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Abstract: [Cu-C6F5]4 is a thermally stable and 

soluble compound with suitable reactivity for 

synthetic applications in organic and inorganic 

chemistry. Here the synthesis of [Cu-C6F5]4 is 

explored in different solvents and followed by 

in-situ 19F NMR spectroscopy. The importance 

of solvent choice during the synthesis from 

Grignard reagent C6F5MgBr is highlighted, with 

a range of magnesium cuprate species 

identified and isolated when THF is used as 

solvent (rather than Et2O), including [Cu(C6F5)2]– and the remarkable organocopper polyanion 

([Cu5(C6F5)7]2–)∞. The coordination chemistry of [Cu-C6F5]4 with 1,4-dioxane is investigated in solution 

and in the solid state, with an extended coordination network, [Cu-C6F5]4(dioxane), structurally 

resolved for the first time. This structure reveals interwoven linear and zig-zag chains featuring 

dioxane donors unusually coordinating to adjacent Cu sites of some of the [Cu-C6F5]4 tetramers.  

Introduction 

Organocopper compounds are an important class of organometallic reagents.1, 2 In organic synthesis, 

they are powerful tools for selective C-C bond forming reactions, often with complementary 

reactivities compared to organolithium or Grignard reagents.3-6 Recent examples include C-C couplings 

using perfluorinated organic groups, which may induce intriguing reactivity trends due to their highly 

electron withdrawing nature.7, 8 Furthermore, organocopper reagents are useful synthons for further 

copper-containing structures,9-11 including luminescent compounds12-15 and ultrasmall Cu or Cu2O 

nanoparticles.16 

Organocopper compounds aggregate in solution and in the solid-state through electron-deficient, 

two-electron, three-centre bonding with bridging organic groups, often as squares or pentagons.9 

Evidence for weak cuprophillic interactions can be seen in short Cu···Cu distances which are less than 

the sum of the van der Waals radii of two copper atoms (for example, in [CuC6F5]4 Cu···Cu = 2.44 Å17 vs 

rvdW(Cu···Cu) = 2.8 Å).18 In combination with more polar organometallic reagents such as 

organolithiums, organocopper reagents form metal cuprates such as Gilman reagents, [R2CuLi]n.1-3 

Copper(I) salts, e.g. CuCl, CuBr or CuCN, are also often used to directly generate mixed aggregates of 

cuprates by reaction with organolithium, Grignard or even organocopper reagents.1-3, 19, 20 The nature 

of the counter cation, e.g. Li vs Mg, and its interaction with the cuprate, e.g. contact ion pair (CIP) or 

solvent separated ion pair (SSIP), play important roles in determining the reactivity of the species.3, 21 

The composition of these aggregates is dependent on the donor abilities of the solvent and may exist 

as an equilibrium of structures.22 The aggregation state may affect the properties, such as stability, 

reactivity and enantioselectivity, therefore, knowledge of the aggregation state under reaction 



conditions is fundamental to understanding these complexes.3 Despite the wide use of Grignard 

reagents in combination with copper halides in C-C bond forming reactions, structurally characterised 

examples of magnesium cuprates remain relatively uncommon,21 these include CIPs23-26 and SSIPs24, 27 

with Cu to Mg ratios varying from 0.5 to 10. Furthermore, there are few examples of structurally 

characterised diaryl-cuprates with electron withdrawing substituents. 

CuC6F5 was first prepared in 1968 by Cairncross and Sheppard from CuX (X = Cl or Br) and C6F5MgBr in 
Et2O. The product was initially formed as a 1,4-dioxane complex described as ‘[CuC6F5]2·(1,4-dioxane)’ 
using elemental analysis data (but not structurally characterised), the dioxane could be removed by 
gradual heating up to 100-128ᵒC under vacuum.12, 28, 29 It has been suggested that formation from 
Grignard reagents rather than from (unstable and dangerous) C6F5Li is preferable to avoid the 
formation of cuprates.12 Since its discovery [CuC6F5]4 has found use in many synthetic processes, 
especially for C-C couplings.30, 31

 [CuC6F5]4 has a pronounced ability to form complexes with Lewis bases 
due to the strongly electron withdrawing nature of the C6F5 moieties.13, 14, 17, 32 In particular, the binding 
behaviour of CuC6F5 to a ‘hard’ oxygen donor (in 1,4-dioxane)28, 29 is unusual when compared to other 
organocopper complexes. The enhanced Lewis acidity of the copper centres in CuC6F5 also encourages 
donor interaction with solvents, including with toluene in structurally characterised 
[CuC6F5]4(toluene)2,17 and the donor-free form is only accessed with weakly coordinating solvents such 
as 1,2-dichloroethane.17 The electron deficient C6F5 groups also lead to interesting supramolecular 
arrangements in the solid state due to their propensity for ‘π-stacking’ with more electron rich 
aromatic groups (via quadrupole-quadrupole) interactions.13, 14, 32, 33 Interestingly, the related silver 
compounds [AgC6F5]∞ and [AgC6F5(MeCN)]∞ occur as linear polymeric chains.34, 35 

