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Abstract 10 

The fundamental problem of adhesion in the presence of surface roughness and its effect on 11 

the prediction of friction has been a hot topic for decades in numerous areas of science and 12 

engineering attracting even more attention in recent years in areas such as geotechnics and 13 

tectonics, nanotechnology, high value manufacturing, biomechanics etc. In this paper a new 14 

model for deterministic calculation of the contact mechanics for rough surfaces in the presence 15 

of adhesion is presented. The contact solver is an in-house Boundary Element Method (BEM) 16 

that incorporates Fast Fourier Transform (FFT) for numerical efficiency. The adhesive contact 17 

model considers full Lennard-Jones potentials and surface integration at the asperity level and 18 

is validated against models in literature. Finally, the effect of surface roughness on the adhesion 19 

between surfaces was studied and it was shown that root mean square gradient of surface 20 

roughness can change the adhesive pressures irrespective of the root mean square surface 21 

roughness. We have tested two adhesion parameters based on Johnson’s modified criteria and 22 

Ciavarella’s model. We showed that Civarella’s model introduces the most reasonable criteria 23 

suggesting that the RMS roughness and large wavelength of surfaces roughness are the 24 

important parameters of adhesion between rough surfaces.   25 

Keywords: Contact Mechanics; Roughness; Adhesion; Lennard-Jones potential  26 

1 Introduction 27 
Adhesion is the term used when two surfaces are attracted to each other due to different forces 28 

such as inter-atomic Van Der Waals forces, electrostatic and capillary forces. The magnitude 29 

of this force is often correlated to the nature of the molecules and the distance of separation 30 
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between them (1). Often in engineering, in particular solid mechanics, adhesion is referred to 31 

as the attractive forces between non-bonding atoms or molecules of surfaces and the Lennard-32 

Jones is often used as a model potential providing a qualitative description of intermolecular 33 

forces to describe the attraction/repulsion as a function of their separation. When two real 34 

engineering bodies come into contact, there will be areas of surfaces which are in physical 35 

contact and the contact pressure is compressive. Depending on the topography of the surfaces, 36 

there will be a distribution of surface separations across the nominal contact area. These 37 

separations, if small enough (with respect to atomic distances), can lead to attractive forces 38 

between surface points.  39 

In contact mechanics, there are numerous models of adhesive contact (2). In particular, there 40 

are two widely-used analytical adhesive models both developed for smooth surfaces; namely 41 

Johnson-Kendall-Roberts (JKR) (3) and Derjaguin-Muller-Toporov (DMT) (4). In JKR, it is 42 

assumed that there is no adhesion outside the contact area and infinitely large pressures are 43 

present at the border and inside the contact area. In contrast, DMT assumes a Hertzian contact 44 

area with consideration of adhesion and adhesion forces do not contribute to surface 45 

deformations. Both models have their limitations in application which makes JKR valid for the 46 

case of soft materials and large radius of curvature and DMT valid for stiffer materials with 47 

small curvatures. There is a wealth of engineering problems that would sit outside these 48 

constraints and also a high proportion of engineering contact problems involve rough surfaces. 49 

David Tabor showed that the validity of the JKR and DMT models can be assessed by the 50 

Tabor parameter (ȝ) (5) where JKR can effectively predict adhesion at large values of (ȝ) and 51 

DMT at smaller values. Maugis (6) developed a model based on the Dugdale approximation 52 

using Lennard-Jones potentials and bridged the transition gap between DMT and JKR which, 53 

to-date, stays a more complete description of the adhesive contact model for smooth surfaces. 54 

Muller et al. (7) and later Greenwood (8) have developed a complete numerical solution for the 55 

contact with adhesion by applying Lennard-Jones potential and elastic deformation of solid 56 

surfaces. Greenwood has shown that the load-displacement curve becomes S-shaped at Tabor 57 

values of more than one.  58 

A great challenge in modelling contact of engineering surfaces with adhesion, is the irregular 59 

nature of the surface topography which makes the application of analytical models almost 60 

impossible. The pioneering work of Fuller et al. (9) shed light on the effect of roughness on 61 

adhesion by development of an asperity-based adhesion model. Other significant contributions 62 



in the field were reported by Persson (10) who used the self-affine fractal properties of the 63 

surfaces and showed the dependency of adhesion on the fractal dimensions.  64 

All the above-mentioned theoretical works have led to significantly increased understanding 65 

of the nature of adhesive forces on the contact of surfaces. However, they lack deterministic 66 

capabilities to account for the interactions of real surface topographies. In recent years, an 67 

increase in computational power has resulted in the development of advanced numerical 68 

models that can calculate adhesive contact of deterministic surface topographies. In a recent 69 

contact mechanics challenge, Müser et al. (11) presented and compared the results of different 70 

numerical approaches for calculation of the adhesive contact of a pre-defined experimentally 71 

measured surface roughness. They have shown that numerical approaches such as Boundary 72 

Element Method (BEM) (12), all-atom Molecular Dynamics (MD) (13) and Boundary Value 73 

Methods (BVM) (14) can successfully calculate the contact problem with adhesion. In recent 74 

years, there has been numerous works considering the contact of rough surfaces with adhesion. 75 

Rey et al. (15) developed a BEM based contact mechanics model based on Fast Fourier 76 

Transforms by minimising the potential energy that is the sum of elastic energy and adhesive 77 

energy. Solhjoo and Vakis (13) have developed an MD model using the Embedded Atom 78 

Method (EAM) that simulates surface roughness with atoms and gives a high accuracy in 79 

contact area calculations and surface pressure, though time-consuming and limited with the 80 

number of atoms considered for simulations. Pastewka and Robbins (16) developed a Green’s 81 

function MD simulation to calculate non-adhesive contact of rough surfaces and proposed a 82 

criterion for macroscopic adhesion based on the geometry and material properties. 83 

