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Allelic diversity and patterns of selection at
the major histocompatibility complex class
I and II loci in a threatened shorebird, the
Snowy Plover (Charadrius nivosus)
Medardo Cruz-López1*, Guillermo Fernández2, Helen Hipperson3, Eduardo Palacios4, John Cavitt5,
Daniel Galindo-Espinosa6, Salvador Gómez del Angel1, Raya Pruner7, Oscar Gonzalez8,9, Terry Burke3 and
Clemens Küpper10*

Abstract

Background: Understanding the structure and variability of adaptive loci such as the major histocompatibility
complex (MHC) genes is a primary research goal for evolutionary and conservation genetics. Typically, classical MHC
genes show high polymorphism and are under strong balancing selection, as their products trigger the adaptive
immune response in vertebrates. Here, we assess the allelic diversity and patterns of selection for MHC class I and
class II loci in a threatened shorebird with highly flexible mating and parental care behaviour, the Snowy Plover
(Charadrius nivosus) across its broad geographic range.

Results: We determined the allelic and nucleotide diversity for MHC class I and class II genes using samples of 250
individuals from eight breeding population of Snowy Plovers. We found 40 alleles at MHC class I and six alleles at
MHC class II, with individuals carrying two to seven different alleles (mean 3.70) at MHC class I and up to two alleles
(mean 1.45) at MHC class II. Diversity was higher in the peptide-binding region, which suggests balancing selection.
The MHC class I locus showed stronger signatures of both positive and negative selection than the MHC class II
locus. Most alleles were present in more than one population. If present, private alleles generally occurred at very
low frequencies in each population, except for the private alleles of MHC class I in one island population (Puerto
Rico, lineage tenuirostris).

Conclusion: Snowy Plovers exhibited an intermediate level of diversity at the MHC, similar to that reported in other
Charadriiformes. The differences found in the patterns of selection between the class I and II loci are consistent
with the hypothesis that different mechanisms shape the sequence evolution of MHC class I and class II genes. The
rarity of private alleles across populations is consistent with high natal and breeding dispersal and the low genetic
structure previously observed at neutral genetic markers in this species.

Keywords: Major histocompatibility complex (MHC), Balancing selection, Peptide-binding region (PBR), MHC class I,
MHC class II, Private alleles, Charadrius
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Background
The genes of the major histocompatibility complex

(MHC) are crucial for the immune response in

vertebrates [1, 2]. Their encoded proteins are involved in

presenting antigen derived from pathogens to immune

cells, which then trigger a cascade of immune responses

[3, 4]. Because of their functional importance and the

direct link between MHC diversity, fitness and individual

behaviour [3, 5], the MHC has been the subject of

ecological and evolutionary studies ranging from

assessing individual survival and mate choice to the

processes of speciation and practical conservation

management [6–10]. Adaptive genes, which are directly

associated with individual fitness, are important for

population viability and hence conservation [2, 11]. The

loss of adaptive genetic diversity has been associated

with an increase in the risk of extinction, especially in

species with low population sizes [11]. The maintenance

of MHC diversity is crucial for pathogen resistance,

which represents one of the principal selective forces

impacting fitness and long-term survival of endangered

species [2, 12].

MHC genes display the highest degree of polymorph-

ism within vertebrate genomes [5, 13]. Pathogen-

mediated selection results in positive selection and the

substitution of amino acids in the codons of the

peptide-binding region (PBR), as well as balancing

selection including heterozygote advantage, frequency-

dependent selection and fluctuating selection [2, 4, 14].

Recently, a number of studies showed that the evolu-

tionary dynamics of the MHC genes is driven by high

rates of recombination, duplication and conversion

[15–17]. Through these processes populations can re-

spond to a great number of antigens [10, 17]. The

MHC genes are divided into two principal classes: class

I, which is responsible for immune defence against

intracellular pathogens such as viruses, and class II,

which is responsible for dealing with extracellular path-

ogens such as bacteria and nematodes [2].

The number of MHC genes varies between and within

species [10]. In mammals, MHC genes are organized

into a dense genomic region and are characterized by

complex organization and many pseudogenes, leading to

extraordinary genetic diversity. For example, in humans

approximately 9000 class I alleles and 3000 class II

alleles have been described [18]. In birds, the structure

and organization of the MHC region varies not only

between, but also within the same family [9]. Some

groups, such as chicken Gallus gallus and some birds of

prey, have an extraordinarily compact MHC region

(coined as the “minimal essential” MHC, [19, 20]).

However, other galliform species have duplications,

leading to many MHC alleles [21, 22]. In contrast, in

Passeriformes, the MHC shows a complex architecture,

and is frequently composed of multiple expressed loci

and pseudogenes [1, 23, 24]. Other groups of birds, such

as the Charadriiformes, appear to have a diversity and

complexity intermediate between chicken and Passeri-

formes [25, 26]. The differences in the number and

organization of the MHC genes in vertebrates might be

best explained by different evolutionary dynamics in the

birth and death of genes [27]. Here, new genes are

generated by duplication, with some daughter copies

conserving their function while others are inactivated or

eliminated from the population [10, 27].

Within the order Charadriiformes, study of the MHC

have so far been restricted to three families: Alcidae,

Laridae and Scolopacidae. These studies revealed consid-

erable differences in the diversity and organization of

the Charadriiform MHC [16, 25, 26, 28, 29]. To investi-

gate which mechanisms generate and promote MHC

evolution and diversity [9], studies in more phylogenetic-

ally distinct families are required.

We investigated the diversity and organization of the

MHC in the Snowy Plover Charadrius nivosus, a mem-

ber of the Charadriidae [30]. Until recently, Snowy

Plovers were lumped with Kentish Plovers Charadrius

alexandrinus and considered to be a cosmopolitan

species, but the analysis of genetic and phenotypic traits

has shown that the two species are separate and that

Snowy Plovers are characterized by low genetic diversity

at neutral genetic markers [31–33]. Three Snowy Plover

lineages are commonly recognized and distinguishable

with genetic markers: Western Snowy Plovers (C. n.

nivosus) in North America, Cuban Snowy Plovers (C. n.

tenuirostris) in the Caribbean, and the Peruvian Snowy

Plover (C. n. occidentalis) in South America [31]. Coastal

populations in particular have declined throughout the

range and now require active conservation management

[34–37]. Here, we develop markers for MHC class I and

class II genes to examine adaptive genetic diversity in

Snowy Plovers. Our study has four aims: First, we

characterize functionally essential regions of the MHC

class I and class II loci to provide novel genetic markers

for studying adaptive diversity in this species. Second,

we investigate the genetic diversity (number of segregat-

ing sites and nucleotide diversity), evolutionary distance

and type of selection acting on MHC class I and class II

alleles. Third, we compare the diversity of MHC classes

I and II with the respective diversity observed in other

Charadriiformes. Finally, we describe the pattern of di-

versity across the geographic range and test for the pres-

ence of private alleles within Snowy Plover populations.

Results
MHC class I: exon 3

We discarded 32 samples because they did not pass

the quality filters or because they did not have the
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minimum number of reads per amplicon. Among the

218 remaining samples from eight populations, we

found a total of 40 alleles. Five alleles (‘long alleles’;

Chni-UA*12 to 16) showed a 3-bp insertion at

position 178–180 (amino acid position 60 in the

alignment) in the α2 domain, retaining the correct

reading frame. Meanwhile, the remaining 35 alleles

(‘short alleles’; Chni-UA*01 to UA*11 and Chni-

UA*17 to UA*40) did not show this insertion. The

alignment of exon 3 displayed five of the eight highly

conserved amino acid (peptide main-chain) sites in

birds (amino acids: TKWYY, Fig. 1). Alleles Chni-

UA*01 to UA*10 had an amino acid substitution at

the second of these conserved sites (N for K),

whereas in alleles Chni-UA*17 to UA*21 the fourth

site was substituted (C for Y). Four of the 18 highly

conserved intra- and interdomain contacts described

in vertebrates [38] were present, and none of these

showed a polymorphism.

Allelic diversity

We found two to seven alleles per individual (x ± SD:

3.70 ± 0.92), which suggested that we obtained alleles

from up to four loci, assuming heterozygosity. We de-

tected up to three non-classical alleles in 216 of 218

samples. The number of alleles did not differ between

individuals across populations (Table S1). However,

we found differences in the number of alleles per

population, with populations Nayarit and Puerto Rico

showing fewer alleles than the other populations

(Table S2). Long alleles were less common among the

218 individuals genotyped, with only 23 individuals

displaying one or two long alleles, whereas the short

alleles were present in all individuals. Chni-UA*21

was the most common allele and detected in 173

individuals (83.5%), followed by Chni-UA*20 in 102

individuals (49.2%) and Chni-UA*30 in 69 individuals

(33.3%). All individuals genotyped had at least two

alleles. Most individuals (48.3%) had four alleles,

Fig. 1 Alignments of MHC class I alleles (a) and MHC class II alleles (b) detected among sampled Snowy Plovers Charadrius nivosus. Alleles with
an identical translation of amino acids are shown in a single sequence. Dots indicate identity to the consensus sequence and dashes indicate
gaps. Gray boxes indicate the peptide binding regions (PBR) inferred for MHC class I and MHC class II. Intra- and inter-domain contacts are in
purple, and main chain binding sites to peptides are in yellow. Sites under positive (+) and negative (−) selection were identified using FUBAR
(Murrel et al. 2013; http://www.datamonkey.org/)
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24.6% had three alleles, 13% had five alleles, 11.6%

had two alleles, 2.4% had six alleles and 0.9% had

seven alleles.

