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Abstract

Maintaining high levels of geometric accuracy in five-axis machining centres is of critical importance to many industries

and applications. Numerous methods for error identification have been developed in both the academic and industrial
fields; one commonly-applied technique is artefact probing, which can reveal inherent system errors at minimal cost and

does not require high skill levels to perform. The primary focus of popular commercial solutions is on confirming

machine capability to produce accurate workpieces, with the potential for short-term trend analysis and fault diagnosis
through interpretation of the results by an experienced user. This paper considers expanding the artefact probing

method into a performance monitoring system, benefitting both the onsite Maintenance Engineer and visiting specialist

Engineer with accessibility of information and more effective means to form insight. A technique for constructing a data-
driven tolerance threshold is introduced, describing the normal operating condition and helping protect against unwar-

ranted settings induced by human error. A multifunctional graphical element is developed to present the data trends with

tolerance threshold integration to maintain relevant performance context, and an automated event detector to highlight
areas of interest or concern. The methods were developed on a simulated, demonstration dataset; then applied without

modification to three case studies on data acquired from currently operating industrial machining centres to verify the

methods. The data-driven tolerance threshold and event detector methods were shown to be effective at their respec-
tive tasks, and the merits of the multifunctional graphical display are presented and discussed.
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Introduction

To remain competitive in the modern advanced manu-

facturing sector, it is becoming increasingly important

to embrace and implement intelligent systems for pro-

cess monitoring. The core capability for data and ana-

lytics strived for in the Industry 4.0 movement1 is a key

motivator for this change. Information transparency,

concerning the application of on-line data collection to

facilitate analysis of the physical system, is a particu-

larly attractive topic for research and development,

and applying machine learning paradigms to physical

engineering processes presents itself as an effective solu-

tion to the problem. The resultant output should then

be informative in providing technical assistance to the

Manufacturing or Maintenance Engineer (ME), fulfill-

ing two of the four design principles set out for

Industry 4.0.2

It is not possible to consistently manufacture with

absolute accuracy and precision; there will always be

some observable, quantifiable degree of error present

on a manufactured workpiece, as compared with its

idealised specification. However, communication

through the Geometric Dimensioning and Tolerancing

1Industrial Doctorate Centre in Machining Science, University of

Sheffield, Sheffield, UK
2Advanced Manufacturing Research Centre, Rotherham, South Yorkshire,

UK
3Dynamics Research Group, University of Sheffield, Sheffield, UK
4metrology software products ltd., Alnwick, UK

Corresponding author:

Tim Rooker, Industrial Doctorate Centre in Machining Science/Dynamics

Research Group, University of Sheffield, Western Bank, Sheffield S1 3JD,

UK.

Email: tjrooker1@sheffield.ac.uk

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0954405420954728
journals.sagepub.com/home/pib
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0954405420954728&domain=pdf&date_stamp=2020-09-21


system3 allows realistic manufacturing of any reason-

able engineering design. Variation in quasi-static and

dynamic error sources4 that affect machining accuracy

arise due to local temperature fluctuations, in-process

conditions, significant events (such as a tool crash, or

calibration activity), errors in the size and form of

machining centre components as well as general wear

of moving elements throughout normal operation. The

extent, effect and complexity of compounding error is

unique to any particular machining centre and its life

cycle, leading to the possibility that two otherwise iden-

tical systems may exhibit significant performance dif-

ferences in their production output. It follows that the

performance of a unique system will tend to drift over

time,5 as its compound error profile is affected through

further operational use. A requirement for repeatable

performance in the manufacturing process has led to

the development of error identification methods for

informing machine calibration cycles, or qualification

to operate by assessment of machine capability.

Accordingly, much research in recent years has been

dedicated to the accurate identification of the para-

meters which mathematically define the kinematic error

motions, with particular interest in the variable loca-

tion errors, to inform necessary maintenance actions

such as calibration or specific repairs. A prominent

example of this is the R-Test,6 which is currently recog-

nised as an ISO standard7 and has been shown to be

effective for multi-axis machine tool calibration.8 The

original method used three linear displacement sensors

to dynamically track the location of a calibrated, sphe-

rical artefact through ranges of motion in the rotary

axes. An example of recent commercialisation9 of the

technique employs a non-contact 3-D probe based on

eddy currents to the same effect. The procedure results

in a detailed error map which can be used to diagnose

machine faults (kinematic eccentricity, misaligned axes,

backlash etc.) and inform a calibration action. Static

variants of the R-Test, where the procedure and equip-

ment setup is replicated but data are collected at dis-

crete intervals, have been applied for complete error

map construction of all location errors and the larger

class of position-dependent geometric errors.10

The R-Test is a fast9 and reliable method for kine-

matic error identification in machine tool rotary axes,

but it has the drawback of requiring specialist equip-

ment to conduct. A common alternative is to use a

touch-trigger probe to inspect an artefact of precisely

known dimension, in a procedurally similar manner to

the static R-Test. Calibrated artefact probing is attrac-

tive to many in the industry due to the ubiquitous

nature of the touch-trigger probe, used in virtually all

modern facilities for pre-machining verification, fault

diagnosis and calibration. The main trade-off for this

minimised cost is the overall speed of the procedure, as

multiple contact points on the artefact must be probed

to precisely determine its location, as compared with

the R-Test which requires only one contact per rotary-

axis position. An approach involving probing a rectan-

gular artefact across numerous probing patterns11 has

been shown to be effective for rotary-axis location error

calibration. This work was then extended to construct

a complete error map by artefact probing, to much the

same effect as the static R-Test publication noted

above.12 Spherical artefacts are often favourable, due

to their nominally-identical form when approached

from different angles. The artefact is probed numerous

times and spherical interpolation applied to determine

its true centre point, resulting in an informative error

map which can be applied in much the same way as its

dynamic counterpart. The scale and master balls arte-

fact method13 employs touch-trigger probing to locate

a collection of precision balls at various axis positions,

and has been shown to provide sufficient data to esti-

mate all axis-to-axis location errors in a five-axis

machining centre. More recently, the method has been

applied for kinematic fault diagnosis.14

The core focus with artefact probing procedures and

commercial software is error identification for machine

capability checking or calibration activities. Generally

speaking, performance monitoring and fault diagnosis

in machine tools are of interest to the community;

recent research has considered the mining of general in-

process data across networks of machining centres,15

analysing the energy usage to detect abnormalities16 or

vibration response to assess the health of the axis

drives.17 Monitoring machine performance with arte-

fact probing data is also possible as a secondary appli-

cation; however, it is often overlooked, and as such,

effective systems for interrogating legacy data have not

been developed. Such a system could be of great benefit

to both the onsite ME and visiting specialist consul-

tants, enabling them to quickly and easily interpret

legacy data and extract critical insight on the machine’s

history, usage and signature. Developing a perfor-

mance monitoring system like this also presents the

opportunity to employ novel predictive modelling tech-

niques, introducing intelligent features and automation

to further assist the user.

