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Abstract

The fundamental problem of adhesion in the presencerfsice roughness and its effect on
the prediction of friction has been a hot topic for diesain numerous areas of science and
engineering attracting even more attention in receatsy@a areas such as geotechnics and
tectonics, nanotechnology, high value manufacturing, bibargcs etc. In this paper a new
model for deterministic calculation of the contact hetcs for rough surfaces in the presence
of adhesion is presented. The contact solver is &oouse Boundary Element Method (BEM)
that incorporates Fast Fourier Transform (FFT) fanetical efficiency. The adhesive contact
model considers full Lennard-Jones potentials and suirfeegration at the asperity level and
is validated against models in literature. Finally, the éfiésurface roughness on the adhesion
between surfaces was studied and it was shown that root meare gradient of surface
roughness can change the adhesive pressures irrespdcthe root mean square surface
roughness. We have tested two adheparameters based on Johnson’s modified criteria and
Ciavarella’s model. We showed that Civarella’s model introduces the most reasonable criteria
suggesting that the RMS roughness and large wavelength of esunfaoghness are the

important parameters of adhesion between rough surfaces.

Keywords: Contact Mechanics; Roughness; Adhesion; Lennard-Jones potential

1 Introduction
Adhesion is the term used when two surfaces are attrimcesth other due to different forces

such as inter-atomic Van Der Waals forces, electrostaiil capillary forces. The magnitude

of this force is often correlated to the nature ofrtieecules and the distance of separation
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between then(l). Often in engineering, in particular solid mechanics, adhes referred to
as the attractive forces between non-bonding atoms lecuaies of surfaces and the Lennard-
Jones is often used as a model potential providing a auaditdescription of intermolecular
forces to describe the attraction/repulsion as a fumatiotheir separation. When two real
engineering bodies come into contact, there will basad surfaces which are in physical
contact and the contact pressure is compressive. Depemdihg topography of the surfaces,
there will be a distribution of surface separationserthe nominal contact area. These
separations, if small enough (with respect to atomic dissyncan lead to attractive forces

between surface points.

In contact mechanics, there are numerous models o$i@dhsontact (2). In particular, there
are two widely-used analytical adhesive models both developesooth surfaces; namely
Johnson-Kendall-Roberts (JKR) (3) and Derjaguin-Muller-TopdDMT) (4). In JKR, it is
assumed that there is no adhesion outside the comegctad infinitely large pressures are
present at the border and inside the contact area. trasgrDMT assumes a Hertzian contact
area with consideration of adhesion and adhesion dodme not contribute to surface
deformations. Both models have their limitations in appbcatvhich makes JKR valid for the
case of soft materials and large radius of curvatnde@MT valid for stiffer materials with
small curvatures. There is a wealth of engineering probliais would sit outside these
constraints and also a high proportion of engineerimgacd problems involve rough surfaces.
David Tabor showed that the validity of the JKR and DMT ni®dan be assessed by the
Tabor parameter (n) (5) where JKR can effectively predict adhesion at laajeey of () and
DMT at smaller values. Maugis (6) developed a model basedeoDugdale approximation
using Lennard-Jones potentials and bridged the transitpbegaeen DMT and JKR which,
to-date, stays a more complete description of the aghesntact model for smooth surfaces.
Muller et al. (7) and later Greenwood (8) have developedrplate numerical solution for the
contact with adhesion by applying Lennard-Jones potentiakkastic deformation of solid
surfaces. Greenwood has shown that the load-displatenmem becomes S-shaped at Tabor

values of more than one.

A great challenge in modelling contact of engineering surfaidtésadhesion, is the irregular
nature of the surface topography which makes the applicafi@nalytical models almost
impossible. The pioneering work of Fuller et al. (9) shedt layhthe effect of roughness on

adhesion by development of an asperity-based adhesion r@ket. significant contributions
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in the field were reported by Perss@®) who used the self-affine fractal properties of the
surfaces and showed the dependency of adhesion on thédiatasions.

All the above-mentioned theoretical works have led to sigmitig increased understanding
of the nature of adhesive forces on the contact ohsest However, they lack deterministic
capabilities to account for the interactions of real serfapographies. In recent years, an
increase in computational power has resulted in the develapof advanced numerical
models that can calculate adhesive contact of detetiisisrface topographies. In a recent
contact mechanics challenge, Muser et al. (11) presentiecbanpared the results of different
numerical approaches for calculation of the adhesiveaconf a pre-defined experimentally
measured surface roughness. They have shown that nuraggcaaches such as Boundary
Element Method (BEM) (12), all-atom Molecular Dynam{t4D) (13) and Boundary Value
Methods (BVM) (14) can successfully calculate the congeablem with adhesion. In recent
years, there has been numerous works considering trectohtough surfaces with adhesion.
Rey et al. (15) developed a BEM based contact mechanicsl ipasied on Fast Fourier
Transforms by minimising the potential energy that issiina of elastic energy and adhesive
energy. Solhjoo and Vakis (13) have developed an MD mode¢ ube Embedded Atom
Method (EAM) that simulates surface roughness with atants gives a high accuracy in
contact area calculations and surface pressure, thaughctnsuming and limited with the
number of atoms considered for simulations. Pastewk#&ahbins (16Xeveloped a Green’s
function MD simulation to calculate non-adhesive contdabugh surfaces and proposed a

criterion for macroscopic adhesion based on the gegraetl material properties.

