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Abstract. Lego is one of the most successful toys in the world. Being
able to scan, analyse and reconstruct Lego models has many applica-
tions, for example studying creativity. In this paper, from a set of 2D
input images, we create a monolithic mesh, representing a physical 3D
Lego model as input, and split it in to its known components such that
the output of the program can be used to completely reconstruct the in-
put model, brick for brick. We present a novel, fully automatic pipeline to
reconstruct Lego models in 3D from 2D images; A-DBSCAN, an angular
variant of DBSCAN, useful for grouping both parallel and anti-parallel
vectors; and a method for reducing the problem of non-Manhattan re-
construction to that of Manhattan reconstruction. We evaluate the pre-
sented approach both qualitatively and quantitatively on a set of Lego
duck models from a public data set, and show that the algorithm is able
to identify and reconstruct the Lego models successfully.

1 Introduction

Lego is one of the most successful toys in the world today. Its affordances have
made it widely recognised as a means of expressing, fostering, and studying cre-
ativity [1, 2]. Using Lego models to study human creativity often requires scan-
ning the physical models in some form in order to be able to formally reconstruct

Fig. 1. From left to right: real world Lego duck model, monolithic visual hull of duck
from 2D image data, resulting reconstruction of the proposed approach.
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and analyse them. One recent example is Ferguson et al. [3, 4]. To explore novel
methods for computationally assessing human creativity, they created a “Lego
duck task” which involves constructing diverse ducks from the same set of six
Lego bricks. Their aim was to use computational formalisations of dissimilarity
to assess which ducks were more divergent, novel, and thus, creative. Such com-
putational analysis logically requires a computational representation of the Lego
models. To this end, Ferguson et al. created a corpus of duck models, archived as
multiview images of the creations [4]. They used a variational auto-encoder on
the images to generate neural representations of the ducks. While their results
were promising, such a machine learning approach limits possible formal analy-
ses, as the computational representation remains ‘opaque’ to human inspection,
which is why they recommended future work to explore the generation of more
transparent, human-readable computational representations of models.

In this paper, we aim to go further than current 3D scanning methods by
identifying the arrangement of a set of known Lego components to obtain a
complete, brick by brick, 3D reconstruction of the original scanned Lego model.
We propose a fully automatic pipeline to reconstruct semantic 3D Lego models
from 2D images, comprising the following novel ingredients: angular DBSCAN,
a novel variant of the clustering algorithm DBSCAN [5] using angular displace-
ments that is suitable for grouping both parallel and anti-parallel vectors and
a method for reducing the problem of non-Manhattan reconstruction to that of
Manhattan reconstruction. Figure 1 shows an example model, the reconstructed
visual hull, and the output of our proposed method, consisting of a 3D arrange-
ment of the individual blocks that make up the original model.

2 Related Work

Although little research has been undertaken on the programmatic reconstruc-
tion of Lego models, there is a large area of research on identifying and recon-
structing cuboids and buildings from point clouds. There exists also a small body
of work on various mathematics of Lego permutations, Lego construction and
Lego detection. No attempts have been made to reconstruct Lego models in 3D.

Manhattan-World Reconstruction: Kim and Hilton [6] showed in 2015 a pipeline
that detects and reconstructs cuboids from multiple stereo pairs of spherical
images, under the assumption of a Manhattan-world. They describe dealing
with planes that are too similar to each other, eliminating unreliable planes
and plane intersection refinement. They calculate the similarity between sets of
parallel planes by: first calculating overlap and difference in position; merging
similar planes by taking a parallel bounding box; and finally replacing the origi-
nal planes with the newly created one. Their plane intersection refinement aims
to create perfect cuboids from sets of noisy, Manhattan compliant planes by
using intelligently picked tolerances to edit the plane parameters so that they
exactly meet at corners to form cuboids.

