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Abstract 

Two novel Zn(II) coordination polymers (CPs), [Zn(nba)2(tmdp)]n (1) and 

[Zn(biphen)2(tmdp)]n (2), were synthesised by reacting Zn(NO3)2·6H2O and 4,4’-

trimethylenedipyridine (tmdp) with corresponding carboxylates: 4-nitrobenzoic (Hnba) and 

4-biphenylcarboxylic acid (Hbiphen). Their structures were characterized by elemental 

analysis, IR spectroscopy, thermogravimetric analysis (TGA), powder X-ray diffraction 

(PXRD) and single-crystal X-ray diffraction. Compounds 1 and 2 are one-dimensional CPs 

with the zinc(II) carboxylate units bridged through the N-donor spacer ligand. The zinc (II) 

atom adopts a tetrahedral arrangement in 1 and 2 coordinated by two nitrogen atoms from 

two tmdp ligand molecules and two deprotonated oxygen atoms from two carboxylate ligand 

molecules. The adsorption capacities of MO in this study was found to be 546.31 mg/g and 

22.67 mg/g for 1 and 2, respectively. DFT studies confirmed that adsorption is primarily due 

to π-π stacking and electrostatic interactions between MO and 1. It is noteworthy that binding 

energy (BE) values for 1 (-74.14 KJ/mol) and 2 (-61.11 KJ/mol) correlate reasonably well 

with the observed adsorption capacities of MO. The study demonstrated that 1 has higher 

adsorption efficiency in comparison to 2 and could be an effective and easily reusable 

adsorbent for the removal of MO from wastewater. 
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l. Introduction 

Coordination polymers (CPs) are a class of functional materials comprising metal ions 

bridged by organic linkers [1]. They are able to form 1D, 2D and 3D architectures and they 

possess great potential in numerous applications such as gas adsorption, catalysis, drug 

delivery, luminescence and environmental remediation [2–5]. The organic linkers provide 

good flexibility and improves functionality of the CPs. 4-nitrobenzoic (Hnba) is a monotopic 

linker, 4-biphenylcarboxylic acid (Hbiphen) is a bridging ligand and acts as a proton donor 

while 4,4’-trimethylenedipyridine (tmdp) is an N-donor ditopic ligand [6]. On the other hand, 

the common binding sites observed for Zn(II) ions coordination polymers are 4-, 5- to 6-

coordinate [7].   

Organic compounds present in wastewater effluents, released to the environment due to 

industrial or agricultural activities have detrimental effects on public health [8]. Dyes are the 

largest contributor of organic pollutants. They exhibit toxicity even when present in low 

concentrations. They have mutagenic and carcinogenic effects and can also cause respiratory 

problems [9]. Due to their industrial applications, dyes are found in effluents from 

pharmaceutical, pulp and paper, paint, and some other industries. About one fifth of all the 

dyes produced worldwide gets discharged into waterbodies through the effluents from textile 

industries [10].The most abundant compounds (60 – 70 %) in textile waste are azo dyes [11]. 

Methyl orange (MO) is one of the azo dyes that are often used as textile dyes and have 

different structure  which depends on the acidity (Figure S1). Non-biodegradable methyl 

orange can produce several environmental pollution problems by releasing toxic and 

carcinogenic compounds in the waters even at low concentrations and  results in induced 

lesions and cancers  [12]. Hence,  the need to effectively remove MO from the water bodies. 

Methods which have been used to clean up wastewaters that are polluted with non-

biodegradable compounds include photocatalysis, membrane filtration and adsorption [13–

17]. Adsorption presents the simplest, most economical and efficient way of remediation 

[18]. Conventional adsorbents such as mesoporous carbon [19], chitosan composites [20], 

montmorillonites [21] etc. were employed for the removal of MO dye from water but they 

suffer from drawbacks such as lack of property tunability and poor selectivity. Considering 
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the increasing rate of pollution, the development of more effective materials that exhibit high 

selectivity and adsorption capacities is paramount. 

In this regard, the attention of researchers has been attracted to the coordination polymers 

which consist of metal ions or nodes and bridging organic ligands, suitable materials for a 

diverse range of applications especially in adsorption, separation and purification [22–24]. 

Compared to conventional adsorbents, CPs have proven to be effective in adsorption based 

on distinct properties they display which include large pores, surface area, high tunability.  

These distinct properties make coordination polymers a leading edge over other adsorbents.  

However, the interaction of active functional groups present on the adsorbents and the 

adsorbate molecules, through other mechanisms such as hydrogen bonding, electrostatic 

interaction, pie-pie interaction etc., could contribute more to the efficiency of adsorbents [25, 

26]. Studies have shown that MOFs are effective in removing dyes via electrostatic 

interaction [27, 28]. Fe-terephthalate (MOF-235) presented adsorption capacities of 477 and 

187 mg /g, for MO and methylene blue (MB), respectively [27]. Similarly, coordination 

polymers have proven effective in adsorption applications despite their limited voids and 

surface areas [29–32].  