In this paper the synthesis of [CuC6F5]4 using a Grignard precursor is explored using in-situ 19F NMR 

spectroscopy and in different solvents. The results highlight the importance of solvent choice for 

removing magnesium halide by-products. Despite the well-behaved synthesis observed in Et2O 

solvent, we show that changing the solvent to more donating THF allows for a wide range of unusual 

magnesium cuprate structures to be synthesised which are characterised by single-crystal X-ray 

diffraction. We also investigate the coordination chemistry of [CuC6F5]4 with 1,4-dioxane both in 

solution and the solid state, revealing the solid-state structure of an interwoven coordination polymer. 

 

Results and Discussion 

The synthesis of [CuC6F5]4 was conducted following the established literature procedure. In brief, the 

Grignard reagent (C6F5)MgBr was generated in Et2O and added to a suspension of CuCl in Et2O at 0ᵒC. 

1,4-dioxane is added to drive precipitation of MgX2.(dioxane)2 (an insoluble 2D coordination 

polymer),36 at which point the major signal from the solution phase by 19F NMR spectroscopy is 

consistent with that of [Cu(C6F5)]4(dioxane)x (x ≥ 2) (which we show by 19F and 19F DOSY NMR 

spectroscopy experiments is the likely form in the presence of excess dioxane, vide infra) (Fig. S1, 

Table S1). The organocopper species can then be extracted using toluene and recrystallised as the 

colourless complex [Cu(C6F5)]4(toluene)2, 1-tol.17 Further recrystallization from 1,2-C6H4F2 (a solvent 

with reduced π electron density compared to toluene)37
 results in the isolation of the [Cu(C6F5)]4 unit 

1 without donor interactions (Scheme 1, Fig. S2-4). When solvated in 1,2-C6H4F2 the 19F NMR 

spectroscopy chemical shifts of 1 are comparable to those reported in CDCl3, another very weakly-

coordinating solvent.17 The 19Fpara NMR spectroscopy signal of 1 is particularly sensitive to the presence 

of donor interactions and is significantly shifted in the presence of coordinating arene solvents such 

as toluene (Table S1).17 The difference between the 19Fmeta and 19Fpara chemical shifts (Δδm,p) has been 

previously shown to decrease as an arene becomes more electron rich and becomes a stronger 

donor.17 



 

Scheme 1. Overview of reactivity of CuCl with BrMg(C6F5) in different solvents. 

The dioxane adduct (1-diox) was identified over 50 years ago, and yet has not been structurally 

characterised.29 To identify the structure of 1-diox 1 was recrystallized from 1,2-C6H4F2 in the presence 

of ~1 equivalent of 1,4-dioxane. 1-diox has an extended structure composed of dioxane molecules 

bridging between [CuC6F5]4 tetramers, with a formula of [Cu(C6F5)]4(dioxane) (Figs. 2, S5-6). Similar 

coordination polymers of other organometallic compounds with 1,4-dioxane are also known,36 whilst 

[Cu(C6F5)]4 units have been previously linked together by 2-π interactions in binary stacks of 

[Cu(C6F5)]4(naphthalene).32 Oxygen donors typically bind weakly to ‘soft’ Cu(I) centres, and structural 

examples of ethers coordinating to Cu(I) are restricted to Cu-alkynyl clusters including 

[Cu10(hfac)6(C≡CtBu)4(Et2O)] (hfac = 1,1,1,5,5,5-hexafluoropentan-2,4-dione),38 and 

[Cu16(C≡CC≡CTrip)16(THF)4] (Trip = 2,4,6-triisopropylphenyl).39 In contrast, THF does not coordinate to 

the Cu centres of mesitylcopper, [CuMes]4, in the solid-state, instead co-crystallising as a non-

coordinated solvent molecule.40 The extended solid-state structure of 1-diox is comprised of 

interwoven zig-zag and linear chains of [CuC6F5]4(dioxane) running approximately perpendicular to 

each other (Fig. 1). In some cases, the dioxane linkers coordinate to opposite Cu sites on the [CuC6F5]4 

tetramers so that a linear chain occurs, whilst other polymeric strands show some binding of dioxane 

to adjacent coppers of a tetramer to create a zig-zag in the chain. The Cu4 units with adjacent donors 

show a twist in the Cu4 plane (torsion Cu1-Cu2-Cu3-Cu4 = 10.86(2)°, see Fig 1.), in contrast to the flat 