Li et al. [7] deal with noisy input data in the form of 3D point clouds extracted
from aerial photography. They present a generate and select strategy, formulated
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as a labelling problem, and solve it using a Markov Random Field. Their solution
appears to work well for representing inputs as a densely packed set of blocks. In
their setup, there is also the problem of missing walls, which is the identification
of internal walls missing from the input data, but possibly recoverable from
auxiliary data - such as 2D images. They also provide some insight into a solution
to the problem of missing walls. They use Hough transforms to identify cuboid
faces from their initial input images, which would be impossible to extract via
analysis of 3D surfaces alone.

Non-Manhattan-World Reconstruction: With a point cloud as input, Cao and
Wang [8] have developed a robust way to find cuboids of any rotation with
impressive accuracy. They first seed cubes randomly in the point cloud and
then use a Levenberg–Marquardt algorithm [9], paired with their method for
calculating distance between each cube and the point cloud to optimise their
output. They expand each cube to fit the ground truth as best as it can, paired
with a smoothing variable that combines cuboids which it feels should not be
disjoint. It seems to work best on inputs which extend out in all dimensions,
but can still perform well with some changes to their smoothing variable if this
condition is not met. Schnabel et al. [10] produced breakthrough research in
the area of 3D reconstruction of arbitrary models using their RANSAC [11]
approach. Their algorithm runs a single subroutine with 5 different types of
shapes, attempting to find areas of the input point cloud where they each fit
best. The research stresses that although their approach is fast and robust it
does not find these shape proxies for every part of the input surface, leaving
holes and overlaps between the disjoint shapes which have been found.

Lego Theory: There is a body of research (Durhuus and Eilers [12], Nilsson [13],
Abrahamsen and Eilers [14]) that is focused on investigating Lego under certain
heavy constraints such as Manhattan world assumption or known heights and
widths of input models, with the aims of investigating the permutations, com-
plexity, entropy and other properties of Lego models. There seems to be no exact
formula to follow for computing the number of Lego permutations, especially
with non-Mahattan models. The research does, however, show an exponential
growth when computing the number of models which can be made using n Lego.
Because of this, it is unlikely that any kind of brute force method would be
feasible for Lego detection, construction or reconstruction without introducing
some constraints on the search space.

Lego Detection: There have been many attempts to recognise and categorise
individual Lego and Duplo bricks from 2D images using computer vision, deep
learning and machine learning methods, including the work of Mattheij [15], the
software of Nguyen [16] and West [17], and in material from Lego Education1.
These are all able to do well at identifying individual bricks in images with only
the target brick and a solid background. However, none of them leverage any ad-
vantage that a 3D input can provide, or attempt to process models with multiple

1 https://education.lego.com/en-us/lessons/ev3-cim/make-a-sorting-machine
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connected bricks. Chou and Su [18] attempt to identify entire models as opposed
to single bricks. There is no reconstruction involved in their research, however
they develop a pipeline using a Microsoft Kinect and RANSAC to extract their
target and then use a convolution neural network to identify whether the model
is equivalent to another.

Lego Construction: The Lego Construction Problem was set by Lego to answer
the question: “Given any 3D body, how can it be built from LEGO bricks?” [19].
The Lego Construction Problem looks for ways to construct any 3D input us-
ing Lego, so that the surface is similar enough to the original. While the Lego
Construction Problem is not entirely applicable to the problem at hand, Kim
et al. [19] has some discussion on the difficulties of dealing with the problem’s
large search space and they evaluate various methods for tackling this, such as
using brick colour to aid in detection and ways of reducing the possible number
of Lego that can be detected. Peysakhov and Regli [20] feature in the previous
paper showing a method of unambiguously representing and abstracting a Lego
model as a graph. Their graph representation is a directed graph where each
node is a unique Lego, and each edge describes which studs connect Lego.

3 Method

In this section, we present our novel pipeline to reconstruct Lego models in
3D. 3D simplifies representation and provides invariance, modelling the intrinsic
structure of our models. The low dimensionality is also crucial for measuring
creativity, since we can only hope to capture a few hundred models from a few
hundred people, so learning models from this data needs to be highly sample
efficient to prevent overfitting.