The paper is structured as follows. Firstly, the

experimental procedure for artefact probing is

described, as well as the data post-processing and pre-

sentation currently employed for performance monitor-

ing purposes within a popular commercial solution.18

The analytical methods proposed for the monitoring

system are then presented; including a tutorial for inter-

rogating the results on a simulated, demonstration

dataset, and a visual comparison of the kernel options

to select the most appropriate. Then, three case studies

are evaluated, applying the methods to real datasets

acquired from the manufacturing industry. Finally,

concluding remarks and a discussion on the proposed

system are presented, with consideration of further

research on the topic.
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Experimental procedure

The probing procedure, which this paper aims to

develop, involves locating a single, spherical artefact at

numerous indexations of the rotary axes. Generally

speaking, the Primary-axis of a machine tool is defined

as the C-axis, and the Secondary-axis is either the A- or

the B-axis, dependent upon the specific configuration.

For this paper, a B-C machine tool configuration will

be considered. The method has a number of similarities

with a recent paper,19 which proposed a Least-Squares

Estimation approach to identify and calibrate rotary-

axis location errors. A calibrated, spherical artefact is

firstly located at the ‘home’ position, where the rotary

axes are indexed at B=0o, C=0o. This is determined

by probing a number of points on the sphere’s surface,

as illustrated in Figure 1, and utilising the measure-

ments to determine the position of the sphere centre.

At the home position, it is possible to run a number

of checks to quantify the performance of the probe

itself. This includes assessing the axial pre-travel (the

distance traveled before the probe is triggered), the

repeatability of the automatic tool change action or

characterising the overall performance. The artefact is

then reoriented relative to the probe, incrementally,

along specified arcs of rotation to determine the perfor-

mance of the rotary-axes.

Figure 2(a) shows the typical setup, with the rotary

axes indexed at the home position; Figure 3 shows this

in a diagrammatic format. The Primary-axis procedure

described in this paper locates the sphere at thirteen

indexed positions from C=0o to C=360o. For the

Secondary-axis procedures, there are seven positions

indexed from B=0o to B=90o for a positive (+ve)

rotation, and from B=0o to B=�90o for a negative

(–ve) rotation. Figure 2(b) shows the sphere being

probed at in indexation of the Secondary-axis. As the

nominal kinematics of the system are known, it is

straightforward to calculate the residuals between

nominal and actual for each sphere location, to pro-

duce the volumetric error map across the full axis

index range. The procedure is illustrated in Figure 4(a)

and (b).

The intrinsic focus in machine capability is to ensure

satisfactory part production in the short-term, imple-

menting a green light manufacturing policy where

operators can confidently and efficiently run machines

without the need for high levels of additional, specialist

skills. Proprietary software18 achieves this by collating

the data from a calibrated artefact probing procedure

into a summary presentation – referred to as the bench-

mark performance and illustrated in Figure 5 – and

detailed reports for deeper analysis and fault diagnosis.

Each spoke on the benchmark wheel represents a dif-

ferent test conducted by the software, such as Rotary

Single Primary (a measure of the Primary-axis perfor-

mance) or the Overall probe performance.

A foundational characteristic with the benchmark

performance presentation is its ability to provide an

instant appraisal of the system’s health state, which is

accessible to personnel of all skill levels. In 1983, The

Figure 1. Visualisation of points probed on the sphere surface

for a typical indexation.18 The height of the extrusions

indicate the extent of the error identified at each point on

the surface.

Figure 2. Hardware setup for performing the artefact probing

procedure: (a) Probing the sphere at the home position and

(b) Probing the sphere at an indexation of the Secondary-axis.

Figure 3. Diagram of typical spherical artefact setup on a B-C

configured rotary table.

Rooker et al. 3



(a) (b)

Figure 4. Indexations of the primary- and secondary-axes for the rotary-axis error identification procedures: (a) Typical rotary-axis

positions for the Primary-axis procedure and (b) Typical rotary-axis positions for the Secondary-axis ( + ve) procedure. The

Secondary-axis (–ve) procedure is simply these indexations, but in reverse.

Figure 5. Benchmark performance summary, as produced by proprietary artefact probing software.18
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Visual Display of Quantitative Information20 by Edward

Tufte was published, concerning the theory and prac-

tice of data graphics design. The benchmark perfor-

mance presentation echoes many of the design practices

set out by Tufte. The heavier line-weight afforded to

the data elements helps establish contrast in meaning,

as compared with the polar axis elements that have les-

ser graphical importance. Presented in this way, the

data elements also serve as a multifunctional graphical

element; every machining centre has its own unique sig-

nature, which is represented by the respective positions

of each data element during normal operation. The sig-

nature is an important visual element for verifying that

a group of machines producing the same part are likely

to perform to similar levels. The inclusion of colour can

often risk generating a graphical puzzle, in which the

viewer is required to consciously decode the informa-

tion presented before them. The benchmark presenta-

tion leverages colour effectively by implementing a red-

yellow-green scheme, instantly recognisable due to the

ubiquitous traffic light system in modern society.

Analytical methods

Learnable tolerance thresholds

A key decision-making process in capability checking

concerns the proper setting of tolerance thresholds,

which define the acceptable levels for each feature that

characterise the machine’s error state. Thresholds are

determined by the ME as a result of satisfactory feed-

back from the quality assurance process, generally

depending on the production requirements and the

industry for which they are intended. Incorporating

normalisation with respect to the tolerance threshold is

crucial for assigning meaning to the absolute error

measurements obtained by the probing procedure.

Reassignment of a machining centre to new production

requirements may result in alterations to the tolerance

thresholds. There is also the possibility of user error, or

even intentional tampering, when setting new tolerance

thresholds; this is to be avoided at all costs, and is an

important motivator for incorporating learnable toler-

ance thresholds into any monitoring system with a

foundation in geometric accuracy. Moreover, learning

the most appropriate tolerance threshold from histori-

cal data is highly useful for representing the normal

operating condition of any unique machining centre.

This representation extends the potential for signature

comparison, currently utilised in the benchmark capa-

bility checking system, to evaluate historical perfor-

mance of a group of machines with respect to one-

another.

