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Machine learning with physicochemical
relationships: solubility prediction in organic
solvents and water
Samuel Boobier 1, David R. J. Hose 2, A. John Blacker1 & Bao N. Nguyen 1✉

Solubility prediction remains a critical challenge in drug development, synthetic route and

chemical process design, extraction and crystallisation. Here we report a successful approach

to solubility prediction in organic solvents and water using a combination of machine learning

(ANN, SVM, RF, ExtraTrees, Bagging and GP) and computational chemistry. Rational inter-

pretation of dissolution process into a numerical problem led to a small set of selected

descriptors and subsequent predictions which are independent of the applied machine

learning method. These models gave significantly more accurate predictions compared to

benchmarked open-access and commercial tools, achieving accuracy close to the expected

level of noise in training data (LogS ± 0.7). Finally, they reproduced physicochemical rela-

tionship between solubility and molecular properties in different solvents, which led to

rational approaches to improve the accuracy of each models.
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Solubility is a critical physical property of organic compounds
in drug development, e.g., availability, distribution, meta-
bolism, excretion and toxicity (ADMET)1,2, protein engi-

neering3–5, chemical process design6, synthetic route prediction7,8,
extraction and crystallisation9,10. Due to its importance in envir-
onmental predictions, biochemistry, and agrochemical and drug
design, aqueous solubility prediction has been the subject of
intensive research11. Previous solubility prediction approaches
include fragment-based semi-empirical methods, e.g. general
solubility equation12, UNIFAC13, thermodynamic cycle14, ther-
modynamic parameters, e.g., UNIQUAC15,16, Hansen solubility
parameters and Hildebrandt solubility parameters17,18, different
molecular dynamics methods19–21, and first principle ab initio
calculations (COSMO-RS)22,23. More recent developments
focused on quantitative structure-activity/property relationship
(QSAR/QSPR)24,25, through statistical analysis and machine
learning techniques26–28. Despite these advances, accurate pre-
diction of solubility is still a major scientific challenge, as exem-
plified by the two solubility challenges issued to the research
community in 2008 and 201929,30. This is due to the complex
nature of dissolution process, which involves lattice/sublimation
energy, solvation energy, ionisation of solute and solution phase
interactions. Each of these is a challenging property to predict and
can be quite computationally expensive31. Statistical and machine
learning approaches often employ a large number of descriptors
(>100)32, which has led to difficulties in interpreting and rationally
improving prediction models33. Finally, prediction is hindered by
the poor quality of experimental solubility data34, which are
affected by measurement techniques, and purity of solute and
solvents.

In this paper, we report our new approach to general solubility
prediction in organic solvents, which has been understudied, and
water using machine learning. In contrast to previous studies, a
small number of descriptors (14 in contrast to the usual >100
descriptors employed in QSPR models) were rationally selected
based on their relevance to the physicochemical aspects of dis-
solution process (Fig. 1a). Consequently, interpretable solubility
prediction models, which reproduce physicochemical relation-
ships between solubility and molecular properties in different
solvents, with excellent accuracy were developed. Furthermore,
these models were successfully validated against industrial targets
and those of the solubility challenges29,30. Finally, our results were
benchmarked against the AquaSol model26, EPI SuiteTM (the
official tool of the EPA)35, and COSMOtherm as the standard ab
initio tool for solubility prediction36.

Results and discussion
Data curation. Solubility data were collected from Open Note-
book Science Challenge aqueous solubility dataset and the Reaxys
database. For this study, only solubility data of neutral solutes in
single component solvents were collected. While aqueous solu-
bility data are numerous, our search of the Reaxys database
resulted in a limited amount of data in organic solvents (Fig. 1b).
Thus, ethanol, benzene and acetone were chosen as the solvents
in this study to maximise the amount of training data and to
cover the entire range of solvent polarity. Although benzene is not
a commonly employed solvent in modern chemistry, it represents
non-polar solvents with sufficient data availability.