We previously communicated the adsorption of fluorescein and methyl orange dyes, pyrene, 

ciprofloxacin and the adsorptive desulphurization of organosulfur in fuel using CPs [33–38]. 

In this report,  two new  Zn(II) CPs, [Zn(nba)2(tmdp)]n (1) and [Zn(biphen)2(tmdp)]n, (2) were 

synthesized and employed for the removal of MO from aqueous solution. In addition, DFT 

study was carried out to investigate specific interactions that aided the removal of MO dye. 

Compound 1 was found to be more effective for the adsorptive uptake of MO dye. 

 

2. Experimental  

2.1  Materials 

Zn(NO3)2·6H2O (98%), 4-nitrobenzoic acid (98%), 4-biphenylcarboxylic acid (99%), 4,4’-

trimethylenedipyridine (98%), dimethylformamide (DMF, 99%), triethylamine (99.5%), 

hydrochloric acid (37%), ethanol (99.9%), sodium hydroxide pellets (97%), and methyl 

orange dye were procured from Sigma-Aldrich, Germany and used as supplied. 

 

2.2  Synthesis 

Synthesis of [Zn(nba)2(tmdp)]n (1): Zn(NO3)2·6H2O (0.296 g, 1 mmol), 4-nitrobenzoic acid 

(Hnba) (0.167 g, 1 mmol) and 4,4-trimethylenedipyridine (0.199 g, 1 mmol) (tmdp) were 

added  to 15 mL DMF, followed by adding 3 drops of triethylamine (for deprotonation). The 
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solution was stirred for 2 hours at RT (~27°C) and resulted into a clear colourless solution. 

Block-shaped crystals obtained after 7 days were separated out by filtration and dried at room 

temperature in a dessicator. (Scheme S1). M. wt: 595 g/mol; Melting point: 240°C; Yield: 

78%, Anal. calc. for C27H22N4O8Zn: C, 54.37; H, 3.69; N, 9.40;  Found: C, 53.69; H, 3.62; N, 

9.13; IR KBr pellets (cm-1) 3031 (br), 2923 (w), 1651(s), 1575 (w), 1448 (m), 1338(s), 1222 

(w), 632 (m), 437 (w). 

 

Synthesis of [Zn(biphen)2(tmdp)]n (2): Zn(NO3)2·6H2O (0.296 g, 1 mmol), 4-

biphenylcarboxylic acid (Hbiphen) (0.296 g, 1 mmol) and 4,4-trimethylenedipyridine (0.199 

g, 1 mmol) (tmdp) were added  to 15 mL DMF, followed by adding 3 drops of triethylamine 

(for deprotonation). The solution was stirred for 2 hours at RT (~27°C) and resulted into a 

clear colourless solution. Block-shaped crystals obtained after 23 days were separated out by 

filtration and dried at room temperature in a dessicator (Scheme S1) M. wt: 658 g/mol; 

Melting point: 260 oC; Yield: 81%, Anal. calc. for C39H32N2O4Zn: C, 71.12; H, 4.86;  N, 

4.25;  Found: C, 70.05; H, 4.95; N, 4.14; IR KBr pellets (cm-1) 3031(br), 2825(w), 1602 (s), 

1543(w), 1431 (m), 1349 (s), 1185 (w),  682 (w), 455 (w). 

 

2.3 Instrumentation 

Elemental analysis was done using a PerkinElmer PE-2400 CHN analyser. FT-IR 

measurements were carried out with a Shimadzu 8400 spectrophotometer (8400, Shimadzu, 

Japan). Powder X-ray diffraction (PXRD) patterns were collected using a Siemens D5000 

diffractometer operating with Cu Kα1/2 radiation in flat-plate geometry. TGA/DSC analysis 

was carried out with a Mettler Toledo TGA/DSC 1-600 instrument with a heating rate of 10 

°C min-1 from 25 °C to 1000 °C. Nitrogen adsorption measurements, from which the surface 

area and pore volume were obtained, were performed on Nova 4200e Quantachrome (USA).  

For X-ray crystallographic analysis, a single crystal was chosen and placed on a glass fibre 

with Fomblin oil and mounted on an Xcalibur Gemini diffractometer with a Ruby CCD area 

detector and kept at 150(2) K during data collection. Using Olex2 [39], the structure was 

solved with the ShelXT [40] structure solution program using intrinsic phasing and refined 

with the ShelXL [41] refinement package using Least Squares minimization. 