In supervised learning, the core objective of a classi-

fier is to produce a decision boundary separating two

or more predetermined classes of data. It is likely that

there exist numerous potential solutions for an appro-

priate decision boundary, so it would be wise to select

the one which presents the minimal generalisation

error. A Support Vector Machine (SVM) classifier

attempts this by solving for the decision boundary

which maximises the margin between the classes of

data.21 The SVM is a kernel method based on a sparse

solution, such that new input predictions depend only

on a relevant subset of the training data, known as the

support vectors. The margin is defined as the smallest

distance between the decision boundary and designated

support vectors. Conveniently, the identification of

model parameters corresponds to a convex optimisa-

tion problem, so any local solution can be considered a

global optimum.22

For a linearly-separable case, defined by kernel func-

tion, f(x), with weights, w, and bias parameter, b, of

the form,

y(x)=wTf(x)+ b ð1Þ

the optimum decision boundary is determined by apply-

ing the constraint,

tn(w
Tf(xn)+ b)ø 1 ð2Þ

where tn denotes the classification outcome which may

be either –1 or 1, depending on which side of the

boundary the data point lies. The classification prob-

lem itself is not necessarily linearly separable. To

account for this, slack variables, zn, can be incorpo-

rated that permit data points to lie on the wrong side

of the margin boundary, quantifying the empirical risk

associated with those points.23 The objective function

to be minimised is then,

E=
1

2
kwk2 +C

X

N

n=1

zn ð3Þ

with parameter C. 0 controlling the trade off between

margin and slack variable penalty.

A one-dimensional SVM (1D-SVM) approach is

proposed to learn appropriate tolerance thresholds and

inform future decisions. The artefact probing procedure

considered in this paper is an off-line method, which

necessitates a degree of disruption to the production

process to conduct. Subsequently, the datasets obtained

for use in a performance monitoring context are often

relatively small. SVMs are generally better suited to

tasks involving smaller datasets as compared with other

predictive algorithms – the classic example being the

artificial neural network, which requires extremely large

training sets to properly mitigate the risks of overfitting

- due to the fact that only a subset containing the sup-

port vectors are required to construct the hyperplane,

irrespective of the total size of the training set. In fact, a

critical drawback of the SVM is high computational

costs for processing large datasets, with a common solu-

tion in recent research efforts concerned with extracting

reduced training sets that are most likely to contain the

support vectors.24

Classes were assigned based on each measurement’s

relationship with the engineer-determined tolerance

Rooker et al. 5



threshold at the time, resulting in two classes; in-toler-

ance, and out-of-tolerance. The size of the dataset was

increased by sampling each observation numerous

times with additional Gaussian noise. This strategy

ensured that the generalised model could be properly

cross-validated (CV); it is possible that the data may

contain only a single instance of one of the classes,

causing the standard SVM algorithm25 to fail, even

with a Leave-One-Out CV scheme. Additionally, a

number of points were introduced in the same manner

close to 0.000, simulating the ideal case which will

always hold the class in-tolerance. A hold-out test set

consisting of 10% of the total data was separated, and

a grid search CV25 with five folds conducted on the

remainder to optimise the trade-off parameter, C. As

the application is one-dimensional, there is no require-

ment to deal with nonlinearity, so a simple linear kernel

is appropriate. Appropriate decision boundary con-

struction was assessed by calculating the F1 score,

F1 =2 � precision � recall
precision+ recall

ð4Þ

on the hold-out test set, where precision is the propor-

tion of relevant instances among the identified out-of-

tolerance instances, and recall is the total amount of

out-of-tolerance instances that are correctly identified.

Legacy trending with incorporated thresholds

In order to effectively present historical machine accu-

racy data in the temporal domain, it is extremely

important to maintain context through inclusion of the

tolerance thresholds throughout that period. Referring

back to Tufte’s principles, it would be visually benefi-

cial to provide this in the form of a multifunctional gra-

phical element. A Gaussian Process (GP) can be

loosely interpreted as a generalised, multivariate

Gaussian distribution over an infinite-dimensional

function space. Rasmussen26 defines the GP as a collec-

tion of random variables, any finite number of which have

a joint Gaussian distribution. Just as a Gaussian distri-

bution can be wholely described by its mean, m, and

variance, s2, so too is the GP specified entirely by its

mean m(x) and covariance function k(x, x0) of the real

process f(x),

f(x);GP(m(x), k(x, x0)) ð5Þ

where,

m(x)=E½f(x)� ð6Þ
k(x, x0)=E½(f(x)� m(x))(f(x0)� m(x0)� ð7Þ

Prediction with a GP involves sampling from the

posterior probability distribution, which is obtained by

conditioning the joint Gaussian prior distribution on

the observations. The solution can be interpreted as

restricting the joint prior distribution to contain only

those functions which agree with the training data

observations. The covariance function, or kernel,27 is

applied elementwise on a selection of training points,

arranged in a matrix X, and test points, X�, to construct

the covariance matrices K=K(X,X), K� =K(X,X�)
and k(x�)= k�, for a single test point x�. In this com-

pact notation, the key equations for a predictive mean,
~f�, and variance, V½f��, with GP regression are,

~f� = kT� (K+s2
nI)

�1y, ð8Þ
V½f��= k(x�, x�)� kT� (K+s2

nI)
�1k� ð9Þ

where s2
n is a noise parameter, and I is the identity

matrix. It is proposed, in this paper, to extend these

equations to include a modified version of V½f��, incor-
porating the engineer-determined tolerance thresholds

into the GP output as a multifunctional visual element

in a trending GP. This will be referred to as the

Performance Indicating Confidence Interval (PICI),

given by,

PICI½f��=1:963
ffiffiffiffiffiffiffiffiffiffi

V½f��
p

3
f�
b

� �

ð10Þ

where b is a vector describing the tolerance thresholds

at the corresponding values of f�, and the expression is

multiplied by 1.96 to reflect a 95% confidence bound.

This approach provides an efficient means of represent-

ing the trend data, which can provide an instant apprai-

sal in a similar manner to the benchmark presentation

of the proprietary software.

Event detection

Labelling important events in the data is one of six

principles outlined by Tufte for maintaining graphical

integrity20; with this, the GP modelling method is fur-

ther utilised in this paper to construct intelligent event

detectors, enhancing the quality of information on the

trending GPs to assist the ME or visiting specialist.