Diversity and inference of selection

The average nucleotide diversity (π) for the complete

sequence was similar among the three lineages, ran-

ging from 0.05 to 0.07. Populations at Nayarit and

Puerto Rico showed the highest levels of nucleotide

diversity, the nucleotides distance and average nucleo-

tide diversity at PBR sites, whereas populations at

Utah, San Quintin and Ceuta had the lowest levels of

nucleotide diversity (both complete sequence and PBR

sites) and nucleotide distance (Table 1). Within all

populations, PBR sites showed higher diversity than

non-PBR sites, suggesting balancing selection at these

sites (Table 1). Bayesian analysis of selection (FUBAR:

Fast Unconstrained Bayesian AppRoximation) identi-

fied six sites (sites 7, 23, 25, 58, 66 and 69) under

positive selection and 11 sites (sites 1, 6, 16, 27, 28,

33, 41, 46, 64, 80 and 85) that displayed diversity pat-

terns consistent with negative, purifying selection (Fig.

1a). Sites with purifying selection were exclusively

located in the non-PBR region. Also, differences in

nonsynonymous substitution rate and synonymous

substitution rate (dN/dS) suggested stronger positive

selection at PBR sites in comparison with non-PBR

sites (Table 1). Among genetic lineages, C. n. tenuir-

ostris (Puerto Rican population) showed the lowest

level of positive selection. Using GARD (Genetic

Algorithm for Recombination Detection) we found no

evidence for recombination among the 40 alleles.

Table 1 Diversity at MHC class I exon 3 in the Snowy Plover (Charadrius nivosus). Segregating sites of amino acids (Saa), average
nucleotide diversity (π), evolutionary distance of nucleotide sequences (dnt) and amino acid sequences (daa). The measures of
diversity, and the synonymous and non-synonymous substitution rates, were calculated for the complete sequence (All), and
separately for the PBR and non-PBR sites within each population. The number of genotyped individuals per population (N) and the
number of samples that passed the quality filters (n) are shown. To have comparable measures of diversity we randomly selected 15
allele sequences for each population, with the exception of Nayarit and Puerto Rico, where we found only 13 and 9 alleles,
respectively

Population Lat Long N (n) dN ± S.E dS ± S.E dN /dS Saa π dnt ± S.E daa ± S.E

C. n. nivosus (UTA) 40.9 −112.13 40 (40) All 0.05 ± 0.01 0.08 ± 0.02 0.62 21 0.06 0.07 ± 0.01 0.09 ± 0.02

PBR 0.33 ± 0.13 0.12 ± 0.07 2.75 8 0.21 0.35 ± 0.15 0.34 ± 0.09

Non-PBR 0.02 ± 0.01 0.08 ± 0.02 0.25 13 0.04 0.04 ± 0.01 0.05 ± 0.01

C. n. nivosus (SAQ) 30.4 − 115.97 47 (35) All 0.05 ± 0.01 0.08 ± 0.02 0.62 20 0.05 0.06 ± 0.01 0.08 ± 0.02

PBR 0.34 ± 0.12 0.11 ± 0.07 3.10 8 0.21 0.36 ± 0.21 0.34 ± 0.08

Non-PBR 0.02 ± 0.01 0.07 ± 0.02 0.28 12 0.03 0.03 ± 0.01 0.04 ± 0.01

C. n. nivosus (CEU) 23.91 − 106.95 49 (49) All 0.05 ± 0.01 0.07 ± 0.02 0.71 20 0.05 0.06 ± 0.01 0.08 ± 0.02

PBR 0.33 ± 0.12 0.11 ± 0.07 3.00 8 0.21 0.35 ± 0.16 0.35 ± 0.08

Non-PBR 0.02 ± 0.01 0.07 ± 0.02 0.28 12 0.03 0.03 ± 0.01 0.04 ± 0.01

C. n. nivosus (NAY) 22.41 −105.62 13 (10) All 0.06 ± 0.01 0.13 ± 0.03 0.46 19 0.07 0.07 ± 0.01 0.09 ± 0.02

PBR 0.38 ± 0.14 0.18 ± 0.11 2.11 8 0.25 0.46 ± 0.29 0.37 ± 0.08

Non-PBR 0.02 ± 0.01 0.12 ± 0.03 0.17 11 0.05 0.05 ± 0.01 0.05 ± 0.02

C. n. nivosus (TEX) 19.46 −98.97 23 (14) All 0.06 ± 0.01 0.09 ± 0.02 0.67 19 0.06 0.07 ± 0.01 0.09 ± 0.02

PBR 0.39 ± 0.14 0.14 ± 0.09 2.80 8 0.23 0.42 ± 0.21 0.37 ± 0.08

Non-PBR 0.02 ± 0.01 0.09 ± 0.02 0.22 11 0.03 0.04 ± 0.01 0.05 ± 0.01

C. n. nivosus (FLO) 30.02 −85.57 40 (36) All 0.05 ± 0.01 0.10 ± 0.02 0.50 19 0.06 0.07 ± 0.01 0.08 ± 0.02

PBR 0.35 ± 0.12 0.13 ± 0.08 2.70 8 0.22 0.38 ± 0.19 0.36 ± 0.08

Non-PBR 0.02 ± 0.01 0.09 ± 0.02 0.22 11 0.04 0.04 ± 0.01 0.05 ± 0.01

C. n. occidentalis (PER) −13.84 −76.24 21 (21) All 0.06 ± 0.01 0.09 ± 0.02 0.70 20 0.06 0.07 ± 0.01 0.09 ± 0.02

PBR 0.36 ± 0.13 0.14 ± 0.08 2.60 8 0.23 0.41 ± 0.19 0.37 ± 0.09

Non-PBR 0.02 ± 0.01 0.09 ± 0.02 0.22 12 0.03 0.04 ± 0.01 0.05 ± 0.01

C. n. tenuirostris (PUR) 17.93 −67.18 17 (13) All 0.06 ± 0.01 0.15 ± 0.04 0.40 18 0.07 0.07 ± 0.01 0.09 ± 0.02

PBR 0.36 ± 0.15 0.22 ± 0.13 1.64 8 0.24 0.49 ± 0.36 0.34 ± 0.07

Non-PBR 0.03 ± 0.01 0.14 ± 0.04 0.21 10 0.05 0.05 ± 0.01 0.06 ± 0.02
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Comparison and phylogenetic relationships with other

Charadriiformes

Average nucleotide diversity and number of segregation

sites were lower than those reported from Red Knot,

Icelandic Black-tailed Godwit and Red-billed Gull

(Table 2; Figure S1). Nevertheless, the dN/dS proportion

at PBR sites was higher for the Snowy Plover, indicating

stronger positive selection at these sites in comparison

with the other three charadriiform species.

As in Red Knots and Red-billed Gulls, we found alleles

with putatively non-classical functions among the Snowy

Plover alleles. These non-classical alleles (Chni-UA*17

to UA*21) formed a well-defined cluster in the phylo-

genetic network (Fig. 2a) and showed a low level of

polymorphism (Figs. 1a and 2a). Non-classical alleles

were present in 216 of 218 samples. These alleles

clustered together with the Red-billed Gull non-classical

allele Lasc-UDA*03 in the neighbour-joining tree

(Fig. 3a).

MHC class II: exon 2

We discarded 36 samples, as they did not pass the

quality filters. In total, we found six alleles across 214

individuals of eight populations. We found no more than

two alleles per individual ( x ± SD: 1.45 ± 0.50), which

suggests that we genotyped only one locus. The most

common allele was Chni-DAB*01, which we detected in

171 individuals (79.9%), whereas the least common allele

was Chni-DAB*03, present in four individuals (1.9%).

Most individuals (55.6%) were homozygous.

Diversity and inference of selection

The nucleotide diversity (π) for subspecies nivosus and

occidentalis were similar, with the PBR sites showing

higher diversity in comparison to the non-PBR sites,

suggesting that balancing selection could be acting at

PBR sites (Table 3). The Bayesian site-by-site test in

FUBAR suggested positive selection for one site (site

82), and purifying selection for two sites (sites 17 and

73, Fig. 1b). Sites with purifying selection were exclu-

sively located in the non-PBR region. The analysis of

rates of changes dN/dS indicated positive selection for

the PBR sites in comparison to non-PBR sites for the

nivosus and occidentalis subspecies (Table 3). All tenuir-

ostris samples were homozygous. GARD identified one

recombination breakpoint, which was located at position

222. When we re-ran a codon-specific model for the

non-recombinant fragment of the sequences, our results

remained unchanged.

Diversity and phylogenetic relationships within the

Charadriiformes

The average nucleotide diversity of Snowy Plovers (π =

0.06) was well within the range of diversity observed in

other Charadriiformes (range 0.02 to 0.15, Table 4;

Figure S1). This was also true for the nucleotide diversity

at PBR sites (Table 4). The phylogenetic network and

the neighbor joining tree showed two distant allele

groups for MHC Class II (Figs. 2b and 3b). The

neighbour-joining tree showed that MHC class II alleles

of Snowy Plovers (Chni-DAB) were located on a differ-

ent branch than most other charadriiform MHC II

alleles identified so far (Fig. 3b).

Geographic pattern of MHC diversity

We found that 25% of alleles were private alleles for

MHC class I and 16.7% private alleles for MHC class II.

For MHC class I, Snowy Plover populations from Utah,

Ceuta and Puerto Rico showed private alleles (Fig. 4a).