Other significant contributions were made by Ciavarellagarges of articles (2, 17, 18). They
correlated Bearing Area Model (BAM) and geometricalrgsgetions to adhesion via a simple
mathematical description (19). The model was reported t@lg: for an intermediate range
of Tabor parameters. Pohrt and Popov (20-22) develop&il/addntact mechanics model that
utilised a mesh-dependant detachment criteria for adhesitaat of rough surfaces which
was based on the solution of non-adhesive contacts. Ghadbharet al. (23) used the same
model and predicted the bouncing behaviour of elasto-plastiadimesive solids and showed
the significance of the effect of roughness in increashe energy dissipation. Bazrafshan et
al. (24) developed a BEM based contact mechanics model and anategp adhesive
interactions by means of Dugdale approximation and laterestibé effect of roughness and
adhesion on the stick/slip of dissimilar materials (25)di& and Dini (12) developed a

deterministic adhesive contact model using Multi-LeveliMmtegration (MLMI) and
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implemented adhesion by directly using Lenrdoties potentials and integrating that over the
length of computational nodes to better represent adheg&ssyses and to avoid convergence
issues due to the non-linear behaviour of the Lennard-jmbestial.

As discussed, the literature contains extensive and conisty evolving research in
mechanics of contacts in the presence of surface rosglared adhesion. Computational
models are becoming increasingly more efficient suchitl@nhow possible using a desktop
PC to solve a contact problem in a reasonable time.pHpsr, represents an advancement in
the fully-deterministic calculation of normal contawft rough surfaces with adhesion by
directly using Lennard-Jones potential fields and integrati@thods over a surface area
around the computational nodes to offer an efficient anthharcurate computational model
for contact mechanics with adhesion. The model is annadvaent to the line integral model
developed by Medina and Dini (12) that considered the irtiegrim one dimension. The main
aim of the paper is to present this new mathematiodkefand to show the capabilities of the
model by comparing the results with already existingditee. The validity of the model is
tested for the case of smooth surfaces and resultemeared with the results of Greenwood
(8). The strength of the model to capture the rough siddbesive contact is also tested by
reproducing the results of the contact mechanics challepgeted by Miser et al. (114lso

the idea that RMS slope of surface roughness is impartatdgtermining the adhesion force
has been highlighted by the model and a recent theorypgedpby Li et al. (22) based a
modified Johnson parameter has been tested. The metlsethige here can be also applied to
cases where surface geometries are given by analgtitidas such as the case of parabolic or
spherical geometries by only integrating the height funsti@ith respect to X and Y lateral

dimensions. The theory of the model is presented irticﬁ‘:e@ followed by results and

discussion in Secti 3.

2 Theory

2.1 Non-adhesive normal contact
The model uses a contact mechanics solver developed yskvior non-adhesive contact of

rough surfaces using a BEM approach and incorporating FasieFdransform (FFT) for
numerical efficiency. When two engineering surface$ witughness come into contact, due
to the inhomogenous nature of the surface roughness, gsamltion of the nominal contact

area will sustain the load, known as the real areaoffact.



127 The composite deformation of the surfaagéX,Y) due to the applied load pfX,Y) can be
128 calculated by the linear convolution according to Bousgit@srruti theory:

129 ue=K*pd=f f KX —-&Y—n)p(,n) dédny (D

130 in which x and y are two-dimensional coordinates, Késdonvolution kernel and can be
131 calculated from the half-space approximation as thevitriig:

1 1
2 K(X_f'y_n)=”E*J(X—E)2+(Y—n)2 @)

.2 2
133 where E* is the composite elastic modulus of both materia}j;s:((1 - ), @ - )
2

1

134 Here,vq,v,, E; and E, are the Poisson’s ratio and Elastic Moduli of materials 1 and 2

135 respectively. For the contact of two rough surfaces, aneonsider the composite roughness
136 of the two contacting surfaces and a rigid plane to catiethe contacting points (26). By
137 movement of the rigid body in the normal directidre interference (i) between the contacting
138 surfaces can be obtained (:@e 1). For the nogesiencing contact, the elastic

139 deformation must be equal to the body interferencetandressure is generated at the asperity.
140 The summation of the pressures on the nodes must ad¢spbkto the applied load. Therefore,

141 the set of equations for the contact of rough surfacas fisllows:
u.(X,Y) =i(X,Y) =HX,Y) - D(X,Y) V(X,Y) € A, (3.1)
p(X,Y) >0 V(X,Y) € A, (3.2)

w = ffp(X, Y)dXdY (3.3)

142 whereiis the asperity interferencél is the composite surface roughness heifhis the
143 distance between reference plane and the rigid platiéAais the total applied load. The
‘144 separation of asperities can be defineggfy,Y) = D(X,Y) — H(X,Y) + u(X,Y).
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Figure 1 Schematic of the contact of rough surfaces

2.2 Adhesion model
In this paper, adhesive pressures are calculated at ttsecdr@sperity separation by means of

direct implementation of Lennard-Jones potential. Thema@tl was first defined by John

Lennard-Jones in the following format:

o 12 o 6
v =4e [(;) - (;) ] (4)

Wherev is the interatomic potentiat is the depth of the potential wat, is the distance
between particles at which the potential becomes zetbs iarihe finite separation of the two
particles. Differentiation of Equation 4 with respect to (separation) results in the
determination of the force applied on the particles. I8nhgj if potential energy per unit area
is differentiated with respect tq an expression for pressure is determined as in theviatio

8wy (/20\° /2o 3}

r@ =3 1(7) - () ®)

wherew, is the work of adhesion and can be measured experimeataifycalculated by

integration of pressure with respect to separation freenz, to z = oo:
wo = | p)dz ©)
Zo

Z, is the equilibrium separation where the potential is ah#gimum and the adhesive force

(pressure) is zero and z is the separation distance dretwe planes.
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Equation 5 is vadl for the case of two parallel planes with a sepanadlistance z. In order to
be able to use the above formulation in a discretisexidary element formulation, there is a
need to approximate the adhesive pressure over the area arocomgutational node. This is
not a straightforward task and a proposed way to approacis fiesented in the following
paragraph.

