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ABSTRACT 

 

Dense suspensions of solid particles in Newtonian fluids exhibit a variety of non-Newtonian 

behaviors depending on the shear stress applied to the suspension and the particle mass fraction (m). 

Suspensions at sufficiently high m shear-thicken dramatically and eventually shear jam, showing behaviors 

typified by solids. But, little is known about how dense suspensions relax out of this stressed rheological 

state. To understand the relaxation behavior of a cornstarch/water dense suspension, samples are prepared 

at different m, in the range that shows dramatic shear thickening, between 54.5% and 58.5% cornstarch. 

Each sample is formed into drops and kept in the stressed state through dynamic shearing using a B&K 

permanent magnet shaker, then allowed to relax. We show that dense suspensions relax with two distinct 

timescales. A short timescale that is independent of m, denoting the settling of the drop onto the flat surface, 

and a longer timescale that is governed by the viscosity of the dense suspension and increases as m 

increases above 55.75%. Our work provides an understanding of how a dense suspension relaxes out of a 

shear-thickened state. 
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1. Introduction   

The phenomenon of shear thickening in dense suspensions defies one’s intuition. A suspension of 

cornstarch particles and water (commonly termed Oobleck), if mixed in the right mass fraction (m), is the 

most prominent example of a strongly shear-thickening material and is used in elementary school 

classrooms across America to inspire students’ curiosity. The awe it rouses by playing with the material or 

even running on it is due to the complex rheological behavior of dense suspensions: they can exhibit both 

liquid-like and solid-like properties depending on the stress applied to the material. 

An understanding of the mechanism behind this complex behavior has only recently started to emerge. 

It has been shown that dense suspensions are characterized by a number rheological properties: they are 

yield-stress materials – flowing only at stresses above a critical stress – and exhibit both discontinuous 

shear-thickening (DST) and shear-jamming (SJ) behavior as a response to an applied stress. The best way 

to visualize these different states is through rheology data. Figure 1 illustrates the three distinct trends of 

the viscosity response of a shear thickening dense suspension to a changing shear stress [2]. After the yield 

stress is reached (dashed line in Fig. 1) the dense suspension begins to flow. As stress is increased, the 

suspension begins shear thinning where particles not in contact move past each other easier and easier (blue 

region in Fig. 1) [2], until the viscosity reaches a minimum and the suspension behaves similar to a 

Newtonian fluid characterized by an almost stress-independent viscosity (red region in Fig. 1). Upon a 

further increase in stress, the particles become more tightly packed and begin to create frictional contacts 

leading to a linear increase of the viscosity with stress (green region in Fig. 1) [2]. This region is what is 

termed DST. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Rheological response of a 56% mass cornstarch and water dense suspension to an applied stress. 

Unlike Newtonian fluids, dense suspensions exhibit three distinct states when an increasing shear stress is 

applied. Dense suspensions are yield stress fluids; they only flow above a critical stress, called the yield 

stress, indicated by the dashed vertical line. In the blue region the suspension exhibits shear thinning behavior, 

where the viscosity decreases with increasing stress. In the red region the suspension behaves similar to a 

Newtonian fluid where the viscosity is practically constant with increasing stress. Lastly, the suspension shear 

thickens in the green region where increasing the shear stress leads to an increase in the viscosity. This shear 

thickening region is responsible for the unique behavior of dense suspensions. 

Discontinuous shear-thickening describes the strong increase in a fluid’s viscosity as the applied stress 

increases. Shear-jamming is a transition into a solid-like state, characterized by the appearance of a second 

critical stress below which the material does not move. Extensive experimental, numerical, and theoretical 

research on the rheology of dense suspensions has recently established the shear stress, rather than the shear 

1 
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rate, as the key control parameter for the state of the suspension [3,5,6]. In particular, it has been shown that 

rate-controlled experiments preclude the investigation of the steady-state DST regime, which is accessible 

only at a range of specific stresses; this is because the shear rate exhibits a discontinuous transition, while 

as the stress increases viscosity increases continuously. While rate-controlled experiments can determine 

the onset of DST, the full DST regime and in particular the SJ regime can only be probed by controlling the 

stress. The macroscopic behavior of shear thickening is the result of complex microscopic interactions. 

Shear thickening is the result of inter-granular repulsion and results from the dilation of the suspension [1]. 