 

2.4 Adsorption experiment 

Batch adsorption studies were employed to optimize the adsorption of MO on 

[Zn(nba)2(tmdp)]n (1) and [Zn(biphen)2(tmdp)]n (2). This was carried out by agitating 50 mL 
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sample solutions in a 250 mL flask at 165 rpm for 120 min in an incubator shaker. 

Operational parameters namely pH, adsorbate initial concentration, time, adsorbent dosage 

and temperature, were optimized for the adsorption process on 1. The effect of pH was 

studied within the pH range of 2 to 12 (using 0.1 M HCl and 0.1 M NaOH for acidic and 

basic pH ranges, respectively). Adsorbent dosage (0.01-0.05 g) in 50 mL of 500 mg/L MO 

solution was employed to study the effect of adsorbent mass at the optimum pH. Solution 

temperature effect was investigated within 298-333 K at the optimum pH and adsorbent 

dosage. Different concentrations in the range 20-500 ppm were made from the stock solution 

to study the initial concentration effect on adsorption using 0.02 g adsorbent dosage at the 

optimum pH. The effect of time was investigated within 30-480 min, at the optimum pH and 

concentration, temperature and adsorbent dosage. 

To determine the amount of adsorbate remaining after adsorption, the adsorbents were 

removed from the supernatants by centrifuging at 1200 rpm for 20 min. The residual dye 

concentrations of the supernatant was analysed using a UV−Vis spectrophotometer by 

monitoring the absorbance at the λmax of 467 nm. The amount (qe) of adsorbate per gram of 

adsorbent was calculated using the equation: 

 

q𝑒 =
(𝐶𝑜 − 𝐶𝑒)V

𝑊
… … … … … … … … … … … … … … …  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1 

Where Co = initial concentration of the adsorbate (mg/L), Ce = equilibrium concentration of 

the adsorbate (mg/L), V = adsorbate solution volume (L) and W = mass of adsorbent used 

(g). 

The adsorption data was fitted into Langmuir, Freundlich, Temkin and Dubinin 

Radushkevich isotherm models; and pseudo-first order, pseudo-second order, intraparticle 

diffusion, Bangham and Boyd kinetic models.  

 

2.5 Theoretical studies 

Theoretical studies were carried out using Biovia Materials Studio 2018. The Forcite tool was 

applied for pre-optimization of geometry to ultra-fine quality and to determine the most 

plausible starting positions (structures with the lowest total energy) to model the interactions 

between adsorbents and adsorbates. Literature methods were slightly modified to carry out 

the DFT studies using the DMol3 module on the Forcite pre-optimized structures with 

convergence threshold parameters set at default (medium); energy = 0.00002, gradient = 
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0.004  and displacement = 0.005 [42, 43]. The generalized gradient approximation (GGA) 

with Perdew-Burke-Ernzerhof (PBE) parametrization functional was applied with Grimme 

for DFT-D correction. Density functional semi-core pseudopotentials were fitted to all 

electrons with a double numerical plus (DNP) polarization basis set and a real-space orbital 

global cut-off of 4.4 Å. The studies were first carried out in gas phase before the conductor-

like screening model (COSMO) was applied using water at a dielectric constant of 78.54. The 

binding energies between the adsorbents and adsorbates were then determined by subtracting 

the sum of the energies of the adsorbent and adsorbate from the total energy of the 

adsorbent/adsorbate dye cluster, i.e.  

 

∆𝐸 (𝐵𝐸) = 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡
𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒

− E𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡 + E𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 … … … … … … … … … … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.2 

 

3. Results and discussion 

3.1  FT-IR  

The FT-IR spectra of ligands, compounds 1 and 2 are shown in Figure S2. The broad band 

for -COOH around 2576-3096 cm-1 noticeable in the IR spectrum of both carboxylic acids 

disappeared in spectra 1 and 2 indicating deprotonation and coordination with metal ion. 

C=O bands of 1732 and 1716 cm-1 in Hnba and Hbiphen are also absent in 1 and 2, 

respectively. The COO- sym, asym stretching frequencies are at 1651, 1338 cm-1 (in 1) and 

1602, 1349 cm-1 (in 2). The difference between these stretching frequencies [νas(COO-)– 

νs(COO-)] in 1 and 2 are 213 and 253 cm-1 respectively. This agrees with unidentate 

coordination of the carboxylate group [44]. The incorporation of co-ligand is supported by 

the additional bands that appear in the mid IR region. ν(C=N) band was located at 1585 cm-1 

for the tmdp, shifted to 1575 cm-1 (in 1) and 1543 cm-1 (in 2) on coordinating with Zn(II) ion. 

The bands at 632- 682 cm-1 and 437 – 455 cm-1 indicate Zn-N and Zn-O stretching vibrations, 

respectively. 