To facilitate the approximation of the adhesive pressutes, necessary to consider the
configuration of the computational nodes in BEM. Figuregtasents the cross section of the
roughness profile only in one dimension. The real surtapegraphy is a 2-dimenstional

matrix with every element representing the surfacehte§a computational noo‘e. Figure 2

shows a discretised surface with point 1 being the pbiat surface tensions are being
calculated with respect to Equation 5. Substituting the sémanzlue (z) of the node 1 in
Equation 5 results in a value of pressure (two black squar@giﬂe 3) which is not

representative of the pressure in the computational dofoapoint 1 (dashed square around

point 1). The dashed squarqg in Figure 2 represents the BEMird@mane computational

node at which the pressure is assumed to be constant. R@nt€ and D (shown by blue
dots) are the points of interest at which the separatibfargely affect the tensile pressure at
point 1. A significant amount of information is misseda(ifly the pressure at point 1 is taken

into account) at the edges of the computational nodet@8éi, B, C and D) due to the shape

of the Lennard-Jones potentjal. Figutte 2 shows how sepavaiioes at points A, B, C and D

affect the integral value of tensile stress over itieihtegrals moving in X and Y directions.
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184  Figure 2 Discretisation of the surface in BEM. Poinefresents the computational node that
185 adhesion pressure is going to be calculated at.
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187 Figure 3 Representation of surface separation and jecpion on theXY plane. Points
188 shown are the same as the ones on Figure 2.

189 This problem is valid for movements in both X and Y dimts on the surface. In order to
190 overcome this issue, an approximation is needed to intetpafaofile of the Lennard-Jones

191 potential in both X and Y directions and calculate the-timensional average of the pressure.
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The Lennarelones pressure formulation of Equation 5 is dependanbartlye separation of
surfaces in normal direction and the integration shouildabeed out in X and Y directions as
a surface integral. Therefore the following formulati®proposed:

p) = [[ pyas ™)

where a is the length of the computational elements in X andir&ction, andds is the
differential of the surface representing the surfadghte For the BEM calculations, the
surface integral needs to be carried out with respect ta X arith the following integration:

p(i) =%ff f(X,Y,z(X,y))\/<g_)Z(>2+<g_12()2+1 dA (8)

Where fis a function that we need to integrate on tHaseifin this case, the adhesive pressure

function),z(X,Y) is the separation function with respect to X and Y coatéis andlA is the

differential of the projection area on tK¥ plane as shown |in Figure Bquation 8 considers

the changes in the mean value of the adhesive pressatgoh by the increment of surface
area due to roughness. It should be noted that shape of theesnddes (in terms of their
sharpness, etc) affect the intensity of the avergograton and therefore the average adhesive
pressure. We are only able to integrate the separationspfbornl to point 2n X direction

and from point 1 to point 3 in Y direction. Ideally, wegld integrate from point A to point B

in X and point C to point D in Y direction. This is impossibiece we do not have information

regarding the heights for point A, B, C and D.

Ideally, having a surface integral on the area A would erihblealculation of the pressure.
That needs the equation of z as a function of X andbétdetermined. This is possible using
bilinear interpolation technique. However, this will give a4timear function of z based on X

and Y and integrating Equation 8 will be impossible analyticdhstead by substituting
Equation 5 into Equation 8 and writistd = dXdY, and knowing thatlX = Z—)Z(dz anddY =

‘;—Zdz the integration can take the form:

0 [ [ 2y - ) (2 ()

(@) (@) ©
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in which X and Y stand for the position of points in the X andiréction and the subscripts
represent the nodes of interest. Solving the integr&cpfation 9 results in the adhesive

pressure formula for each node to be calculated by:

p(i) = iz (Zz — 7z )2 n (23 - Zl)z +1 <X2 —X1) <Y3 — Y1) fz3 fzz{%{(z_o)g
a X2 - X1 Y3 - Y1 ZZ - Z1 Z3 - Z1 zZ1 z 3Z0 VA

1

- (ZZ—O)S}}dzdz (10)

Knowing thatX, — X; =Y, —Y; = a and solving the double integration, the final equation is

solved as:
Z, — Z1\2  [Za — Z1)\2? 1 w 4z3 72 z
0= ([ ) + (o) +1 ) G (-2
XZ_Xl Y3_Y1 ZZ_Zl 3Z0 ZZ ZZ Zl
3
20
- — 11
) av

In order to solve the adhesive problem using Equation 11, infanmiaom the adjacent nodes
in Xand Ydirection (2 and 3) is needed. Therefore th®1Blgorithm should start calculating
the adhesive pressures from one row (in either X ande¥tibn) and complete the pressure
profile by moving across the columns one by one. It cambed that Equation 9 can be used
when H or z is represented as a function of X and Yferghe case of parabolic or spherical
smooth contacts and an analytical model of adhesiveyresssan be developed. This will be

the subject of future investigations and is not within tlepsemf the present paper.