The method is applicable to any three or more vari-

ables that may be considered to have some underlying

relationship, such as the Primary- and Secondary-axis

tests conducted in the probing procedure. Firstly, con-

struct n multivariate input GPs from n variable sources,

such that one variable is the prediction target and all

others are a multivariate input,

f(xn);GP(m(Xm), k(Xm,X
0
m)) ð11Þ

where m indicates a matrix constructed of all vectors in

the set where m 6¼ n. After conditioning these GPs on a

training set consisiting of only non-events, one can

make predictions on a test set including both events

and non-events, obtaining the residuals between actual

and predicted values,

r�, n = y�, n � f(x�, n) ð12Þ

then find the average residual across all n event detector

GPs, r�, for each observation in the test set. Events can

6 Proc IMechE Part B: J Engineering Manufacture 00(0)



now be identified as residuals which exceed the thresh-

old given by the average GP variance, V½f��, at each

time step,

events=
1; r� øt3

ffiffiffiffiffiffiffiffiffiffi

V½f��
p

0; r� \ t3
ffiffiffiffiffiffiffiffiffiffi

V½f��
p

�

ð13Þ

where t is a fixed sensitivity parameter controlling the

threshold, and 1, 0 are identified events and non-events,

respectively. In any system, faults can be broadly cate-

gorised into two main types.28 Soft faults refer to those

which progressively develop with time, such as general

wear and tear on moving components which leads to

slowly degrading positional accuracy of the machining

centre. Hard faults refer to those which occur instantly,

such as a collision event which results in an immediate

and permanent alteration to the structural loop of kine-

matic components. The event detector method outlined

in this section presents a solution to automatically iden-

tify hard faults, and flag the results on the trending GP

visualisations. For each of the case studies presented in

this paper, the event detector was trained on a subset

of the data deemed to represent the normal operating

condition, and evaluated on a hold-out test set contain-

ing both events and non-events. Ideally, the selected

training subset would occur at the very beginning of

the data acquisition period. However, in many real-

world applications, the proprietary software is initially

implemented in response to some problem with the

machine. So, it is not uncommon to observe events, or

periods of activity not deemed to represent the normal

operating condition, at the beginning of a given acqui-

sition period. To account for this, the training subset

for each case study was selected as one continuous

stretch in the acquisition period which does reflect

the normal operating condition. In development and

deployment of a production system, consideration must

be given to the informed (and preferably, automated)

setting of this training period.

Interpreting the graphs: Demo data

This section presents a short tutorial on interpreting

the graphical tools produced by the methods described

above. For the purpose of this paper, analysis is

restricted to five outputs from the artefact probing pro-

cedure, though the developed framework can process

all items shown in Figure 5. Specifically, these are:

Axis checks
� Primary-axis Assessment of the health of the

Primary/C-axis. An incremental probing procedure

from B=0o C=0o (the home position) to B=0o

C=360o, rotating only the Primary-axis.

Measurements are given as the maximum expected

error across axis positions probed, in mm.
� Secondary-axis (+ve) Assessment of the health of

the Secondary/B-axis. An incremental probing pro-

cedure from B=0o C=0o to B=90o C=0o,

rotating only the Secondary-axis. Measurements

are given as the maximum expected error across

axis positions probed, in mm.
� Secondary-axis (-ve) Assessment of the health of the

Secondary/B-axis. An incremental probing proce-

dure from B=0o C=0o to B=�90o C=0o, rotating

only the Secondary-axis. Measurements are given

as the maximum expected error across axis posi-

tions probed, in mm.

Probe checks
� Overall probe performance Measure of the probe’s

overall uncertainty in collecting accurate measure-

ments, in mm.
� Probe pre-travel variation Measure of the uncer-

tainty attributed to probe pre-travel, or lobing,

effect, in mm.

A synthetic dataset was generated for the purposes

of this demonstration, and to select appropriate kernels

and hyperparameter optimisation ranges for the GP

methods. Data points were simulated over an eighteen-

month period, representing the normal operation of a

typical machining centre. Certain notable characteris-

tics were introduced into the dataset to illustrate the

graphical effects that the proposed methods should

have. These are:

� A significant event, or hard fault, occurs in the

Primary-axis trend, on 2017-12-28.
� A significant event, or hard fault, occurs in the

Secondary-axis (+ve) and Secondary-axis (–ve)

trends, on 2018-05-02.
� The tolerance is changed for Primary-axis, on 2018-

03-14; tolerance is changed for Secondary-axis

(+ve) and Secondary-axis (–ve), on 2018-05-07.
� There are no recorded out-of-tolerance measure-

ments in the Overall probe performance and Probe

pre-travel data.

Figures 6 shows the learnable tolerance threshold

method, as applied to the demonstration dataset. On

the format; measurements are plotted in a single dimen-

sion along the X-axis, with separate symbols for in-tol-

erance and out-out-tolerance class labels. Actual

tolerance threshold changes are tagged at their corre-

sponding values, with the date at which each was chan-

ged referenced to the right. The data-driven tolerance

threshold is represented by the red-green colourmap,

with the data-driven tolerance threshold at the decision

boundary and two class separations on either side.

There are certain indicators in this data presentation

which can provide an instant appraisal for understand-

ing how the machine has performed with respect to the

tolerance thresholds, and how the thresholds themselves

have been managed. Following the initial setting on

2017-05-10, the tolerance changes on 2018-03-14 and

2018-05-07 are immediately clear, with flags indicating

Rooker et al. 7



their respective increases from 0.1 to 0.25mm. The

data-driven thresholds for all three axis checks closely

match the threshold set by the engineer initially; suggest-

ing that, based on past-usage, the later threshold changes

may be unwarranted. For the two Secondary-axis checks,

it is noteworthy that one of the in-tolerance observed

points lies in the out-of-tolerance zone designated by the

data-driven threshold. Due to the threshold increase on

2018-05-17, this measurement – which is the highest value

seen in the dataset – concludes that the machine is capa-

ble and fit for production. This change may be com-

pletely logical – the result of a new part in production

and corresponding new tolerance requirements, for exam-

ple; it could also represent an unwarranted change by the

operator, in order to pass a test which would otherwise

fail. The latter could have serious consequences for fin-

ished part quality. In either case, the learnable tolerance

threshold and the graphical display shown in Figure 6

gives instant access to this information, for either the

onsite ME or visiting specialist to interrogate. For the

probe checks, all measurements were recorded as in-toler-

ance, and subsequently a data-driven threshold was not

constructed. This information, along with the ME-set

threshold and distribution of the data, is, again, quickly

accessible from the display.

Figure 7 shows the trending GP method with intelli-

gent event detection, as applied to the demonstration

dataset. Each subplot presents the time-series

information along the X-axis and measurement

recorded by the artefact probing procedure on the Y-

axis. Observed measurements are shown in a scatter

plot, with separation for the data used to train and test

the trending GP. The mean function, m, and standard

deviation, s (the 2s confidence interval), are shown.

Note that this is only shown above the mean function,

as opposed to the typical representation of a confidence

interval which would be above and below, to describe

the data distribution. The focus, in this case, is on

leveraging the confidence interval for visual enhance-

ment, and as such simplifying the plots in this way is

more appropriate. Incorporated into the threshold is

the PICI, indicating the relationship between measure-

ments and tolerance thresholds at any give time in the

series. Red-green colourmapping is applied to give a

fast appraisal of performance, with green regions repre-

senting good performance, tending to red, which indi-

cate out-of-tolerance measurements. Flags in the axis

checks show the event detector outputs.