For Utah, four (Chni-UA*03, 04, 31 and 37) of 30 alleles

were private, for Ceuta, four (Chni-UA*25, 28, 32 and

33) of 34 alleles were private and for Puerto Rico, two

(Chni-UA*05 and 17) of nine alleles were private. Other

populations lacked private alleles (notably the Peruvian

population of the subspecies occidentalis) but showed

similar numbers of alleles (San Quintin: 23 alleles, Naya-

rit: 13 alleles, Texcoco: 19 alleles, Florida: 17 alleles and

Table 2 Comparison of genetic diversity at MHC class I exon 3
in four different charadriiform species. Segregating sites of
amino acids (Saa), nucleotides (Snt), and average nucleotide
diversity (π), from 21 sequences randomly chosen by each of
these species. Diversity indices and the synonymous (dS) and
non-synonymous (dN) substitution rates were calculated for the
complete sequences (All), the PBR and the non-PBR sites

dN ± S.E dS ± S.E dN/dS Snt Saa π

Snowy Plover (Charadrius nivosus nivosus)

All 0.05 ± 0.01 0.07 ± 0.02 0.71 47 19 0.05

PBR 0.29 ± 0.10 0.09 ± 0.05 3.22 19 8 0.19

Non-PBR 0.02 ± 0.01 0.06 ± 0.02 0.33 28 11 0.03

Red-billed Gull (Chroicocephalus scopulinus)

All 0.08 ± 0.01 0.09 ± 0.02 0.90 64 34 0.08

PBR 0.36 ± 0.13 0.20 ± 0.13 1.80 20 9 0.24

Non-PBR 0.05 ± 0.01 0.08 ± 0.02 0.62 44 25 0.05

Red Knot (Calidris canutus)

All 0.13 ± 0.02 0.15 ± .02 0.87 110 53 0.11

PBR 0.46 ± 0.17 0.24 ± 0.11 1.92 25 9 0.28

Non-PBR 0.09 ± 0.01 0.14 ± 0.03 0.64 85 44 0.09

Black-tailed Godwit (Limosa limosa)

All 0.09 ± 0.02 0.10 ± 0.02 0.90 70 35 0.09

PBR 0.36 ± 0.14 0.32 ± 0.18 1.12 23 9 0.26

Non-PBR 0.05 ± 0.01 0.08 ± 0.02 0.62 47 26 0.05
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Fig. 2 Phylogenetic network showing relationships among Snowy Plover MHC class I alleles (a), and MHC class II alleles (b) characterized from
eight populations. Long alleles at MHC class I are represented with a white square, whereas non-classical alleles are represented by black squares
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Fig. 3 (See legend on next page.)
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Peru: 18 alleles). With the exception of the island popu-

lation of Puerto Rico (lineage tenuirostris), private alleles

generally occurred in low frequencies (Fig. 4). At MHC

class II, there were no private alleles within lineages

tenuirostris or occidentalis. Only the Ceuta population

had a private allele (Chni-DAB*03), and we found all six

alleles in this population. The other populations had

three to five alleles, except for Puerto Rico, where we

detected only one allele (Fig. 4b).

Discussion
In this study, we developed new MHC markers that

amplified with high success exon 3 of MHC class I and

exon 2 of MHC class II in the Snowy Plover, a shorebird

species of high conservation concern. This allowed us to

examine adaptive genetic diversity at this important

locus in the family Charadriidae and provides novel and

useful markers for future studies in other Charadrius

species. Surveying both MHC classes in more than 200

individuals from eight populations, we report differences

in allelic diversity across both MHC classes, with nearly

seven times as many alleles at MHC class I than at

MHC class II. The genotypic variation in individuals

suggests that the markers amplified four highly similar

loci for MHC class I, as we registered up to seven alleles

at MHC class I, whereas a maximum of two alleles per

individual is consistent with amplification of a single

locus at MHC class II.

Our network analysis suggests the presence of classical

and non-classical genes among the amplified MHC class

I loci. Non-classical loci have evolved from classic MHC

genes to perform specific tasks in the immune recogni-

tion [39]. Five alleles (Chni-UA*17 to 21), formed a well-

defined cluster in the phylogenetic network, which is

characteristic for non-classical alleles. Non-classical

alleles have also previously been described in other

shorebirds (Red-billed Gull: [29]; Red Knot: [25]).

Consistent with expectations derived from other non-

classical alleles, these five alleles showed a low level of

polymorphism [40, 41]. Four alleles were only differenti-

ated by synonymous substitutions, whereas the fifth

allele, found only in the Puerto Rico population, deviated

in a single amino acid substitution. We observed that

two of three non-classical alleles Lasc-UCA*01 and

Caca-UA*35 clustered with the classical alleles of their

respective species Red-billed Gull and Red Knot. This

suggests that they may have evolved through recent

duplications that have occurred after the divergence of

the species in this tree. By contrast, Lasc-UDA*03 and

the Snowy Plover non-classical alleles may have been

created through a more ancient duplication event.

We observed a second well-defined cluster in our

phylogenetic network at MHC class I; this cluster

corresponds to five alleles (Chni-UA *12 to 16) that

shared a 3-bp insertion. The observed insertion kept

the reading frame intact, presumably preserving their

function. Contrary to the non-classical alleles, these five

alleles with a 3-bp insertion show a higher nucleotide

diversity, including several non-synonymous changes

between these five alleles, suggesting these alleles have

classical functions. In birds, insertions are less frequent

than deletions in MHC genes, and it has been suggested

that insertions have a reduced adaptive advantage [42].

However, some insertions may contribute to adaptive

MHC variation due to possible changes in the PBR [42,

43]. Unlike the MHC class I, the six alleles at MHC

class II formed an undifferentiated cluster, with both

synonymous and non-synonymous substitutions

present. Together, with the observation of no more

than two alleles per individual, we concluded that our

markers amplified a single classical MHC II locus.

When we compared the nucleotide diversity at the PBR

sites, we found that the MHC class I showed moder-

ately higher values of diversity (0.16 ± 0.03) than at

MHC class II (0.12 ± 0.03). This result may be a conse-

quence of having amplified four loci at MHC I and only

one locus at MHC II.

For both MHC classes, we observed that the number

of sites under negative (purifying) selection was higher

than sites under positive (diversifying) selection when

we considered the full sequence. As PBR sites are inter-

acting directly with the antigens derived from pathogens,

it is expected that these sites are subject to stronger

positive diversifying selection than non-PBR sites.

Consistent with this, we found that sites with signatures

of purifying selection were predominantly non-PBR sites,

whereas five of the six sites under diversifying selection

in the MHC class I and in one site at MHC class II

corresponded to PBR sites. Similar patterns were

observed in another shorebird, the Icelandic Black-tailed

Godwit [26], and shown in a recent comparative study

of selection at the avian MHC [42].

Our finding that more sites showed signatures of posi-

tive selection at MHC class I than at MHC class II

(See figure on previous page.)
Fig. 3 Neighbour-joining tree of amino acid sequences for MHC class I and II from different Charadriiformes. For MHC class I, four species are
represented (Snowy Plover (Chni), Black-tailed Godwit (Lili), Red Knot (Caca) and Red-billed Gull (Lasc)) and (b) MHC class II represented by eight
species (Snowy Plover (Chni), Black-tailed Godwit (Lili), Ruff (Phpu), Great Snipe (Game), Black-legged Kittiwake (Ritr), Razorbill (Alto), Common
Murre (Uraa) and Atlantic Puffin (Frar)). Long alleles are indicated by a white square, non-classical alleles with a black square. The homologous
MHC sequences of the chicken Gallus gallus (Gaga-HQ141386 and Gaga-BLB2) served as an outgroup
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differs from a recent global analysis of selection at the

avian MHC [42]. Here, the authors suggested that the

pressure of extracellular pathogens is higher in non-

passerines, resulting in a stronger signature of selection

for the MHC class II in non-passerines than in passer-

ines. The order Charadriiformes does not seem to fit to

this proposed rule. Consistent with Minias et al. [42],

gulls and most of the alcids show a strong signature of

selection at MHC class II and weaker selection at MHC

class I, but the paraphyletic group of shorebirds (plovers

and sandpipers) instead shows a pattern more similar to

passerines [16, 25, 26, 28, 29, 44]. Several morphological

or ecological variables may explain this discrepancy.

First, body size may be related to parasite abundance, as

larger hosts may provide a greater variety of niches and,

in turn, support a higher number of parasites than

smaller birds [45]. Snowy Plovers are relatively small

birds with a mean body mass of 38–50 g [32, 46].

Second, the selective pressures imposed by parasites may

be habitat dependent. Although aquatic birds (mainly

non-passerines) show a more diverse parasite commu-

nity than their terrestrial counterparts [45], there is a

difference between freshwater and saltwater habitats.