2.3 Numerical approach
The non-adhesive contact model explained in Sectign 2uldshow be modified to account

for the adhesive pressures calculated at separated compatatdes using Equation 11. This
needs a careful definition of surface separations betvedie computational nodes since
separation g defined after Equation 3 has to now accommattaiéc separation z in Equation
11. Due to the shape of Lennard-Jones potentials, sepdegothanz, will result in high

compressive pressures. Since compressive pressures eadyabalculated using the non-

adhesive algorithm of Sectipn 2.1, positive pressures @gHmiltruncated out of adhesive

calculations. In order to overcome this, a relationshigvéen atomic separation (z) and

continuum separatiory( is used as the following (12):
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g+tzo=z (12)

This new separation (z) will be used in Equation 11 to cakeulse adhesive pressures.
Although this will shift the profile of Lennard-Jones fgyto the left, Medina and Dini (12)

showed this can be tolerated due to the sharp slope ofdpe sh the pressure profile. The
non-adhesive formulation of Equation 3 is now convertedrtoadhesive problem as the

following:
p; >0 9:=0
p; < 0 based on Equation 11 gi>0

W=ﬂmeﬂw

This new set of equations needs to be solved in an Werptocess. Previously, for a non-
adhesive contact, pressures less than zero could be simpbated out of simulation by
replacing them with zero pressures. For adhesive cottieategative pressures will be present
and they disturb the gap and elastic deformation balanbenthe new contact problem with
adhesion needs a robust numerical algorithm since intioducf negative (adhesive)
pressures can easily lead to difficulty in convergence. Amawerical algorithm is presented
here that was shown to work for all contact cases includingahd large Tabor parameters for

both smooth and rough surfaces. The detailed descriptitwe @lgorithm is given below:

e An initial contact pressure distribution is assumedttun entire surface which is a
combination of the positivep(- compressive) and the negativp,{ adhesive)
pressuresp: i1 = Pc + Pq- Selection of a suitable initial adhesive pressureitisalr

in our algorithm and defines how quick the final solution isvenged. It was shown

that a constant negative pressurepgf= —% will result in the quickest and most
0

efficient computation for unloading of contact. For load{(jumping into contact) we
start from zero adhesion.

e Calculate the positive pressures using Equation 3 and mneplaegative pressures by
zero. The total pressupg,;,; is used to calculate the surface deformations in thgesta
The relaxation in this stage updates the positive presaiitteshe following process:
Pe = Pe — Ke—retax X g Wherek._,..;.,iS the relaxation factor for positive pressures

andg is the separation at each node. Values in the rang®@d00001 and 0.01 were
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used depending on the elaspcoperties of surfaces. This relaxation factor was
optimised independently only for positive pressures.

The separation at points of zero pressures were caldudaie adhesive pressures
(Pa-new) Were calculated at every node using Equation 11.

The residuals of surface points were calculated in a tenation loop where only
adhesive pressureg were relaxed using a new relaxation coefficient as tieexfmg:

Pa = Pa + Ka—retax X 9) X (Pa—new — Pa) Wherek, _,..4,1S the relaxation factor for
adhesive pressures and is independemt,of,,.,- This coefficient is in the range of
0.0000001 and 0.1 and dependant on the local Tabor parameter. Hasedvthe
inverse root-mean-square curvature which can be interpret#te dscal radius of
curvature to identify the local Tabor parameter in thesgmee of roughness. The
residuals and surface deformations were calculated by tHeptessurep,,.,; being
updated ag;,:a: = P + P, and new surface deformations were calculated.

This process was undertaken until a convergence was adletveeemw, andp, e -

It should be noted that relaxation of positive and neggtressure was carried out
independently in two interconnected loops. The loop for pbsitive pressure
calculations was done prior to calculation of negative pressand was carried out in

every adhesive pressure loop.

The convergence criteria in this model was set as tbeage of the residuals for positive

pressures to be less thanx107°.

289 A schematic of the algorithm is representgd in Figdre 4.
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Figure 4 Schematics of the numerical algorithm

3 Reaults

3.1 Simulation of smooth surfaces
For the sake of model validation, the case of smootlrsplwith a range of Tabor parameters

has been studied and the results of dimensionless{%gggw—) versus dimensionless approach
0

(3) were compared to the existing theories. It is tricky totuwrapthe adhesive contact

29
behaviour of surfaces for Tabor parameters ranging cdm: u < 3 since they are describing
the transition from DMT to JKR theories. In this casecomparison with the model of

1
R*3w

Greenwood (8) is represented. The Tabor parameter is defipe= ——= whereR* is the

E*3Z0

S w|N

equivalent radius of curvature and for the case of spheriat surface is the radius of the
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curvature of the sphe(Eigure § shows the comparison of our model with model ofrGreed

at values ot = 0.1,0.2 & 0.3 and Figure § shows the comparisongdot 1,2 & 3 where a

good agreement is observed. The simulations can captigghesive pressures for negative

values of separation. For the case of higher Tabor paeas)(Figure 6), Greenwood has

shown an S-shape behaviour in the loading-unloading clinie phenomena can be captured
by the current numerical model if two different simulatidifsading and unloading) are
conducted. However, the simulation cannot capture sorhefie adhesive pressure between
loading and unloading. This is due to the nature of this numenicdeéls that need a certain
value of separation as input to the model (displacementaited) and the model cannot give
two values of pressure for the same separation (inevitalfeshape profile). This would
become possible by a force-controlled numerical appréaeenwood has used a solution by
fixing the displacement at the centre of the contéme. arrows on the load-separation curve in

Figure 6 show if the data have been obtained in loadingloading cycles. It should be noted

that convergence time increased as the Tabor parameteased and it is due to higher
adhesive pressures and higher disturbance of the defonsaifopositive pressures (non-
adhesive case). An example of the contour of contact presswrell as cross section of the

total pressure in the middle plain is reportgd in Figyre 7.

o BRARRSEL CTUUBEME T Gieenwaod i gt
w z : : )
( ) D5} ’l -~ 0‘1 “ ———

2R Wy
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Figure 5 Comparison between the current model and Greenwoodks for small values of
Tabor parameters. Dimensionless load is plotted against simmégss approach.
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Figure 6 Comparison between the BEM model and the Greenwode ior Tabor
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(a) |
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Figure 7 Representation of the (a) contour of contadsoire and (b) cross section of the
pressure profile for the case of smooth plane in comiiata rigid indenter.