The underlying idea of our pipeline is to reduce all of the Lego identifica-
tion requirements to that of the simpler identification of Manhattan compliant
meshes. Manhattan compliant Lego models have strict rules on how they can be
constructed, leading to a finite number of possible models. By reducing the prob-
lem to a Manhattan world we aim to take advantage of this inherent structure to
deduce the full reconstruction in an efficient manner. Together with the lack of
available training data, this makes the problem an ideal fit for a more classical
computer vision approach, rather than learning based methods. Furthermore,
our approach allows full control of the types and number of Lego bricks used.

In the first step, we generate the visual hull of a model from the 2D input
images. Next, we use any prior knowledge about the colours or patterns on the
Lego to extract any information we can about their locations. The next three
steps extract face information from the monolithic mesh, use the information to
reduce non-Manhattan compliant areas of the mesh to Manhattan ones, and then
perform an adaptation of the Block World Reconstruction of Kim and Hilton [6]
to identify remaining Lego. The final stage fixes any inaccuracies by snapping
Lego together as they would be in the real world. An overview of the pipeline is
shown in Figure 2. The following sections will describe the steps in detail.
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Fig. 2. Flowchart of the proposed pipeline.

3.1 Triangle Mesh Generation

The input to our algorithm consists of a set of 2D RGB images of a physical
Lego model, captured from viewpoints that uniformly sample a circle around
the vertical Y -axis. Shape-from-X methods based on feature matching, such as
structure-from-motion e.g. COLMAP [21, 22], fail on such images due to the
lack of texture on the lego bricks. Instead, we assume calibrated cameras and
apply a standard space carving method [23, 24] to these images to extract a
volumetric visual hull. We convert the volumetric representation to a triangle
mesh by applying the marching cubes algorithm (Figure 3 (a)). Finally, on the
triangle mesh we apply Laplacian smoothing to reduce the roughness of the
surface created by the voxel discretisation (Figure 3 (b)).

3.2 Flat Surface Extraction

To get any kind of meaning from the monolithic mesh, we must extract face
information. To do this we perform a discrete differentiation on the monolithic
mesh, labelling each triangle of the mesh with the dihedral angles between itself
and each of its connecting triangles. From this we find which groups of triangles
form flat surfaces by removing any triangles which have one or more dihedral
angles over a certain threshold (Figure 3 (c) and (d)). We name the set of all flat
surfaces F where each element is a set of triangles which make up a flat surface.

This method holds up very well for bricks due to the input meshes only
containing right angles or flat surfaces. The Laplacian smooth used in the pre-
processing also assists in ensuring robust identification of flat surfaces.

3.3 Colour Information Extraction

Lego plates are short in height relative to a standard brick. This means that
the planar faces of the brick sides may be below the resolution of the generated
mesh. If that is the case, we handle plates explicitly using a separate process. To
simplify this task, we assume that plates share the same colour and that this is
different from the colour of the other bricks.

We extract all triangles from the mesh with the chosen colour, indicating a
plate, and compute the bounding box of each cluster of triangles. We can then
remove the associated triangles from the mesh and use the found cuboid faces
in the Cuboid Detection of Section 3.5.
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Fig. 3. Left to right: (a) input without any smoothing; (b) input after a Laplacian
smooth; (c) mesh differentiation with yellow indicating areas of high curvature, and
red indicating areas of low curvature; (d) groups of flat surfaces.

We can also use a similar filter to identify patterned bricks, and to extract
the pattern information. This information can later be used to apply textures to
appropriate bricks once found.

3.4 Rotational Group Detection

To identify the areas of the monolithic mesh which break the Manhattan as-
sumption we first need to identify a set, PF , of subsets of F such that each
subset, p, contains only flat surfaces which are parallel to each other. We then
need to find our set of rotational groups, ΠF = {(p0, p1)|p0, p1 ∈ PF , p0⊥p1)}.

By definition all elements of PF should be disjoint with all other elements in
PF as well as

⋃

p∈PF
p being equal to F . We can formulate this as a clustering

problem on the average normal of elements in F . By doing this we can leverage
existing clustering algorithms [25].