 

3.2 PXRD results 

The simulated and as prepared (measured at room temperature) PXRD patterns of 1 and 2 are 

presented in Figure 1a and 1b. The similarity of both patterns confirmed the purity of the 

bulk materials. The slight difference in relative peak intensities of 1 could be as a result of the 

preferred orientation: the well-shaped crystals aligned in one major direction; therefore, the 
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powder XRD pattern might not be a representative of all orientations, unlike the simulated 

pattern which includes diffraction from all crystal planes. 

 

 

Figure 1:  Simulated and as-prepared PXRD patterns of: (a) [Zn(nba)2(tmdp)]n (1) (b) 

[Zn(biphen)2(tmdp)]n (2). 
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3.3 X-ray crystallographic results 

Crystal data and data collection summary for 1 and 2 are shown on Table S1. Bond distances 

and angles around the metal ion are shown in Table 1.  

[Zn(nba)2(tmdp)]n (1): The ORTEP diagram and the atom numbering scheme are shown in 

Figure 2. Compound 1 with Zn:nba:tmdp in a 1:2:2 mole ratio exhibited a unidentate mode 

of coordination of the two molecules of 4-nba ligand, and they adopted a trans-conformation. 

The zinc atom is coordinated by two deprotonated oxygen atom (O1 and O1) from two nba 

molecules and two pyridyl nitrogen atoms (N11 and N11) from two tmdp ligands. It 

crystallizes in the orthorhombic crystal system with centrosymmetric space group P b c m. Zn 

(II) is located on a two-fold axis. The asymmetric unit is composed of one Zn(II) ion, one 

molecule of nba and half molecule of tmdp ligand.  

The observed Zn-O distance of 1.910 Å for the carboxylate oxygen atoms of both nba 

molecules indicates the same coordination strength of both to the Zn(II). These distance 

values and  Zn - N distance of 2.071 Å, agree with reported values of Zn (II) CPs [45,46]. 

Bond angles around Zn (II) in 1 vary between 98.66 and 118.35o, showing a distorted 

tetrahedral coordination sphere [ZnN2O2]. This deviation from regular tetrahedral was 

ascertained by calculating the parameters τ and τ’ (τ = τ’ = 0 for square planar, τ = τ’=1 for 

tetrahedral) [47,48]. The value obtained for both is 0.87, indicating that the tetrahedral 

geometry is distorted. Two adjacent Zn(II) atoms are connected by the tmdp ligand to form 

1D CPs, with the two carboxylate ligand molecules acting as pendants as shown in Figure 

S3.The compound is packed in a way that leads to the proximity of the nba ligands of 

adjacent layers. The centroid to centroid distance of over 4 Å between the aromatic rings of 

neighbouring molecules indicates that there are no π-π stacking interactions in the 

compounds. A detailed structural analysis revealed that there are weak short contacts and C-

H•••O intermolecular interactions of the CH2 groups of nba and tmdp ligands with the 

COO- and NO2 oxygen atoms of the nba ligand as shown in Figure S4. Some of these 

contacts are N11…..O2 (3.069 Å), C5-H5….O9 (2.649 Å), C12-H12….O12 (2.641 Å) and 

C16-H16….O1 (2.538 Å). These contacts develop the adjacent 1D chains into 2D packing 

structure as shown in Figure S5. 
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Figure 2: ORTEP diagram of [Zn(nba)2(tmdp)]n (1) (Ellipsoids drawn at 50% probability 

level, hydrogen atoms omitted for clarity) 

[Zn(biphen)2(tmdp)]n (2):  The zinc atom in 2 is coordinated in a monodentate mode by two 

deprotonated oxygen atoms (O1A and O1B) from two biphen molecules and two pyridyl 

nitrogen atoms (N17 and N27) from two tmdp molecules (Figure 3). The zinc atoms exhibit 

tetrahedral geometry, coordinated to two tmdp ligands and two biphen ligands in a trans-

conformation. The parameters τ and τ’ equal 0.86, this confirms a distorted tetrahedral 

geometry [48]. It crystallizes in the monoclinic crystal system (α = γ = 90°, β =105.9928) 

with space group C2/c. The asymmetric unit for compound 2 is composed of a zinc atom, two 

biphen molecules and a tmdp ligand. The Zn-O distances within 1.9501-1.9801 Å, and the 

Zn-N distances within 2.0392-2.0857 Å, compare well to reported values of existing Zn(II) 

MOFs [45,46]. The coordination strengths of the carboxylate oxygen atoms are close, judging 

from the small difference between the Zn-O bond length. This is also applicable to the 

coordinated pyridyl nitrogen atoms. 
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Figure 3. ORTEP diagram of [Zn(biphen)2(tmdp)]n (2) (Ellipsoids drawn at 50% probability 

level, hydrogen atoms omitted for clarity) 

Table 1. Bond lengths and angles around Zn(II) in 1 and 2. 