Cu4 geometry of those with opposite donors. In all cases the trans-tetramer Cu···Cu distances are 

greater than 3 Å, and the Cu4 geometry is not significantly compressed into a rhombus as has been 

observed with other donors such as toluene.17, 32 To the best of our knowledge, there are no other 

reported examples of two donors selecting an adjacent binding arrangement on to neighbouring 

coppers of a planar organocopper tetramer, with all other examples displaying coordination to 

opposite Cu sites.17, 32, 41-44 The Cu−O distances range between 2.159(2) and 2.247(2) Å, slightly longer 

than the Cu−THF bond lengths observed in [Cu16(C≡CC≡CTrip)16(THF)4] (2.04(2)-2.15(4)Å).39 In solution, 

the 19F NMR chemical shifts of the C6F5 group in 1 shift upfield as increasing equivalents of dioxane are 

added to a solution of 1 and the Δδm,p distance decreases, in line with increasing interaction with a 

donor species (Table S1, Fig S7).17 Some precipitation is observed when 0.5-2 equivalents of dioxane 

are added (to a 0.06 M solution of 1) but the components become fully soluble when ≥2 equivalents 

of dioxane are present. This suggests that <2 equivalents of dioxane favours coordination 

polymerisation (e.g. precipitation of 1-diox), but a greater content of donor helps break down these 

extended structures. The spectra suggest that coordination of dioxane occurs as an equilibrium in 

solution, with excess dioxane favouring coordination of multiple dioxane molecules to a single Cu4 



unit, i.e. generating [CuC6F5]4(dioxane)x, where x ≥ 2. 19F DOSY NMR spectroscopy data comparing 1 

with 1 + excess dioxane are consistent with multiple donor molecules per Cu tetramer for the latter, 

(e.g. x = 2 or 3, see Fig S22). In keeping with reported donor interactions to [CuR]4 units,17, 32, 41-44 and 

the solid-state structure of 1-diox it is anticipated that x is most likely equal to two and the expected 

formula in solution is [CuC6F5]4(dioxane)2. 

 

Figure 1. Solid-state structure of 1-diox (H-atoms omitted for clarity), ellipsoids displayed with 50% 
probability, packing diagram showing zig-zag (Cu = yellow) and linear (Cu = purple, chain coming out 
of page) chains (F atoms removed for clarity, structure displayed in stick form). Zig-zag fragment and 
linear fragment shown below. Selected interatomic distances (Å) and angles (ᵒ): Cu1-Cu2, 2.4045(7); 
Cu2-Cu4, 2.4610(8); Cu3-Cu4, 2.4971(7); Cu3-Cu1, 2.4536(7); Cu5-Cu6, 2.5056(7); Cu5-Cu6’, 
2.4682(7); Cu7-Cu8, 2.4800(7); Cu7-Cu8’, 2.4630(7); Cu3-O1, 2.230(2); Cu4-O2, 2.247(2); Cu5-O3, 
2.159(2); Cu8-O4, 2.169(2); Cu-C range (linear) 1.954(3) - 2.069(3), (zig-zag) 1.975(3)-2.094(3); Cu-C-
Cu range (linear) 74.62(10) - 77.08(11), (zig-zag) 73.48(10) - 75.38(10); Cu1-Cu2-Cu4, 99.38(2); Cu1-
Cu3-Cu4, 97.08(3); Cu2-Cu1-Cu3, 81.75(2); Cu2-Cu4-Cu3, 79.22(2); Cu5-Cu6-Cu5’, 93.36(2); Cu6-Cu5-
Cu6’, 86.64(3); Cu7-Cu8-Cu7’, 76.08(2); Cu8-Cu7-Cu8’, 103.92(2); Cu1-Cu2-Cu4-Cu3 (torsion), 
10.86(2); Cu5-Cu6-Cu5’-Cu6’ (torsion), 0.00(2); Cu7-Cu8-Cu7’-Cu8’ (torsion), 0.00(2). 
 
We investigated the possible synthesis of 1 in THF, a slightly more polar and more strongly donating 

solvent than Et2O, but a preferred solvent for the synthesis of other organocopper species such as 

mesitylcopper.40 The process was followed by 19F NMR spectroscopy and compared to the reaction 

when prepared in Et2O (Figs S1 & S8). Grignard solutions in either solvent exhibit similar 19F and 13C 

NMR signals, which are distinct from the starting material BrC6F5 (Table S1). After reaction with CuCl 



in THF solvent the red/brown products remained soluble and the 19F and 13C NMR spectra of the 

solution show signals consistent with the chemical shifts (and small Δδm,p values) found for compounds 

with the cuprate anion [Cu(C6F5)2]– (see compounds 2, 3 and 6 vide infra, Table S1, Fig. S8). This initial 

reaction mixture was concentrated and toluene added – which initiated precipitation of grey solid, 

later confirmed as CuBr by powder X-ray diffraction (Fig. S9). The remaining solution was concentrated 

and crystallised at −20ᵒC to yield colourless magnesium cuprate complex [Cu(C6F5)2][(Mg2X3(THF)6] (X 

= Br or Cl) 2 (Scheme 1, Fig. S9). 2 is essentially the direct stoichiometric product of the reaction of 

CuX + 2 (C6F5)MgBr and can be prepared directly by this reaction (see supporting information).  

