320: 1240-3.
539	21. Hartman C, Shamir R, Hecht C, Koletzko B. Malnutrition screening tools
540	for hospitalized children. Clin Nutr 2012. published online May 2012.
541	www.co-clinicalnutrition.com; 15(3);303-309.

2		
3	542	22. Mehta N M, Corkins M R, Lyman B, Malone A, Goday P S, Carney L N,
4 5 6	543	Monczka J L, Plogsted S W, Schewenk W F and the American Society
7 8	544	for Parenteral and Enteral Nutrition (A.S.P.E.N) Board of Directors.
9 10	545	Defining Pediatric Malnutrition: A Paradigm Shift Toward Etiology-
11 12	546	Related Definitions. JPEN 2013: published online March 25.
13 14 15	547	DOI:10.1177/0148607113479972
16 17	548	23. Commonwealth Department of Health and Aged Care. Australian
18 19	549	Refined Diagnosis Related Groups, version 4.1, Definitions Manual
20 21 22	550	(Volumes 1-3). Canberra, Commonwealth Department of Health and
23 24	551	Aged Care, 1998.
25 26	552	24. Olds T S, Tomkinson G R, Ferrar K E, Maher C A. Trends and
27 28	553	prevalence of childhood overweight and obesity in Australia between
29 30 31	554	1985 and 2008. <i>Int J Obesity</i> 2010; 34: 57-66.
32 33	555	25. Cunningham J, Mackerras D. Overweight and obesity, Indigenous
34 35	556	Australians. Australian Bureau of Statistics 1994. Occasional paper:
36 37	557	4702.0.
38 39 40	558	26. Spurrier N J, Volkmer R E, Abdallah C A, Chong A. South Australian
40 41 42	559	four-year-old Aboriginal children: residence and socioeconomic status
43 44	560	influence weight. Aust NZ J Public Health 2012; 36: 285-290.
45 46	561	27. Forchielli M L, McColl R, Walker W A, Lo C. Children with congenital
47 48	562	heart disease: a nutrition challenge. Nutr Rev 1994; 52(10): 348-353.
49 50 51	563	28. Yen E H, Quinton H, Borowitz D. Better nutritional status in early
52 53	564	childhood is associated with improved clinical outcomes and survival in
54 55 56 57 58 59	565	patients with cyctic fibrosis. <i>J Pediatri</i> 2013; 162(3): 530-535.

- 566 29. Eskedal L T, Hagemo P S, Seem E, Eskild A, Cvancarova M, Seiler S,
- 567 Thaulow E. Impaired weight gain predicts risk of late death after surgery
- 568 for congenital heart defects. *Arch Dis Child* 2008; 93(6): 495-501.

Table 1: Ineligibility criteria for collection of anthropometric nutritional status and nutritional risk data among the paediatric inpatient population across 16 hospitals (N = 1175)

Non ambulatory; knee height or supine length unable to be measured35 (Critically ill; unable to be weighed63 (Weight unable to be accurately measured73 (Admitted for palliative care4 (0Patient/carer decline measurement71 (Born premature; not yet term age35 (Admitted as day patient4 (0Condition known to effect growth7 (0Other45 (Ineligibility Criteria	N (%)
Critically ill; unable to be weighed63 (Weight unable to be accurately measured73 (Admitted for palliative care4 (Patient/carer decline measurement71 (Born premature; not yet term age35 (Admitted as day patient4 (Condition known to effect growth7 (Other45 (Non ambulatory; knee height or supine length unable to be measured	35 (3.0)
Weight unable to be accurately measured73 (Admitted for palliative care4 (0Patient/carer decline measurement71 (Born premature; not yet term age35 (Admitted as day patient4 (0Condition known to effect growth7 (0Other45 (Critically ill; unable to be weighed	63 (5.4)
Admitted for palliative care4 (0Patient/carer decline measurement71 (Born premature; not yet term age35 (Admitted as day patient4 (0Condition known to effect growth7 (0Other45 (Weight unable to be accurately measured	73 (6.2)
Patient/carer decline measurement 71 (Born premature; not yet term age 35 (Admitted as day patient 4 (0 Condition known to effect growth 7 (0 Other 45 (Admitted for palliative care	4 (0.3)
Born premature; not yet term age 35 (Admitted as day patient 4 (0 Condition known to effect growth 7 (0 Other 45 (Patient/carer decline measurement	71 (6.0)
Admitted as day patient 4 (0 Condition known to effect growth 7 (0 Other 45 (Born premature; not yet term age	35 (3.0)
Condition known to effect growth 7 (0 Other 45 (Admitted as day patient	4 (0.3)
Other 45 (Condition known to effect growth	7 (0.6)
	Other	45 (3.8)