Analysis of LogS values for the collected solubility data showed
that while the range for LogS (measured in M) in water is −12 to
2, those in organic solvents are typically in the range of −4 to 1.
To provide a consistent comparison, a second aqueous solubility
dataset (Water_set_narrow, LogS=−4 to 1) was created from
the first dataset (Water_set_wide). Although an even distribution
of LogS values across the range in each dataset is preferable for

model training (Fig. 1b), given the limitation on data availability
no trimming based on LogS was carried out for the organic
solvent datasets (Ethanol_set, Benzene_set, and Acetone_set).

Molecular weight (MW) was found to be normally distributed
for all datasets, centred on MW= 200 with few above MW= 500
(Supplementary Fig. 4). For this study, compounds with MW>
504 were excluded to keep computational costs reasonable while
maintaining their relevance to synthetic intermediates in drug
discovery/development37. Interestingly, the distributions of
organic functional groups are similar between the datasets with
the exception of a higher percentage of halides inWater_set_wide
and Water_set_narrow and a higher percentage of sulphur
containing compounds in Benzene_set (Supplementary Fig. 5). A
wide range of functional groups were found including halogen, 3-
and 4-membered rings, although B and Si containing compounds,
which may be valuable synthetic intermediates, were absent.

Thus, five open-access and curated solubility datasets were
created for this study. Three are unique solubility datasets in
organic solvents. Each of these was split into a training set and a
validation set by LogS binning (Supplementary Note 4.1) and a
randomly even distribution of data to ensure the representative
nature of the validation set.

Descriptor development: In order to develop interpretable
predictive models for solubility in different solvents, a small set
of molecular descriptors, which represent solute-solute and
solute-solvent interactions, was selected. This small set of
descriptors will also benefit the statistical robustness of the
models given the relatively small size of the datasets. All 22
descriptors are summarised in Table 1, covering sum of thermal
and electronic energies of the solute molecule, solvation energy,
orbital interaction between solute and solvent, dipole moment
and charge distribution in the solute molecule, molecular
volume, Solvent Accessible Surface Area, molecular weight and
the number of atoms of the solute. Finally, the experimental
melting point was included as a reflection of the sublimation
energy of the solid form of the solute. Melting point prediction
is still highly inaccurate (RMSE ≈ 38 °C), rendering experi-
mental values a necessity38.

Correlation between the calculated descriptors were analysed
and summarised in Fig. 2a. The only observed significant
correlations were those expected between E0_gas, E0_solv,
DeltaE0_sol, G_gas, G_sol and DeltaG_sol, between gas_dip and
solv_dip, and between HOMO, LUMO, LsoluHsolv, and LsolvHsolu.
Similarly, the scree plots indicated >10 principal components were
needed to capture most of the variations in the descriptors
(Fig. 2b). Using an acceptable threshold of correlation R2 ≤ 0.9, the
descriptors N_atoms, E0_gas, E0_solv, DeltaE0_sol, G_gas, gas_-
dip, HOMO and LUMO (Table 1, in bold font) were removed.
Consequently, the trimmed down set of 14 descriptors (white
background) was taken forward for solubility prediction models.

Metrics for predictive models: In order to build and improve
predictive models, reliable metrics to evaluate their accuracy and
reliability are essential. Common practice in machine learning
relies on R2 and RMSE to evaluate models. Both these values are
highly dependent on the LogS range the model is applied to.
Furthermore, despite consistency within in-house small data-
sets29, a typical experimental error of ± 0.5–0.7 for LogS in
literature aqueous solubility measurements has been established
by Mitchell and Palmer34. These are due to variations in pH,
temperature and purity of solvents. Such errors in the training set
render R2 and RMSE less reliable in evaluating solubility
predictive models. Consequently, two new metrics were created
for our evaluation: % of predictions within LogS ± 0.7 and within
LogS ± 1.0 of experimental values (%LogS ± 0.7 and %LogS ±
1.0). The former reflects the maximum accuracy of the model
based on the available data and the latter the limits of the
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usefulness of the model as a guiding tool for process/product
development.