If 3.3 equivalents of 1,4-dioxane (relative to Cu) are added to the initial THF reaction mixture (i.e. 

containing a mixture of 2 + CuBr) then precipitation of MgX2·(dioxane)2 is induced (see Fig. S11). 

However, due to the competing interaction of THF, which has a similar donating ability to 1,4-dioxane, 

incomplete removal of MgX2 occurs under these conditions.36 The 19F NMR spectrum of the mixture 

shows little change after the addition of 1,4-dioxane, i.e. retaining the [Cu(C6F5)2]– cuprate ion. This 

finding is in contrast to when using Et2O as a solvent, as at this stage uncharged 1-dioxx would be 

observed (Table S1, Figs. S1 & S8). The solubles of the reaction were extracted and dried to a brown 

solid. A small quantity of this product proved to be toluene soluble and this fraction was identified as 

a mixture of crystalline compounds including [Cu(C6F5)2]2[Mg(THF)6], 3 – a cuprate with a reduced 

Mg:Cu ratio compared to 2, and [Cu4Br6][Mg(THF)6], 4 – the anion of which is constructed from a 

tetrahedron of Cu atoms surrounded by an octahedron of bromides, and which exhibits luminescence 

at ~570 nm (Fig. S12).45, 46 Both compounds crystallise separately from the reaction mixture and were 

characterised by X-ray crystallography (Figs. 2, S13). Further extraction of organo-copper species from 

the remaining (toluene insoluble) reaction mixture was conducted using the polar but weakly 

coordinating solvent 1,2-C6H4F2. This gave a yellow solution which was filtered and concentrated to 

yield crystals of ([Cu5(C6F5)7][Mg(THF)6].2C6H4F2)∞ (5) a remarkable polymeric structure comprised of 

an anionic string of Cu centres with separated Mg cations, which may be referred to as a polysalt (Figs. 

3, S14-15). Identification of compounds 2-5 indicates that a rich speciation of Cu/Mg compounds may 

occur if all Mg is not completely removed from the reaction (Scheme 1), with further complication if 

both Cl– and Br– counterions are present. Addition of 3 equivalents of 1,4-dioxane to a THF solution of 

2 yields related cuprate [Cu(C6F5)2][MgBr(THF)5] (6) via the loss of 1 equivalent of MgX2.dioxane2 (Figs. 

2, S16-17), note that the complete removal of 1.5 equiv MgX2, which would form 3, does not occur 

under these conditions. 

 

Figure 2. Solid-state structures of 2, 6 and 4 (H-atoms omitted for clarity), ellipsoids displayed with 
50% probability. Representative image of halide composition in 2, all three halides are a disordered 
mix of Cl and Br. Unit cell of 2 contains half of two anions, one full anion shown for clarity here. One 
of two Cu4 disorder positions of 4 shown. Selected interatomic distances (Å) and angles (ᵒ): for 2; Cu1-
C1, 1.912(7); C1-Cu1-C1’, 179.994, torsion angles along C-Cu-C axis(ᵒ), 1.5 and 12.54.; for 6; Cu1-C1, 



1.919(5); Cu1-C7, 1.912(5); C1-Cu1-C7, 177.1(2), torsion angle along C-Cu-C axis(ᵒ), 7.6; for 4; Cu1-
Cu1’, 2.719(4); Cu1-Cu2, 2.730(4); Cu-Br range 2.373(3)-2.411(3). 
 
The solid-state structure of 2 shows that the three halides are disordered over chemically equivalent 

positions, with each site found to exhibit an occupancy of less than one Br but greater than one Cl, 

and are best modelled as a disordered mixture of ~2 Cl and ~1 Br. This type of Mg dimer has been 

shown to act as an electrolyte for Mg ion batteries.47, 48 The structures of 2, 3 & 6 represent the first 

reported structural characterisation of the dipentafluorophenylcuprate anion, [Cu(C6F5)2]−, which 

adopts a typical linear geometry (Cu-C bond lengths ~1.91 Å), similar to previously reported [CuR2]− 

anions.49  

The unusual solid-state structure of 5 reveals a wavy linear polyanion made of Cu atoms bridged by 

C6F5 units, with the Cu atoms each bonded to two or three C6F5 groups (Cu−C distances range 1.971(5)-

2.362(5)). The C6F5 groups sit parallel to each other but are inclined up or down (Fig. 3d) to ensure a 

favourable off centred stacking arrangement (with distances between C6 centroids as low as 3.45 Å, 