[Zn(nba)2(tmdp)]n  (1) [Zn(biphen)2(tmdp)]n  (2) 

Bond length (Å) Bond angles (o) Bond length (Å) Bond angles (o) 

Zn1-O1         1.9097 

Zn1-N11       2.0707 

O1-Zn1-O11     106.48 

O1-Zn1-O1         98.66 

O1-Zn1-O11      118.35 

N11-Zn1-O1      118.35 

N11-Zn1-N11    108.83 

O1-Zn1-N11      106.48 

Zn1-N17          2.0392 

Zn1-O1B           1.9501 

Zn1-N27            2.0857 

Zn1-O1A           1.9801 

O1B-Zn1-O1A      108.10 

O1B-Zn1-N17      120.53 

O1B-Zn1-N27       109.44 

O1A-Zn1-N17       117.89 

O1A-Zn1-N27        93.39 

N17-Zn1-N27        103.51 

  

The tmdp ligands link adjacent zinc atoms to give 1D chains, having two biphen molecules as 

pendants are shown in Figure S6, the Zn•••Zn distance being 11.476 Å. No hydrogen 

bonding interaction was found, but weak van der Waals interactions exist between O1A and 

N27 (Figure S7). The distance of 3.182 Å in between the two coordinated oxygen atoms, 

O1A and O1B is higher than the limit for O…O van der Waals interaction between them. The 



11 
 

packing diagram of 2 are presented in Figure S8 and is stabilized, in addition to the covalent 

bonds, by the homo- interaction of benzene rings of adjacent biphen ligands from an adjacent 

chain, through π-π stacking, the centroid-centroid distance being within the limit of π-π 

interaction of the aromatic rings [49] whereas hetero-interaction between the pyridyl ring of 

the tmdp ligand and the phenyl ring of the biphen ligand is not possible due to a large 

centroid-centroid distance of 6.596 Å between them [50]. 

The methylene groups between the two pyridyl rings of tmdp ligand confer flexibility on it. 

The flexibility is confirmed by the significant dihedral angle (176o for 1 and 174o for 2) 

between the planes of the two pyridyl rings. In 1, the plane of the carboxylic group of the nba 

ligand is nearly coplanar with that of the aromatic ring, with a dihedral angle of 4.74o in 1 and 

0.64o in 2 [51].  

While porosity in higher dimensional CPs is as a result of the channels in their framework, 

porosity in 1D CPs depends on their packing  [52,53]. For example, a 1D CP that is packed in 

a manner in which two adjacent linear chains hug each other led to a double stranded 

structure with less porosity compared to one with its adjacent chains parallel to each other 

[54]. Space filling representation of the packing view of the unit cells for 1 and 2 are shown 

in figures 4 and 5, this revealed the presence of voids within CPs.  

 

 

Figure 4. Space filling representation of the packing view of 1.  
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Figure 5: Space filling representation of the packing view of 2.  

 

3.4 BET Surface Area measurements 

Specific surface area of [Zn(nba)2(tmdp)]n  (1) and [Zn(biphen)2(tmdp)]n  (2) are determined 

by multipoint Brunauer, Emmett and Teller (BET) method at relative pressure (P/Po) from 

0.04 to 0.32. BET surface area plots of 1 and 2 are presented in Figure S9 and S10, 

respectively, and it demonstrated the typical linear characteristic plot with correlation 

coefficient of r2 ~ 0.99. The BET surface area of [Zn(biphen)2(tmdp)]n  (2) (444.10 m2/g) 

was reportedly lower than [Zn(nba)2(tmdp)]n  (1) (530.33 m2/g). The slightly lower surface 

area of 2 was attributed to the structural difference between the two compound and the 

presence of 4-biphenylcarboxylic acid (Hbiphen) within the crystal lattice. This influences 

the pore diameter of [Zn(nba)2(tmdp)]n  (1) (3.04 nm) and [Zn(biphen)2(tmdp)]n  (2) (2.92 

nm). High surface area is beneficial for improving adsorption dye materials.   

 

3.5 Hirshfeld Surface Analyses 

Hirshfeld surface analyses [55] showed intermolecular interactions such as O–H···O, O–

H···N and C–H···π. Two sharp O–H spikes are typical O–H···O interaction and it comprised 

of 42.3 and 12.4% for [Zn(nba)2(tmdp)]n  (1) and [Zn(biphen)2(tmdp)]n  (2), respectively. 
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Thus, indicating that compound (1) contributes a higher O–H···O interaction compared to 

(2). 

The fingerprint plots showed that C–H contacts was highest on (2) (35.5%), and this is 

closely related to C–H···π interactions [37].The percentage of major contributions such as O-

H, N-H, C-C, and C-H, interatomic contacts for each molecule are compiled in Table 1. 