The graphical representation shown in Figure 7 pro-

vides fast access to legacy data, displayed over the col-

lection period. The two significant events, on 2017-12-

28 for the Primary-axis and 2018-05-02 for the

Secondary-axis, are clearly visible by spikes in the GP

mean function. In both cases, the event detector accu-

rately flags the problem regions. PICI colourmapping

shows that there is an exceedance of the tolerance

Figure 6. Demo data: data-driven tolerance thresholds. From top to bottom: Primary-axis, Secondary-axis (+ve), Secondary-axis (–ve),

Overall probe performance, and Probe pre-travel. Tolerance change occurrences in the data acquisition period are noted alongside each

graphic.
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threshold in both of these regions. The most extreme

measurement following the Secondary-axis event on

2018-05-02 shows a tolerance change, as the PICI col-

our drops from red to yellow, even though the mea-

sured error increases. The representation also shows

the consistency of data collection, with taller 2s thresh-

olds corresponding to longer periods of inactivity. The

probe checks in the demonstration dataset do not con-

tain any particular soft trend characteristics. The trends

are generated by the same Gaussian distribution with a

mean of 0.015mm, and it can be seen that the GP trend

reconstructs this well with minimal overfitting. It is

notable from these plots that many repeat measure-

ments have been made throughout the collection

period, which is a potentially useful piece of informa-

tion in forming a picture of how the procedure has

been applied. The event detector was trained on data

covering the first six months of acquisition, and tested

on the remaining twelve. Appraising the first three sub-

plots (the axis data) in Figure 7, it can be seen that the

detector triggered twice during the first event period

(event in the Primary-axis), and a further three times

during the second event period (event in the Secondary-

axis).

A test set was held out prior to model training to

asses the practicality of predicting future trends with

this method. The Normalised Mean Squared Error

(NMSE) is applied to evaluate the model performance

in predicting near-future events. NMSE values below

1.000 signify the existence of correlation between the

test set observations and model prediction, NMSE val-

ues above 1.000 suggest poorer performance than sim-

ply applying the mean of the data as the predictor.29

The results are presented in Table 1. For the demon-

stration dataset, the results are reasonable; particularly

in the axis checks, where they are very low, indicating a

notable correlation between observations and model

predictions. The probe checks are less impressive, but

still better than simple application of the mean value.

However, predicting a future trend in this way relies on

Figure 7. Demo data: trending GP with PICI and event detection. Significant events occur at 2017-12-28 and 2018-05-02. Each

subplot shows a different data stream, derived from the extrapolation of the elements in the benchmark summary of Figure 5. From

top left: Primary-axis, Secondary-axis (+ve), Secondary-axis (–ve), Overall probe performance, and Probe pre-travel.

Table 1. NMSE results on the GP forecasting demonstration data.

Primary-axis Secondary-axis
(+ve)

Secondary-axis
(–ve)

Overall Probe
Performance

Probe
Pre-travel

0.071 0.075 0.075 0.666 0.666

Rooker et al. 9



the assumption that proceeding data points will follow

a similar pattern; in other words, it is only reliable for

predicting soft fault trends. However, hard faults can

and do occur throughout the life-cycle of a typical

machining centre, which ultimately is the motivation

for intelligent event detection highlighted in this paper.

For this reason, such an approach to trend analysis will

never be appropriate for predicting future states, and

can not be implemented for a monitoring system which

relies solely on artefact probing data. Given the scope

of this paper, however, this does not affect the efficacy

of the proposed methods, as the core focus is one of

legacy data visualisation for fast appraisal of machine

usage.

Kernel selection

The kernel (covariance function) chosen for a GP

model can significantly impact the resulting form of the

predictor. The Radial Basis Function (RBF), otherwise

known as the Squared-Exponential kernel, is a popular

kernel selection which is infinitely differentiable and

thus very smooth. It is parameterised by a non-negative

length-scale parameter, ‘, and the kernel is given by,

kRBF(r)= exp � r2

2‘2

� �

ð14Þ

where r denotes the distance jjx� x0jj. The Matérn ker-

nel is a generalisation of the RBF, with an additional

non-negative parameter n controlling the smoothness

of the resultant function; the general form is given by,

kM(r)=
21�n

G(n)
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where Kn is a modified Bessel function.30 The Matérn

kernel is most simply expressed when n is half-integer,

n= p+1=2, where p is a non-negative integer. Often,

the most interesting cases for machine learning are

n=3=2 and n=5=2,26 given by,

kM(3=2)(r)= 1+
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Setting n=1=2 gives the absolute exponential

kernel,

kM(1=2)(r)= exp � r

‘

� �

ð18Þ

Finally, the Rational Quadratic (RQ) kernel repre-

sents a scale mixture of RBF kernels with different

length-scales, given by,

kRQ(r)= 1+
r2

2a‘2

� ��a

ð19Þ

where a is a non-negative scale mixture parameter.

Figure 8 illustrates the five kernels described in equa-

tions (14)–(19), as applied to the trending GP demon-

strated in Figure 7. For this application, the best

representation is one which fits the training data with

minimal inflection between observations, and also pro-

vides a smooth confidence interval to harness for a per-

formance indicator. A function that produces high

inflection between observations runs the risk of fitting

into negative values, which are not permissable for this

application where the measured errors are always non-

negative. Moreover, it is not possible to know what

usage occurred in the period between observations, so

the best approximation would be a linear trend between

neighbouring observations. There is, of course, a trade-

off with function smoothness to be considered here, as

perfectly fitting every observation would also be unde-

sirable in terms of producing an informative, easy-to-

interpret trend.

Considering the comparison in Figure 8, the RQ

kernel presents itself as the most appropriate option for

modelling the time-series trend. There is minimal inflec-

tion between observations, and the mean function fits

smoothly when it passes through more densely-

populated regions. The 2s threshold provides a signifi-

cant area to house a PICI, whilst having a minimal

impact on the Y-axis limits for displaying the mean

function itself. The Matérn 5/2 and 3/2 kernels both

have a similar issue with inflection, and the issue of the

mean function fitting into negative space is noted in

both cases. This has a major impact on the PICI in

unobserved regions, as the mean function’s misrepre-

sentation of the error state is passed onto the PICI.

The Matérn 1/2 kernel provides a more realistic fit in

the unobserved periods, with a relatively linear rela-

tionship between neighbouring points. This characteris-

tic is let down by the confidence intervals, which are

extremely large and restrict the quality of information

presented by the mean function. The RBF kernel suf-

fers a similar drawback to Matérn 5/2 and 3/2, in that

there is considerable inflection in the unobserved peri-

ods, dipping below zero for extended periods during

the training region and wildly overestimating in the

later, unobserved testing region.