Fig. S18). The Cu···Cu distances are rather short with an average distance of 2.42 Å (ranging = 

2.4038(15) – 2.4416(10)) with some distances shorter than those found in 1 (2.44 Å) and the polymeric 

structure Cu2(C≡CC≡CPh)2(NH3) (2.44 Å)39 and significantly shortened compared to intermolecular 

interactions in 1D chain structures such as CuC6F5(Py) (2.89 Å), and also rvdW(Cu···Cu) (2.8 Å).13, 14 5 

can be considered as a copper rich cuprate with general formula [CuxArx+y]y− (y < x), previous examples 

of such species include [Cu5Ph6][Li(THF)4] which exhibits a trigonal bipyramidal cluster anion.50 

Polymeric organocopper chains are very rare, and restricted to neutral alkynyl compounds including 

ladder like [Cu(C≡CPh)]∞ and branched [Cu2(C≡CC≡CPh)2(NH3)]∞.39, 51 Shorter structures such as Cu4 or 

Cu6 chains have been reported with multidentate bridging N-donor ligand frameworks.52-55 These 

chains and polymers hold interest as potential molecular wires for uses in nanoelectronics.18, 55 The 

closest structural analogue of 5 is probably the germylene supported Cu4 chain [LGe(Me)(CuC6F5)2]2 (L 

= HC[C(Me)N-2,6-iPr2C6H3]2), which shows a similar wavy Cu chain with bridging C6F5 groups and 

Cu···Cu distances ranging from 2.4157(7)-2.4919(8).56 There is also resemblance to the uncharged 

organosilver polymer [AgC6F5]∞.34 The extended solid-state structure of 5 is arranged as alternating 

layers of parallel polymers separated by layers of cations and solvent (Figs. 4c,d, S19).   

 



Figure 3. a) Asymmetric unit of solid-state structure of 5 (showing complete cations, H-atoms omitted 

for clarity), ellipsoids displayed with 50% probability (organic components show in stick from for 

clarity). b) extended chain of Cu(I) polymer with Cu atom labels. c and d) 2x2x2 unit cells displaying 

extended along a axis (c) and along axis of polymer chains (d).  

5 can be synthesised directly from the addition of a THF solution of MgBr2 to 7/4 equivalents of 1 

dissolved in 1,2-C6H4F2, with a precipitate of by-product CuBr (two equivalents) forming after mixing. 

The THF is required to solvate oxophilic MgBr2 which then forms a stable [Mg(THF)6]2+ cation and 

releases bromide anions. Any initial heterocuprates of the form [Cux(C6F5)x(Br)y]y– which may form as 

an initial equilibrium mixture are unstable due to the spontaneous precipitation of CuBr under these 

conditions, resulting in the formation of 5 from the remaining solution components.  

Upon dissolution of 5 In 1,2-C6H4F2, the 19F NMR spectrum shows a single set of broadened signals for 

the C6F5 groups, upon cooling the peaks become even broader (Figs. S15, S20), suggesting that the 

C6F5 groups are fluxional in solution. Upon dissolution of 5 in THF, the 19F NMR chemical shifts of 5 are 

consistent with the weighted average of the signals of ¾ 1 and 2 3, and upon cooling to 245 K the 

signals split into two separate sets resembling neutral 1 and cuprate 3 (Figs. S14, S21), this suggests 

that in the presence of excess donor solvent the polymer 5 may be decomposed into a fluxional 

mixture of 1 and 3. 19F DOSY NMR spectroscopy analysis was conducted in the weakly coordinating 

solvent 1,2-C6H4F2 and indicated a minor decrease in diffusion coefficient for 5 compared to 1, 

suggesting that short oligomeric chains of 5 may persist in solution, but that extended polyanions 

(which would exhibit high charges) are unlikely (see Table S2 and Figs. S22-25).  

Conclusion 

This study emphasises the importance of solvent choice in transmetalation reactions using Grignard 

reagents; use of Et2O enables straightforward removal of MgX2 by-products by addition of 1,4-dioxane 

to generate the desired organocopper compounds. In contrast, use of more strongly donating THF 

makes MgX2 removal difficult (but may instead result in competitive precipitation of CuBr) and 

generates a range of magnesium cuprate species, with varying Mg:Cu ratios and anions of [Cu(C6F5)2]– 

or polyanion ([Cu5(C6F5)7]2–)∞. Understanding the chemistry of organocopper/cuprate species 

generated in-situ, e.g. by reaction of copper halides with Grignard reagents, is of importance with 

respect to using these reagents directly in organic synthesis. The electron withdrawing nature of the 

C6F5 group enables [CuC6F5]4 to coordinate to oxygen donor solvents, forming an extended 

coordination network [1-diox] with 1,4-dioxane. In contrast, the arene 1,2-C6H4F2 is sufficiently 

electron poor to enable the base-free structure of [CuC6F5]4 to exist in the solid-state or in solution 

and this polar but weakly coordinating solvent is also useful for crystallising compounds 1-diox and 5. 