Table 2: Demographic characteristics of paediatric inpatients eligible for collection of <u>anthropometric (N=832)</u> and <u>nutritional (N=570)</u> risk data across 16 hospitals<u>- (N=832)</u>

Demographic Characteristics	N (%) or M (min – max)
Hospital	(
Tertiary	670 (80.5)
Regional	162 (19.5)
Gender (male)	384 (46.2)
Age (months) <i>M(min – max)</i>	64 (0-226)
ATSI status	
Aboriginal and/or Torres Strait Islander	107 (12.8)
Not Aboriginal and/or Torres Strait Islander	684 (82.2)
Primary Diagnosis	
Oncology	105 (12.6)
Cystic Fibrosis	35 (4.2)
Gastroenterology	81 (9.7)
Surgical	33 (4.0)
Cardiac	42 (5.0)
Other	410 (49.2)
Reason for admission	
Surgical	141 (16.9)
Gastroenterology	21 (2.5)
Respiratory	121 (14.5)
Infection	110 (13.2)
Other	409 (49.0)

Anthropometry	Median (range)
Weight (kg)	18.4 (1.85, 136.8)
Height/Length (cm)	110 (31, 188.7)
BMI kg/m ²	16.23 (7.9, 42.14)
Weight for age z score	-0.2 (-6.03, 4.77)
Height for age z score	-0.13 (-6.77, 4.54)
BMI z score	-0.27 (-5.72, 7.23)

Table <u>4</u>3: Prevalence <u>and level</u> of maln<u>utriteurishion (BMI z score)</u>ed, wasting (weight for age z score)ed and , stunting (height for age z score)ed, children among paediatric inpatients across 16 hospitals (N = 832).

Anthropometry N (%)	≤ -1	≤ -2	≤ -3
BMI z score	256 (30.8)	122 (15)	45 (5.5)
Weight for age z sore	246 (29.6)	114 (13.8)	53 (6.4)
Height for age z score	226 (27.2)	97 (11.9)	49 (6.0)

Table 5: Associations between patient demographics and z scores among 832 paediatric inpatients across 16 hospitals¹

Demographic	BMI		Weight for age		Height for age	
characteristics	z core		z score		z score	
	B (SE)	p-value	B (SE)	p-value	B (SE)	p-value
Gender	-0.024 (0.128)	0.55	-0.012 (0.120)	0.75	0.007 (0.128)	0.87
Age	0.128 (0.246)	0.003*	0.191 (0.001)	<0.001*	0.136 (0.001)	0.002*
ATSI status	0.014 (0.208)	0.74	-0.049 (0.195)	0.23	-0.129 (0.207)	0.002*
Tertiary hospital	0.183 (0.199)	<0.001*	0.164 (0.186)	<0.001*	0.081 (0.198)	0.05*
Diagnosis						
Oncology	0.027 (0.184)	0.51	0.022 (0.172)	0.58	-0.024 (0.183)	0.56
Cystic fibrosis	-0.089 (0.332)	0.04*	-0.081 (0.312)	0.05*	-0.038 (0.331)	0.38
Gastroenterology	-0.031 (0.227)	0.48	-0.056 (0.214)	0.19	-0.048 (0.227)	0.27
Surgery	0.102 (0.341)	0.01*	0.096 (0.304)	0.01*	0.029 (0.341)	0.46
Cardiac	-0.112 (0.285)	0.007*	-0.136 (0.265)	0.001*	-0.107 (0.284)	0.01*
Admission:						
Surgery	-0.123 (0.244)	0.03*	0.033 (0.227)	0.54	0.168 (0.243)	0.003*
Gastroenterology	-0.045 (0.434)	0.33	-0.062 (0.409)	0.16	-0.002 (0.441)	0.96
Infection	-0.072 (0.256)	0.16	0.046 (0.240)	0.35	0.158 (0.256)	0.002*
Other	-0.183 (0.202)	0.003*	-0.088 (0.189)	0.15	0.070 (0.202)	0.26