Density-based spatial clustering of applications with noise [5] (DBSCAN) is
a popular clustering algorithm in cases where the number of clusters to be found
is unknown, unlike approaches such as k-means [26]. The fact that cuboids are
made up of parallel and perpendicular sides means that DBSCAN clusters should
all have a high density where we need them to, e.g. at least two flat surfaces being
anti-parallel. This, in addition to its natural noise removal property, makes it a
good choice for this application. DBSCAN is often used for clustering points in
3D euclidean space, for which the metric is almost always euclidean distance.
While this would cluster together parallel vectors effectively, it would always fail
to cluster anti-parallel vectors.

Angular DBSCAN: We subsequently developAngular DBSCAN (A-DBSCAN),
using

∣

∣cos(2θ + π
2 )
∣

∣ as the density metric, as opposed to the usual euclidean dis-
tance or cosine distance, with the aim of removing the erroneous results produced
by vector magnitude and anti-parallelism (Figure 4). We modify the prerequisite
definitions of DBSCAN from Schubert et al. [27] as follows:

– A vector V is a ‘core vector’ if at least minV ecs vectors have an angle less
than ǫ between them and V , including V .
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Fig. 4. From left to right: (a) vectors from six Lego with ground truth groupings; (b)
vectors with no groupings (input to DBSCAN); (c) vector groupings after euclidean dis-
placement or cosine distance DBSCAN; (d) vector groupings after Angular DBSCAN.
ǫ = π

20
. Each colour represents a cluster.

– A vector W is a ‘direct neighbour’ of a core vector, V , if vector W has an
angle less than ǫ between V and itself.

– A vector W is a ‘neighbour’ of V if there is a path from V to W , where each
vector in the path is a ’direct neighbour’ of the previous vector.

– All other vectors are noise.

Here, with angle between two vectors, we mean the absolute acute angle,
∣

∣cos(2θ + π
2 )
∣

∣. The modified algorithm then becomes:

1. Identify the neighbouring vectors of every vector, and identify the core vec-
tors.

2. Identify the connected components of core vectors on the neighbours graph,
ignoring all non-core vectors.

3. Assign each non-core vector to a cluster within ǫ range, otherwise assign it
to noise.

The output contains clusters of vectors identified using A-DBSCAN which,
when mapped back to their original flat surfaces, split F into the elements of
PF . All other vectors will be returned as noise, and their original flat surfaces
can be assigned as such.

Angular Pairing: At this point, given our input bricks each have 2 sets of
parallel faces which are perpendicular to the Y-axis, #PF ≤ 12. This makes
it viable to run a brute force search on PF , identifying perpendicular pairs,
removing them from the search as we progress. The identified pairs make up our
rotational groups Π. See Figure 5 for an example.

3.5 Cuboid Detection

Manhattan World Reduction: The first stage of detecting cuboids is to use
the previously identified rotational groups to duplicate the monolithic mesh into
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Fig. 5. From left to right: (a) input mesh with red removed; (b) A-DBSCAN clusters
by colour; (c) rotation groups Π, by colour.

#Π copies, followed by rotating each copy such that all flat surfaces in any given
rotational group are Manhattan compliant within one of the copies. Splitting the
meshes also allows the rest of the algorithm to run in parallel.

Brick Face Extraction: To extract the planar faces of our input, we take
inspiration from part of Kim and Hilton’s Block world reconstruction [6] as we
act on the now Manhattan aligned mesh sections. In contrast to Kim and Hilton,
we can disregard the scene scale parameter used in their approach as we know
exactly the sizes we need from the sizes of Lego. In place of their 2D to 3D plane
reconstruction methods, the prior steps in this section have already generated
Manhattan compliant flat surfaces. If we name the set of flat surfaces in the
current rotational group Ω, then for each item, Ωi, we can look at its normal
vector and calculate which global axis it aligns closest to, one of X, Y or Z. We
call the identified axis Ai.