3.2 Thecontact mechanics challenge
In December 2015, Martin Mlser has introduced a contactanexshchallenge where a pre-

defined self-affined surface was created and scientists 8keel &0 use their own in-house
numerical technigues to calculate the contact betweesutifece and a rigid flat surface. The
results presented in a published paper (11) show a reasonasenagt between numerical
results e.g. Green Function Molecular Dynamics (GFMD)a&dim MD, FFT-BVM, etc. The

purpose of this section is to use the same surface ugktl)iand to reproduce the results with
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the numerical model presented in tpeper for comparison. Initially, the parameters used in
the challenge will be summarised here. The surfacenarmsalised to have a root mean square
gradient ofg = 1, minimum height of zero and a maximum of 5.642 um and tHacsuwas
representing an area of 0.1mmx0.1mm. The inverse root meam sfube curvature which
can be used as typical local radius of curvature was defis®* = 60nm. In addition, the
equivalent elastic modulus was setFds= 25 MPa, the work of adhesion was setwag =

50 mJ/m? and the equilibrium separation was= 2.071nm. The simulations were carried
out using the current BEM model and adopting the parameténs challenge. The results for
the relative contact area against normalised pressuréhangbp distribution in the middle
plane of the contact has been reprodL@ure 8 showsrtiparison of the current model
(BEM) with two selected numerical results i.e. GFMD ar@BVM from the challenge. The

result shows a good quantitative agreement between BENhamdsult of the challenge. The
X axis represents the average of contact pressure éiceostiole nominal area normalised by

the E*g and the y axis is the ratio of contacting areas wightbtal nominal arep. Figure 9

presents the profile of the gap in a cross sectiaimenmiddle of contact{= 50um) and
compares the results of current model with GFMD sinmat presented in (11) and a good
agreement is found. The small discrepancy of the resaiftde due to the differences in the
resolution of the simulations. The simulations cardatlin this model use a discretisation of
4096x4096.
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|356 Figure 8 The relative contact area) against normalised average pressurg(@j and the
357 comparison with the contact mechanics challenge (11). &M FFT-BVM have been
358 chosen for comparison.
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360 Figure 9 Gap distribution of deformed surfacgsdt a cross section in the middle of contact

361 (X=50 um in the contact mechanics challenge problem deimitirhe results of BEM in this
362 work are compared with the GFMD results from (11)
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3.3 Effect of roughness
Numerical methods such as the one developed in this papelealdor studying the contact

behaviour of deterministic rough surfaces. Here we haverged rough surfaces with self-
affine properties to examine the effect of different surfataracteristics on the real area of
contact and stickiness of surfaces. The pull-off f¢feece needed to completely separate the
surfaces) and the contact area ratio were also plaitedifferent surfaces at different Tabor
parameters. Surfaces are generated using the Poweruap&nsity (PSD) as reported by
Persson (27). Random numbers were used along with Faansfdrms of the height function

(h(q)). The height spectrufi(q) was defined as:

1 A, < 27”

C(q) = C(qr) X (1/q,)720+ A<
0

<L
<a (13)

In which 4,. is the roll-off wavelengthj, is the short wavelength cut-off, L is the length &f th
surface in each dimensioq, = i—” and H is the Hurst parameter which is calculated! by

3 — Dy whereDy is the fractal dimension. All the surfaces generatitd this method have a

mean of zero.

Muser (28) has shown that the formula for relative adrdeea firstly introduced by Pastewka
and Robbins (29) can accurately capture the non-adhesivetbebaviour of rough surfaces
and introduced a new formula by improving the Pastewka and Robitieisa using a new

eqguation for contact area by eliminating the mean-field aqupedion.

exp(—k?p?)
rkp

In Equation 14, a, is the relative real contact are!ajs a number that is often two for real

a,(kp) = ma? (1 )erf(k p) + (14)

1
2k2p?

engineering surfaceg, is calculated by = and is a physical representation of the

4\/—5** 4VTE*ga?
average contact pressures; L is the total applied loadeonotiminal areag is the root mean

square gradient of surface roughness@anig the radius of the nominal contact area. Equation
14 is used in this work to analytically predict the contaefan the case of adhesion-less

contact and the BEM is used to predict the contact areadftesive contact. The aim of this

section is then to see the effect of adhesion oneidlecontact area for rough surfages. Figure

shows the comparison between the adhesive mpdeB() presented in this paper and the

non-adhesive theory of Muser (28). The discrepancy loéside and non-adhesive contacts is
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more significant for higher values of the Tabor par@medResults clearly show that adhesion
is playing an important role in increasing the relativet@onarea as expected. The other point
to highlight is that the modelvith a very good quantitative agreement- can follow thedtod
area of contact in the presence and absence of adh&hisrinteresting numerical finding is
valid for both values of root mean square gradient of surfawghness. This means that for
cases with larger radius and softer materials thecaahct area is significantly affected by
adhesion. Physical problems such as contact and frictionbbers, contact of biomaterials,
cartilages and cells and contact of viscoelastic solasbe largely dependent on adhesion.
Ignoring surface roughness and adhesion in such areasondlderably misrepresent the
contact mechanics and evaluation of the correspondingpiriand wear. For instance, for
small values of average pressupg, feal area for the case of adhesive contact is lainger
the area of non-adhesive contact by a factor of 2 or 3.i§lsdarge underestimation of the
contact area which can eventually under-predict frictioth @ear by the same factor. This
highlights the importance of models such as the one deelo this work to deterministically
calculate real contact area and pressure distributitreipresence of adhesion.