When a weak shear stress is applied the grains in the suspension slide past each other with little resistance 

[1]. But if the shear stress is higher the inter-granular friction increases dramatically which can lead to an 

increase in dilation of the grains as well [1]. Suspensions with high enough m of particles exhibit the 

rheological states shown in Figure 1. With increasing m, the minimum viscosity (red region in Fig. 1) 

increases, as shown in Figure 2.  

 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

Figure 2: The viscosity of dense suspensions with varying cornstarch concentration m. The minimum 

viscosity, corresponding to the stress independent regime, increases as the cornstarch concentration m 

increases. The inset is the range of cornstarch concentration m that is applicable to this experiment. Over 

this range of interest, the minimum viscosity increases by two orders of magnitude. 

  The fascinating behavior of shear thickening dense suspension is not just a science class 

phenomenon. It can be used to potentially save lives. Kevlar when impregnated with a silica shear 

thickening fluid had improved projectile energy absorption compared to unaltered Kevlar [7]. This is 

believed to be due to the shear thickening on impact adding to the force required to pull the Kevlar threads 

past one another [7]. With more understanding of dense suspensions when they are shear thickening and 

when they are at rest could lead to improved ballistic body armor. Dense suspension liquid like equilibrium 

state could allow for body armor that fits the body’s contours better allowing for more coverage and greater 

comfort while not sacrificing protection with its shear thickening properties.   

  Such potential applications, however, cannot happen until the field gains a more complete 

understanding of dense suspensions. Previous work in the field has largely focused on the shear thickening 

property, and almost all of that work has looked into one side of the phenomenon: The papers cited here 

[1-7] and countless more focus on the mechanics and behavior of how a dense suspension gets into a certain 
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rheology state. The research has evolved from understanding the mechanics of the phenomenon [2] to 

developing a robust constitutive model for DST [1]. This study focuses on how a dense suspension sample 

vibrated at high enough frequency to cause large enough shear stress to “lock” the sample in its solid-like 

state relaxes to a state where such dynamic perturbation is removed. We show that cornstarch and water 

dense suspensions relax out of a shear thickened state through a two-timescale exponential relaxation.  

2. Experimental Methods  

To gain a better understanding of the relaxation behavior of cornstarch/water dense suspensions, we 

investigate samples at varying m of cornstarch, ranging from 54.5% cornstarch to 58.5% cornstarch. This 

range is chosen specifically for that the suspension maintains its shape as a ball during the experiment and 

that it could be mixed to a homogenous mixture (verified by visual and touch inspection) using a spoon 

and hand kneading. Below m = 54.5% the viscosity of the dense suspension is too low to form a ball and 

the sample flows. Above m = 58.5% the dense suspension is impossible to homogeneously mix. The six 

cornstarch mass fractions used throughout testing are m = 54.5%, 55.75%, 57%, 57.5%, 58%, and 58.5%. 

Samples are prepared by first calculating the mass of cornstarch needed for a suspension of specific m, 

keeping the volume of water constant at 50 ml. A clean plastic mixing bowl is placed on an electronic scale 

(accurate to 0.01g), zeroing the scale on the bowl to minimize confusion. The desired amount of cornstarch 

and 50 ml of water are poured into the bowl consecutively. These components are mixed at first with a 

plastic spoon and then kneaded liked bread by nitrite gloved hands until the suspension feels and looks 

homogenous. For the purpose of studying the effects of the background fluid viscosity, some samples were 

made by adding glycerol to the suspension to increase the viscosity, similarly to the study by Dr. Peters et 

al (2016). The same mixing process is followed for the glycerol water and cornstarch dense suspensions, 

the only variation is that glycerol and water are mixed before being poured onto to the cornstarch. Each of 

these samples is only used for three trials performed within a time window of 5-10 minutes to ensure they 

do not dry out during use and change m. 

The experimental setup, shown in Figure 3, allows for a precise control of the start time, an unobstructed 

view of the relaxation of the dense suspension over time, and easy cleaning/setup for repeated trials. Precise 

control over the start of the experiment is obtained through the use of the B&K V203 permanent magnet 

shaker, which when operated at a 40 Hz sine wave with an amplitude of 7.2 volts keeps the sample 

bouncing in a stressed state until it is turned off. A screw on laser cut acrylic platform allows for an 

unobstructed view and easy setup. Two FLIR Grasshopper3 cameras synchronized with FlyCapture2 SDK 

software capturing at 9 frames per second are used for data collection.  
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Figure 3: The experiments base is a B&K V203 permanent magnet shaker with an input of a 40 Hz sine 

wave with an amplitude of 7.2 volts. This input is found through trial and error but ensured the suspension 

remained excited until t=0. The cornstarch dense suspension is dropped onto a 0.127 m x 0.127 m acrylic 

platform with the underside painted black to allow the white sample to stand out. The experiment is capture 

using two FLIR Grasshopper3 cameras synchronized with FlyCapture2 SDK software at 9 frames per second.  