Evaluation and interpretation of models: Eight machine
learning methods, i.e. MLR (Multiple Linear Regression), PLS
(Partial Least Square), ANN (Artificial Neural Network), SVM
(Support Vector Machine), GP (Gaussian Process), RF (Random
Forest), ET (Extra Trees) and Bag (Bagging), were applied to all 5
datasets. Deep Neural Networks were not considered due to the

small size of the datasets. Parameters for each model were
optimised to maximise accuracy and avoid overfitting (Supple-
mentary Note 4). The optimisation and cross-validation results
are included in the Supplementary Notes. The split-test model
metrics are summarised in Table 2.

All four metrics (R2, RMSE, %LogS ± 0.7, %LogS ± 1.0) clearly
showed that linear regression models (MLR and PLS) perform
poorly in solubility prediction compared to non-linear models.
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Fig. 1 Concepts of solubility prediction and data availability. a Physical aspects of dissolution process of solid and corresponding descriptors. b Curated
solubility datasets for this study and their LogS distributions (N= number of datapoints, T= number of datapoints in training set, S= number of datapoints
in test set).
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Importantly, across the five datasets, the performances of the five
non-linear models are quite comparable and consistently good. In
most cases, the standard deviations between their metrics are very
small. The only exceptions are SVM, which gave notably better %
LogS ± 0.7 with Water_set_wide and Acetone_set, and GP with
Water_set_narrow. These suggested that the overall accuracy of
these predictions is less dependent on the machine learning
model and is more dependent on the descriptors and data quality.
This is further supported by good agreement (R2 > 0.9) between
individual predictions from each of the six non-linear methods
(Supplementary Figs. 45–49). Consistent with this hypothesis, the
R2 and RMSE metrics for the models for Ethanol_set and
Acetone_set are much poorer compared to those of Water_set_-
wide, Water_set_narrow and Benzene_set, despite little decrease
in %LogS ± 0.7 and %LogS ± 1.0. These reflect the quality of
experimental solubilities in ethanol and acetone and the poor
reliability of R2 and RMSE. Both solvents are often contaminated
with water and acetone is a volatile solvent (b.p. 56 °C), leading to
larger experimental errors in solubility measurements.

The non-linear models coped well with these datasets, with %
LogS ± 0.7 = 60-80 and %LogS ± 1.0 = 74-90 for (LogS=−4–1),
maintaining their effectiveness as predictive models for novel
compounds. The best models were obtained with Benzene_set,
with the highest %LogS ± 0.7= 79.8 and %LogS ± 1.0= 90.4.
When the predicted errors for each solubility by GP was included,
very high values of %LogS ± 0.7 > 91.6 and %LogS ± 1.0 > 93.5
were obtained, further supporting our hypothesis that the
accuracy of the predictions was limited by the descriptors and
training data themselves. The distributions of predicted errors for
each prediction using GP are shown in Fig. 2c–g, confirming the
inherent errors LogS ± 0.7 in the training data. Finally, there was
an expected deterioration of the R2 metric, although the other
three metrics were improved, moving from Water_set_wide
(LogS=−12–2, with R2 value comparable to those achieved by
other methods)28,32,39,40 to Water_set_narrow (LogS=−4–1).
When the predictions for Water_set_wide were narrowed to
LogS=−4 –1, the obtained metrics are very similar to those of
Water_set_narrow (Table 2, entries 5-8).

Analysis of the outliers in each model using ET algorithm
(Supplementary Note 4.9), chosen for its consistent performance
with all datasets, showed that they often include acidic and basic
functional groups, extended conjugate/aromatic system, azo
group, long and flexible carbon chains, or high density of polar
functional groups. These are less well presented in the training
data. The distribution of LogS of outliers and the BertzCT
complexity descriptor for the inliers and outliers (Supplementary
Fig. 56)41 also indicated that the outliers are on average more
complex than the inliers and their LogS values are more likely at
the limits of the LogS range, as expected from the uneven
distribution LogS values in the datasets.