1

10 FEHITHS R S5 P E

10°
10°
10

1 j T

Figure 10 Comparison between the theory of Miser (28) foradiesive contact of rough
surfaces and the BEM for adhesive contacts. Relatiweacbarea is plotted against pressure
(p) for two values ofj.

3.3.1 Effect of roughnesson the pull-off force
In the adhesive contact of surfaces, when the approdleh bbdies is negative, adhesive forces

will deform the surfaces and there may be body interferéetween solid surfaces which in
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turn, causes compressive pressures. The area in whiobrtipeessive pressures still exists, is
the contact area. The minimum negative force in thege®of separating the surfaces is called
the pull-off force. This is the minimum negative foreguired to completely separate the
surfaces. In this section, the effect of surface roughaed the Tabor parameter on the pull-
off force calculated by BEM is presented. The resuttstlaen compared with the numerical

results produced by Medina and Dini (12) to see how resolts & more complete surface

integral method will differ from a line integral approathe simulation parameters are set as

(R* = 100um, E* = 50GPa, zy = 0.3nm,w, = 0.29 and w, = 0.075-) in order to get

Tabor parameters 5 and 2 respectively and the resultéo#edan Figure 1L

It should be noted that the main part of the results seofidhis paper looks at validation of
the new mathematical model and the algorithm proposed,thdtlrexisting theories in the
literature for both smooth and rough surfaces. This is to simweffectively Lennard-Jones
potentials could be applied on a rough surface in BEM to predibesion in contact
mechanics. In order to further study the effect of roughpasameters on adhesion, we have
extended our study to investigate the effect of RMS sippe the adhesion. Simulations are
carried out with the same root mean square roughRg$f 2z, but differentg values and

the effect ofg on the pull-off force was investigated.
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Figure 11 Effect oR, on the pull-off force for randomly rough surfaces andctheparison
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with the results of Medina and Dini (12)
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Figure 12 Effect of root mean square gradient of surface rosglumethe magnitude of pull-

off force for the case qf = 5 andu = 7, R, = 2z,

Figure 12 represents the results when the root mean squareessigiithe surface is constant

and only the mean square gradient of roughngkss(altered to see the effect on the force

needed to separate surfaces. The results clearly shovinthe@asing theg will result in
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decreasing the putiff force and this is independent of tRg value of the surface roughness.
The value ofg represent how sharp or blunt the surface asperiti¢ssa@t at the resolution that
topography is defined) are which in turn affects the separafi@urfaces near the edge of
contact.

The simulations presented in this paper study the effestirtdce topography on the adhesive
pressures in the contact of nominally flat surfaces. 8ffext of adhesion is shown to be

important in determination of real contact area. Rest|Esgure 10 show the difference of the

relative contact area in the case of adhesive contactthetltase of non-adhesive contact
reported by Miser. It also proves the fact that adhesitneases the real area of contact as
expected. It was shown previously that increasing the roahreguare of surface roughness
will reduce the effect of adhesive pressures on the sgriaceontact. This is due to higher
separation of surface points. In addition, rougher susfadk experience higher compressive
pressures at the point of higher topography peaks andriak adhesive pressures will be
negligible compared to the compressive ones. The pufbafé needed to separate surfaces

generally decreases as the root mean square roughnessdncrea

It should be highlighted that we have investigated the effetitese parameter®{ and g)
and have numerically shown the importance of both. &bent theoretical works of Ciavarella
(2, 30, 31) have highlighted alternative surface and matermfzders responsible for the area
of contact and discussion around stickiness criteriameate. They used different independent
theories (BAM, Persson-Tosatti (10)) along with DMT the® previously reported by Persson
and Scaraggi (32). He has shown that macroscopic featusesface roughness such Rg
and the low wavevectowutoff of surface roughness and the ratio of work of aidimeand the
equivalent Young’s modulus are important parameters for stickiness. This is interesting and

we believe our results do not contradict with the critefigCiavarella. We have therefore
caried out an investigation to include the effect of both®Rdhd RMS slope in the adhesive
force calculations of rough surfaces. Recently, Lale{22) have demonstrated the effect of
the Johnson parameter (33) in the adhesive contact of suafgces. They have introduced a
modified version of the Johnson parameter that considerdractal properties of rough
surfaces and argued that the adhesion between rough sudadepeindent on this new
parameter for larger values of Tabor parameter (JKR)limiihe modified version of the

Johnson parameter () was formulated as:
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in which H is the Hurst exponent of the fractal surfdce, the RMS roughnesg, andg,are
the smallest and largest wavevectors respectively. We latted the pull-off force with

respect to the modified Johnson paramete) for three values of Tabor parametar=

2,5 and 7) and results are presented in Figur¢ 13. Results indizat@aormalising our pull-

off force calculations with respect to the modified ikn parameter results in very similar
values of the pull-off force. It should be noted thatsBen and Scaraggi (32) and Ciavarella
(19) have shown that the pull-off force is almost independe the large wavevector
component. Our results show that this new modified diroaless parameter that includes
both RMS and RMS slope, small and large wavevectors ceul ieasonable but not fully
comprehensive stickiness criteria for the adhesioowgh surfaces with fractal properties in
JKR limit. This is because our results show small disci@parat different Tabor parameters
(JKR-limit) which suggests that the parameter could somehomdubfied. Our simulation
data are also in-line with the results of Li et al.(@Rjch showed the same dependency.