Other significant contributions were made by Ciavarella in a series of articles (2, 17, 18). They 84 

correlated Bearing Area Model (BAM) and geometrical intersections to adhesion via a simple 85 

mathematical description (19). The model was reported to be valid for an intermediate range 86 

of Tabor parameters. Pohrt and Popov (20-22) developed a BEM contact mechanics model that 87 

utilised a mesh-dependant detachment criteria for adhesive contact of rough surfaces which 88 

was based on the solution of non-adhesive contacts. Ghanbarzadeh et al. (23) used the same 89 

model and predicted the bouncing behaviour of elasto-plastic and adhesive solids and showed 90 

the significance of the effect of roughness in increasing the energy dissipation. Bazrafshan et 91 

al. (24) developed a BEM based contact mechanics model and incorporated adhesive 92 

interactions by means of Dugdale approximation and later studied the effect of roughness and 93 

adhesion on the stick/slip of dissimilar materials (25). Medina and Dini (12) developed a 94 

deterministic adhesive contact model using Multi-Level-Multi-Integration (MLMI) and 95 



implemented adhesion by directly using Lennard-Jones potentials and integrating that over the 96 

length of computational nodes to better represent adhesive pressures and to avoid convergence 97 

issues due to the non-linear behaviour of the Lennard-Jones potential.   98 

As discussed, the literature contains extensive and continuously evolving research in 99 

mechanics of contacts in the presence of surface roughness and adhesion. Computational 100 

models are becoming increasingly more efficient such that it is now possible using a desktop 101 

PC to solve a contact problem in a reasonable time. This paper, represents an advancement in 102 

the fully-deterministic calculation of normal contact of rough surfaces with adhesion by 103 

directly using Lennard-Jones potential fields and integration methods over a surface area 104 

around the computational nodes to offer an efficient and highly accurate computational model 105 

for contact mechanics with adhesion. The model is an advancement to the line integral model 106 

developed by Medina and Dini (12) that considered the integration in one dimension. The main 107 

aim of the paper is to present this new mathematical model and to show the capabilities of the 108 

model by comparing the results with already existing literature. The validity of the model is 109 

tested for the case of smooth surfaces and results are compared with the results of Greenwood 110 

(8). The strength of the model to capture the rough surface adhesive contact is also tested by 111 

reproducing the results of the contact mechanics challenge reported by Müser et al. (11). Also 112 

the idea that RMS slope of surface roughness is important in determining the adhesion force 113 

has been highlighted by the model and a recent theory proposed by Li et al. (22) based a 114 

modified Johnson parameter has been tested. The method presented here can be also applied to 115 

cases where surface geometries are given by analytic functions such as the case of parabolic or 116 

spherical geometries by only integrating the height functions with respect to X and Y lateral 117 

dimensions. The theory of the model is presented in Section 2 followed by results and 118 

discussion in Section 3. 119 

2 Theory 120 

2.1 Non-adhesive normal contact 121 
The model uses a contact mechanics solver developed previously for non-adhesive contact of 122 

rough surfaces using a BEM approach and incorporating Fast Fourier Transform (FFT) for 123 

numerical efficiency. When two engineering surfaces with roughness come into contact, due 124 

to the inhomogenous nature of the surface roughness, a small proportion of the nominal contact 125 

area will sustain the load, known as the real area of contact.  126 



The composite deformation of the surfaces ݑ௘ሺܺǡ ܻሻ due to the applied load of ݌ሺܺǡ ܻሻ can be 127 

calculated by the linear convolution according to Boussinesq-Cerruti theory: 128 

௘ݑ ൌ ܭ כ ௗ݌ ൌ න න ሺܺܭ െ ǡߦ ܻ െ ǡߦሺ݌ ሻߟ ାஶߟ݀ ߦ݀ ሻߟ
ିஶ

ାஶ
ିஶ                               ሺͳሻ 129 

in which x and y are two-dimensional coordinates, K is the convolution kernel and can be 130 

calculated from the half-space approximation as the following: 131 

ሺܺܭ െ ǡߦ ܻ െ ሻߟ ൌ ͳכܧߨ ͳඥሺܺ െ ሻଶߦ ൅ ሺܻ െ ሻଶߟ                       ሺʹሻ 132 

where כܧ is the composite elastic modulus of both materials (
ଵாכ ൌ ൫ଵିఔభమ൯ாభ ൅ ൫ଵିఔమమ൯ாమ ). 133 

Here, ߥଵ, ߥଶ, ܧଵ and ܧଶ are the Poisson’s ratio and Elastic Moduli of materials 1 and 2 134 

respectively. For the contact of two rough surfaces, one can consider the composite roughness 135 

of the two contacting surfaces and a rigid plane to calculate the contacting points (26). By 136 

movement of the rigid body in the normal direction, the interference (i) between the contacting 137 

surfaces can be obtained (see Figure 1). For the nodes experiencing contact, the elastic 138 

deformation must be equal to the body interference and the pressure is generated at the asperity. 139 

The summation of the pressures on the nodes must also be equal to the applied load. Therefore, 140 

the set of equations for the contact of rough surfaces is as follows: 141 

where ݅  is the asperity interference, ܪ is the composite surface roughness height, ܦ is the 142 

distance between reference plane and the rigid plane and W is the total applied load. The 143 

separation of asperities can be defined by ݃ሺܺǡ ܻሻ ൌ ሺܺǡܦ Yሻ െ ሺܺǡܪ Yሻ ൅ ሺܺǡݑ ܻሻ. 144 

௘ሺܺǡݑ Yሻ ൌ ݅ሺܺǡ ܻሻ ൌ ሺܺǡܪ Yሻ െ ሺܺǡܦ Yሻ          ׊ሺܺǡ ܻሻ א ሺܺǡ݌ ௘ (3.1)ܣ ܻሻ ൐ Ͳ ׊ሺܺǡ ܻሻ א  ௘ (3.2)ܣ