Figure 9 presents the same kernel comparison, but

as applied to the GP event detector method. Each sub-

plot shows the residual values for the different kernel

selections by a blue, solid line, with a 3s novelty thresh-

old shown by red, dotted line. The two events, at 2017-

12-28 and 2018-05-02 are flagged in each of the sub-

plots. The event detectors were trained between 2017-

05 and 2018-01, then tested on the remaining data lead-

ing up to 2018-11. Logically, the ideal kernel for event

detection is one which triggers only during periods of

potential events, producing smaller values throughout

periods of normal operation which do not exceed the

given threshold.

Observing the subplots in Figure 8, it appears that

the GP residuals generally peak as intended when
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events occur for all kernel options. The weakest seems

to be the RBF kernel, which activates less accurately

for event 1 and misfires at the end of the acquisition

period. RQ, and the three Matérn kernels, all produce

similar trends. Considering the threshold values

obtained through the GP variances, the RQ kernel is

the only option to produce a reasonably smooth

threshold, whereas the RBF and Matérn options result

in erratic thresholds. A smoother, more predicable

decision boundary is preferable for this application, as

large, unexpected jumps may result in false positive

event detection, such as that which occurs in the RBF/

Matérn systems around 2018-09. For these reasons, the

RQ kernel was selected as most appropriate for the

event detector. The setting of the novelty threshold

could be varied based on requirements, and the experi-

ence of the ME responsible. However, for this assess-

ment, a conservative 3s rule was deemed appropriate,

effectively triggering for both events in the simulated

example, with minimal extra triggers once the event

was under way. This novelty threshold setting was fixed

and carried through to the case studies in the following

section.

Case studies

This section now presents three case studies on engi-

neering datasets, acquired directly from anonymised

industrial partners. The processing and display of

results for each method are identical to those which are

introduced in the previous section, Interpreting the

graphs: Demo data.

Case study 1

Figure 10 presents the threshold checking tool for case

study 1. It is clear that the threshold has been changed

numerous times throughout the acquisition period,

which may indicate a mixture of parts for production

with varying tolerance requirements. In the axis checks,

however, many of the tests have returned out-of-toler-

ance class labels. This suggests that the machine has

been consistently not conforming to the tolerance

requirements, reflecting a poor monitoring strategy

which may ultimately lead to issues with finished part

quality. The threshold-checking presentation makes

this inference immediate and easily accessible.

Table 2 presents the F1 scores for the data-driven

threshold classifiers. The data is linearly separable in

three of the five cases, returning F1 scores of 100% in

the test set. In the other two there is some crossover, so

the soft margin parameter permits some misclassifica-

tion, however the F1 scores are still very good, at 99%

for the Primary-axis and 89% for the Secondary-axis

(–ve). In all but Primary-axis, a tolerance threshold is

optimised which logically separates the observations.

Figure 8. Comparing five different kernels for the trending GP, on the Primary-axis procedure. Kernels from top left: Rational

Quadratic, Radial Basis Function, Matérn 5/2, Matérn 3/2 and Matérn 1/2.
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The threshold for the probe checks very closely resem-

bles the final ME setting for Probe pre-travel, and gives

a similar but slightly more conservative setting for

Secondary-axis (+ve) and (–ve). In the Primary-axis,

there is only one in-tolerance observation available to

construct the threshold which is mixed deep within the

cluster of the other class. As a result, the calculation is

biased towards the simulated ideal data points, and the

threshold is constructed at a very conservative (low)

value. Although this isn’t likely to be an appropriate

tolerance setting, it is a logical conclusion for the algo-

rithm based on the historical data, and is a further red

flag pointing towards mis-management of the toleran-

cing in this case study.

Figure 11 shows the output of the trend analysis

tool as applied to case study 1. The PICI integration

paints an immediate picture of the error states with

respect to tolerance thresholds throughout the acqui-

sition period, particularly when viewed alongside

Figure 10. In Primary-axis, it is clear that the machine

has been running consistently out-of-tolerance. Closer

inspection of the 2s confidence line indicates that the

tolerance was exceeded to a greater extent at the

beginning of the acquisition period, pointing to the

possibility that the increase may have occurred in

order to force the test to pass. Tolerance changes are

more clearly visible in the probe checks, with a clear

change occurring around 2016-08 and another in

2017-04 as made apparent by harsh changes in the

PICI. Table 3 presents the NMSE results for time-

series GPs as future trend predictors. The problematic

nature of applying a trending predictor to a system

with potential for hard faults is particularly apparent

in the Secondary-axis checks, where the NMSE scores

are 6.93 and 1.59 for checks in the positive and nega-

tive directions, respectively. Pre-identified target

events for case study 1 occur at 2016-07-25, 2016-08-

26 and 2017-04-18. The event detector was trained on

five months worth of data collected between 2016-11

and 2017-04, where the system is operating consis-

tently in normal condition. The automated system

flags the target events well, with two triggers around

the first two events and a single trigger for the final

event.

Figure 9. Comparing five different kernels a GP event detector, with simulated events at 2017-12-28 and 2018-05-02. Kernels from

top left: Rational Quadratic, Radial Basis Function, Matérn 5/2, Matérn 3/2 and Matérn 1/2. The 3s decision threshold is shown by

dotted lines, alongside the target events for the assessment by vertical dashed lines.
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Case study 2

Figure 12 presents the threshold checker for case study

2. All three axis checks are linearly separable between

the two classes, which is immediately clear in the Figure

and also by the F1 scores in Table 2. This separation

indicates a methodical approach to setting the tolerance

thresholds, and that the machine is likely to be under

relatively constant tolerance conditions throughout the

operating period. In all cases, a set of sensible tolerance

thresholds were learned which closely reflect most of

the final values settled on by the ME. The exception to

this is in Secondary-axis (+ve), which sees a peculiar

increase to 0:5mm near the end of the acquisition

period. It is unlikely that this change was warranted,

particularly considering that the Secondary-axis (–ve)

check remained at at a logically more appropriate

0:25mm. Presenting the data is this way makes this

unwarranted change extremely easy to spot and correct,

Figure 10. Case study 1: data-driven tolerance thresholds. From top to bottom: Primary-axis, Secondary-axis (+ve), Secondary-axis

(–ve), Overall probe performance, and Probe pre-travel. Tolerance change occurrences in the data acquisition period are noted alongside

each graphic.

Table 2. F1 scores on a 10% hold-out test set, for the 1D-SVM data-driven tolerance threshold.