The organocopper polysalt 5 is very unusual and likely forms in the solid state due to a combination 

of favourable cuprophilic interactions and off-centred arene-arene stacking interactions. The wide 

range of possible anion and cation combinations identified in compounds 2-6, forming from various 

ratios of Cu, Mg, C6F5 and Br show that enormous complexity can occur even in a simple system, and 

adds further evidence that the presence of s-block halides plays a pivotal role in the speciation and 

aggregation of organometallic reagents.24, 27, 57, 58 

 

Experimental Section 

All manipulations were undertaken using a nitrogen filled glovebox or using a Schlenk line, unless 

otherwise stated. CuCl (Alfa Aesar, 97%), CuBr (Alfa Aesar, 98%), C6F5Br (Acros), Mg turnings (Sigma 

Aldrich), anhydrous MgBr2 (Sigma Aldrich, 98%), were used directly from suppliers. THF, hexane and 



toluene were dried by refluxing over sodium (and benzophenone for THF), C6H4F2 was washed with 

alumina and then dried by stirring over CaH2 followed by trap-to-trap distillation. 1-4-dioxane and d8-

toluene were dried by stirring over CaH2. All dry solvents were degassed by bubbling with N2 for 30 

minutes or freeze pump thaw cycles and stored over 4Å molecular sieves under nitrogen. The raw 

data that support the findings of this study are available from the Warwick Research Archive Portal. 

All reported yields are calculated from isolated solids extracted from the reaction flask in the glovebox. 

NMR spectra were recorded on Bruker Avance III HD 300, 400 or 500 MHz instruments and all chemical 

shifts reported in parts per million (ppm). NMR spectra of samples using 1,2-C6H4F2 as the solvent were 

locked and shimmed using a separate C6D6 sample or an internal capilliary. In these spectra 19F NMR 

spectra were referenced to the 1,2-C6H4F2 signal at 139.84 ppm. 19F DOSY NMR analysis was carried 

out using Bruker’s Dynamics Center. Fluorescence spectra were recorded on an Agilent Technologies 

Cary Eclipse Fluorescence Spectrophotometer. Elemental Analysis was determined using a Perkin 

Elmer 240 Elemental Analyzer by the Microanalyis Laboratory at the Department of Chemistry, 

University of Cambridge.  

1, [CuC6F5]4.1,2-C6H4F2. 1.0 g (41.1 mmol) of Mg was added to a N2 filled Schlenk with a stirrer bar and 

stirred overnight. 5.13 mL (41.1 mmol) of C6F5Br was added to a second Schlenk and dissolved in 25 

mL Et2O. 5 mL of the solution was added dropwise to the Mg at 0ᵒC and stirred for 15 minutes. The 

remainder of the solution was then added slowly and allowed to stir at room temperature to form a 

brown coloured solution of Grignard BrMgC6F5. 3.5 g (35.4 mmol) of CuCl was suspended in 40 mL of 

Et2O and the Grignard added dropwise to this at 0ᵒC. The reaction was allowed to stir overnight at 

room temperature after which it appeared as a dark brown solution with precipitate. 5 mL of 1,4-

dioxane was added to 15 mL of Et2O and this solution added to the reaction mixture, and the flask 

shaken vigorously, initiating further precipitation such that most of the reaction mixture is thick 

sludge. The organocopper reagent is extracted using successive toluene (2 x 60 mL) washes. The 

soluble fraction was filtered, evacuated to dryness and recrystallised from toluene at −20ᵒC repeatedly 

until a pale yellow colour is achieved. A final −20ᵒC recrystallisation from 1,2-C6H4F2 yields 1 (N.B. a 

second recrystallisation from 1,2-C6H4F2 may be required to remove all toluene). 1.42 g of 1 was 

isolated (16% yield). 

19F NMR spectroscopy (470 MHz, 1,2-C6H4F2): -104.9 (m), -142.6 (t), -158.8 (m). 13C{1H} NMR 

spectroscopy (126 MHz, 1,2-C6H4F2): 154.55 (dd, 1J(F,C) 236 Hz, 2J(F,C) 20 Hz), 136.71 (dm, 1J(F,C) 258 

Hz), 98.9 (m) (N.B. para carbon was not clearly identified). Elemental Analysis data (predicted for 

[CuC6F5]4·0.4C6H4F2): % C, 32.72 (32.76); % H, 0.38 (0.17). (note partial occupancy of crystallised 

solvent, this is consistent with NMR spectra collected from the same material, which predicts ~0.25 

C6H4F2 per Cu4 unit) 

1-diox, [Cu(C6F5)]4(dioxane). 100 mg (0.10 mmol) of 1 was dissolved in a minimal amount of 1,2-

difluorobenzene. 9 L (0.10 mmol) of 1,4-dioxane was added and the reaction stirred. The flask was 

cooled at −20ᵒC overnight to yield a pale yellow crystalline compound. 29 mg 1-diox isolated (30% 

isolated yield). 