Snowy Plovers inhabit the shores of alkaline water bod-

ies, such as salt lakes, salt evaporation ponds and sandy

beaches [46]. These saline habitats are typically consid-

ered to have a lower abundance of extracellular parasites

[47–49], which would be consistent with the observed

low diversity at MHC class II. In general, shorebirds

show a low prevalence in intracellular pathogens,

although viral infections (West Nile virus; [50], Newcas-

tle disease virus [50], avian influenza; [51]), avian

haemosporidians (Plasmodium and Haemoproteus spp.;

[52]) and bacterial infections (Mycobacterium; [53]) have

all been reported. Furthermore, Snowy Plovers inhabit

low latitudes, where the diversity of intracellular

Table 3 Diversity at the MHC class II (segregating sites of amino acids (Saa) and average diversity of nucleotides (π)) and
evolutionary distance (nucleotide sequences (dnt) and amino acids (daa)) of the alleles of the exon 2 in the Snowy Plover (Charadrius
nivosus). The measures of diversity and the synonymous and non-synonymous substitution rates were calculated for the complete
sequences (All), the PBR and the non-PBR sites for each population. The number of genotyped individuals per population (N) and
number of samples that passed the quality filter (n) are shown

Population Lat Lon N (n) dN ± S.E dS ± S.E dN /dS Saa π dnt ± S.E daa ± S.E

C. n. nivosus (UTA) 40.9 −112.13 40 (40) All 0.06 ± 0.01 0.10 ± 0.03 0.60 15 0.06 0.07 ± 0.01 0.10 ± 0.02

PBR 0.15 ± 0.05 0.08 ± 0.05 1.87 8 0.11 0.15 ± 0.05 0.20 ± 0.06

Non-PBR 0.03 ± 0.01 0.11 ± 0.04 0.27 7 0.05 0.05 ± 0.01 0.07 ± 0.02

C. n. nivosus (SAQ) 30.4 −115.97 47 (36) All 0.06 ± 0.01 0.10 ± 0.03 0.60 15 0.06 0.07 ± 0.01 0.10 ± 0.02

PBR 0.15 ± 0.05 0.08 ± 0.05 1.87 8 0.11 0.15 ± 0.05 0.20 ± 0.06

Non-PBR 0.03 ± 0.01 0.11 ± 0.04 0.27 7 0.05 0.05 ± 0.01 0.07 ± 0.02

C. n. nivosus (CEU) 23.91 −106.95 49 (34) All 0.06 ± 0.01 0.11 ± 0.03 0.54 15 0.06 0.08 ± 0.01 0.10 ± 0.02

PBR 0.14 ± 0.05 0.10 ± 0.05 1.40 8 0.12 0.15 ± 0.05 0.19 ± 0.05

Non-PBR 0.03 ± 0.01 0.11 ± 0.04 0.27 7 0.05 0.05 ± 0.01 0.07 ± 0.02

C. n. nivosus (NAY) 22.41 −105.62 13 (10) All 0.07 ± 0.02 0.12 ± 0.04 0.58 15 0.07 0.08 ± 0.01 0.11 ± 0.02

PBR 0.17 ± 0.06 0.09 ± 0.05 1.88 8 0.13 0.17 ± 0.05 0.22 ± 0.06

Non-PBR 0.04 ± 0.01 0.13 ± 0.05 0.30 7 0.05 0.06 ± 0.01 0.07 ± 0.02

C. n. nivosus (TEX) 19.46 −98.97 23 (17) All 0.05 ± 0.01 0.09 ± 0.03 0.55 15 0.06 0.07 ± 0.01 0.09 ± 0.02

PBR 0.14 ± 0.05 0.07 ± 0.05 2.00 8 0.11 0.13 ± 0.04 0.19 ± 0.05

Non-PBR 0.03 ± 0.01 0.10 ± 0.04 0.30 7 0.04 0.04 ± 0.01 0.05 ± 0.02

C. n. nivosus (FLO) 30.02 −85.57 40 (39) All 0.07 ± 0.02 0.12 ± 0.04 0.58 15 0.07 0.08 ± 0.01 0.11 ± 0.02

PBR 0.17 ± 0.06 0.09 ± 0.06 1.88 8 0.13 0.17 ± 0.05 0.22 ± 0.06

Non-PBR 0.04 ± 0.01 0.13 ± 0.05 0.30 7 0.05 0.06 ± 0.01 0.07 ± 0.02

C. n. occidentalis (PER) −13.84 −76.24 21 (21) All 0.07 ± 0.02 0.12 ± 0.04 0.58 15 0.07 0.08 ± 0.01 0.11 ± 0.02

PBR 0.17 ± 0.06 0.09 ± 0.06 1.88 8 0.13 0.17 ± 0.05 0.22 ± 0.06

Non-PBR 0.04 ± 0.01 0.13 ± 0.05 0.30 7 0.05 0.06 ± 0.01 0.07 ± 0.02

C. n. tenuirostris (PUR) 17.93 −67.18 17 (17) All – – – – – – –

PBR – – – – – – –

Non-PBR – – – – – – –
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pathogens, as well as of their vectors, is expected to be

high [48, 52]. In addition to the copy number variation

for the fragment amplified at MHC I, the high abun-

dance of intracellular pathogens in the tropics may con-

tribute to the high allelic diversity at MHC class I.

Further research is needed to determine whether Chara-

driiformes themselves show unusual group-specific vari-

ation in intra- and extracellular pathogens, or whether

other life-history, ecological and evolutionary differences

explain the observed differences in signatures of

selection.

Across continental populations (subspecies nivosus

and occidentalis), we found a similar number of alleles

and nucleotide diversity. This result is consistent with

the high gene flow observed among Snowy Plover popu-

lations [31, 33, 54]. At MHC I only, we found that the

Nayarit population had a lower number of alleles (13

alleles), although this may reflect the sample size, as we

only genotyped ten birds from this population. Among

continental populations, private alleles were generally

rare, and when present, occurred at low frequencies,

suggesting that these represent rare alleles rather than

geographically distinct alleles. By contrast, the island

population of Puerto Rico (lineage tenuirostris) showed

two privates alleles at MHC class I at moderate frequen-

cies (Fig. 4): these alleles may represent true geographic

variants. Interestingly, the tenuirostris population was

monomorphic at MHC class II. Together with the lower

positive selection at PBR sites at MHC class I, this might

suggest that pathogen pressure is weaker in this popula-

tion. The low genetic diversity may be a common feature

of island populations that are thought to be exposed to

fewer pathogens than continental pathogens [55]. For

example, among shorebirds, Icelandic Black-tailed God-

wits did not show positive selection at MHC class I PBR

sites [26]. Other biogeographic features could contribute

to the observed differences in genetic diversity. In con-

trast to most other populations, tenuirostris inhabits the

Atlantic Ocean and the diversity of pathogens is thought

to be lower in the Atlantic Ocean than the Pacific Ocean

[56]. However, the other Atlantic population located in

Florida did not show lower diversity than Pacific popula-

tions. Demography may also have played a role in shap-

ing MHC diversity. A recent study showed that all

Snowy Plover lineages went through a bottleneck within

the last 1000 years, with particularly strong effects

observed in C. n. tenuirostris [33]. A similar pattern of

loss of adaptive diversity has been observed in other bird

populations subject to recent bottlenecks (see [57–59]).

Comparing allelic diversity across species, we found

that diversity at MHC class I in Snowy Plovers (40 alleles

across four loci amplified) was similar to other Chara-

driiformes species (Red-billed Gull [29]; (38 alleles), Red

Knot [25]; (36 alleles) and Black-tailed Godwit [26]; (47

Table 4 Comparison of genetic diversity at MHC class II
(segregating sites of amino acids (Saa) and nucleotides (Snt) and
average nucleotide diversity (π)) in eight species of
Charadriiformes, from six alleles randomly selected for each
species (except for Black-tailed Godwit and Ruff where only four
alleles were available). The measures of diversity and the
synonymous and non-synonymous substitution rates were
calculated for the complete sequences (All), the PBR and the
non-PBR sites

dN ± S.E dS ± S.E dN/dS Snt Saa π

Snowy Plover (Charadrius nivosus nivosus)

All 0.06 ± 0.01 0.10 ± 0.03 0.60 31 15 0.06

PBR 0.14 ± 0.05 0.10 ± 0.05 1.40 15 8 0.12

Non-PBR 0.03 ± 0.01 0.11 ± 0.04 0.27 16 7 0.05

Common Murre (Uria aalge)

All 0.09 ± 0.02 0.05 ± 0.02 1.80 42 26 0.07

PBR 0.19 ± 0.05 0.11 ± 0.05 1.72 22 12 0.15

Non-PBR 0.06 ± 0.02 0.04 ± 0.02 1.50 20 14 0.05

Razorbill (Alca torda)

All 0.03 ± 0.01 0.02 ± 0.01 1.50 17 10 0.02

PBR 0.07 ± 0.03 0.02 ± 0.02 3.50 10 6 0.05

Non-PBR 0.02 ± 0.01 0.02 ± 0.01 1.00 7 4 0.01

Atlantic Puffin (Fratercula arctica)

All 0.10 ± 0.02 0.05 ± 0.02 2.00 44 26 0.08

PBR 0.26 ± 0.07 0.04 ± 0.03 6.50 24 14 0.16

Non-PBR 0.05 ± 0.01 0.06 ± 0.02 0.83 20 12 0.05

Black-legged Kittiwake (Rissa tridactyla)

All 0.12 ± 0.02 0.06 ± 0.02 2.00 56 31 0.09

PBR 0.29 ± 0.06 0.05 ± 0.03 5.80 29 15 0.18

Non-PBR 0.07 ± 0.02 0.07 ± 0.02 1.00 27 16 0.06

Great Snipe (Gallinago media)

All 0.03 ± 0.01 0.04 ± 0.01 0.75 20 10 0.03

PBR 0.08 ± 0.03 0.04 ± 0.03 2.00 10 6 0.06

Non-PBR 0.02 ± 0.01 0.04 ± 0.02 0.50 10 4 0.02

Ruff (Philomachus pugnax)

All 0.17 ± 0.03 0.15 ± 0.04 1.13 67 36 0.14

PBR 0.33 ± 0.09 0.18 ± 0.01 1.83 29 15 0.23

Non-PBR 0.12 ± 0.02 0.14 ± 0.03 0.85 38 21 0.11

Black-tailed Godwit (Limosa limosa)

All 0.18 ± 0.03 0.14 ± 0.03 1.28 68 40 0.15

PBR 0.31 ± 0.08 0.21 ± 0.08 1.47 27 16 0.23

Non-PBR 0.14 ± 0.03 0.12 ± 0.04 1.16 41 24 0.12
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alleles)). By contrast, MHC class II (six alleles) showed a

lower allelic diversity than other Charadriiformes (Great

Snipe – 50 alleles, [28]; Marbled Murrelet Brachyram-

phus marmoratus – 27 alleles, [60]). Despite the copy

number variation, the nucleotide diversity at MHC class

I in Snowy Plovers was lower than in other Charadrii-

formes (Table 2). However, the observed values were

within the range of other non-passerines (such as the

Fig. 4 Geographical distribution of MHC class I (a) and II (b) alleles among eight sampled Snowy Plover populations. Populations are abbreviated
(Utah = UTA San Quintin = SAQ, Ceuta = CEU, Nayarit = NAY, Texcoco = TEX, Peru = PER, Florida = FLO and Puerto Rico = PUR). Long alleles of the
MHC class I are in green colors and the asterisk shows alleles exclusive to single populations. The figure was created using software RStudio
(Version 1.0.153; https://rstudio.com/)
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Humboldt Penguin Spheniscus humboldti – 0.03 to 0.04

– and Magellanic Penguin Spheniscus magellanicus –

0.05 to 0.06, [61]; or grouse species – on average 0.05,

[58]). For MHC class II, we found intermediate nucleo-

tide diversity in comparison to other Charadriiformes

(Marbled Murrelet – 0.08; [60]) and other non-

passerines (Magellanic Penguin – 0.02, [61]; Eurasian

Coot Fulica atra – 0.11, [62]; and Black Grouse Tetrao

tetrix – 0.11, [63]).