To extract plane segments, if we were to simply take a bounding box of
each Ωi, we would be affected by the absence of triangles which were on the
connection between faces during the previous mesh differentiation, resulting in
a plane segment which would be smaller than the face it is meant to represent.
Instead we can compare Ωi to the original input mesh and dilate Ωi to rectify
the previous erosion caused by removing areas of high curvature. Projecting the
dilated Ωi onto Ai results in a good silhouette of the model’s face, from which we
can then take a fuller bounding box (see Figure 6). Doing this for all Ωi gives us
a set of axis-aligned plane segments, Sp. Subsequently, we merge similar planes
as in Kim and Hilton, reducing the noise caused by rough scans.

Hidden Face Extraction: We define hidden faces to be faces of Lego bricks
which are hidden in the internal space of the input visual hull, and so cannot
be explicitly seen in images or extracted from the input mesh. We can however
see faint lines defining these planes from the outside. This occurs when two
bricks of the same colour are placed next to each other. In this part, we aim to
reconstruct the faces which correspond to these faint lines, to remove ambiguity
in our reconstructions.
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Fig. 6. From left to right: (a) input mesh with flat surface; (b) dilated flat surface
against mesh; (c) flat surface projected to the identified axis Ai; (d) flat surface bound-
ing box projected to Ai.

In Li et al. [7], Hough transforms are used to identify lines on the surface
of their images, and to then extrapolate a face, perpendicular to the surface on
which the line was identified. Instead of using Hough transforms we use Line
Segment Detector (LSD) from Grompone von Gioi et al. [28], a more modern
approach of line detection, which performs well on low contrast surfaces, has a
linear time performance, and requires no parameter tuning.

To find connecting lines between two bricks at the same elevation, we apply
LSD to each of the n input images of the model, and filter out any non-vertical
lines. Next, we check that the pixels either side of the lines, within a tolerance,
have a predominantly similar hue. Finally, to remove detection of corners, we
can check that there is a low standard deviation in the hue of the pixels on either
side of the line. Once we have our lines in 2D space, we tag them with a colour in
the images in which they were found, and then retrieve the 3D information once
the images have undergone the visual hull process (see Figure 7 (a)). Because
we know that the tagged triangles all represent vertical lines, a 3D line can be
created from the minimum and maximum of the y coordinates of the tagged
triangles and the average of the x and z coordinates.

Using our identified set of 3D lines, we can find the extracted face which is
most consistently closest to the line. Taking the identified face’s normal vector,
we can extrude a new plane segment from the 3D line in the direction of the
normal by 16 units. Finally we perform a merging of new quads which are close
to each other or overlapping, replacing two close quads with their bounding box.
We chose to extrude by 16 units, as that will be adequate for sides of length 16
and 8, and will allow for 32 unit faces as long as there is a visible line on the
other side of the brick which can be merged. Figure 7 depicts the process.

Column Identification and Cuboid Detection: To complete the individual
identification of a Lego, L, we first identify pairs of parallel planes from the set
of axis-aligned plane segments Sp which have a significant overlap as well as a
distance between them equal to either the length or width of L. We next build
columns with width and length equal to that of L. Columns are identified by
comparing each previously identified X-aligned pairing with each identified Z-
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Fig. 7. From left to right: (a) input mesh with detected seam superimposed in blue;
(b) extracted faces from input mesh; (c) inside of extracted faces, showing no internal
face; (d) extracted hidden face highlighted yellow.

Fig. 8. From left to right: (a) input mesh; (b) identified 2x2 brick columns composed of
two green and two purple planes each; (c) red and black edges indicate the maximum
and minimum y coordinates of each plane, H0 and H1 are the distances between the
minimum of the maxima y coordinates and the maximum of minima y coordinate of
each column.

aligned pairing. We have a column when: we find two pairings where each plane
segment intersects both plane segments of the other pairing, within a tolerance;
the width and length of the column equal that of L; H ≥ height(L) where
H is the distance between the minimum of the maxima y coordinates of each
plane and the maximum of the minima y coordinates of all planes in the column
Figure 8 depicts this process.

The final step of identifying cuboids is to take each identified column and
find where the cuboid (or cuboids) are positioned within the column. Because
of the lack of plane information between vertically connected bricks we can only
identify top level or bottom level cuboids. We choose to find the top-most cuboid
in a column, and to do so we search through all planes which have an identified
axis Ai of Y, taking note of all which have a substantial overlap with the cross-
section of the column. We then select the top most Y-plane.