ܹ ൌ ඵ ሺܺǡ݌ ܻሻ݀ܺ݀Y 
 (3.3) 



 145 

Figure 1 Schematic of the contact of rough surfaces 146 

2.2 Adhesion model 147 
In this paper, adhesive pressures are calculated at the areas of asperity separation by means of 148 

direct implementation of Lennard-Jones potential. The potential was first defined by John 149 

Lennard-Jones in the following format: 150 

ݒ ൌ Ͷ߳ ൤ቀݎߪቁଵଶ െ ቀݎߪቁ଺൨                                     ሺͶሻ 151 

Where ݒ is the interatomic potential, ߳ is the depth of the potential wall, ߪ is the distance 152 

between particles at which the potential becomes zeros and ݎ is the finite separation of the two 153 

particles. Differentiation of Equation 4 with respect to ݎ (separation) results in the 154 

determination of the force applied on the particles. Similarly, if potential energy per unit area 155 

is differentiated with respect to ݎ, an expression for pressure is determined as in the following: 156 

ሻݖሺ݌ ൌ ͺݓ଴͵ݖ଴ ൜ቀݖ଴ݖ ቁଽ െ ቀݖ଴ݖ ቁଷൠ                                                ሺͷሻ 157 

where ݓ଴ is the work of adhesion and can be measured experimentally or is calculated by 158 

integration of pressure with respect to separation from ݖ ൌ ݖ ଴ toݖ ൌ λ: 159 

଴ݓ ൌ න ஶݖሻ݀ݖሺ݌
௭బ                                                      ሺ͸ሻ 160 

 ଴ is the equilibrium separation where the potential is at its maximum and the adhesive force 161ݖ

(pressure) is zero and z is the separation distance between two planes.  162 



Equation 5 is valid for the case of two parallel planes with a separation distance z. In order to 163 

be able to use the above formulation in a discretised boundary element formulation, there is a 164 

need to approximate the adhesive pressure over the area around a computational node. This is 165 

not a straightforward task and a proposed way to approach this is presented in the following 166 

paragraph. 167 

To facilitate the approximation of the adhesive pressures, it is necessary to consider the 168 

configuration of the computational nodes in BEM. Figure 1 represents the cross section of the 169 

roughness profile only in one dimension. The real surface topography is a 2-dimenstional 170 

matrix with every element representing the surface height of a computational node. Figure 2 171 

shows a discretised surface with point 1 being the point that surface tensions are being 172 

calculated with respect to Equation 5. Substituting the separation value (z) of the node 1 in 173 

Equation 5 results in a value of pressure (two black squares in Figure 2) which is not 174 

representative of the pressure in the computational domain for point 1 (dashed square around 175 

point 1). The dashed square in Figure 2 represents the BEM domain for one computational 176 

node at which the pressure is assumed to be constant. Points A,B ,C and D (shown by blue 177 

dots) are the points of interest at which the separation will largely affect the tensile pressure at 178 

point 1. A significant amount of information is missed (if only the pressure at point 1 is taken 179 

into account) at the edges of the computational node (points A, B, C and D) due to the shape 180 

of the Lennard-Jones potential. Figure 2 shows how separation values at points A, B, C and D 181 

affect the integral value of tensile stress over the line integrals moving in X and Y directions. 182 



 183 

Figure 2 Discretisation of the surface in BEM. Point 1 represents the computational node that 184 
adhesion pressure is going to be calculated at. 185 

 186 

Figure 3 Representation of surface separation and its projection on the XY plane. Points 187 
shown are the same as the ones on Figure 2. 188 

This problem is valid for movements in both X and Y directions on the surface. In order to 189 

overcome this issue, an approximation is needed to integrate the profile of the Lennard-Jones 190 

potential in both X and Y directions and calculate the two-dimensional average of the pressure. 191 



The Lennard-Jones pressure formulation of Equation 5 is dependant only on the separation of 192 

surfaces in normal direction and the integration should be carried out in X and Y directions as 193 

a surface integral. Therefore the following formulation is proposed: 194 

ሺ݅ሻ݌ ൌ ͳܽଶ ඵ  ሺ͹ሻ 195                                          ݏሻ݀ݖሺ݌

where ܽ  is the length of the computational elements in X and Y direction, and ݀  is the 196 ݏ

differential of the surface representing the surface heights. For the BEM calculations, the 197 

surface integral needs to be carried out with respect to X and Y with the following integration: 198 

ሺ݅ሻ݌ ൌ ͳܽଶ ඵ ቐ ݂൫ܺǡ ܻǡ ሺܺǡݖ ܻሻ൯ඨ൬߲߲ܺݖ൰ଶ ൅ ൬߲ܻ߲ݖ൰ଶ ൅ ͳ ቑ  ሺͺሻ 199            ܣ݀

Where f is a function that we need to integrate on the surface (in this case, the adhesive pressure 200 

function), ݖሺܺǡ ܻሻ is the separation function with respect to X and Y coordinates and ݀ܣ is the 201 

differential of the projection area on the XY plane as shown in Figure 3. Equation 8 considers 202 

the changes in the mean value of the adhesive pressure function by the increment of surface 203 

area due to roughness. It should be noted that shape of the surface nodes (in terms of their 204 

sharpness, etc) affect the intensity of the average separation and therefore the average adhesive 205 

pressure. We are only able to integrate the separations from point 1 to point 2 in X direction 206 

and from point 1 to point 3 in Y direction. Ideally, we should integrate from point A to point B 207 

in X and point C to point D in Y direction. This is impossible since we do not have information 208 

regarding the heights for point A, B, C and D. 209 

  Ideally, having a surface integral on the area A would enable the calculation of the pressure. 210 

That needs the equation of z as a function of X and Y to be determined. This is possible using 211 

bilinear interpolation technique. However, this will give a non-linear function of z based on X 212 

and Y and integrating Equation 8 will be impossible analytically. Instead by substituting 213 