Conclusions
We developed novel MHC markers to amplify the PBR

exon 3 of MHC class I and PBR exon two of MHC class

II for the threatened Snowy Plover. These are the first

markers for MHC in the family Charadriidae and we an-

ticipate that they will be of high utility for studying

MHC in other plover species. Overall, genetic diversity

at MHC in Snowy Plovers was low to moderate and

likely to be shaped by past demographic processes such

as bottlenecks and island colonization. In line with

population genetic studies, we find that there is limited

genetic differentiation attributable to geographic

variation, consistent with the high gene flow observed in

this species. Contrasting differences in the allelic diver-

sity between MHC class I and class II indicate stronger

positive selection at MHC class I than at MHC class II.

These differences may reflect variation in exposure to

intracellular and extracellular pathogens [42], but further

studies are needed to confirm this.

Methods
Population sampling

We collected blood samples of 250 adult and juvenile

Snowy Plovers from eight populations across North,

Central and South America between 2006 and 2016

(Table 1). We captured adults in funnel traps placed on

nests during incubation or used mist nets at other times

using the methods described in Székely et al. [64]. After

capturing and banding the individuals, we took 20 to

75 μl blood with heparinized capillaries from the brachial

vein. We captured chicks at or near to the nest a few

hours after hatching and took ~ 20 to 50 μl blood from

the tarsal vein. We stored the blood in 1ml of Queen’s

lysis buffer [65] at 4 °C or pure ethanol at room

temperature until further processing.

DNA extraction

We isolated genomic DNA using the ammonium acetate

precipitation method [66]. We checked the integrity of

the DNA using a 0.8% agarose gel stained with SYBRsafe

(Invitrogen). We measured DNA concentration using

either a fluorometer (FLUOstar OPTIMA) or Nanodrop

ND800 (Thermo Fisher Scientific).

Primer design for the MHC loci

We designed primers to capture the most polymorphic

PBR sites in exonic regions for both MHC class I and

MHC class II genes in Snowy Plovers. For MHC class I,

we initially used the primers MHCI-int2F [20] and

MHCI-ex3R [67] to isolate exon 3 of non-passerine

birds. We undertook polymerase chain reactions (PCRs)

in a total volume of 20 μl containing 12 μl Multiplex

PCR Master Mix (MM, Qiagen), 4 μl Q-Solution

(Qiagen), and 1 μl of each primer (1 μM) and 2 μl DNA

(~ 15 ng/μl). The PCR program started with an initial

denaturation step at 95 °C for 15 min, followed by 30

cycles at 94 °C for 30 s, 56 °C for 90 s and 72 °C for 90 s,

and a final elongation step at 72 °C for 10 min. For MHC

class II, we first used primers MHC05 [68] and 305 [69],

and the primers 306 [69] and RapEx3CR [70] to capture

introns 1 and 2, and parts of exons 1 and 3, respectively.

We ran PCRs in a total volume of 20 μl, containing 16 μl

MM, 1 μl of each primer (1 μM) and 2 μl of DNA (~ 15

ng/μl). The PCR program consisted of one cycle at 95 °C

for 3 min, followed by 30 cycles at 94 °C for 30 s, 60 °C

for 90 s and 72 °C for 90 s, followed by a final step at

72 °C for 10 min. All PCRs were run on a thermocycler

PTC-225 DNA Tetrad Engine. We visualized PCR prod-

ucts using an agarose gel at 1.5% stained with ethidium

bromide. For MHC class II we obtained multiple bands

and subsequently cut out the visible bands of the ex-

pected size and extracted the amplified fragment using

the QIAquick Gel Extraction Kit (QIAGEN). For MHC

class I we only observed a single band, and the product

did not require gel excision. We cleaned up MHC class I

and II amplicons with ExoSap and sequenced the prod-

ucts using the BigDye terminator v.3.1 chemistry (Ap-

plied Biosystems) on an ABI 3730 automated sequencer

(Applied Biosystems). For each MHC locus we aligned

the sequences of six individuals using CodonCode

Aligner 5.0.2 (CodonCode Corporation). We confirmed

the identity of the sequences through blast hits in Gen-

Bank (NCBI). We then designed new primers Chni-Ex2F

5′-GAACTGCCTCCCTGCACAAA-3′ and ChCR-Ex2R

5′-TTCCCCGGGGAAATGTTCT-3′ to amplify the

complete exon 2 for the MHC class II; and ChCR_MHC

I_Ex2aF 5′-GGGTCTGTGCCCCACT-3′ for use with

primer MHCI-ex3R 5′- CTCACCTTTCCTCTCCAG-3′

[41] to amplify the complete exon 3 of MHC class I.

Amplification and sequencing

We adopted a two-step PCR protocol to amplify the

PBRs of both MHC classes and enable multiplexing. For

PCR1 we created new oligonucleotides adding the Illu-

mina overhang sequencing adapters F 5′-TCTACACG

TTCAGAGTTCTACAGTCCGACGATC-3′ and R 5′-

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

-3′ to the MHC primer sequences (following Campbell
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et al. [71]). We performed PCRs in a total volume of

10 μl that contained; for MHC class I, 3.5 μl MM, 1.25 μl

Q-solution, 1 μl of each primer (10 μM), 1 μl DNA (25

ng/μl) and 2.25 μl water, and for MHC class II, 4 μl MM,

1 μl of each primer (10 μM), 1 μl DNA (25 ng/μl) and

3 μl water. We used the same PCR programs as before

but reduced the number of cycles to 28 to minimize the

impact of chimera formation [72]. We then checked 1 μl

of the products on an agarose gel and cleaned up the re-

mainder of the solution using 8 μl (concentration of 0.8

X) of AMPure XP magnetic beads (Beckman Coulter,

Indianapolis, USA) according to the manufacturer’s

protocol. We suspended the clean product in 20 μl TE

and transferred 4 μl of MHC class I and II amplicons to

a new 96-well plate, combining the amplicons of both

classes for the same individual for the PCR2. We then

added 0.5 μl of 0.5M forward and reverse Illumina in-

dexes (dual-plexed Fi5 [12 indexes] and Ri7 [16 indexes];

index primers in the format 5′-[Illumina i5 or i7 capture

sequence][6-bp i5 or i7 barcode] [overhang sequence]-

3′, 10 μl MM and 1 μl water, and ran PCR2 using the

following program: 95 °C for 15 min, followed by 9 cycles

at 98 °C for 10 s, 66 °C for 30 s and 72 °C for 30 s, with a

final step at 72 °C for 5 min.

We determined the concentration of the PCR2 prod-

uct using a fluorometer (FLUOstar OPTIMA) and 2 μl

of the product. We pooled samples from eight individ-

uals by taking 20 ng per sample and cleaning up the

multiplexed PCR products with AMPure XP beads, as

described above, with volumes adjusted to a 50 μl solu-

tion (concentration of 0.5 X). We used a TapeStation

4200 (Agilent Genomics) to confirm that there were no

primer dimers present in the purified samples. We then

quantified the PCR products using a qPCR with the

KAPA library quantification kit (KAPA Biosystem) using

10 μl reaction volume (8 μl of SYBR Master Mix and 2 μl

of template/standard or control), with the program:

95 °C for 5 min, followed by 35 cycles of 94 °C for 30 s

and 60 °C for 45 s. We then pooled equimolar amounts

per library, preparing six libraries in total, quantified the

concentration of the pool with a Qubit (ThermoFisher

Scientific, Waltham, USA) and submitted 4 nM per

library for sequencing using 250 bp paired-end (500

cycles) Illumina sequencing on the MiSeq (Illumina Inc.,

San Diego, CA, USA) in six separate runs at the Sheffield

Diagnostic Genetics Service.

Processing of data and MHC alleles validation

For the raw MiSeq data processing, we used the Ampli-

con Sequencing Analysis Tool (AmpliSAT) web server

[73]. This tool is divided into different modules that

allow the merging, cleaning and assignment of geno-

types. First, we used AmpliMERGE with the FLASH

algorithm to merge the pair-end reads. Then, we used

AmpliCLEAN to filter out low-quality reads (<Q30 score

and < 270 bp). After running AmpliCHECK with the de-

fault parameters for Illumina sequences, we retained all

the remaining reads with lengths of 350 (325) ± 5 bp for

MHC class I (II). Finally, we used AmpliSAS to demulti-

plex, cluster and filter the retained reads using default

parameters for Illumina data for clustering, a minimum

read depth per amplicon of 2000 and merging minimally

different sequences to the dominant sequences when

they differed by less than 3 bp and had ≤25% of the read

depth in comparison with the dominant sequences [73].