At this stage we have five of the six faces of a Lego L identified, and therefore
can extrapolate the final face by copying the top Y plane and subtracting the
height of the Lego. Together with the rotation from the A-DBSCAN, L has now
been fully identified, and we can continue with the next Lego.
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3.6 Chiselling

To continue identifying the remaining bricks we can chisel through the model
by removing input mesh information close to identified bricks, and injecting
extrapolated bottom planes into the model where the identified top level Lego
were found. This can be done recursively until we identify all bricks, or it does
not find any new brick on a pass. At the end of the process we can report the
exact number of Lego found.

3.7 Snapping

Various inaccuracies occur during the reconstruction, mostly due to inaccuracies
in the input mesh. In an effort to improve upon this, we implement a snapping
algorithm that loops over each Lego stud, searching for connections of the oppo-
site type, and matching the closest stud as long as it is within minDist, where
minDist is set to the height of the thinnest Lego.

Doing this produces a graph similar to Peysakhov and Regli [20], connecting
Lego by their studs. We can then use this graph to offset the position of each
Lego to better snap to each other, while maintaining relative rotations.

4 Evaluation and Results

4.1 Angular DBSCAN

Choosing the correct value for the threshold ǫ is very important. If ǫ is too
large, all vectors will be assigned to a single group. While, if ǫ is too small,
each vector will be assigned to either its own group or noise, depending on the
value of minV ecs. Since most Lego are cuboid, each group of vectors should be
composed of only orthogonal vectors. This sets a maximum ǫ of π

4 before ǫ covers
all possible vectors at least once. To identify the optimal ǫ for the proposed A-
DBSCAN on Lego we generated 6 groups of 6 orthogonal vectors to simulate
the vectors produced by 6 Lego. We then apply a random rotation around the
y-axis to each group to simulated rotations of Lego, and finally we add slight
random noise to each vector. We then performed 1000 runs of the A-DBSCAN
on these vectors for each value of epsilon between π

40 and π
4 in steps of π

20 . We
also simulate chiselling by removing vector groups which have been correctly
identified, and performing a recursive step on the remaining vectors.

From Figure 9, we can see that any ǫ ≤ π
20 does not identify nearly enough

vectors correctly, while any ǫ ≥ π
20 shows a recursion depth which we wouldn’t

expect for groups of vectors this dense. To ensure we have not only grouped
vectors together which were grouped together in the input, but also make sure we
don’t have too few groups, we need to find the ǫ which maximises both the mean
percentage of vectors grouped together correctly, as well as the mean recursion
depth. We highlight ǫ = π

20 as the optimal result, with a mean percentage of
vectors group together correctly of 98.37% and mean recursion depth of 1.856
(which implies there will usually be at least 2 groupings). These results are what
we expect from this many vectors.
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Fig. 9. DBSCAN epsilon tested for percentage of ‘successful’ groupings and the mean
recursive depth reached.

4.2 Lego Reconstruction

Dataset: We evaluate our proposed approach on the data of Deterding et al. [3,
4], which has been collected with the goal of evaluating human creativity using
Lego. It consists of a set of 162 Lego ducks, composed of the same 6 Lego. Each
model is photographed on a turntable, resulting in 24 images.

Identified Bricks: First, we evaluate the percentage of inputs successfully
converted into six unique Lego. Overall, roughly 44.3% of the models were com-
pletely reported as being identified correctly. 75% of 2x1 bricks were identified,
73.6% of 2x2 bricks, 84.6% of 2x3 slates, and 55% of 2x4 bricks. 140 out of the
162 ducks were used for the evaluation.

From the above results, we see that the identification of 2x4 bricks is con-
siderably lower than any other Lego. This may be due to the large volume of
the brick providing much more space to be affected by various forms of noise in
the system. The larger faces of the 2x4 brick, paired with it often being used as
a central Lego to a duck (as oppose to a top, bottom or side Lego) mean that
it normally has more of its face area obscured by other bricks. If the attached
bricks are not correctly identified then it may cause the central 2x4 brick to
remain unidentified.