Equation 5 into Equation 8 and writing ݀ܣ ൌ ܻ݀ܺ݀, and knowing that ݀ܺ ൌ ௗ௑ௗ௭ ܻ݀ and ݖ݀ ൌ214 ௗ௒ௗ௭  the integration can take the form: 215 ݖ݀

ሺ݅ሻ݌ ൌ ͳܽଶ න න ቐ ͺݓ଴͵ݖ଴ ൜ቀݖ଴ݖ ቁଽ െ ቀݖ଴ݖ ቁଷൠ ඨ൬߲߲ܺݖ൰ଶ ൅ ൬߲ܻ߲ݖ൰ଶ ൅ ͳ ቑ ൬݀ܺ݀ݖ ൰ݖ݀ ൬ܻ݀݀ݖ ൰    ሺͻሻ௑మݖ݀
௑భ  ௒య

௒భ  216 



in which X and Y stand for the position of points in the X and Y direction and the subscripts 217 

represent the nodes of interest. Solving the integral of Equation 9 results in the adhesive 218 

pressure formula for each node to be calculated by: 219 

ሺ݅ሻ݌ ൌ ൮ ͳܽଶ ቌඨ൬ ଶݖ െ ଵܺଶݖ െ ଵܺ൰ଶ ൅ ൬ݖଷ െ ଵଷܻݖ െ ଵܻ൰ଶ ൅ ͳቍ ൬ܺଶ െ ଵܺݖଶ െ ଵݖ ൰ ൬ ଷܻ െ ଵܻݖଷ െ ଵ൰൲ݖ න න ൜ ͺݓ଴͵ݖ଴ ൜ቀݖ଴ݖ ቁଽ௭మ
௭భ

௭య
௭భ220 

െ ቀݖ଴ݖ ቁଷൠ ൠ  ሺͳͲሻ  221        ݖ݀ݖ݀

Knowing that ܺ ଶ െ ଵܺ ൌ ଶܻ െ ଵܻ ൌ ܽ and solving the double integration, the final equation is 222 

solved as: 223 

ሺ݅ሻ݌ ൌ ൮ቌඨ൬ ଶݖ െ ଵܺଶݖ െ ଵܺ൰ଶ ൅ ൬ݖଷ െ ଵଷܻݖ െ ଵܻ൰ଶ ൅ ͳቍ ൬ ͳݖଶ െ ଵ൰ݖ ଴൲ݖ͵଴ݓ ቆͶݖ଴ଷݖଶଶ െ ଶ଼ݖ଴ଽݖ ൅  ଵ଼224ݖ଴ଽݖ

െ Ͷݖ଴ଷݖଵଶ ቇ       ሺͳͳሻ 225 

In order to solve the adhesive problem using Equation 11, information from the adjacent nodes 226 

in X and Y direction (2 and 3) is needed. Therefore the BEM algorithm should start calculating 227 

the adhesive pressures from one row (in either X and Y direction) and complete the pressure 228 

profile by moving across the columns one by one. It can be noted that Equation 9 can be used 229 

when H or z is represented as a function of X and Y e.g. for the case of parabolic or spherical 230 

smooth contacts and an analytical model of adhesive pressures can be developed. This will be 231 

the subject of future investigations and is not within the scope of the present paper. 232 

2.3 Numerical approach 233 
The non-adhesive contact model explained in Section 2.1 should now be modified to account 234 

for the adhesive pressures calculated at separated computational nodes using Equation 11. This 235 

needs a careful definition of surface separations between all computational nodes since 236 

separation g defined after Equation 3 has to now accommodate atomic separation z in Equation 237 

11. Due to the shape of Lennard-Jones potentials, separation less than ݖ଴ will result in high 238 

compressive pressures. Since compressive pressures are already calculated using the non-239 

adhesive algorithm of Section 2.1, positive pressures should be truncated out of adhesive 240 

calculations. In order to overcome this, a relationship between atomic separation (z) and 241 

continuum separation (݃ሻ is used as the following (12): 242 



݃ ൅ ଴ݖ ൌ  ሺͳʹሻ 243                               ݖ

This new separation (z) will be used in Equation 11 to calculate the adhesive pressures. 244 

Although this will shift the profile of Lennard-Jones for ݖ଴ to the left, Medina and Dini (12) 245 

showed this can be tolerated due to the sharp slope of the shape of the pressure profile. The 246 

non-adhesive formulation of Equation 3 is now converted to an adhesive problem as the 247 

following: 248 

This new set of equations needs to be solved in an iterative process. Previously, for a non-249 

adhesive contact, pressures less than zero could be simply truncated out of simulation by 250 

replacing them with zero pressures. For adhesive contact, the negative pressures will be present 251 

and they disturb the gap and elastic deformation balance. Solving the new contact problem with 252 

adhesion needs a robust numerical algorithm since introduction of negative (adhesive) 253 

pressures can easily lead to difficulty in convergence. A new numerical algorithm is presented 254 

here that was shown to work for all contact cases including low and large Tabor parameters for 255 

both smooth and rough surfaces. The detailed description of the algorithm is given below: 256 

 An initial contact pressure distribution is assumed on the entire surface which is a 257 

combination of the positive (݌௖- compressive) and the negative (݌௔- adhesive) 258 

pressures. ݌௧௢௧௔௟ ൌ ௖݌ ൅  ௔. Selection of a suitable initial adhesive pressure is critical 259݌

in our algorithm and defines how quick the final solution is converged. It was shown 260 

that a constant negative pressure of  ݌௔ ൌ െ ଵ଺௪బଽξଷ௭బ will result in the quickest and most 261 

efficient computation for unloading of contact. For loading (jumping into contact) we 262 

start from zero adhesion. 263 

 Calculate the positive pressures using Equation 3 and replacing negative pressures by 264 

zero. The total pressure ݌௧௢௧௔௟  is used to calculate the surface deformations in this stage. 265 