Case Study no. Primary-axis Secondary axis (+ve) Secondary axis (–ve) Overall probe performance Probe pre-travel

1 0.99 1.00 0.89 1.00 1.00
2 1.00 1.00 1.00 0.93 0.91
3 0.95 1.00 0.95 N/A 0.99

Table 3. NMSE scores on a 10% hold-out test set, for the time-series GP.

Case Study no. Primary-axis Secondary axis (+ve) Secondary axis (–ve) Overall probe performance Probe pre-travel

1 0.05 6.93 1.59 0.06 0.28
2 0.05 0.03 0.21 0.25 1.10
3 0.21 0.36 0.14 0.03 0.05

Rooker et al. 13



Figure 11. Case study 1: trending GP with PICI and event detection. Each subplot shows a different data stream, derived from the

extrapolation of the elements in the benchmark summary of Figure 5. From top left: Primary-axis, Secondary-axis (+ve), Secondary-axis

(–ve), Overall probe performance, and Probe pre-travel.

Figure 12. Case study 2: data-driven tolerance thresholds. From top to bottom: Primary-axis, Secondary-axis (+ve), Secondary-axis

(–ve), Overall probe performance, and Probe pre-travel. Tolerance change occurrences in the data acquisition period are noted alongside

each graphic.
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before it has the chance to negatively affect finished

part quality. Identification of this change is also a core

justification for implementing a data-driven tolerance

threshold, establishing a two-tiered warning system for

ME-determined and model-determined normal opera-

tion. F1 scores indicate a linear separation of classes in

the three axis checks, and scores are above 90% for the

two probe checks.

Figure 13 presents the trending GP tool for case

study 2. The probe checks provide a good example of

the PICI visualisation, giving a clear indication of the

historical performance and out-of-tolerance instances

around 2018-08/09. NMSE results indicate decent soft

trend predictive performance, with only Probe pre-

travel producing a high value above 1.000. It is evident

that the accuracy of the Primary-axis deteriorates

towards the end of the acquisition period, which

accounts for the out-of-tolerance points observed in

Figure 12. There is clearly a hard fault which occurs in

2017-12, causing a spike in the trend; however, as cor-

rective action was immediately applied, the full magni-

tude of the error is not reflected. Although the full

extent of the tolerance exceedance is not visualised in

the trend, this is actually a better representation of the

machine’s general history, as the hard fault occurs for

an insignificant duration in the overall chronology. The

graphical presentation does, however, provide a visual

prompt of this region as an area of interest for the inter-

rogating ME or visiting specialist. The event detector -

trained on the stable period of normal operating condi-

tion between 2018-02 and 2018-10 - exactly identifies a

hard fault event on 2017-12-07 in the Secondary-axis,

and also identifies a soft fault event in both Primary-

axis and Secondary-axis (+ve) later in the time series,

identifying a degradation from 2018-10-15. It must be

noted that the method relies on consistent data collec-

tion across all of the input variables; the final four col-

lections after 2018-10-15 omitted Secondary-axis (–ve),

as such it was necessary to omit these points when com-

puting the event detector. As the last data point col-

lected for Secondary-axis (–ve) did indicate the

presence of a fault, the system was able to pick it up.

However, it is a noteworthy restriction of the method,

and a commercially-deployed system should consider

robustness to inconsistencies in data pre-processing.

Case study 3

Figure 14 presents the threshold checking method as

applied to case study 3. Immediately apparent is the

lack of a data-driven threshold for Overall probe perfor-

mance and failed construction of a data-driven thresh-

old in Probe pre-travel. In the case of Probe

performance, this indicates that all measurements were

Figure 13. Case study 2: trending GP with PICI and event detection. Each subplot shows a different data stream, derived from the

extrapolation of the elements in the benchmark summary of Figure 5. From top left: Primary-axis, Secondary-axis (+ve), Secondary-axis

(–ve), Overall probe performance, and Probe pre-travel.
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considered by the ME as in-tolerance. This is generally

good news; however, it is also clear that many of the

points are situated quite closely to the first tolerance

change (2017-05-11); at 50mm, this is a loose tolerance

for a modern probe, which should generally be capable

of performing to 20mm or less. Ultimately, it is the ME

who must decide on an acceptable limit for each check,

but it is food-for-thought at least which is highlighted

by this visualisation method. A data-driven threshold is

not assigned to Probe pre-travel check, as there is an

out-of-tolerance point mixed in; viewing Figure 14 in

conjunction with the trending tool in Figure 15, it can

be seen that this out-of-tolerance point occurs at the

very beginning of the acquisition period and is quickly

corrected-for. This is a common practice in first estab-

lishing use of the software; however, the 50mm setting

raises the same potential concerns as discussed for the

Overall probe performance check. The tolerance change

dates are echoed in the axis checks, which essentially

show a single tolerance setting was established on the

second day of acquisition and maintained throughout

the full period. Again, this points to consistent usage

for production and methodical setting of the tolerance

thresholds. In each of the axis checks, a tighter toler-

ance is learned than the ME had set. F1 scores again

confirm the construction of the threshold, with linear

separability in Secondary-axis (+ve) and a small

degree of misclassification in Primary-axis and

Secondary-axis (–ve).

The trending GPs in Figure 15 indicate the presence

of hard faults around 2017-08-01 and 2017-08-28,

which are also clearly visible as the out-of-tolerance

points in Figure 14. The event detector, trained on the

stable period between 2017-12 and 2018-05, accurately

picks out the events, with a second trigger also occur-

ring close to the second. The probe checks with PICI

illustrate both the general trend and measurements with

respect to tolerance threshold nicely. It is instantly clear

that the recorded measurements were close to the speci-

fied tolerance throughout most of the acquisition

period. The NMSE results in Table 3 indicate favour-

able performance for predicting future observations

with these trends, due to the highly stable behaviour

that is observed from 2018-01 onwards. One point to

note is that the trend in the Primary-axis does dip below

zero for a short time, following correction of the hard

fault detected on 2017-08-28. Although the selected ker-

nel and hyperparameter settings drastically reduce the

likelihood of this happening, the occurrence in this case

study shows that it has not been entirely eradicated. In

a full deployment system, it may be worthwhile to

include an extra step following the trending GP con-

struction, in which any below-zero regions are replaced

by more logical above-zero values; for example, by a

Figure 14. Case study 3: data-driven tolerance thresholds. From top to bottom: Primary-axis, Secondary-axis (+ve), Secondary-axis

(–ve), Overall probe performance, and Probe pre-travel. Tolerance change occurrences in the data acquisition period are noted alongside

each graphic.
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linear interpolation between the two neighbouring

datapoints.