The interpretability of the models is one of the key aspects of
their validation. As the six non-linear methods produced
comparable results, the analysis was again carried out for the
ET models. The effect of leaving one descriptor out on the model
metrics were evaluated for all five datasets (Fig. 2i and
Supplementary Figs. 59–61). Similar trends were observed for
all 4 metrics: (i) minor changes for Water_set_wide and
Water_set_narrow, and (ii) significant decrease in accuracy with
Ethanol_set, Benzene_set, and Acetone_set when melting points
are excluded. This decrease is more pronounced with benzene
than with the two polar solvents, ethanol and acetone.

Furthermore, feature importance plots of the 5 ET models
showed very high dependence of the models for Ethanol_set,
Benzene_set, and Acetone_set on melting point (Fig. 2j and
Supplementary Fig. 62). The models for Water_set_wide and
Water_set_narrow showed a more even distribution ofT
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importance across all the descriptors. In solvents other than
benzene, MW, molar volume, SASA, charges on heteroatoms,
which are linked to solvent-solute interactions, were also given
high importance (Supplementary Figs. 59–62). These analyses
showed crucial insights into the factors controlling solubility in
the four solvents in this study. Aqueous solubility is dominated by
solvation energy and solvent-solute interactions, due to the high
polarity of water and its capability for hydrogen bonding42. Thus,
the importance of melting point as a descriptor is low. In contrast,
solubility in organic solvents is dominated by solute-solute
interactions in the solid form, i.e. sublimation energy. Conse-
quently, the models showed strong dependence on melting point,
which is the only descriptor included to explicitly describe the
solid state of the solute. As solvent-solute interaction is weaker in
benzene, with only Van der Waal forces being available, the
impact of removing melting point from the descriptor is more
pronounced. Thus, the prediction models showed strong agree-
ment with our understanding of the physical aspects of the
dissolution process.

Finally, the 14 descriptors were recalculated using the semi-
empirical method PM6 in order to evaluate the impact of the
lower computational cost to the accuracy of these models. The %
LogS ± 0.7 and %LogS ± 1.0 metrics for PM6 models are similar
to those of the DFT models with a few exceptions for datasets
with LogS= –1 to 4 (Supplementary Table 23), with the
exception of the models for Water_set_wide. With the highest
quality dataset Benzene_set, all metrics for PM6 and DFT models
are nearly identical. The total CPU time for PM6 calculation of
descriptors of 394 compounds is 219 hours, compared to 5458
hours for DFT descriptors.

Improvement of the models: While Fig. 2h indicated that the
accuracy of our predictions is close to that of the training data,
the values for %LogS ± 0.7 can still be improved. Based on our
hypothesis that the predictions are more dependent on the
descriptors than on the machine learning method, those which
have the highest impacts were considered for improvement.
SASA depends on the size of the probe and the conformer being
measured, but the variation is small. MW, molar volume, and m.
p. are fixed for each molecule, leaving charge descriptors and
solvation energy (for Water_set_wide and Water_set_narrow).
Thus, four methods were evaluated to rationally improve the
models: (i) by inclusion of conformers; (ii) by inclusion of
descriptors for the molecular charge surface; (iii) by using more
accurate calculation of the solvation energy (in water only) and
(iv) by consensus of predictions.

Inclusion of conformers (PM6, descriptors averaged by
population) did not result in any significant improvement to
the model metrics (Supplementary Table 25). Boltzmann
distribution based on the free energy of conformers indicated
that most molecules have one stable conformer which accounts
for more than 90% of the population, negating the potential
benefit this approach. Descriptors for the charge isosurface (95%
of the electron density, Supplementary Note 2.2.3) were included
with the original 14. The only strong correlations within this new
set of 27 descriptors were between Area2, Area3 and SASA as
expected. While some improvements were observed with the
metrics of the models for Acetone_set (Supplementary Table 17),
the new models generally gave similar results with much larger
computational cost.