The relaxation in this stage updates the positive pressures with the following process: 266 ݌௖ ൌ ௖݌ െ ݇௖ି௥௘௟௔௫ ൈ ݃ where ݇ ௖ି௥௘௟௔௫ is the relaxation factor for positive pressures 267 

and ݃  is the separation at each node. Values in the range of 0.00000001 and 0.01 were 268 

௜݌ ൐ Ͳ ݃௜ ൌ Ͳ  ݌௜ ൏ Ͳ based on Equation 11 ݃௜ ൐ Ͳ  

ܹ ൌ ඵ ሺܺǡ݌ ܻሻ݀ܺ݀Y 
  



used depending on the elastic properties of surfaces. This relaxation factor was 269 

optimised independently only for positive pressures. 270 

 The separation at points of zero pressures were calculated and adhesive pressures 271 

 were calculated at every node using Equation 11. 272 (௔ି௡௘௪݌)

 The residuals of surface points were calculated in a new iteration loop where only 273 

adhesive pressures ݌௔ were relaxed using a new relaxation coefficient as the following: 274 ݌௔ ൌ ௔݌ ൅ ሺ݇௔ି௥௘௟௔௫ ൈ ݃ሻ ൈ ሺ݌௔ି௡௘௪ െ ݇ ௔ሻ where݌ ௔ି௥௘௟௔௫is the relaxation factor for 275 

adhesive pressures and is independent of ݇௔ି௥௘௟௔௫ . This coefficient is in the range of 276 

0.0000001 and 0.1 and dependant on the local Tabor parameter. Here we used the 277 

inverse root-mean-square curvature which can be interpreted as the local radius of 278 

curvature to identify the local Tabor parameter in the presence of roughness. The 279 

residuals and surface deformations were calculated by the total pressure ݌௧௢௧௔௟ being 280 

updated as ݌௧௢௧௔௟ ൌ ௖݌ ൅  ௔ and new surface deformations were calculated. 281݌

 This process was undertaken until a convergence was achieved between ݌௔ and ݌௔ି௡௘௪. 282 

It should be noted that relaxation of positive and negative pressure was carried out 283 

independently in two interconnected loops. The loop for the positive pressure 284 

calculations was done prior to calculation of negative pressures and was carried out in 285 

every adhesive pressure loop. 286 

The convergence criteria in this model was set as the average of the residuals for positive 287 

pressures to be less than ݖ଴ ×ͳͲି଺. 288 

A schematic of the algorithm is represented in Figure 4. 289 



 290 

Figure 4 Schematics of the numerical algorithm 291 

3 Results 292 

3.1 Simulation of smooth surfaces 293 
For the sake of model validation, the case of smooth spheres with a range of Tabor parameters 294 

has been studied and the results of dimensionless load ቀ ௐଶగோכ௪బቁ versus dimensionless approach 295 ቀ ఈ௭బቁ were compared to the existing theories. It is tricky to capture the adhesive contact 296 

behaviour of surfaces for Tabor parameters ranging from ͲǤͳ ൏ ߤ ൏ ͵ since they are describing 297 

the transition from DMT to JKR theories. In this case, a comparison with the model of 298 

Greenwood (8) is represented. The Tabor parameter is defined as ߤ ൌ ோכభయ௪బమయாכమయ௭బ   where ܴ  is the 299 כ

equivalent radius of curvature and for the case of sphere on flat surface is the radius of the 300 



curvature of the sphere. Figure 5 shows the comparison of our model with model of Greenwood 301 

at values of ߤ ൌ ͲǤͳǡ ͲǤʹ Ƭ ͲǤ͵ and Figure 6 shows the comparison for ߤ ൌ ͳǡ ʹ Ƭ ͵ where a 302 

good agreement is observed. The simulations can capture the adhesive pressures for negative 303 

values of separation. For the case of higher Tabor parameters (Figure 6), Greenwood has 304 

shown an S-shape behaviour in the loading-unloading curve. This phenomena can be captured 305 

by the current numerical model if two different simulations (loading and unloading) are 306 

conducted. However, the simulation cannot capture some part of the adhesive pressure between 307 

loading and unloading. This is due to the nature of this numerical models that need a certain 308 

value of separation as input to the model (displacement controlled) and the model cannot give 309 

two values of pressure for the same separation (inevitable in S-shape profile). This would 310 

become possible by a force-controlled numerical approach. Greenwood has used a solution by 311 

fixing the displacement at the centre of the contact. The arrows on the load-separation curve in 312 

Figure 6 show if the data have been obtained in loading or unloading cycles. It should be noted 313 

that convergence time increased as the Tabor parameter increased and it is due to higher 314 

adhesive pressures and higher disturbance of the deformations of positive pressures (non-315 

adhesive case). An example of the contour of contact pressure as well as cross section of the 316 

total pressure in the middle plain is reported in Figure 7. 317 

 318 

Figure 5 Comparison between the current model and Greenwood's model for small values of 319 
Tabor parameters. Dimensionless load is plotted against dimensionless approach. 320 



 321 

Figure 6 Comparison between the BEM model and the Greenwood model for Tabor 322 
parameters of µ=1, 2 and 3. Dimensionless load is plotted against dimensionless approach. 323 

 324 

 325 

Figure 7 Representation of the (a) contour of contact pressure and (b) cross section of the 326 
pressure profile for the case of smooth plane in contact with a rigid indenter. 327 