1H NMR spectroscopy (500 MHz, 1,2-C6H4F2): = 3.36 (s, dioxane). 19F NMR spectroscopy (470 

MHz, 1,2-C6H4F2): = -105.2, -143.7 (m), -159.1 (m). 13C{1H} NMR spectroscopy (126 MHz, 1,2-C6H4F2): 

66.6 (s, dioxane) (low solubility hindered accurate location of C-F signals). Elemental Analysis data 

(predicted for [Cu(C6F5)]4(C4H8O2)): % C, 33.09 (33.28); % H, 0.88 (0.80). 

2Br, [Cu(C6F5)2][(THF)6Mg2Br3]. 0.5 g (20.6 mmol) of Mg was added to a N2 filled Schlenk with a stirrer 

bar and stirred overnight. 2.56 mL of C6F5Br (20.6 mmol) was added to a second Schlenk and dissolved 



in 12.5 mL THF. The solution was added dropwise to the Mg at 0ᵒC and then allowed to stir at room 

temperature to form the Grignard BrMgC6F5. 1.48 g (10.3 mmol) of CuBr was suspended in 12.5 mL of 

THF and the Grignard added dropwise to this at 0ᵒC, the Grignard flask was washed with a further 6 

mL THF and this added to the reaction flask. The reaction was allowed to stir at room temperature for 

3 hours after which time it appeared as a dark brown solution with a little precipitate. The solvent was 

removed under vacuum and solids were recrystallised from THF/hexane. N.B. the product is difficult 

to recrystallise as it crystallises quickly, trapping impurities. Repeated manipulation using THF and 

hexane allowed for purification. 4 g of off-white product was retrieved (35% yield). 

Elemental Analysis data (predicted for [Cu(C6F5)2][(C4H8O)6Mg2X3], X3 = Br3): % C, 38.25 (38.65); 

% H, 4.57 (4.33). For NMR spectroscopy data see 2 below. 

2, [Cu(C6F5)2][(THF)6Mg2X3] (X3 = Cl2Br). For a direct stoichiometric synthesis of 2 see the prep for 2Br 

above with exchange of CuBr for CuCl. Alternatively, as was initially conducted in this study, 2 forms 

by the dropwise addition of a slight excess of Grignard (C6F5)MgBr (prepared from 0.5 g Mg (20.6 

mmol) and 2.56 mL of C6F5Br (20.6 mmol) in 12.5 mL THF as described above) to a suspension of CuCl 

(1.75 g, 17.7 mmol) in 12.5 mL THF at 0°C which was allowed to stir for 3 hours at room temperature. 

This reaction yields a red/brown solution of 2 + CuX. The solution was concentrated under vacuum 

and then toluene added to initiate the precipitation of CuBr. The solution was filtered. The remaining 

soluble fraction was concentrated under vacuum and placed at −20ᵒC to yield 2.5 g (24% yield) 

colourless crystals of 2.  

19F NMR spectroscopy (470 MHz, THF): -111.5 (m), -164.6 (t, 3J(F,F) 20 Hz), -165.3 (m). For 13C 

NMR spectroscopy of [Cu(C6F5)2]− see data for compound 6. Elemental Analysis data (predicted for 

[Cu(C6F5)2][(C4H8O)6Mg2X3], X3 = Cl2Br): % C, 42.07 (41.99); % H, 4.79 (4.70). 

3, [Cu(C6F5)2]2[Mg(THF)6] as an impure mixture with 4. A slight excess of Grignard (C6F5)MgBr 

(prepared from 0.5 g Mg (20.6 mmol) and 2.56 mL of C6F5Br (20.6 mmol) in 12.5 mL THF as described 

above) was added dropwise to a suspension of CuCl (1.75 g, 17.7 mmol) in 12.5 mL THF at 0°C and 

allowed to stir for 3 hours at room temperature. This reaction yields a red/brown solution of 2 + CuX. 

To this 3.3 equivalents of 1,4-dioxane (5 mL, 58.7 mmol) were added and the soluble fraction removed 

and dried under vacuum. Toluene was added to the solid products to extract a mixture of products, 

which crystallised at −20ᵒC. Crystals of both 3 and 4 were retrieved and characterised by X-ray 

crystallography. Further attempts to synthesise a pure batch of 3 were unsuccessful. However, a 

related cuprate 6 with a different cation, [MgBr(THF)5]+, was straightforwardly prepared (see below). 

N.B. Addition of excess 1,4-dioxane to 6 in 1,2-C6H4F2 resulted in the spontaneous crystallisation of 5. 