Sequences that differed by 1–3 bp from the dominant se-

quences, but had more than 25% of the read depth, were

classified as ‘subdominants’ and formed a new cluster

representing a putative allele [26, 73]. We discarded all

sequences that had a frequency of less than 5%, and

those identified as chimera sequences. The minimum

amplicon depth was set to 150 reads and the maximum

amplicon depth set to 5000 reads due to computational

limitations [73].

Allele validation

We blasted all putative alleles from Illumina sequencing

to the GenBank (NCBI) nucleotide database to examine

their similarity to known MHC alleles from other

species. The alleles were named Chni-UA*01 to UA*40

(MHC class I) and Chni-DAB*01 to DAB*06 (MHC class

II), following the nomenclature suggested by Klein et al.

[74].

Diversity analysis and tests for selection

We used MEGA 7.0.18 [75] for initial diversity and se-

lection analysis. First, we aligned the putative alleles

using the MUSCLE algorithm [76] implemented in

MEGA. We manually checked indel sites and curated

alignments in order to preserve triplets within exons.

We then estimated the number of segregating amino

acid sites (Saa), nucleotide diversity (π), evolutionary

distance for nucleotide sequences (dnt) and evolutionary

distance for amino acid (daa), for each of the eight popu-

lations included in the study. For the evolutionary dis-

tance analyses, we inferred the appropriate substitution

models based on the best-fit model (using AICC) using

JModeltest 2.1.10 [77]. For MHC class I, we employed

the Kimura two-parameter model [78] with a gamma

distribution, setting the transition rate α to 0.9 for

nucleotide sequences, and using the p-distance model

with uniform rates to assess amino acid sequences

distances. For MHC class II, we implemented the Jukes-

Cantor + G model with a gamma distribution, setting

the substitution rate α to 0.8 for nucleotide sequences,

and we calculated amino acid sequence distances using a

p-distance model with uniform rates.

Cruz-López et al. BMC Evolutionary Biology          (2020) 20:114 Page 13 of 16



We calculated standard errors of the mean evolutionary

distances from 1000 bootstrap replicates. Positive

selection, as a response to the selection imposed by patho-

gens, will lead to an excess of non-synonymous over

synonymous substitutions in the PBR (ω = dN/dS > 1). To

assess the impact of positive selection on nucleotide diver-

sity, we compared ω at PBR sites and non-PBR sites. We

inferred PBR sites based on previously documented

transcripts (MHC class I: [79], MHC class II: [80]). We

calculated synonymous and non-synonymous substitution

rates through the modified Nei–Gojorobi method [81]

with Jukes–Cantor correction. Also, we tested site-by-site

selection applying Fast Unconstrained Bayesian AppRoxi-

mation (FUBAR; http://www.datamonkey.org/fubar, [82].

As recombination is frequent in MHC genes and recom-

bination may lead to overestimation of the number of

positively selected sites [62], we tested for evidence of

recombination in our MHC alignments using Genetic

Algorithm for Recombination Detection (GARD; http://

www.datamonkey.org/gard, [83]).

Phylogenetic diversity and relationships

We compared nucleotide diversity at MHC loci across

the Charadriiformes using data available at GenBank.

For MHC class I, we obtained sequences from three

other charadriiform species: Red Knot Calidris canutus

[25], Icelandic Black-tailed Godwit Limosa limosa islan-

dica [26] and the Red-billed Gull Larus scopulinus [29].

As only sequences from 21 alleles were available for

Red-billed Gull, we randomly drew sequences of 21 al-

leles from each species in this comparison to obtain a

comparable sample size for the diversity estimate (Table

S3). For MHC class II, we obtained data from seven fur-

ther species: Common Murre Uria alge [44], Razorbill

Alca torda [44], Atlantic Puffin Fratercula artica [44],

Black-legged Kittiwake Rissa tridactyla [44], Great Snipe

Gallinago media [28], Ruff Philomachus pugnax [16]

and Black-tailed Godwit Limosa limosa [16]. As we had

only six putative alleles in Snowy Plover, we capped the

number of sequences to six per species that we

randomly drew for this comparison (Table S3). We

evaluated the amino acid (Saa) and nucleotide (Snt)

segregation sites, nucleotide diversity (π), as well the

synonymous (dS) and non-synonymous (dN) substitu-

tion rates, using the same parameters described above.

We visualized phylogenetic relationships between the

MHC class I and class II alleles in Snowy Plovers

through the Neighbor-net algorithm implemented in

SplitsTree 4.14.6 [84]. This method allows deduction of

alternative phylogenetic histories and model incompati-

bilities in the dataset that may lead to conflicting phylo-

genetic signals because of duplication, recombination

and gene conversion, which are all common in MHC

genes [20, 25]. Finally, we inferred the phylogenetic

relationships among charadriiform MHC alleles using a

Neighbour-Joining Tree with Maximum Likelihood im-

plemented in MEGA 7.0.18. We calculated branch sup-

port through 1000 bootstrap replications.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12862-020-01676-7.

Additional file 1: Figure S1. Graphical representation of nucleotide
diversity and dN/dS ratios for MHC class I and MHC class II. Silhouettes
represent Charadriiform species, i.e. MHC class I (from top to bottom: Red
Knot, Black-tailed Godwit, Red-billed Gull and Snowy Plover) and MHC
class II (from top to bottom: Black-tailed Godwit, Ruff, Black-legged Kitti-
wake, Atlantic Puffin, Common Murre, Snowy Plover, Great Snipe and
Razorbill). Arrows represent strength of selection in both MHC classes for
the Snowy Plover in comparison to the other species. Table S1. Results
of generalized linear models testing the differences in the number of al-
leles per individual between populations for the MHC class I and class II
in the Snowy Plover. Table S2. Results of generalized linear models test-
ing the differences in the number of alleles between populations for the
MHC class I and class II in the Snowy Plover. Table S3. Sequences ID list
randomly drawn for the MHC class I and MHC class II species
comparison.

Abbreviations

AICc: Corrected Akaike information criterion; AmpliSAT: Amplicon
Sequencing Analysis Tool; dN: Nonsynonymous substitution rate per
nonsynonymous site; dS: Synonymous substitution rate per synonymous site;
FUBAR: Fast Unconstrained Bayesian AppRoximation; GARD: Genetic
Algorithm for Recombination Detection; MHC: Major histocompatibility
complex; NCBI: National Center for Biotechnology Information; PBR: Peptide-
binding region; PCR: Polymerase chain reaction; Saa: Amino acid segregation
sites; Snt: Nucleotide segregation sites

Acknowledgements

We thank Gavin Horsburgh for support during lab work. Atahualpa E.
DeSucre-Medrano, Fernando Puebla, Lidiana Ortega and Alcides L. Morales
provided samples. Raúl Llera-Herrera provided practical advice for the bio-
informatics processing of the sequences. We thank Jacob Höglund, Reto
Burri and Miguel Alcaide for discussing the results and three anonymous re-
viewers for their constructive feedback on an earlier version of this manu-
script. The NERC-Biomolecular Analysis Facility at the University of Sheffield
supported sample preparation and sequencing.

Authors’ contributions

MCL, GF and CK designed the study. MCL, CK, EP, JC, DGE, SGA, RP and OG
collected field samples. MCL and CK conducted the laboratory work, with
assistance from HH. MCL, CK and HH performed the analyses. MCL and CK
wrote and revised the manuscript with assistance from GF, HH and TB. All
authors have read and approved the final manuscript.

Funding

The program “Dollars for Conservation” from Tracy Aviary and the Posgrado
de Ciencias del Mar y Limnología at the Universidad Nacional Autónoma de
México provided funding for sampling in Mexico and Utah and, the genetic
analysis. This study is part of the PhD dissertation of MCL funded by
CONACyT (248125/378124). CK was funded by the Max Planck Society.

Availability of data and materials

All MHC allele sequences are available at GenBank, the sequence data base
of the National Institutes of Health (NIH), USA. Accession numbers for MHC
class I alleles are MT888135–MT888174 and for MHC class II alleles
MT888175–MT888180.

Ethics approval and consent to participate

Fieldwork and blood sampling was conducted under permit by relevant
authorities, i.e. Institutional animal care and use committee at the University

Cruz-López et al. BMC Evolutionary Biology          (2020) 20:114 Page 14 of 16

http://www.datamonkey.org/fubar
http://www.datamonkey.org/gard
http://www.datamonkey.org/gard
https://doi.org/10.1186/s12862-020-01676-7
https://doi.org/10.1186/s12862-020-01676-7


of Florida, project no. E877 and the Florida Fish and Wildlife Conservation
Commission (permit #21980); US Fish and Wildlife Service (permit #23021);
Dirección General de Vida Silvestre (SGPA/DGVS/01717/10; SGPA/DGVS/
01367/11; SGPA/DGVS/02078/12; SGPA/DGVS/02898/12; SGPA/DGVS/06485/
13; SGPA/DGVS/00098/14) for Mexico, permit 042 C/C-2009-INRENA-IANP for
Peru and, US Fish and Wildlife Service, Cabo Rojo and Departamento de
Recursos Naturales y Ambientales, San Juan, Puerto Rico. The study was
conducted in accordance with the current and local laws of each country
and in accordance with the approved ethical guidelines outlined by local
governments.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Posgrado en Ciencias del Mar y Limnología, Universidad Nacional
Autónoma de México, Ciudad Universitaria, 04510 Cd. México, Mexico.
2Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología,
Universidad Nacional Autónoma de México, Apartado Postal 811, 82040
Mazatlán, Sinaloa, Mexico. 3NERC Biomolecular Analysis Facility, Department
of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
4Centro de Investigación Científica y de Educación Superior de Ensenada,
Unidad La Paz, Miraflores 334, Col. Bellavista, 23050 La Paz, Baja California Sur,
Mexico. 5Avian Ecology Laboratory Department of Zoology, Weber State
University, Ogden, UT 84408, USA. 6Departamento Académico de Ciencias
Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al
Sur km 5.5, A.P. 19-B, 23080 La Paz, B.C.S., Mexico. 7Florida Fish and Wildlife
Conservation Commission, Fish and Wildlife Research Institute, Panama City,
FL, USA. 8Grupo Aves del Perú, Gómez del Carpio 135, Barrio Medico, 34
Lima, Peru. 9Department of Natural Sciences, Emmanuel College, Franklin
Springs, GA 30369, USA. 10Max Planck Institute for Ornithology,
Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany.