 328 

3.2 The contact mechanics challenge 329 
In December 2015, Martin Müser has introduced a contact mechanics challenge where a pre-330 

defined self-affined surface was created and scientists were asked to use their own in-house 331 

numerical techniques to calculate the contact between the surface and a rigid flat surface. The 332 

results presented in a published paper (11) show a reasonable agreement between numerical 333 

results e.g. Green Function Molecular Dynamics (GFMD), All-atom MD, FFT-BVM, etc. The 334 

purpose of this section is to use the same surface used in (11) and to reproduce the results with 335 



the numerical model presented in this paper for comparison. Initially, the parameters used in 336 

the challenge will be summarised here. The surface was normalised to have a root mean square 337 

gradient of ݃ ҧ ൌ ͳ, minimum height of zero and a maximum of 5.642 µm and the surface was 338 

representing an area of 0.1mm×0.1mm. The inverse root mean square of the curvature which 339 

can be used as typical local radius of curvature was defined as ܴ כ ൌ ͸Ͳ݊݉. In addition, the 340 

equivalent elastic modulus was set as כܧ ൌ ʹͷ ܽܲܯ, the work of adhesion was set as ݓ଴ ൌ341 ͷͲ ݉ܬȀ݉ଶ and the equilibrium separation was ݖ଴ ൌ ʹǤͲ͹ͳ݊݉. The simulations were carried 342 

out using the current BEM model and adopting the parameters in the challenge. The results for 343 

the relative contact area against normalised pressure and the gap distribution in the middle 344 

plane of the contact has been reproduced. Figure 8 shows the comparison of the current model 345 

(BEM) with two selected numerical results i.e. GFMD and FFT-BVM from the challenge. The 346 

result shows a good quantitative agreement between BEM and the result of the challenge. The 347 

x axis represents the average of contact pressure across the whole nominal area normalised by 348 

the כܧ ҧ݃ and the y axis is the ratio of contacting areas with the total nominal area. Figure 9 349 

presents the profile of the gap in a cross section in the middle of contact (ݔ ൌ ͷͲ݉ߤሻ and 350 

compares the results of current model with GFMD simulations presented in (11) and a good 351 

agreement is found. The small discrepancy of the results can be due to the differences in the 352 

resolution of the simulations. The simulations carried out in this model use a discretisation of 353 

4096×4096.    354 



 355 

Figure 8 The relative contact area (ܽ௥) against normalised average pressure (p/כܧ ҧ݃ሻ and the 356 
comparison with the contact mechanics challenge (11). GFMD and FFT-BVM have been 357 

chosen for comparison. 358 

 359 

Figure 9 Gap distribution of deformed surfaces (݃) at a cross section in the middle of contact 360 
(X=50 µm in the contact mechanics challenge problem definition). The results of BEM in this 361 

work are compared with the GFMD results from (11).  362 



3.3 Effect of roughness 363 
Numerical methods such as the one developed in this paper are ideal for studying the contact 364 

behaviour of deterministic rough surfaces. Here we have generated rough surfaces with self-365 

affine properties to examine the effect of different surface characteristics on the real area of 366 

contact and stickiness of surfaces. The pull-off force (force needed to completely separate the 367 

surfaces) and the contact area ratio were also plotted for different surfaces at different Tabor 368 

parameters. Surfaces are generated using the Power Spectrum Density (PSD) as reported by 369 

Persson (27). Random numbers were used along with Fourier transforms of the height function 370 

( ෨݄ሺݍሻሻ. The height spectrum ܥሺݍሻ was defined as: 371 

ሻݍሺܥ ൌ ௥ሻݍሺܥ ൈ ൞ ͳ                             ߣ௥ ൏ ଶగ௤ ൑ ݍሺ  ܮ ௥ൗݍ ሻିଶሺଵାுሻ              ߣ௦ ൑ ଶగ௤ ൏ ௥ߣ         Ͳ                                                                                      (13) 372 

In which ߣ௥ is the roll-off wavelength, ߣ௦ is the short wavelength cut-off, L is the length of the 373 

surface in each dimension, ݍ௥ ൌ ଶగఒೝ  and H is the Hurst parameter which is calculated by ܪ ൌ374 ͵ െ  ௙ is the fractal dimension. All the surfaces generated with this method have a 375ܦ ௙ whereܦ

mean of zero. 376 

Müser (28) has shown that the formula for relative contact area firstly introduced by Pastewka 377 

and Robbins (29) can accurately capture the non-adhesive contact behaviour of rough surfaces 378 

and introduced a new formula by improving the Pastewka and Robbins criteria using a new 379 

equation for contact area by eliminating the mean-field approximation.  380 

ܽ௥ሺ݇݌෤ሻ ൌ ଴ଶܽߨ ൬ͳ െ ͳʹ݇ଶ݌෤ଶ൰ erfሺ݇݌෤ሻ ൅ exp ሺെ݇ଶ݌෤ଶሻξ݌݇ߨ෤                                ሺͳͶሻ 381 

In Equation 14,  ܽ௥ is the relative real contact area, ݇ is a number that is often two for real 382 

engineering surfaces, ݌෤ is calculated by ݌෤ ൌ ଷ௅ସξగாכ௚ത௔బమ and is a physical representation of the 383 

average contact pressures; L is the total applied load on the nominal area, ݃ҧ is the root mean 384 

square gradient of surface roughness and ܽ଴ is the radius of the nominal contact area. Equation 385 

14 is used in this work to analytically predict the contact area in the case of adhesion-less 386 

contact and the BEM is used to predict the contact area for adhesive contact. The aim of this 387 

section is then to see the effect of adhesion on the real contact area for rough surfaces. Figure 388 

10 shows the comparison between the adhesive model (ߤ ൌ ͵) presented in this paper and the 389 

non-adhesive theory of Müser (28). The discrepancy of adhesive and non-adhesive contacts is 390 



more significant for higher values of the Tabor parameter. Results clearly show that adhesion 391 

is playing an important role in increasing the relative contact area as expected. The other point 392 

to highlight is that the model -with a very good quantitative agreement- can follow the trend of 393 

area of contact in the presence and absence of adhesion. This interesting numerical finding is 394 

valid for both values of root mean square gradient of surface roughness. This means that for 395 

cases with larger radius and softer materials the real contact area is significantly affected by 396 

adhesion. Physical problems such as contact and friction of rubbers, contact of biomaterials, 397 

cartilages and cells and contact of viscoelastic solids can be largely dependent on adhesion. 398 