Case studies: Comparison

The standardised analysis and visualisation techniques

presented in the previous section give rise to the possi-

bility machine usage comparisons between the three

case studies. Comparing the tolerance threshold

changes in Figures 10, 12 and 14, it is evident that the

three machines have been managed in very different

ways. In case study 1, there are are numerous changes

to the tolerance threshold throughout the acquisition

period, and it is also clear that many of the measure-

ments obtained fell into the out-of-tolerance class. This

is a particular contrast to case study 3, which indicates

no change to the tolerance after the initial setting

period and a majority of measurements firmly in the in-

tolerance class. This suggests a more consistent man-

agement approach in case study 3, with much better

adherence to the tolerance thresholds that were initially

set by the onsite ME.

Comparing the trends in Figures 11, 13 and 15

reveals similar characteristics. It is observed that the

PICIs for the axis checks in case study 1 regularly

exceed the tolerance thresholds throughout the acquisi-

tion period; this a direct contrast to the axis checks in

case study 3, where there is clearly a short period

involving a hard fault near the beginning of the period,

followed by strict conformance to the tolerances there-

after. Case study 2 generally indicates conformance to

the tolerances in the axis checks, with a similar hard

fault visible early in the acquisition period. However,

there is evidence of a soft fault developing towards the

end of the period in case study 2 axis checks, which is a

notably different characteristic to the other case studies

and easily recognisable in the trend visualisation.

An interesting observation is found in comparing the

probe checks, where there is significantly lower variance

in the trends for case study 3 as compared with case

studies 1 and 2; this likely indicates that the probing

procedure is more repeatable across different instances

of the procedure conducted at different times. The pro-

prietary software currently contains a check to assess

the repeatability of the probe at the time of the test,

however interpretation of the trending GPs proposed in

this paper allow straightforward extension of this for

the purpose of longer-term performance monitoring.

Discussion

Historical machine indicators - such as the prevalence

of hard or soft faults, long-term probe repeatability of

tolerance management practices – can be very useful for

building up a picture of general machine usage, and are

available through the appropriate processing of a relatively

Figure 15. Case study 3: time series trend analysis with PICI and event detection. Each subplot shows a different data stream,

derived from the extrapolation of the elements in the benchmark summary of Figure 5. From top left: Primary-axis, Secondary-axis

(+ve), Secondary-axis (–ve), Overall probe performance, and Probe pre-travel.
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limited data source obtained from historical artefact prob-

ing data. Moreover, the unique compositions of indicators

observed in different machine tools support the notion of

signature comparison; just as the benchmark reports can

be used to compare differing signatures of machine tools

within a population, so too can the methods proposed in

this paper be used for comparing signatures that represent

machine tool usage.

Similar to the signature, any given machine also has

a normal operating condition, which may differ in a

small or large way to another machine considered its

counterpart. The objective with producing a data-

driven tolerance threshold, as opposed to relying solely

on the maintenance engineer determination, is that it is

possible to set the most appropriate tolerance which

represents the normal operating condition of the unique

machining centre. Learning tolerance thresholds in this

way provides the ME which an additional empirical

comparator for assessing the performance of a popula-

tion of machines, based on historical data collected

throughout their respective usages.

A key contribution of this paper is in the organisa-

tion and presentation of the historical data, signifi-

cantly reducing the difficulty for an onsite ME or

visiting specialist engineer to gain a fast appraisal of a

given machine tool’s usage signature. The display meth-

odologies were produced with consideration to Tufte’s

design principles, which, although somewhat subjective,

should support effective communication of the data

with a reasoned application of visual aesthetics. The

Performance Indicating Confidence Interval is an

example of this, enhancing the trending Gaussian

Process into a multifunctional element which communi-

cates both the absolute error trend, and provides the

context of performance by integrating the variable tol-

erance thresholds throughout the acquisition period.

In a full deployment situation, the benefit to the user

would be significantly increased through the use of an

interactive dashboard-style interface. Displaying the

data-driven tolerance and trending Gaussian Process

tools side-by-side and having a linked hover-over func-

tion – such that, when an observation is hovered over

on one method, it is highlighted in the other – would

be a useful feature, providing a richer user experience

and making the graphs easier to interpret. The hover-

over function should also provide quick access to the

relevant detailed reports, making in-depth analysis in

areas of interest easier to conduct.

It is noted that the smoothness of the predictive

mean function - attributed to kernel and kernel hyper-

parameter selection – affects the resultant form of the

trending Gaussian Process. With a smoother mean

function, quickly-corrected hard faults are not as read-

ily represented in the trend; this is more suitable for

visualising the general historical performance, and the

addition of the event detection method should help

bring attention to these quick corrections of hard faults,

but in a more appropriate manner. Normalised Mean

Squared Error results on a hold-out test set at the end

of the acquisition period evaluated the potential for using

the trending Gaussian Process as a forecasting method. It

was initially expected that this would not be an effective

application for forecasting, due to the likelihood of hard

faults interrupting any predicable, soft trends. As the core

objectives with the trending Gaussian Process are trend

visualisation and enrichment of historical data, this draw-

back does not affect the contribution of this paper. In

order to reliably forecast future performance in a system

like this, peripheral data streams could be utilised to iden-

tify the occurrence of hard faults, or progression of soft

faults, adjusting the prediction accordingly. This func-

tionality is out of the scope of this paper, but would be

interesting future work.

The automated event detection system was shown to be

effective at identifying target events, in both the simulation

dataset and the three real-world case studies. In a fully

deployed system, consideration must be given to defining

a suitable subset for training, as the initial data acquisition

period for real-world systems is not guaranteed to be free

from events and representative of the normal operating

condition. The datasets generated for this application are

not likely to be large, so it would be appropriate to allow

an experienced user the ability to retrospectively reset the

training period, should the requirement arise. The event

detector flags in a fully-deployed system would, again,

benefit from an interactive interface, with the option to

manually input diagnostic notes. Automating this diagnos-

tic element to populate the notes without user input would

be valuable further research.

Concluding remarks

The methods set out in this paper develop the information

acquired from a common machine capability checking

system, into a performance monitoring system for the ben-

efit of the onsite maintenance- and visiting specialist-engi-

neers. Performance indicators such as the incidence of

hard and soft faults, management of tolerance thresholds

and repeatability of measurements are identified within

the datasets, and brought to the attention of the engineer

through automated analysis and insightful data visualisa-

tion. The methods process only the summary statistics

obtained via a calibrated artefact probing procedure; to

develop the work further, this could be expanded to con-

sider all of the raw artefact probing data, as well as infor-

mation obtained from external sources as part of a wider

manufacturing execution system. This would allow a

much richer level of inference to be attained, including

more extensive automated elements to further enhance the

benefit to the user.
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