In order to test the numerical model with other stickiregsria, we have used the theory of
Ciavarella (30) which was based on the BAM model. In hidehcCiavarella introduced new
adhesion criteria along with those of Persson andtlig$@) and has shown that both models
although from completely different origins, predict vesymilar stickiness criteria. The

stickiness criteria of Ciavarella was reported asahewing:

R, < JBAl, (16)

in which g8 is 0.6 in his theoryl, is the large wavelength of the surface roughnesd aixd
(WO/E*). This criteria suggests that only RMS roughness and tige favelength of

roughness (small wavevector) are responsible foris@sk. In order to compare our results

2 *
RZE
LYo

F ) for different

with this theory, we have plotted our pull-off force adhtions agains(

cases at Tabor parameterspof 2,5 and 7 and the results are plotted|in Figurg 14. It is

interesting to see that the new parameter is a goodngtgskcriteria for this range of Tabor
parameter since the results of pull-off force agaihist $tickiness parameter matches almost

perfectlyfor all three values of Tabor parameter. This suggests that Equation 16 (Ciavarella’s
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stickiness model) is thenost accurate and reasonable stickiness criteria baseduio

simulations.

We believe our model, could be a platform for the futlereelopment of adhesion models for
real rough surfaces and more robust stickiness critara ¥ader range of materials could be

achieved.
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Figure 13 The effect of the modified Johnson parametereopultoff force for three values
of Tabor parameteu(= 2,5 and 7)
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Figure 14 Pull-off force against the stickiness critefi€iavarella (30) fou = 2,5 and 7

4 Conclusions

This paper presents the development of a BEM model faacbmechanics of rough surfaces.
Adhesion is considered by means of inter-atomic Lennaeslpotential and a new surface
integration approach is incorporated. The model extendsndloe! of Medina and Dini where
a line integration of the Lennard-Jones potential wagldped. The model shows very good
guantitative agreement with the model of Greenwood foriumedange Tabor parameter and
reproduces exact solutions of the contact mechanics challatrgeuced by Miuser. The
deterministic nature of the model enables us to anatgsadhesive contact of surfaces with
any complex geometry and investigate the local pressmesie@formations at micron and
nano-scales. Therefore the effect of roughness oadhesion is studied with a focus on the

root mean square gradient of roughness and the followingusimes are drawn:

e A new mathematical equation is developed in this work tauat@ladhesion of rough
surfaces and can be used in BEM simulations. The incoipormat the mathematical
eqguation is simple and the algorithm used in this worliig efficient.

e |t was numerically shown that inclusion of adhesion ia theterministic contact
calculations of rough surfaces affects the real comtgd ratio. This was shown by

comparing the numerical results of BEM developed in thigepay analytical model
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developed byMuser It was revealed that the root mean square gradient of reaghn
not only affect the real area of contact in the adhesive case, but also affects the area
of contact in the case of adhesive contact.

e We have presented that not only ®Rg value can significantly reduce the adhesion
effect, but also the root mean square gradient of sur@agghness can significantly
affect the adhesive forces. Higher root mean squareegutadisults in lower adhesive
force and lower pull-off force needed to separate susfaddas is believed to be due to
the difference in the real area of contact causedghhpe of asperities.

e We have investigated the effect of the modified Johnscempeters (that include both
fractal properties and RMS) on the stickiness of rougfases and have shown that
this dimensionless parameter could be a reasonable but Iyotcdumprehensive
stickiness criteria for the contact of rough surfaces.

e Furthermore, we have shown that the criteria introdbgediavarella almost perfectly
matches our simulation results and by far is the &t@stiness criteria based on our

simulations.
Acknowledgement

The authors are grateful to Dr Mark Wilson from UniversifyLeeds for kindly sharing his
thoughts on the mathematical rigor of the developed madehors are also thankful to
Professor Martin Muser from Saarland University fordkynsharing the raw data reported in
the contact mechanics challenge paper. This work is supportkd Bygineering and Physical
Sciences Research Council (Graimmber EP/001766/1) as a part of ‘Friction: The Tribology
Enigma’ Programme Grant (www. friction.org.uk), a collaboration between the Universities of

Leeds and Sheffield.



554

555

556

557

558

559

560

561

562

563

564

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

References

1. Israelachvili JN. Intermolecular and surface forcesdaaac press; 2015.

2. Ciavarella M, Joe J, Papangelo A, Barber J. Theof@ehesion in contact mechanics.
Journal of the Royal Society Interface. 2019;16(151):20180738.

3. Johnson KL, Kendall K, Roberts A. Surface energy aadctintact of elastic solids.
Proc R Soc Lond A. 1971;324(1558):301-13.

4, Derjaguin BV, Muller VM, Toporov YP. Effect of contadeformations on the
adhesion of particles. Journal of Colloid and interfsaence. 1975;53(2):314-26.

5. Tabor D. Surface forces and surface interactions.naBleand Invited Lectures:
Elsevier; 1977. p. 3-14.

6. Maugis D. Adhesion of spheres: the JKR-DMT trangitising a Dugdale model.
Journal of colloid and interface science. 1992;150(1):243-69.

7. Muller V, Yushchenko V, Derjaguin B. On the influence oflenalar forces on the
deformation of an elastic sphere and its sticking tigi@a plane. Journal of Colloid and
Interface Science. 1980;77(1):91-101.

8. Greenwood J. Adhesion of elastic spheres. Proceeditigs Bbyal Society of London
Series A: Mathematical, Physical and Engineering Scied&9¥;453(1961):1277-97.