The overall relatively large number of non-perfectly reconstructed models is
caused mainly by considerable artifacts of the reconstructed volumetric visual
hull, which is an issue on nearly half of the reconstructed meshes. This is due to
the test data’s scan resolution, as well as the visual hull algorithm’s resolution.
Improving that would benefit all subsequent steps, and potentially removing the
need of using colour information to identify plates (Section 3.3).

Mesh Similarity: Second, we compare the final reconstructed Lego models
with the reconstructed visual hull from the 2D input images. We first apply
rigid iterative closest point [29] to align the two meshes. Then, for every vertex,
v, in our input mesh, of which there are hundreds of thousands, we find the
smallest distance between v and the output mesh (a mesh with only hundreds
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Fig. 10. Summary of vertex-wise distance to ground truth analysis.

of vertices). We then plot the range, interquartile range and mean of the set of
ducks where we found six bricks, and the set where we found any less. This is
shown in Figure 10. We can see that there is a correlation between the algorithm
reporting a pass or fail, as described in the previous subsection, and the distances
between input and output meshes being small and large respectively.

For more context, a 1x1 Lego (smaller than any of our Lego) would be 8mm
on both of its sides, so when the algorithm reports a pass the output mesh will
rarely be more than a 1x1 Lego away from the input, while it can leave gaps of
over 5 times as far when it has reported a fail. An advantage of our algorithm
being conservative in its searching, only identifying Lego if there is concrete
reasoning to do so, as well as the bricks used to build the model being known
beforehand, is that it allows us to know when we have passed fairly consistently.
These results show that the system should rarely produce a false positive.

Visual Analysis: Finally, we qualitatively analyse the proposed method. Fig-
ure 11 shows example outputs from each stage of the algorithm, with the final
result. In row (A), we show an example duck with hidden faces between verti-
cally connected bricks. The chiselling was able to successfully identify all blocks,
and it works well on most ducks. Row (B) shows a duck with multiple rotational
groups, which were successfully detected, and subsequently the Cuboid detection

is performed on both groups separately. Row (C) shows an example of a 2x2 and
a 2x4 brick next to each other, and the proposed method successfully being able
to identify and separate both bricks.

While our method performed very well on approximately half of the models in
the dataset, there are two main reasons why it did not work well on the others.
First, the initial mesh generation does not produce a high enough resolution
mesh to capture the sides of plates or small holes in models, or left out large
chunks of the model caused by a too large baseline between the 2D input images.
Second, some ducks use an unorthodox construction method where the sides of
plates would be rotated and snapped between studs (sometimes called ‘pony-ear’
or ‘pony-leg’ connections), which our method is not able to process. An example
of such a model is shown in row (D).
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Fig. 11. Example reconstructions. Rows (A)-(C): successful reconstructions, row (D):
failed reconstruction with pony-ear connections that our method is not able to process.

5 Conclusion

In this paper, we have demonstrated our novel pipeline that takes in a tightly cou-
pled, non-Manhattan compliant Lego mesh and identifies the exact positions of
each Lego used to construct it. We introduced Angular DBSCAN, A-DBSCAN,
to reduce the non-Manhattan reconstruction to that of a Manhattan one, as well
as a method combining image and mesh data to calculate hidden plane informa-
tion. To the best of our knowledge, ours is the first piece of work in literature that
reconstructs Lego models in 3D, and decomposes them into their exact bricks.
The results show large potential for use in practise, for example for studying
human creativity, but also in the broader study of 3D shape recognition.

The proposed system is conservative in its approach, only identifying Lego
if there is concrete reasoning to do so. This, paired with the fact it takes the
bricks used in the models construction, allow it to identify successfully whether
or not it has passed in its identification of a model’s construction with very high
accuracy. The main limitation on what models can be used as input is that the
current system cannot deal with models which contain ‘pony ears’ or ‘pony leg’
connections. This challenge will be tackled in future work. Finally, future work
could be to explore the use of deep learning for parts of our pipeline.
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