Received: 21 December 2019 Accepted: 20 August 2020

References

1. Hess CM, Edwards SV. The evolution of major histocompatibility genes in
birds. Bioscience. 2002;52:423–31.

2. Sommer S. The importance of immune gene variability (MHC) in
evolutionary ecology and conservation. Front Zool. 2005;2:16.

3. Piertney SB, Oliver MK. The evolutionary ecology of the major
histocompatibility complex. Heredity. 2006;96:7–21.

4. Spurgin LG, Richardson DS. How pathogens drive genetic diversity: MHC,
mechanisms and misunderstandings. Proc R Soc B. 2010;277:979–88.

5. Bernatchez L, Landry C. MHC studies in nonmodel vertebrates: what have
we learned about natural selection in 15 years? J Evol Biol. 2003;16:363–77.

6. Eizaguirre C, Yeates SE, Lenz TL, Kalbe M, Milinski M. MHC-based mate
choice combines good genes and maintenance of MHC polymorphism.
Mol Ecol. 2009;18:3316–29.

7. Siddle HV, Marzec J, Cheng Y, Jones M, Belov K. MHC gene copy number
variation in Tasmanian devils: implications for the spread of a contagious
cancer. Proc R Soc B. 2010;277:2001–6.

8. Worley K, Collet J, Spurgin LG, Cornwallis C, Richardson DS. MHC
heterozygosity and survival in red junglefowl. Mol Ecol. 2010;19:3064–75.

9. Zagalska-Neubauer M, Babik W, Stuglik M, Gustafsson L, Cichoń M, Radwan
J. 454 sequencing reveals extreme complexity of the class II major
histocompatibility complex in the collared flycatcher. BMC Evol Biol. 2010;
10:395.

10. Sepil I, Moghadam HK, Huchard E, Sheldon BC. Characterization and 454
pyrosequencing of major histocompatibility complex class I genes in the
great tit reveal complexity in a passerine system. BMC Evol Biol. 2012;12:68.

11. Frankham R, Ballou JD, Briscoe DA. Introduction to conservation genetics.
2nd ed. Cambridge: Cambridge University Press; 2010.

12. Acevedo-Whitehouse K, Cunningham AA. Is MHC enough for
understanding wildlife immunogenetics? Trends Ecol Evol. 2006;21:433–8.

13. Edwards SV, Hedrick PW. Evolution and ecology of MHC molecules: from
genomics to sexual selection. Trends Ecol Evol. 1998;13:305–11.

14. Babik W. Methods for MHC genotyping in non-model vertebrates. Mol Ecol
Resour. 2010;10:237–51.

15. Oosterhout VP. A new theory of MHC evolution: beyond selection on the
immune genes. Proc R Soc B. 2009;276:657–65.

16. Burri R, Promerov M, Goebel J, Fumagalli L. PCR-based isolation of
multigene families: lessons from the avian MHC class IIB. Mol Ecol Resour.
2014;14:778–88.

17. Minias P, Pikus E, Whittingham LA, Dunn PO. Evolution of copy number
at the MHC varies across the avian tree of life. Genome Biol Evol. 2018;
11:17–28.

18. Winternitz J, Abbate JL, Huchard E, Havlicek J, Garamszegi LZ. Patterns of
MHC-dependent mate selection in humans and nonhuman primates: a
meta-analysis. Mol Ecol. 2017;26:668–88.

19. Kaufman J, Milne S, Göbel T, Walker BA, Jacob JP, Auffrey C, et al. The
chicken B locus is a minimal-essential major histocompatibility complex.
Nature. 1999;401:923–5.

20. Alcaide M, Edwards SV, Cadahía L, Negro JJ. MHC class I genes of birds of
prey: isolation, polymorphism and diversifying selection. Conserv Genet.
2009;10:1349–55.

21. Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, et al.
Comparative genomic analysis of two avian (quail and chicken) MHC
regions. J Immunol. 2004;172:6751–63.

22. Chaves LD, Krueth SB, Reed KM. Defining the Turkey MHC: sequence and
genes of the B locus. J Immunol. 2009;183:6530–7.

23. Westerdahl H, Wittzell H, von Schantz T. Polymorphism and transcription of
Mhc class I genes in a passerine bird, the great reed warbler.
Immunogenetics. 1999;49:158–70.

24. Karlsson M, Westerdahl H. Characteristics of MHC class I genes in house
sparrows Passer domesticus as revealed by long cDNA transcripts and
amplicon sequencing. J Mol Evol. 2013;77:8–21.

25. Buehler DM, Verkuil YI, Tavares ES, Baker AJ. Characterization of MHC class I
in a long-distance migrant shorebird suggests multiple transcribed genes
and intergenic recombination. Immunogenetics. 2013;65:211–25.

26. Pardal S, Drews A, Alves JA, Ramos JA, Westerdahl H. Characterization of
MHC class I in a long distance migratory wader, the Icelandic black-tailed
godwit. Immunogenetics. 2017;69:463–78.

27. Nei M, Gu X, Sitnikova T. Evolution by the birth-and-death process in
multigene families of the vertebrate immune system. Proc Natl Acad Sci.
1997;94:7799–806.

28. Ekblom R, Sæther SA, Jacobsson P, Fiske P, Sahlman T, Grahn M, et al.
Spatial pattern of MHC class II variation in the great snipe (Gallinago media).
Mol Ecol. 2007;16:1439–51.

29. Cloutier A, Mills J, Baker A. Characterization and locus-specific typing of
MHC class I genes in the red-billed gull (Larus scopulinus) provides
evidence for major, minor, and nonclassical loci. Immunogenetics. 2011;
63:377–94.

30. dos Remedios N, Lee PLM, Burke T, Székely T, Küpper C. North or south?
Phylogenetic and biogeographic origins of a globally distributed avian
clade. Mol Phylogenet Evol. 2015;89:151–9.

31. Funk WC, Mullins TD, Haig SM. Conservation genetics of Snowy Plovers
(Charadrius alexandrinus) in the western hemisphere: population genetic
structure and delineation of subspecies. Conserv Genet. 2007;8:1287–309.

32. Küpper C, Augustin J, Kosztolányi A, Burke T, Figuerola J, Székely T. Kentish
versus Snowy Plover: phenotypic and genetic analyses of Charadrius
alexandrinus reveal divergence of Eurasian and American subspecies. Auk.
2009;126:839–52.

33. D’Urban Jackson J, Bruford MW, Székely T, DaCosta JM, Sorenson MD,
Edwards SV, et al. Population differentiation and historical demography of
the threatened Snowy Plover Charadrius nivosus (Cassin, 1858). Conserv
Genet. 2020;21:387–404.

34. Küpper C, Aguilar E, Gonzalez O. Notas sobre la ecología reproductiva y
conservación de los chorlos nevados Charadrius nivosus occidentalis en
Paracas, Perú. Rev Peru Biol. 2011;18:91–6.

35. Thomas SM, Lyons JE, Andres BA, T-Smith EE, Palacios E, Cavitt JF, et al.
Population size of Snowy Plovers breeding in North America. Waterbirds.
2012;35:1–14.

36. Galindo-Espinosa D, Palacios E. Estatus del chorlo nevado (Charadrius
nivosus) en San Quintín y su disminución poblacional en la península de
Baja California. Rev Mex Biodivers. 2015;86:789–98.

37. Cruz-López M, Eberhart-Phillips LJ, Fernández G, Beamonte-Barrientos R,
Székely T, Serrano-Meneses MA, et al. The plight of a plover: viability of an

Cruz-López et al. BMC Evolutionary Biology          (2020) 20:114 Page 15 of 16



important Snowy Plover population with flexible brood care in Mexico. Biol
Conserv. 2017;209:440–8.

38. Saper MA, Bjorkman PJ, Wiley DC. Refined structure of the human
histocompatibility antigen HLA-A2 at 2.6 Å resolution. J Mol Biol. 1991;219:
277–319.

39. Rodgers JR, Cook RG. MHC class Ib molecules bridge innate and acquired
immunity. Nat Rev Immunol. 2005;5:459–71.

40. Krovi SH, Gapin L. Structure and function of the non-classical major
histocompatibility complex molecule MR1. Immunogenetics. 2016;68:
549–59.

41. Hosomichi K, Miller MM, Goto RM, Wang Y, Suzuki S, Kulski JK, Nishibori M,
Inoko H, Hanzawa K, Shiina T. Contribution of mutation, recombination, and
gene conversion to chicken MHC-B haplotype diversity. J Immunol. 2008;
181:3393–9.