9. Fuller K, Tabor D. The effect of surface roughnesshenadhesion of elastic solids.
Proceedings of the Royal Society of London A Matheraatand Physical Sciences.
1975;345(1642):327-42.

10. Persson B, Tosatti E. The effect of surface roughmesecadhesion of elastic solids.
The Journal of Chemical Physics. 2001;115(12):5597-610.

11. Miser MH, Dapp WB, Bugnicourt R, Sainsot P, Lesaffre N, laktrdA, et al.
Meeting the contact-mechanics challenge. Tribologyerset 2017;65(4):118.

12. Medina S, Dini D. A numerical model for the determiniamalysis of adhesive rough
contacts down to the nano-scale. International Jouwfal Solids and Structures.
2014;51(14):2620-32.



591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

639

13. Solhjoo S, Vakis Al. Continuum mechanics at the atomadesdnsights into non-
adhesive contacts using molecular dynamics simulatiomsrndl of Applied Physics.
2016;120(21):215102.

14.  Wriggers P, Zavarise G. Computational contact mechartcgyclopedia of
computational mechanics. 2004.

15. Rey V, Anciaux G, Molinari J-F. Normal adhesive contactough surfaces: efficient
algorithm for FFT-based BEM resolution. Computational Medsa 2017;60(1):69-81.

16. Pastewka L, Robbins MO. Contact between rough surfacesa agriterion for
macroscopic adhesion. Proceedings of the National AcadéBuiences. 2014:201320846.
17.  Afferrante L, Ciavarella M, Demelio G. Adhesive contacthe Weierstrass profile.
Proceedings of the Royal Society A: Mathematical, Rhaysand Engineering Sciences.
2015;471(2182):20150248.

18.  Ciavarella M. Adhesive rough contacts near completecbrinternational Journal of
Mechanical Sciences. 2015;104:104-11.

19.  Ciavarella M. A very simple estimate of adhesioharfl solids with rough surfaces
based on a bearing area model. Meccanica. 2018;53(1-2):241-50.

20. Pohrt R, Popov VL. Adhesive contact simulation aset solids using local mesh-
dependent detachment criterion in boundary elements melamta Universitatis, Series:
Mechanical Engineering. 2015;13(1):3-10.

21. Popov VL, Pohrt R, Li Q. Strength of adhesive contéafisience of contact geometry
and material gradients. Friction. 2017;5(3):308-25.

22. Li Q, Pohrt R, Popov VL. Adhesive Strength of Contat®Rough Spheres. Frontiers
in Mechanical Engineering. 2019;5:7.

23.  Ghanbarzadeh A, Hassanpour A, Neville A. A numerical miodelalculation of the
restitution coefficient of elastic-perfectly plastmd adhesive bodies with rough surfaces.
Powder Technology. 2019;345:203-12.

24. Bazrafshan M, De Rooij M, Valefi M, Schipper D. Numerioathod for the adhesive
normal contact analysis based on a Dugdale approximatioboldgy international.
2017;112:117-28.

25. Bazrafshan M, de Rooij M, Schipper D. On the role béamn and roughness in stick-
slip transition at the contact of two bodies: A numerisaidy. Tribology international.
2018;121:381-8.

26. Bhushan B, Majumdar A. Elastic-plastic contact rhdalebifractal surfaces. Wear.
1992;153(1):53-64.

27. Persson B. On the fractal dimension of rough surfade#ology Letters.
2014;54(1):99-106.

28. Muser MH. On the contact area of nominally flat hentziantacts. Tribology Letters.
2016;64(1):14.

29. Pastewka L, Robbins MO. Contact area of rough spheres: $aafgesimulations and
simple scaling laws. Applied Physics Letters. 2016;108(22):221601.

30. Ciavarella M. Universal features in “stickiness” criteria for soft adhesion with rough
surfaces. Tribology International. 2019:106031.

31. Ciavarella M, Papangelo A. A modified form of PasteviR@bbins criterion for
adhesion. The Journal of Adhesion. 2018;94(2):155-65.

32. Persson BN, Scaraggi M. Theory of adhesion: Rogaidéce roughness. The Journal
of chemical physics. 2014;141(12):124701.

33. Johnson K. The adhesion of two elastic bodies wilhphts} wavy surfaces.
International Journal of Solids and Structures. 1995;32(3-43023-



640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

Additional Information
Information on the following should be included wherever relevant.

Ethics
There is no ethical considerations required for this research.

Data Accessibility
The data published in this paper including the contact mechanics code can be accessible upon the
request form the corresponding author.

Authors' Contributions

AG developed the numerical model, ran the simulations, analysed and interpreted the data and
drafted the paper, approved the final version and is accountable for the paper. AN analysed and
interpreted the data, contributed to the discussion and revision of the article and gave final approval.
Competing Interests

The author(s) declare that they have no competing interests.

Funding Statement

This work is supported by the Engineering and Physical Sciences Research Council (Grant Number
EP/001766/1) as a part of ‘Friction: The Tribology Enigma’ Programme Grant (www. friction.org.uk), a
collaboration between the Universities of Leeds and Sheffield.

Acknowledgments

The authors are grateful to Dr Mark Wilson from University of Leeds for kindly sharing his thoughts
on the mathematical rigor of the developed model. Authors are also thankful to Professor Martin
Miiser from Saarland University for kindly sharing the raw data reported in the contact mechanics
challenge paper. This work is supported by the Engineering and Physical Sciences Research Council
(Grant Number EP/001766/1) as a part of ‘Friction: The Tribology Enigma’” Programme Grant (www.
friction.org.uk), a collaboration between the Universities of Leeds and Sheffield.

Disclaimer

N/A