Ignoring surface roughness and adhesion in such areas will considerably misrepresent the 399 

contact mechanics and evaluation of the corresponding friction and wear. For instance, for 400 

small values of average pressure (݌෤), real area for the case of adhesive contact is larger than 401 

the area of non-adhesive contact by a factor of 2 or 3. This is a large underestimation of the 402 

contact area which can eventually under-predict friction and wear by the same factor. This 403 

highlights the importance of models such as the one developed in this work to deterministically 404 

calculate real contact area and pressure distribution in the presence of adhesion. 405 

 406 

Figure 10 Comparison between the theory of Müser (28) for non-adhesive contact of rough 407 
surfaces and the BEM for adhesive contacts. Relative contact area is plotted against pressure 408 

݃ ෤ሻ for two values of݌) ҧ. 409 

3.3.1 Effect of roughness on the pull-off force 410 
In the adhesive contact of surfaces, when the approach of the bodies is negative, adhesive forces 411 

will deform the surfaces and there may be body interference between solid surfaces which in 412 



turn, causes compressive pressures. The area in which the compressive pressures still exists, is 413 

the contact area. The minimum negative force in the process of separating the surfaces is called 414 

the pull-off force. This is the minimum negative force required to completely separate the 415 

surfaces. In this section, the effect of surface roughness and the Tabor parameter on the pull-416 

off force calculated by BEM is presented. The results are then compared with the numerical 417 

results produced by Medina and Dini (12) to see how results from a more complete surface 418 

integral method will differ from a line integral approach. The simulation parameters are set as 419 

כܴ) ൌ ͳͲͲ݉ߤǡ כܧ ൌ ͷͲܽܲܩǡ ଴ݖ ൌ ͲǤ͵݊݉ǡ ଴ݓ ൌ ͲǤʹͻ ௃௠మ ଴ݓ ݀݊ܽ  ൌ ͲǤͲ͹ͷ ௃௠మሻ in order to get 420 

Tabor parameters 5 and 2 respectively and the results are plotted in Figure 11.  421 

It should be noted that the main part of the results section of this paper looks at validation of 422 

the new mathematical model and the algorithm proposed, with the existing theories in the 423 

literature for both smooth and rough surfaces. This is to show how effectively Lennard-Jones 424 

potentials could be applied on a rough surface in BEM to predict adhesion in contact 425 

mechanics. In order to further study the effect of roughness parameters on adhesion, we have 426 

extended our study to investigate the effect of RMS slope ҧ݃ on the adhesion. Simulations are 427 

carried out with the same root mean square roughness (ܴ௤ሻ of 2ݖ଴ but different ݃ ҧ values and 428 

the effect of ݃ ҧ on the pull-off force was investigated.   429 



 430 

Figure 11 Effect of ܴ௤ on the pull-off force for randomly rough surfaces and the comparison 431 
with the results of Medina and Dini (12) 432 

 433 

Figure 12 Effect of root mean square gradient of surface roughness on the magnitude of pull-434 
off force for the case of ߤ ൌ ͷ and ߤ ൌ ͹, ܴ ௤ ൌ  ଴ 435ݖʹ

Figure 12 represents the results when the root mean square roughness of the surface is constant 436 

and only the mean square gradient of roughness (ҧ݃) is altered to see the effect on the force 437 

needed to separate surfaces. The results clearly show that increasing the ݃ ҧ will result in 438 



decreasing the pull-off force and this is independent of the ܴ௤ value of the surface roughness. 439 

The value of ݃ ҧ represent how sharp or blunt the surface asperities (at least at the resolution that 440 

topography is defined) are which in turn affects the separation of surfaces near the edge of 441 

contact. 442 

The simulations presented in this paper study the effect of surface topography on the adhesive 443 

pressures in the contact of nominally flat surfaces. The effect of adhesion is shown to be 444 

important in determination of real contact area. Results of Figure 10 show the difference of the 445 

relative contact area in the case of adhesive contact with the case of non-adhesive contact 446 

reported by Müser. It also proves the fact that adhesion increases the real area of contact as 447 

expected. It was shown previously that increasing the root mean square of surface roughness 448 

will reduce the effect of adhesive pressures on the surfaces in contact. This is due to higher 449 

separation of surface points. In addition, rougher surfaces will experience higher compressive 450 

pressures at the point of higher topography peaks and the small adhesive pressures will be 451 

negligible compared to the compressive ones. The pull-off force needed to separate surfaces 452 

generally decreases as the root mean square roughness increases.  453 

It should be highlighted that we have investigated the effect of these parameters (ܴ௤ and ݃ ҧ) 454 

and have numerically shown the importance of both. The recent theoretical works of Ciavarella 455 

(2, 30, 31) have highlighted alternative surface and material parameters responsible for the area 456 

of contact and discussion around stickiness criteria was made. They used different independent 457 

theories (BAM, Persson-Tosatti (10)) along with DMT theories previously reported by Persson 458 

and Scaraggi (32). He has shown that macroscopic features of surface roughness such as ܴ௤ 459 

and the low wavevector cut-off of surface roughness and the ratio of work of adhesion and the 460 

equivalent Young’s modulus are important parameters for stickiness. This is interesting and 461 

we believe our results do not contradict with the criteria of Ciavarella. We have therefore 462 

carried out an investigation to include the effect of both RMS and RMS slope in the adhesive 463 

force calculations of rough surfaces. Recently, Li et al. (22) have demonstrated the effect of 464 

the Johnson parameter (33) in the adhesive contact of wavy surfaces. They have introduced a 465 

modified version of the Johnson parameter that considers the fractal properties of rough 466 

surfaces and argued that the adhesion between rough surfaces is dependent on this new 467 

parameter for larger values of Tabor parameter (JKR-limit). The modified version of the 468 