Molecular Hirshfeld surface such as dnorm, shape index and curvedness confirming 

interactions between neighbouring molecules of [Zn(nba)2(tmdp)]n  (1) and 

[Zn(biphen)2(tmdp)]n  (2) are presented Figure 6. Fingerprint plot of [Zn(nba)2(tmdp)]n  (1) 

and [Zn(biphen)2(tmdp)]n  (2) in full and resolved into H···O, C···N, and H···N are 

presented Figures 7 and 8, respectively.  

 

 
 

Figure 6: Molecular Hirshfeld surface such as dnorm, shape index and curvedness for (A) 

[Zn(nba)2(tmdp)]n  (1) and (B) [Zn(biphen)2(tmdp)]n  (2) 

 

d-norm: -0.2655 to 1.1101 shape index: -1.0000 to 1.0000 curvedness: -4.0000 to 0.4000

A

B

d-norm: --0.5744 to 1.5918 shape index: -1.0000 to 1.0000 curvedness: -4.0000 to 0.4000
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Figure 7. Fingerprint plot of [Zn(nba)2(tmdp)]n  (1) full and resolved into (B) H···O (C) 

H···H, and (D) H···C contacts showing the percentages of contacts contributed to the total 

Hirshfeld surface area.  

 

 
 

Figure 8: Fingerprint plot of [Zn(biphen)2(tmdp)]n  (2) full and resolved into (B) H···O (C) 

H···H, and (D) H···C contacts showing the percentages of contacts contributed to the total 

Hirshfeld surface area.  
 

ALL C-H: 17.6%

N-H: 5.4% O-H: 42.3%

ALL C-H: 17.6%

N-H: 5.4% O-H: 42.3%

ALL C-H: 35.5%

N-H: 2.7% O-H: 12.4%



15 
 

 

Table 2. Percentage contributions of selected interatomic contacts to the Hirschfeld surface 

of compounds. 

 Surface interactions 

C-H (%) O-H (%) N-H (%) C-C (%) 

[Zn(nba)2(tmdp)]n  (1) 17.6 42.3 5.4 2.9 

[Zn(biphen)2(tmdp)]n  (2) 35.5 12.4 2.7 2.6 

 

3.6 TGA/DSC 

Thermogravimetric analysis was carried out for compounds 1 and 2 and the results are shown 

in Figure S11. Thermogram of 1 reveals a small weight loss around 100-120 °C which 

corresponds to 8% (calc.7.7%) of its weight, this accounts for the loss of the nitro group of  

one Hnba. The second weight loss of 47% (calc. 47.98%) between 240-400 °C corresponds to 

the thermal degradation of Hnba ligands of 1. These two weight loss show endothermic peaks 

on the DSC curve at 252 and 298 °C, respectively. A further weight loss of about 32% (calc. 

33.38%) was reported between 500-545 °C and it is attributed to the loss of tmdp ligand. The 

loss of tmdp resulted in an exothermic peak at 520°C leaving zinc oxide (observed 13%, 

calculated  13.59%) which is stable up to 800 °C. 

For 2, the TGA/DSC profile shows a thermally stable compound up to 260 °C. After which,  

mass loss of 87% (calc. 87.66%) occured between 260 °C to 500 °C via an unidentified step 

for the loss of two biphen and one tmdp ligands, to give the expected zinc oxide (observed 

112.60%, calculated  12.33%) which remained stable up to 800oC. The major exothermic 

peak was observed around 500oC. 

 

3.7 Adsorption studies 

3.7.1 Initial comparison of MO removal in 1 and 2 

The MO removal capacities of 1 and 2 were compared by investigating the adsorption of MO 

dye from aqueous medium with starting adsorbate concentration of 100 mg/L. It can be 

observed in Figure 9 that 1 exhibited better adsorption capacity towards MO than 2, with the 

percentage adsorbed being 92.4% and 6.8% for 1 and 2 respectively, after stirring for 300 

min. The adsorption capacities of 1 and 2 was 98.00 mg/g and 22.67 mg/g, respectively. 

The results clearly revealed that 1 is more effective for the removal of MO compared to 2 and 

this is probably due to the high surface area and pore diameter it offers. Compound 2 was 
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excluded from further adsorption studies, due to the observed low preliminary sorption 

capacity. 

 

Figure 9: Time evolution of the MO concentration during its adsorption on 1 and 2. (Inset: 

samples withdrawn at A: 0 min; B:50 min; C: 100 min; D: 200 min; E: 250 min; F: 300 min) 

  

Since 1 exhibited an excellent uptake of MO dye, further studies on the adsorption process 

was carried out, some operational parameters (pH, adsorbent dosage, temperature, adsorbate 

initial concentration and contact time) were optimized, adsorption kinetics, isotherm and 

thermodynamics were also studied and reported. 

 

3.7.2 Effect of pH 

The pHPZC of 1 (as shown in Figure S12a) was found to be 7.1 while the pKa of MO is 3.47. 