19F NMR spectroscopy (470 MHz, THF, collected from crude product): -111.6 (m), -164.1 (m), 

-165.2 (m). For 13C NMR spectroscopy of [Cu(C6F5)2]− see data for compound 6. 

4, [Cu4Br6][Mg(THF)6], synthesised as a mixture with CuBr. 

467 mg (3.26 mmol) of CuBr was suspended in 10 mL of THF in a Schlenk flask. 150 mg (0.82 mmol) of 

MgBr2 was placed in a separate Schlenk flask and dissolved in 10 mL THF. The THF solution of MgBr2 

was added to the suspension of CuBr giving a green solution with precipitates. The mixture was heated 

to 50°C and stirred overnight. The soluble fraction was then discarded leaving a luminescent colourless 

solid product. We were not able to remove residual CuBr starting material that is retained in the solid 

product, elemental analysis suggests that only ~43% of the CuBr starting material has reacted under 

these conditions. The product is highly air sensitive and loses luminescence under air. 528 mg of the 

mixed solids collected. 



Elemental Analysis data (predicted for a mixture of 4 + 5.4 CuBr = [Cu4Br6][Mg(C4H8O)6] + 

5.4(CuBr)): % C, 14.70 (14.67); % H, 2.49 (2.46) 

5, [Cu5(C6F5)7][Mg(THF)6].2C6H4F2. 197 mg (0.19 mmol, N.B. 0.76 mmol Cu) of 1 was dissolved in 3 mL 

THF in a Schlenk flask. In a second Schlenk flask 20 mg (0.11 mmol) MgBr2 was dissolved in 9 mL THF. 

The MgBr2 solution was added dropwise to the organocopper solution at 0ᵒC and stirred, before 

warming to room temperature and stirring for 30 minutes. The solution was filtered to remove CuBr 

and the remaining soluble fraction was evacuated to ~ 2 mL and 2 mL of 1,2-C6H4F2 was added. The 

solution was further concentrated to ~ 1 mL total and allowed to crystallise overnight to yield a yellow 

powder. The remaining soluble fraction was discarded and the solid dried under vacuum. 65 mg 

collected (20% yield) 

19F NMR spectroscopy (470 MHz, 1,2-C6H4F2): -106.1 (br), -148.7 (very br), -160.8 (br); 19F NMR 

spectroscopy (470 MHz, THF): -110.5 (br), -160.9 (br), -164.2 (m). N.B. due to the broadness of the 

signals no clear signals were observed by 13C NMR spectroscopy. Elemental Analysis data (predicted 

for [Cu5(C6F5)7][Mg(C4H8O)6], assuming solvent loss under vacuum): % C, 39.92 (40.78); % H, 2.33 

(2.49). 

6, [Cu(C6F5)2][MgBr(THF)5]. 0.5 g of Mg (20.6 mmol) was added to a N2 filled Schlenk with a stirrer bar 

and stirred overnight. 2.56 mL (20.6 mmol) of C6F5Br was added to a second Schlenk and dissolved in 

12.5 mL THF. The solution was added dropwise to the Mg at 0ᵒC and then allowed to stir at room 

temperature to form the Grignard BrMgC6F5. 1 g (10.1 mmol) of CuCl was suspended in 12.5 mL of THF 

and the Grignard added dropwise to this at 0ᵒC, the Grignard flask was washed with a further 6 mL 

THF and this added to the reaction flask. The reaction was allowed to stir at room temperature for 3 

hours after which time it appeared as a dark brown/purple solution with a little precipitate. 2.6 mL 

(30.5 mmol) of 1,4-dioxane was added to the reaction mixture initiating the precipitation of a pale 

pink precipitate and leaving a pale yellow solution. The solution was filtered, evacuated to a sticky 

solid and then recrystallised from THF/hexane twice, removing any brown oily residues, until a 

colourless crystalline product was achieved. 4.3 g collected (49% yield). 

19F NMR spectroscopy (282 MHz, 1,2-C6H4F2): -111.3 (m), -162.2 (t, 3J(F,F) 20 Hz), -164.2 (m); 19F NMR 

spectroscopy (470 MHz, THF): -111.5 (m), -164.2 (t, 3J(F,F) 20 Hz), -165.1 (m). 13C{1H} NMR 

spectroscopy (126 MHz, THF): 149.5 (dd, 1J(F,C) 220 Hz, 2J(F,C) 32 Hz), 137.4 (dm, 1J(F,C) 257 Hz), 135.7 

(dm, 1J(F,C) 252 Hz), 129.5 (t, 2J(F,C) 78 Hz). Elemental Analysis data (predicted for 

[Cu(C6F5)2][MgBr(C4H8O)5]): % C, 45.37 (44.57); % H, 4.84 (4.68). 
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