To investigate the relaxation behavior of the suspensions, 8-11 ml of the material is scooped out 

of the plastic bowl with a spoon. Using a gloved hand, the suspension is formed into a ball and placed on 

the center of the shaker. The shaker keeps the sample in a stressed state with a quasi-ball shape. After a 

few seconds of bouncing the shaker is turned off at t=0 and the relaxation behavior of the sample is imaged. 

To quantify this relaxation of the dense suspensions with different m, we calculate the area of the drop for 

each time step, as shown in Figure 4 for the area at t=0 and the final area. 

 

 

 

 

 

 

 

 

Figure 4: The visualization of drop areas, to be used in later analysis of data. Image a) and b) are the binarized 

photographs collected during the experiment by the vertical FLIR Grasshopper3. They represent the areas a0 

(time t = 0) and af  (end of experiment) respectively. The red outlines represent the area calculated at each 

time. 

The spreading behavior exhibits large variations for the range of cornstarch concentrations m 

investigated. To compare the relaxation behavior of different m and of drops of different initial sizes, we 

consider the change in area over time normalized by the total change in area, expressed as A(t)=(af -a(t))/(af-

a0), where af is the final area at the end of the spreading and a0 is the initial area at t=0. t=0 corresponds to 

when the shaker is turned off and the drop impacts the platform. t=final corresponds to the end of the 

experiment when the drop is no longer is visually spreading ~15-20s after t=0.   

The percent area change data exhibits a double exponential decay, Equation (1), which suggests 

two distinct relaxation processes. 
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𝐴(𝑡) = B ∗ e
−

t

τ1 + (1 − B) ∗ e
−

t

τ2      (1) 

In addition to quantifying the radial expansion of the drop, our two-camera synchronized setup 

allows us to examine the relaxation behavior of the side profile of the sample. Figure 5 describes how we 

first, similar to the area, have to take the raw tiff images and turn them into quantitative data. Since the 

side profile has complex shadows and cannot be binarized, the outlining is done by hand (yellow outline 

Fig. 5 a). This outline is a good representation of the side profile with an error of a few pixels due to user 

imprecision.  This outline is then filled and the background cleared to allow for the plot profile tool to 

determine the average height (Fig. 5 b). 

 

 

 

 

Figure 5: The process to measure the side profile average height of the drop at a given time. Photograph a) 

shows a m =55.75% drop at t=τ2 outlined using ImageJ. Photograph b) is the same image cropped to size 

with the background cleared and the outlined side profile filled with white. The image in b) is then cropped 

and exported to excel using the plot profile tool and the pixel height is averaged over the length of the drop.   

While there are many advantages to the experimental setup, some potential causes for error 

include: due to the randomness of the bouncing ball, the sample is not always the same distance from the 

side camera. There is ~1.5 mm change in scale from the front edge of the platform to the rear edge. This is 

small compared to the side profile measurements but should be noted. Also, the limited frame rate and fast 

changes occurring near τ1 make it almost impossible to have an image at exactly τ1. But, by τ2 the drop is 

in a quasi-equilibrium state so being up to 0.06 s off is acceptable, making this type of measurement only 

useful for τ2. When bouncing before the shaker is turned off at t=0, the sample would often leave little 

droplets behind. This leads to discontinuities in some of the area measurements, as the area changes when 

a droplet is absorbed. Lastly, due to the limitations in mixing and ball formation, experiments are only 

conducted in a limited range of m compared to that tested in rheology. These potential errors should be 

noted but still allow for useful data collection. For example, even with some imprecision the side profile 

height is still an important measurement in our understanding of relaxation, it shows up in the rescaling for 

estimated viscosity late in the paper and helps us determine what sets the final size of the drop. 

3. Results and Discussion  

The progression of the experiment once the sample is in the stressed state is captured in Figure 6. 