Jensen and co-workers recently demonstrated that HF/SMD
(Solvation Model Density) give more accurate aqueous solvation
energy than other methods, e.g. IEFPCM and COSMO43. Thus,
we recalculated G_solv and DeltaG_sol using the HF/SMD
method and used these new descriptors to rebuild prediction
models for Water_set_wide and Water_set_narrow (Table 3).
Significant improvements to %LogS ± 0.7 and %LogS ± 1.0 were

observed with Water_set_wide for all six machine learning
methods. Notably, %LogS ± 0.7 increased 9.5% with ANN and
7.4% with Bag. For most models, approximately 70% of the
predictions are within LogS ± 0.7, as accurate as the training data.
The improvements obtained with Water_set_narrow were less
significant, but the metrics are consistently better than those
obtained with DFT/PCM method.

Finally, the similarity between predictions from different
models (Supplementary Figs. 45–49) suggests that the few wrong
predictions can be compensated through a wisdom-of-crowd
approach44. Consequently, the consensus predictions were carried
out for each compound in the validation set as the average and
median of the predictions using ANN, SVM, GP and ET. The
results are summarised in Supplementary Table 20. The
predictions for all narrow datasets (LogS= -4 to 1) showed
improved metrics compared to those of ET models. The
consensus mean predictions are slightly better than the consensus
median predictions, consistent with our assessment that the
predictions from all four methods are very similar, with few
outliers. Furthermore, the wrong predictions are not too different
from the experimental LogS values, negating the benefit of
median over mean. The best performance was observed with
Benzene_set, with 82.0% of the predicted solubilities inside LogS
± 0.7 and 90.4% inside LogS ± 1.0 (Supplementary Figs. 66 and
67).

Benchmarking and external datasets: Our models were
compared with standard prediction tools used in academia and
industry, employing the same evaluation datasets. For aqueous
solubility, AquaSol, which was developed based on undirected
graph recursive neural networks26, gave less accurate predictions
than our ET model, particularly at lower LogS values. EPI Suite, a
fragment-based tool35, performed even more poorly as expected.
Similarly poor results were obtained with COSMOtherm by
COSMOlogic45,46. For solubilities in ethanol, benzene and
acetone, COSMOtherm predictions were compared with our ET
models. In all three cases, COSMOtherm produced significantly
larger errors in its predictions, with multiple outliers. The results
are summarised in Fig. 3.

While our models performed better than the established tools,
a more rigorous test should be an application of the models to
new unrelated test sets. For this purpose, the solubilities of three
sets of compounds from AstraZeneca (in water, ethanol and
acetone, without m.p. for a fair comparison against COS-
MOtherm) were evaluated against their measured values
(Fig. 3n–p). As benchmarks, COSMOtherm was employed to
predict solubilities for the same compounds and the results are
shown in (Fig. 3q–s). The accuracy of water solubility predictions
using our ET model decreased compared to those of the
validation set, consistent with the increased in complexity and
higher frequency of functional groups in these compounds

Table 3 Model metrics for Water_set_wide and
Water_set_narrow using HF/SMD descriptors.

Dataset Method %LogS ± 0.7a %LogS ± 1.0a

Water_set_wide ANN 68.4 (+9.5) 84.2 (+5.3)
Water_set_wide SVM 72.6 (+1.1) 83.2 (+4.2)
Water_set_wide ET 69.5 (+3.2) 84.2 (+0.0)
Water_set_wide GP 70.5 (+2.1) 82.1 (+8.4)
Water_set_narrow ANN 70.4 (+1.7) 82.6 (−1.7)
Water_set_narrow SVM 68.7 (+3.5) 85.2 (+3.5)
Water_set_narrow ET 67.0 (+0.9) 81.7 (+0.9)
Water_set_narrow GP 73.9 (+0.9) 81.7 (+0.0)