42. Minias P, Pikus E, Whittingham LA, Dunn PO. A global analysis of selection
at the avian MHC. Evolution. 2018;72:1278–93.

43. Tian D, Wang Q, Zhang P, Araki H, Yang S, Kreitman M, et al. Single-
nucleotide mutation rate increases close to insertions/deletions in
eukaryotes. Nature. 2008;455:105–8.

44. Sequence variation in the MHC class II DRB1-like gene of four colonial
seabirds. GenBank. 2010. Available from: https://www.ncbi.nlm.nih.gov. Cited
15 May 2019.

45. Poulin R. Phylogeny, ecology, and the richness of parasite communities in
vertebrates. Ecol Monogr. 1995;65:283–302.

46. Page GW, Stenzel LE, Warriner JS, Warriner JC, Paton PW. Snowy Plover
(Charadrius nivosus), version 2.0. In: The birds of North America. Ithaca:
Cornell Lab of Ornithology; 2009. Available from: https://birdsna.org/
Species-Account/bna/species/snoplo5/introduction. Accessed 25 Oct 2019.

47. Figuerola J. Effects of salinity on rates of infestation of waterbirds by
haematozoa. Ecography. 1999;22:681–5.

48. Mendes L, Piersma T, Lecoq M, Spaans B, Ricklefs RE. Disease-limited
distributions? Contrasts in the prevalence of avian malaria in shorebird
species using marine and freshwater habitats. Oikos. 2005;109:396–404.

49. Poulin R. Greater diversification of freshwater than marine parasites of fish.
Int J Parasitol. 2016;46:275–9.

50. McLean RG, Ubico SR. Arboviruses in birds. In: Thomas NJ, Hunter DB,
Atkinson CT, editors. Infectious diseases of wild birds. Iowa: Blackwell
Publishing; 2007.

51. Iverson SA, Takekawa JY, Schwarzbach S, Gardona CJ, Warnock N, Bishop
MA, et al. Low prevalence of avian influenza virus in shorebirds on the
Pacific coast of North America. Waterbirds. 2008;31:602–10.

52. Clark NJ, Clegg SM, Klaassen M. Migration strategy and pathogen risk: non-
breeding distribution drives malaria prevalence in migratory waders. Oikos.
2016;125:1358–68.

53. Santos SS, Pardal S, Proença DN, Lopes RJ, Ramos JA, Mendes L, et al.
Diversity of cloacal microbial community in migratory shorebirds that use
the Tagus estuary as stopover habitat and their potential to harbor and
disperse pathogenic microorganisms. FEMS Microbiol Ecol. 2012;82:63–74.

54. D’Urban Jackson J, dos Remedios N, Maher KH, Zefania S, Haig S, Oyler-
Mccance S, et al. Polygamy slows down population divergence in
shorebirds. Evolution. 2017;71:1–14.

55. Morand S, Bordes F, Pisanu B, Goüy de Bellocq J, Krasnov BR. The
geography of defence. In: Morand S, Krasnov BR, editors. The biogeography
of host-parasite interactions. New York: Oxford University Press; 2010.

56. Rohde K. Marine parasite diversity and environmental gradients. In: Morand
S, Krasnov BR, editors. The biogeography of host–parasite interactions. New
York: Oxford University Press; 2010.

57. Eimes JA, Reed KM, Mendoza KM, Bollmer JL, Whittingham LA, Bateson ZW,
et al. Greater prairie chickens have a compact MHC-B with a single class IA
locus. Immunogenetics. 2013;65:133–44.

58. Minias P, Bateson Z, Whittingham LA, Johnson JA, Oyler-McCance S, Dunn
PO. Contrasting evolutionary histories of MHC class I and class II in grouse–
effects of selection and gene conversion. Heredity. 2016;116:466–76.

59. Minias P, Pikus E, Anderwald D. Allelic diversity and selection at the MHC
class I and class II in a bottlenecked bird of prey, the White-tailed Eagle.
BMC Evol Biol. 2019;19:2.

60. Vásquez-Carrillo C, Friesen V, Hall L, Peery MZ. Variation in MHC class II B
genes in marbled murrelets: implications for delineating conservation units.
Anim Conserv. 2014;17:244–55.

61. Sallaberry-Pincheira N, González-Acuña D, Padilla P, Dantas GPM, Luna-
Jorquera G, Frere E, et al. Contrasting patterns of selection between MHC I

and II across populations of Humboldt and Magellanic penguins. Ecol Evol.
2016;6:7498–510.

62. Alcaide M, Muñoz J, Martínez-de la Puente J, Soriguer R, Figuerola J.
Extraordinary MHC class II B diversity in a non-passerine, wild bird: the
Eurasian Coot Fulica atra (Aves: Rallidae). Ecol Evol. 2014;4:688–98.

63. Strand T, Westerdahl H, Höglund J, Alatalo RV, Siitari H. The Mhc class II of
the Black grouse (Tetrao tetrix) consists of low numbers of B and Y genes
with variable diversity and expression. Immunogenetics. 2007;59:725–34.

64. Székely T, Kosztolanyi A, Küpper C. Practical guide for investigating breeding
ecology of Kentish Plover (Charadrius alexandrinus): University of Bath; 2008.
Unpublished report. http://www.pennuti.net/wp-content/uploads/2010/08/
KP_Field_Guide_v3.pdf.

65. Seutin G, White BN, Boag PT. Preservation of avian blood and tissue
samples for DNA analyses. Can J Zool. 1991;69:82–90.

66. Nicholls JA, Double MC, Rowell DM, Magrath RD. The evolution of
cooperative and pair breeding in thornbills Acanthiza (Pardalotidae). J Avian
Biol. 2000;31:165–76.

67. Alcaide M, Cadahía L, Lambertucci SA, Negro JJ. Noninvasive estimation of
minimum population sizes and variability of the major histocompatibility
complex in the Andean Condor. Condor. 2010;112:470–8.

68. Miller HC, Lambert DM. Gene duplication and gene conversion in class II
MHC genes of New Zealand robins (Petroicidae). Immunogenetics. 2004;56:
178–91.

69. Edwards SV, Grahn M, Potts WK. Dynamics of MHC evolution in birds and
crocodilians: amplification of class II genes with degenerate primers. Mol
Ecol. 1995;4:719–29.

70. Alcaide M, Edwards SV, Negro JJ. Characterization, polymorphism, and
evolution of MHC class II B genes in birds of prey. J Mol Evol. 2007;65:541–54.

71. Campbell NR, Harmon SA, Narum SR. Genotyping-in-thousands by
sequencing (GT-seq): a cost effective SNP genotyping method based on
custom amplicon sequencing. Mol Ecol Resour. 2015;15:855–67.

72. Lenz TL, Becker S. Simple approach to reduce PCR artefact formation leads
to reliable genotyping of MHC and other highly polymorphic loci
—implications for evolutionary analysis. Gene. 2008;427:117–23.

73. Sebastian A, Herdegen M, Migalska M, Radwan J. Amplisas: a web server for
multilocus genotyping using next-generation amplicon sequencing data.
Mol Ecol Resour. 2016;16:498–510.

74. Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, et al.
Nomenclature for the major histocompatibility complexes of different
species: a proposal. Immunogenetics. 1990;31:217–9.

75. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics
analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

76. Edgar RC. Muscle: a multiple sequence alignment method with reduced
time and space complexity. BMC Bioinformatics. 2004;5:113.

77. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models,
new heuristics and high-performance computing. Nat Methods. 2012;9:772.

78. Kimura M. A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences. J Mol
Evol. 1980;16:111–20.

79. Wallny HJ, Avila D, Hunt LG, Powell TJ, Riegert P, Salomonsen J, et al.
Peptide motifs of the single dominantly expressed class I molecule explain
the striking MHC-determined response to Rous sarcoma virus in chickens.
Proc Natl Acad Sci. 2006;103:1434–9.

80. Brown JH, Jardetzky T, Saper MA, Samraoui B, Bjorkman PJ, Wiley DC. A
hypothetical model of the foreign antigen binding site of class II
histocompatibility molecules. Nature. 1988;332:845–50.

81. Nei M, Gojobori T. Simple methods for estimating the numbers of
synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol.
1986;3:418–26.

82. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond SLK, et al.
FUBAR: a fast, unconstrained Bayesian AppRoximation for inferring selection.
Mol Biol Evol. 2013;30:1196–205.

83. Pond SLK, Posada D, Gravenor MB, Woelk CH, Frost SD. Automated
phylogenetic detection of recombination using a genetic algorithm. Mol
Biol Evol. 2006;23:1891–901.

84. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary
studies. Mol Biol Evol. 2006;23:254–67.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cruz-López et al. BMC Evolutionary Biology          (2020) 20:114 Page 16 of 16

https://www.ncbi.nlm.nih.gov
https://birdsna.org/Species-Account/bna/species/snoplo5/introduction
https://birdsna.org/Species-Account/bna/species/snoplo5/introduction
http://www.pennuti.net/wp-content/uploads/2010/08/KP_Field_Guide_v3.pdf
http://www.pennuti.net/wp-content/uploads/2010/08/KP_Field_Guide_v3.pdf

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	MHC class I: exon 3
	Allelic diversity
	Diversity and inference of selection
	Comparison and phylogenetic relationships with other Charadriiformes

	MHC class II: exon 2
	Diversity and inference of selection
	Diversity and phylogenetic relationships within the Charadriiformes

	Geographic pattern of MHC diversity

	Discussion
	Conclusions
	Methods
	Population sampling
	DNA extraction
	Primer design for the MHC loci
	Amplification and sequencing
	Processing of data and MHC alleles validation
	Allele validation
	Diversity analysis and tests for selection
	Phylogenetic diversity and relationships

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