The area of the drop as imaged from above changes drastically over the course of the experiment. The drop 

spreads out on the plate radially as time increases until it reaches a final size in (6e top image). The 

relaxation is further observed from the side, where the stressed sample impacts the plate then begins to 

thin and expand horizontally. Immediately following impact (6b & 6c) the drop seems to settle on onto the 

platform with little radial expansion. But from the side we see the drop fill in the ridges are not in contact 

with the platform on impact by 6c. The side view also appears to show the drop reaching a final state.   
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Figure 6: One trial of m = 55.75% from side (bottom) and top (top) view. Time increases from left to right 

with a) before t=-0.x s, b) t=0 s, c) t=0.2 s, d) t=0.78 s, e) t=4.0 s. The sample in a) is bouncing in a quasi-

ball shape before the start of the experiment while the shaker is on. After t=0, notice the drastic changes in 

height and area during the first second of relaxation, b) to d). 

A(t) decreases with time, indicating the spreading of the suspension, as shown in Fig. 7(a) for three 

different m. As m increases (black to blue to red) the drop spreads slower. This is shown by the decrease 

in slope as the m increases because the area changes less per time step. Equation (1) describes the 

normalized area well. It maintains a close fit until the previously discussed discontinuities disrupt the data, 

as the sample absorbs other droplets. To understand the parameters that govern the relaxation, we further 

vary the solvent viscosity by replacing the water with a glycerol/water mixture that has a viscosity of 20x 

that of water. Increasing the solvent viscosity leads to slowing down the drop’s spreading because the 

suspensions viscosity increases with the solvent viscosity. This equates to how a drop of honey spreads 

much slower than a drop of water. As shown in Figure 7(b) the glycerol/water suspension (open circles) 

has a much slower relaxation than the water suspension (closed circles). 
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Figure 7: Temporal evolution of the drop area. a) representative trial at m = 54.5% (black), 57% (blue), and 

58.5% (red), with each trial’s fit of Equation (1) overlayed in green. b) comparison between the relaxation of 

m =54.5% in a water/glycerol mixture (blue) and in water (black). The inset shows the same data with both 

linear axes. 

  The data clearly shows variation in the behavior as the m changes. The nontrivial double 

exponential fit of Equation (1) leaves us with two distinct time scales for each m. This raises some 

important questions about how the cornstarch dense suspension relaxes. What governs these two 

timescales? What do they represent?  

  First, we explore how the drops of different m qualitatively change throughout the experiment. 

Figure 8 shows the relaxation at key times; Fig. 8 a) is t=0, Fig. 8 b) is t=τ1 , and  Fig. 8 c) is t= τ2 , for  m 

= 54.5% (blue), 57% (orange) and 58.5% (gray). As time progresses all the m have a similar increase in 

radial spreading and thinning of the side profile. At t=0, 57% and 58.5% look similar with the drop still 

maintaining a quasi-ball shape. By contrast, 54.5% has already deformed out of the ball shape (more to be 

discussed later). By τ1 all m show a slight decrease in side profile height with relatively little radial area 

change. As the samples reach τ2 the shape is practically static in a quasi-equilibrium state, but the drops 

have radially expanded and their side profiles have thinned. At this timescale, lower m expand greatly from 

the initial drop’s area and thin to just a sliver. 57% has thinned and expanded noticeably but less than the 

54.5% drop. While the 58.5% drop has changed relatively little with some thinning and radial expansion.  
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Figure 8: Photographs of key moments in relaxation. The columns represent; a) t=0, b) τ1, and c) τ2. The 

rows differentiate three m’s of 54.5% (blue), 57% (orange), and 58.5% (gray). The vertical camera view is 

on top and the horizontal camera is the photographs on the bottom in each image pair. Notice the flattening 

of the drop from left to right as time increases.  

  The qualitative analysis shows the differences in these two timescales. τ1 happens shortly after t=0 

and is characterized by a decrease in thickness with no significant change in radial area, except for m 

=54.5% (to be discussed later). τ2 occurs later and is typified by a substantial decrease in thickness and 

increase in radial area. Visually τ2 has a larger variation in thickness and radial area as m changes. τ1 

appears to be similar to the time scale studied by Dr. Boyer et al. (2016). This study focused on the 

momentary equilibrium state found right after impact of a drop of dense suspension on a flat surface [4]. 