¹Adjusted for primary diagnosis, reason for admission, gender, age and ATSI status

	Malnutrition (BMI z score ≤ <u>-</u> 2)	Wasting (Weight z score ≤ <u>-</u> 2)	Stunting (Height ≤ <u>-</u> 2 z score)	Nutrition <mark>al</mark> risk (PYMS ≥ 2)	Overweight/obese (BMI z score ≥ 1.036)
Gender (Female)	0.92 (0.60 – 1.40)	0.93 (0.59 – 1.47)	0.67 (0.42 – 1.10)	1.00 (0.69 – 1.44)	0.93 (0.03 – 1.36)
ATSI status	1.32 (0.74 – 2.35)	1.68 (0.92 – 3.05)	2.94 (1.60 – 5.43)*	0.91 (0.50 – 1.68)	1.14 (0.63 – 2.07)
Regional hospital	2.23 (1.29 – 3.84)*	2.19 (1.23 – 3.93)*	1.16 (0.61 – 2.21)	1.20 (0.70 – 2.06)	0.37 (0.20 – 0.70)*
Diagnosis					
Oncology	1.10 (0.57 – 2.13)	0.56 (0.24 – 1.32)	0.56 (0.22 – 1.42)	2.14 (1.29 – 3.54)*	1.08 (0.62 – 1.89)
Cystic fibrosis	1.48 (0.40 – 5.54)	0.50 (0.06 – 4.12)	0.53 (0.06 – 4.36)	0.35 (0.13 – 0.94)*	0.09 (0.01 – 0.71)*
Gastroenterology	0.88 (0.36 – 2.14)	1.27 (0.54 – 2.97)	1.25 (0.49 – 3.23)	1.95 (1.02 – 3.73)*	0.45 (0.19 – 1.10)
Surgery	NA	0.26 (0.03 – 2.06)	0.71 (0.15 – 3.32)	0.25 (0.05 – 1.12)	3.28 (1.34 – 8.03)*
Cardiac	4.03 (1.85 – 8.73)*	5.05 (2.23 – 11.43)*	2.28 (0.88 – 5.89)	1.10 (0.33 – 3.70)	0.83 (0.32 – 2.17)
Admission					
Surgery	0.86 (0.47 – 1.58)	0.34 (0.16 – 0.71)*	0.26 (0.11 – 0.63)*	0.80 (0.48 – 1.36)	1.30 (0.77 – 2.21)
Gastroenterology	0.30 (0.03 – 2.32)	0.98 (0.27 – 3.59)	0.93 (0.21 – 4.04)	1.53 (0.49 – 4.81)	0.98 (0.29 – 4.81)
Respiratory	0.50 (0.25 – 0.99)*	0.55 (0.29 – 1.07)	0.99 (0.54 – 1.85)	1.70 (0.87 – 3.32)	1.60 (0.88 – 2.93)
Infection	0.76 (0.40 – 1.43)	0.38 (0.18 – 0.74)	0.29 (0.62 – 2.21)	1.41 (0.82 – 2.06)	1.47 (0.84 – 2.58)

Table 6:5 Associations (Odds ratio (95% CI)) between patient demographics and malnutrition, wasting, stunting, nutritionalal risk

CI, confidence interval. NA, not available.

* Significant p < 0.05