aThe changes compared to those obtained using DFT/PCM descriptors are in brackets.
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Fig. 3 Benchmarking results against other predictive models. Predicted vs experimental LogS for Water_set_wide a ET model; b GSE model; c AquaSol
model; d EPI Suite 1 model, e EPI Suite 2 model; f COSMOtherm calculations; for Ethanol_set g, ET model; h COSMOtherm calculations; for Benzene_set i
ET model; j COSMOtherm calculations; for Acetone_set k ET model; l COSMOtherm calculations; and prediction results using datasets from AstraZeneca
m functional group distribution analysis for dataset from AstraZeneca and Water_set_wide; predicted vs experimental LogS for n ET model for AZ_water
(without m.p.); o ET model for AZ_ethanol (without m.p.); p ET model for AZ_acetone (without m.p.); q COSMOtherm calculations for AZ_water;
r COSMOtherm calculations for AZ_ethanol; and s COSMOtherm calculations for AZ_acetone.
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(Fig. 3m). However, predictions made by COSMOtherm are
much less accurate than ours in all three solvents. Importantly, all
predictions made by ET models in ethanol and acetone (when m.
p. is included, see Supplementary Table 32) were within LogS ±
1.0, albeit with small test sets.

In conclusion, we report the development, evaluation and
improvement of interpretable solubility prediction models in
organic solvents and water based on judicious interpretation of
the dissolution phenomenon into numerical representations
through physicochemical relationships. This approach, which
we named Causal Structure-Property Relationship (CSPR),
enabled the use of a small set of carefully selected descriptors
and smaller training datasets compared to models which employ
deep neural networks. Our models gave significantly more
accurate predictions compared to benchmarked open-access
and commercial tools, achieving accuracy close to the expected
level of noise in training data (LogS ± 0.7). Importantly, they
reproduced physicochemical relationship between solubility and
molecular properties in different solvents, which led to rational
approaches to improve the accuracy of each models.

Methods. Solubility data in water and ethanol were taken from
Open Notebook Science Challenge aqueous solubility dataset.
Further solubility data in ethanol and other solvents were
mined from the Reaxys database. Solubilities measured at
temperature specified outside the 14-30 °C range were dis-
carded. Each compound was identified by its InChIKey and
analysed using SMILES code. Where multiple measurements
were acquired for a molecule, obvious outliers (LogS ± 1.0 from
2 or more measurements) and polymorphs were excluded and
the median value of the remaining measurements was taken.
For this study, only solubility data of neutral solutes in single
component solvents were collected. Melting points were col-
lected from Reaxys and ChemSpider databases. Initial 3D
coordinates were generated with CIRpy47. Molecules were
optimised in gas phase with B3LYP/6-31+G(d) method using
Gaussian 0948. The solution phase optimisation was carried out
with an implicit polarisable continuum solvent model
(IEFPCM) or solvation model based on electron density (SMD),
pre-parametrised for each solvent.

Initial 3D structures were generated with Corina software and
then optimised at BP-TZVPD-FINE DFT level in COSMOConf45

to create the requisite input files for COSMOtherm. COS-
MOtherm was used to calculate the solubility, where the
sublimation energy was estimated via the inbuilt QSPR protocol
instead of reference solubility data.

For machine learning, data was pre-processed by scaling
descriptors to between 0 and 1, using the Python/scikit-learn
standard scaler protocol. MLR, PLS, ANN, SVM, RF, ET, and BG
were performed using scikit-learn. GP models were built using
GPy platform with error bars obtained to 1 standard deviation by
finding the upper and lower limits for the predictions which
encompassed 68% of the prediction distribution. In all cases,
radial basis function (rbf) was the best kernel. For correlation
between descriptors, Pearson’s R2 was calculated pairwise for
each descriptor combination using scipy python module. These
were plotted in 2×2 matrices as heat maps.

Data availability
The datasets from open literature, including calculated descriptors, in this manuscript
can be downloaded from this link: https://doi.org/10.5281/zenodo.3686212 Citations
should refer directly to this manuscript.

Code availability
Relevant Python code are included in Supplementary Note 7: Python code examples.
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