Although the work mainly focuses on this fast time scale ~ τ1, they do mention observing relaxation after 

that initial time scale ~τ2 [4]. This provides important semi-verification of the two timescale fit. To better 

compare with Boyer’s results, we explore τ1 quantitatively in Figure 9.  

  The short timescale τ1, is explored in Figure 9 by first comparing the initial 8-11ml drop 

experiments with varying m (red Fig. 9 a) & b)) to τ1 of drops with varying size.  τ1 is constant across all 

m and drop sizes, as shown in Fig. 9 a). τ1 is further constant if the viscosity of the dense suspension is 

increased by introducing glycerol to the water/cornstarch dense suspension, as shown in Fig. 9 b).  
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Figure 9: Comparison of τ1 at different mass fraction. a) τ1 is independent of drop size for drops of 8-11 ml 

(red), 8 ml (blue), 2.5 ml (green), 25 ml (yellow), in agreement with Boyer [4].  b) τ1 is independent of the 

solvent viscosity, as shown by comparing a cornstarch dense suspension in a glycerol/water mixture with 

20x the viscosity of water (blue) and a cornstarch dense suspension in water (red). The large variation in the 

data is due to the frame rate of the camera being limited to 9 Hz.   

  Since τ1 exhibits no statistically significant change as m increases it represents a relaxation that is 

universal across all m. Either what occurs does not depend on the properties that vary with m (ie: density, 

viscosity, and distance between particles) or the changes cancel out. To determine what is governing this 

timescale we add glycerol, similarly to Peters et al. 2016, which increases the background viscosity of the 

suspension with no undesired chemical effects [2]. The 64% glycerol/water mixture produces a 

background viscosity of ~ 20 times that of water. Rejamming describes the material compressing as it 

contacts the platform leading to an increase in shear stress leaving the suspension in it jammed (solid-like) 

state. If τ1 is a result of rejamming after impact, we expect that this would lead to large increase in τ1 due 

to increasing the viscosity but keeping the density and distance between particles fixed.  This reasoning of 

τ1 is that it remains constant across all m because viscosity distance between particles change at a similar 

rate. The similar rate leading to cancelation could be thought of as lower m means larger inter-particle 

distance, but lower viscosity means the particles can move faster. So, as m increases particle spacing 

decreases but so does particle speed. However, as seen in Figure 9 b) τ1 remains constant for the suspension 

in the glycerol/water mixture. τ1 therefore represents the settling of the drop onto the flat surface, which is 

independent of any of the properties, and just represents the drop touching down onto the acrylic platform. 

This is in agreement with Boyer’s findings, which observed that while the deformation after impact 

depends on the size of the drop, all drops regardless of size show similar behavior immediately following 

impact [4]. It is important to note that this work used dense suspensions at much lower mass fractions and 

the drops were dropped from much higher heights. This similar behavior and timescale of deformation is 

similar to our τ1. 

  With τ1 being independent of m we expect τ2 to show some variation with changing m to account 

for the differences we see in Figure 7 and 8. Additionally, we expect that the viscosity will govern τ2 to 

account for the two orders of magnitude change in viscosity in the rheology data (Fig. 2).  
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 The second longer timescale τ2 varies significantly as the m increases, as shown in Fig.10 a) & b) 

for 8-11ml drops (red).  Similarly to τ1, τ2 of the water/cornstarch drops is compared to drops of different 

size (Fig. 10 a)) and to drops of a glycerol/water/cornstarch (blue) suspension (Fig. 10 b) & c)).  τ2 changes 

greatly with the addition of glycerol. 54.5% and 58%’s τ2 s increased by ~4x (Fig. 10 b)). These higher 

data points are related by roughly the same nearly exponential slope as the water/cornstarch suspension is 

between 55.75% and 58.5%. This indicates that the viscosity governs τ2; indeed, normalizing τ2 with the 

suspension viscosity measured in rheology leads to a roughly constant value (Fig. 10 c)). 

Figure 10: Dependence of τ2 on m. a) τ2 for drop sizes of 8-11 ml (red), 8 ml (blue), 2.5 ml (green), 25 ml 

(yellow). b) τ2 depends on the solvent viscosity as shown by comparing a glycerol water and cornstarch 

dense suspension with 20x the viscosity (blue) and a cornstarch water dense suspension (red). c) 

Normalizing τ2 with the drop’s viscosity collapses the data to ≈ 0.3 
1

𝑃𝑎
. 