This implied that at pH less than 7.1, the charge on MO was positive, and at a pH greater than 

7.1, the charge was negative. Adsorption was higher in the acidic range (<7) compared to the 

basic range (>7) (Figure S12b). Below pH 7, adsorption capacity was ~159.2 mg/g, 

increasing the pH from 7 to 12 resulted in a decrease in adsorption capacity from 159.2 mg/g 

to 24.59 mg/g. Under basic conditions, the charge on the adsorbent was negative, causing 

electrostatic repulsion between the negatively-charged MO dye and the adsorbent. Therefore, 

electrostatic interaction may have also enhanced the adsorption process [56].  
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3.7.3 Effect of adsorbent dosage  

Various amounts of 1 (0.01 to 0.05 g) were added to 50 mL solution containing 200 mg/L 

MO to determine the maximum uptake. From Figure S13, the adsorbent dosage with the 

maximum adsorption capacity is 0.03 g. Therefore, 0.03 g adsorbent dosage was taken as the 

optimum. 

 

3.7.4 Effect of temperature 

The optimal temperature for the adsorption of MO on 1 was investigated (Figure S14a). The 

experiments were performed in the range 298 – 333 K. Adsorption capacity for MO by 1 was 

obtained at 298 K and adsorption decreased with an increase in temperature, indicating an 

exothermic adsorption process. The Van’t Hoff plot for the adsorption process shows the 

calculated values of ΔH, ΔS and ΔG for the adsorption process (Figure S14b and Table 3) 

 

Table 3:  Thermodynamic parameters. 

Temp 

( K ) 

ΔG 

(kJmol-1) 

ΔH 

(kJ mol-1) 

ΔS 

(J mol-1 K-1) 

298 -6.26 -22.35 -54.77 

313 -5.45 

323 -4.91 

333 -4.37 

       

When the value of ΔH is less than 40 kJ mol−1, the adsorption process is physisorption [57]. 

The calculated value of ΔH indicates physisorption process. The ΔG value is less than zero 

indicating that the process is spontaneous and feasible. The negative ΔS  value indicates a 

high degree of order [58]. 

 

3.7.5 Effect of initial adsorbate concentration and adsorption isotherm 

Optimization studies for the adsorption capacity of the adsorbent was done by introducing 

0.03 g of compound 1 to 50 mL of different concentrations of the adsorbate solution (20-500 

mg/L) at 298 K and respective optimum pH values for 120 min. The uptake of MO by 1 

increased from 13 to 549 mg/g when the concentration was raised from 20 to 500 mg/L 

(Figure S15). Maximum adsorption is achieved when the easily accessible large vacant 

cavities  are saturated [59].  
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The data was fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) 

models as shown in Figures S16a-d. The equations are shown in Table S2. From the R2 

values, Freundlich model fitted best, indicating multilayer sorption on the adsorbent. The 

mean sorption energy, E, obtained from the adsorption of MO on 1 is 0.11, indicating a 

physisorption process [60]. The isotherm parameters and correlation coefficient values are 

presented in Table 4. 

 

Table 4: Isotherm parameters. 

Isotherm model Parameter Values 

Langmuir Qm (mg/g) -361 

KL (L/mg) -3.41E-3 

R2 0.6702 

Freundlich N 0.77 

Kf 0.55 

R2 0.9903 

Temkin BI 173.45 

bT (J/mol) 14.28 

KT (L/mg) 0.057 

R2 0.7207 

Dubinin-Radushkevich BD (mol2 /J2) 3.87E-5 

qs (mg /g) 89.03 

E (kJ /mol) 0.11 

R2 0.5983 

 

3.7.6 Optimizing the amount of time required for adsorption 

The influence of contact time on the adsorptive uptake of MO by 1, is presented in Figure 

S17. This was studied by introducing 0.03 g of compound 1 to 50 mL of 500 mg/L MO dye 

solution at 298 K and respective optimum pH values for a time range of 30-480 min. The 

adsorption curves show fast adsorption in the first 300 min. After that, no obvious variation 

in adsorption was observed. This is due to the abundant adsorption sites quickly getting 

occupied at the start of the adsorption process leaving less sites which are difficult to occupy 

[21].  
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The kinetics data was fitted into pseudo-first-order (PFO) and pseudo-second-order (PSO) 

models. The equations and plot parameters are presented in Table S3. The adsorption 

kinetics plots are shown in Figures S18a and S18b. Since the R2 value for PSO is higher than 

PFO model and the experimental adsorption capacity is closer to the calculated adsorption 

capacity from the PSO model than that of the pseudo first order, it can be said that the 

adsorption follows the PSO rate model. 