Johnson parameter (כߙ) was formulated as: 469 



כߙ ൌ ቆͶݓ଴ݍଵ଴Ǥ଼ுିଵ݄כܧߨଶݍ଴଴Ǥ଼ு ቇଶ                                    ሺͳͷሻ 470 

in which H is the Hurst exponent of the fractal surface, h is the RMS roughness, ݍ଴ and ݍଵare 471 

the smallest and largest wavevectors respectively. We have plotted the pull-off force with 472 

respect to the modified Johnson parameter (כߙ) for three values of Tabor parameter (ߤ ൌ473 ʹ ǡͷ ܽ݊݀ ͹) and results are presented in Figure 13. Results indicate that normalising our pull-474 

off force calculations with respect to the modified Johnson parameter results in very similar 475 

values of the pull-off force. It should be noted that Persson and Scaraggi (32) and Ciavarella 476 

(19) have shown that the pull-off force is almost independent of the large wavevector 477 

component. Our results show that this new modified dimensionless parameter that includes 478 

both RMS and RMS slope, small and large wavevectors could be a reasonable but not fully 479 

comprehensive stickiness criteria for the adhesion of rough surfaces with fractal properties in 480 

JKR limit. This is because our results show small discrepancies at different Tabor parameters 481 

(JKR-limit) which suggests that the parameter could somehow be modified. Our simulation 482 

data are also in-line with the results of Li et al.(22) which showed the same dependency.  483 

In order to test the numerical model with other stickiness criteria, we have used the theory of 484 

Ciavarella (30) which was based on the BAM model. In his model, Ciavarella introduced new 485 

adhesion criteria along with those of Persson and Tosatti (10) and has shown that both models 486 

although from completely different origins, predict very similar stickiness criteria. The 487 

stickiness criteria of Ciavarella was reported as the following: 488 

ܴ௤ ൏ ඥߣߚ௅ܫ௔                                  ሺͳ͸ሻ 489 

in which ߚ is 0.6 in his theory, ߣ௅ is the large wavelength of the surface roughness and ܫ௔ is 490 ൫ݓ଴ ൗכܧ ൯. This criteria suggests that only RMS roughness and the large wavelength of 491 

roughness (small wavevector) are responsible for stickiness. In order to compare our results 492 

with this theory, we have plotted our pull-off force calculations against ቀோ೜మாכఒಽ௪బቁ for different 493 

cases at Tabor parameters of Ɋ ൌ ʹ ǡͷ and ͹ and the results are plotted in Figure 14. It is 494 

interesting to see that the new parameter is a good stickiness criteria for this range of Tabor 495 

parameter since the results of pull-off force against this stickiness parameter matches almost 496 

perfectly for all three values of Tabor parameter. This suggests that Equation 16 (Ciavarella’s 497 



stickiness model) is the most accurate and reasonable stickiness criteria based on our 498 

simulations. 499 

We believe our model, could be a platform for the future development of adhesion models for 500 

real rough surfaces and more robust stickiness criteria for a wider range of materials could be 501 

achieved. 502 

 503 

Figure 13 The effect of the modified Johnson parameter on the pull-off force for three values 504 
of Tabor parameter (ߤ ൌ ʹ ǡͷ ܽ݊݀ ͹) 505 



 506 

Figure 14 Pull-off force against the stickiness criteria of Ciavarella (30) for ߤ ൌ ʹ ǡͷ ܽ݊݀ ͹ 507 

4 Conclusions 508 
This paper presents the development of a BEM model for contact mechanics of rough surfaces. 509 

Adhesion is considered by means of inter-atomic Lennar-Jones potential and a new surface 510 

integration approach is incorporated. The model extends the model of Medina and Dini where 511 

a line integration of the Lennard-Jones potential was developed. The model shows very good 512 

quantitative agreement with the model of Greenwood for medium range Tabor parameter and 513 

reproduces exact solutions of the contact mechanics challenge introduced by Müser. The 514 

deterministic nature of the model enables us to analyse the adhesive contact of surfaces with 515 

any complex geometry and investigate the local pressures and deformations at micron and 516 

nano-scales. Therefore the effect of roughness on the adhesion is studied with a focus on the 517 

root mean square gradient of roughness and the following conclusions are drawn: 518 

 A new mathematical equation is developed in this work to evaluate adhesion of rough 519 

surfaces and can be used in BEM simulations. The incorporation of the mathematical 520 

equation is simple and the algorithm used in this work is very efficient.  521 

 It was numerically shown that inclusion of adhesion in the deterministic contact 522 

calculations of rough surfaces affects the real contact area ratio. This was shown by 523 

comparing the numerical results of BEM developed in this paper by analytical model 524 



developed by Müser. It was revealed that the root mean square gradient of roughness 525 

not only affect the real area of contact in the non-adhesive case, but also affects the area 526 

of contact in the case of adhesive contact.  527 

 We have presented that not only the ܴ௤ value can significantly reduce the adhesion 528 

effect, but also the root mean square gradient of surface roughness can significantly 529 

affect the adhesive forces. Higher root mean square gradient results in lower adhesive 530 

force and lower pull-off force needed to separate surfaces. This is believed to be due to 531 

the difference in the real area of contact cause by the shape of asperities. 532 

 We have investigated the effect of the modified Johnson parameters (that include both 533 

fractal properties and RMS) on the stickiness of rough surfaces and have shown that 534 

this dimensionless parameter could be a reasonable but not fully comprehensive  535 

stickiness criteria for the contact of rough surfaces. 536 

 Furthermore, we have shown that the criteria introduced by Ciavarella almost perfectly 537 

matches our simulation results and by far is the best stickiness criteria based on our 538 

simulations. 539 
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