 The second timescale τ2 increases, as expected, with increasing m. This holds true for the mean of 

each m except 54.5% which is longer than 55.75%. The second timescale, unlike the first, is dependent 

on the viscosity of the dense suspension; when glycerol is added to the cornstarch and water dense 

suspension, τ2 increases to 4 times that of the unaltered cornstarch and water dense suspension. The adding 

of glycerol to the suspension only effects the viscosity therefore confirming that the viscosity is the driving 

factor behind τ2 ‘s behavior. 

 Drop size does not impact τ1, and it was assumed the same would be true for τ2 . But, while m 

=54.5% does largely overlap for all drop sizes there is a slight increase. m =58% has a consistent increase 

as all new data shifted upward. The exact reason for this shift is unknown but currently we believe it is due 

to the slight variation in moisture content of the two cornstarch buckets used. The drop size variation data 

used a new bucket compared to the original 8-11 ml data. This variation could explain the shift we are 

seeing but further study will be necessary to confirm this. 

 To verify our findings, we compare our data to the rheology data by converting the timescale to 

an effective viscosity. The stress is proportional to viscosity times the shear rate, η*𝛾̇ , and we express the 

shear rate as shown in Equation (2), accounting for the spreading by using the radial area the diameter’s 

rate of change, 𝐷̇ and the height h  

γ̇ =
Ḋ

h
=

D

τ2h
      (2) 

 After τ2 the sample is in quasi-equilibrium with relatively little change. The only force acting on 

the spread out sample is then the gravity, which is balanced by the stress times the area of the material 

since no acceleration is occurring. So at τ2 we start with Equation (3). 

ρVg=σA      (3) 
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 Replacing σ with η*𝛾̇, plugging in Equation (2), and simplifying gives Equation (4). 

𝜌ℎ2𝑔𝜏

𝐷
=  𝜂      (4) 

 Since the volume is constant, we can rewrite Equation (4) as Equation (5).  

η =
bh2

2.5gρ

V.5 τ2      (5) 

 Equation 5 relates τ2 to viscosity using its side profile height h (discussed later), volume V, density 

ρ, and a correction factor b ~0.32 that is determined by shifting the data on top of the rheology data, as 

shown in Figure 11. In our concentration range of interest, the minimum viscosity from rheology (red) 

increases by two orders of magnitude. The estimated viscosity, from Equation (5), for the water/cornstarch 

drops (blue) and for the glycerol/water/cornstarch drops (green) matches the viscosity from rheology well, 

particularly in the range of m = 55% to 58.5%. As in previous data 54.5% is an outlier and does not rescale 

properly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Comparison between the viscosity estimated from τ2 and the minimum viscosity measured in 

rheology. The data from both the cornstarch water dense suspension (blue) and the cornstarch water and 

glycerol dense suspension (green) collapse onto the minimum viscosity from rheology (red). The m =54.5% 

point is an outlier in the data possibly due to premature relaxation before t=0 in the experiment.  

How well the estimated viscosity from the rescale fits the minimum viscosity of the rheology data 

emphasizes how important viscosity is to this timescale and provides a sanity check that the findings of 

this experiment align with the previously taken rheology data.  Interestingly, the close agreement at higher 

concentration with the minimum viscosity points to the relaxation between τ1 and τ2 being governed by the 

Newtonian regime of the dense suspension behavior, as the Newtonian regime defines the minimum 

viscosity for each m. 

The unexpected behavior of 54.5% leads us back to the images. Most trials of the 54.5% are already 

stuck to the acrylic platform before t=0, which is seen in Figure 7, where the left side of the sample has 

already begun to relax at t=0. Since some of the sample is not in an excited state at t=0 the relaxation we 

see is different than that of the other m. This prestart relaxation is also seen in the 54.5% glycerol/water 

suspension. The relaxation might explain the different behavior we see in the data and is likely due to 

54.5% being the lower bound of our ball formation m, which likely needs a different shaker input to 

remain excited. 
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 So far, the focus of our discussion has been on the area’s radial relaxation. The side profile height, 

however, also has a story to tell. To compare the white and black images discussed in Figure 4 we center 

and overlay several trials in Figure 12. The whiter the area, the more drops it occurs in. Images a, b, and c 

are the average drop shapes for m =54.5%, 57%, and 58.5%, respectively. As m increases, so does the 

side profile height. We note that the highest and lowest concentrations exhibit lesser variation between 

trials than the intermediate concentrations. The side profile of the 54.5% drops is long and thin with 

shallow edges, distinct from the original ball shape, while side profile of the 58.5% drop is round and tall, 

retaining some of the features of the original ball shape. 

Figure 12: Side profiles of suspensions with m =54.5% (a), 57% (b), and 58.5% (c) at τ2. The height of the 

side profile increases as m increases and the profile maintains its initial circular shape the more the m is 

increased. The images all have the same scale. 

At lower m, 54.5% and 55.75%, the sample spreads out more and becomes thinner similar to the 

shape of a pancake. At the highest m, 58% and 58.5%, the sample retains its ball like shape with steep 

edges and with little radial spreading. At intermediate concentrations, 57% and 57.5%, the sample has a 

shape that combines the two; some trials spread out more, others remain closer to a ball, some do some 

of both.  

The variation of profile and height brings to question why these samples stop spreading; why do 

they not spread like water until the cover the whole platform? At equilibrium when the drop has stopped 

spreading the normal stress of the suspension times the area is equal to the force from gravity. The shear 
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stress of the suspension, naturally, is expected to scale as this normal stress. Due to dense suspensions 

being a yield-stress material the spreading ceases once the suspensions stress reaches the yield stress 𝜎𝑦, 

because below the yield stress the suspension will not flow. This equilibrium yields Equation (6). 

σy

ρg
= h        (6) 

  Equation (6) again allows us to compare our data to the yield stress measured in rheology (in Fig. 

13. a)). Notice the near tenfold increase in yield stress as m increases from 56% to 59%. We use equation 

(6) to estimate the side profile height from the rheology yield stresses and compare it to the side profile 

heights measured at τ2, as shown in Fig. 13 b) where we report the height at τ2 estimated from the yield 

stress (blue) and the side profile height (red). They exhibit a similar dependence on the cornstarch 

concentration but are shifted numerically. 

Figure 13: Comparison between the experimentally determined side profile height at τ2 and a simple model 

for the height from the rheology determined yield stress. a) yield stress determined from rheology in the 

relevant range of m. b) height estimated from the yield stress using equation (5) (blue) and measured side 

profile height (red). 

 The measured side profile height and the estimated side profile height from rheology data have a 

similar dependence on the cornstarch concentration, but they are considerably far apart in value. Part of 

this could be due to a time constant, like τ2, representing 63% of the decay so the drop could continue to 

thin over time. This small thinning, however, would unlikely account for the large difference. The 

difference indicates that while the equation (6) captures how the height changes with m, other 

contributions from surface tension or friction might be important as well. Additionally, equation (6) 

assumes a homogeneous stress field and that the normal yield stress and the shear yield stress are equal. 

We expect the shear and normal yield stress to scale but not be numerically identical. The similarity 

between the two data sets suggests that yield stress, while not the only factor, plays a role in determining 

the relaxed state of the drop. It will be interesting to explore what other properties affect the side profile 

height to gain a better understanding of that the control parameters governing the relaxation of a dense 

suspensions.  

 While creating the rescaling for Figure 10, we noticed that the height at τ2 and τ2 itself have an 

uncannily analogous dependence on the cornstarch concentration, as shown in Fig. 14; the two data sets 

superimpose almost perfectly, except for m =54.5% likely due to similar reasons as mentioned before. 
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Figure 14: The side profile height at τ2 (blue) and τ2 exhibit a similar dependence on the cornstarch 

concentration. 

  We hypothesize that the similar functional form results from both parameters being related through 

the yield stress, which halts the spread of the sample and determines the properties characterizing the final 

state of our experiment. 

4. Conclusions  

  We show that dense suspensions exhibit a double exponential relaxation characterized by two 

distinct timescales. The shorter timescale, τ1, is independent of the cornstarch concentration m and denotes 

the settling of the drop onto the flat surface. The longer timescale, τ2, increases as m increases above 

55.75% and is governed by the viscosity of the drop. The drop of dense suspension continues to spread 

until the gravitational forces driving the spreading are balanced by the yield stress of the suspension.  

   Future studies could expand on this data by exploring the relationship between the side profile 

height and the second timescale of the relaxation. Understanding this relationship would further unlock the 

exact mechanisms that govern dense suspension relaxation. Additionally, to expand on the results a similar 

experiment could be performed on other dense suspensions to determine if the double exponential behavior 

is general to all dense suspensions.   
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