The kinetics data was also analyzed by Intraparticle, Bangham and Boyd diffusion models to 

study the mass transfer mechanism. The relevant parameters of these models are also given in 

Table 5. Figures S18c-e show the results from these models. For the intraparticle diffusion 

model plot given in Figure S18c, the straight line obtained is non-zero and multilinear. This 

indicates that intraparticle diffusion is not the only rate-limiting step [61]. The first portion of 

the plot stands for boundary layer effect, the second represents intraparticle or pore diffusion 

while the third represents adsorption into the pores. The parameter, Kid is calculated from the 

slope of the second linear portion of the plot. The Bangham diffusion model was also used to 

verify the proposition that not only one reaction mechanism was involved in the adsorption 

process. The plot of the Bangham diffusion model (Figure S18d) also suggests that boundary 

layer diffusion was involved in adsorption but was not the only rate controlling step due to 

the multilinearity of the curves [62]. To know the process controlling the overall sorption rate 

(rate- determining step) the Boyd model plot was applied. If the Boyd plot is a straight line 

and passes through the origin, particle diffusion is said to be the rate limiting step, otherwise 

external mass transfer is the rate limiting step. As seen from Figure S18e, the linear plot is 

non-zero, indicating a film-diffusion controlled process [63].  

 

Table 5: Kinetics parameters 

Kinetic model Parameter Values 

 qe exp (mg/g) 546.31 

Pseudo-first order K1 (min-1) 0.018 

Qe (mg/g) 1420 

R2 0.9280 

Pseudo-second order K2 (mg/gmin) 1.75E-5 

Qe (mg/g) 544.20 

R2 0.9873 

Intraparticle diffusion C(mg/g) 59.24 
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Kp (mg/gmin1/2) 26.72 

R2 0.9865 

Bangham Α 0.717 

K0(g) 0.522 

R2 0.9795 

Boyd B (sec-1) 0.012 

R2 0.9553 

 

 

3.7.7   Regeneration of used adsorbents 

Reusability of used adsorbents is a very important factor to consider for commercial 

applications. The solvent desorption technique using ethanol was applied for the regeneration 

of spent 1. The spent adsorbents were separated from the solutions, washed with deionized 

water and dried at 80oC. The dry spent adsorbents were then added into 50 mL of 95% 

volume ethanol and shaken for 1 hr at RT. The desorbed adsorbate concentrations, Cdes 

(mg/L) were quantified using the UV–Vis spectrophotometer at the λmax of the adsorbate as 

done for the adsorption procedure. The percentage desorption was calculated from the 

equation:  

Desorption (%) = Cdes/Cad × 100……………………………………………..Equation 3.1  

Where Cad = amount of adsorbate initially adsorbed and Cdes = final concentration of the 

adsorbate in the desorption medium. 

The adsorption-desorption cycle was done three times, and at the end of the second cycle 

there was a small decrease in the adsorption capacities of 1 (Figure 10 and Table S4). MO 

percent adsorption on 1 had decreased by 5.05% after the third use.  
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Figure 10: Adsorption cycles of 1 for MO adsorption. 

 

PXRD measurements were performed to ascertain that crystallinity of 1 was maintained after 

the adsorption process. The PXRD spectrum in Figure S19 indicates that there were no shifts 

or broadening of the peaks indicating that crystallinity was maintained. The FT-IR spectra of 

1 and 1-MO in the range 4000–400 cm−1 are shown in Figure S20. New peaks were assigned 

to some functional groups of MO while there were shifts of some other existing peaks. The 

shift of the asymmetric and symmetric COO- bands at 1651 cm−1 and 1338 cm−1 to 1617 cm−1 

and 1364 cm−1 respectively was observed. New band around 1900 cm−1 - 2000 cm−1 (in oval 

shape) ascribed to C=C asymmetric stretch of MO was seen in 1-MO. The band around 1226 

cm−1 on 1-MO can be attributed to the sulfonate S=O bonds from MO, indicating the 

attachment of MO onto the surface of 1 [34]. 

 

3.8 Theoretical studies 

Following successful adsorption studies (Section 3.7), theoretical studies were applied to 

determine the binding energies as well as the electronic interactions leading to the adsorption 

of MO on 1 and 2 using Biovia Materials Studio 2018. Biovia Forcite, an advanced classical 

molecular mechanics tool which allows fast geometry optimization and energy calculations 

was used for pre-optimization of structures. After calculating total energies of several 

possible starting positions in the interaction of the adsorbent and adsorbate, it was noted that 
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clusters where the adsorbate is positioned strategically to maximize pi-pi interactions with the 

groups in the adsorbent had the lowest total energies (Figure 11), meaning they are stable. 

Pi-pi interactions played a major role in determining the clusters with lowest energy. Where it 

was clear the adsorbent-adsorbate pi-pi interactions were well defined, the clusters had the 

lowest total energy. It was difficult to determine whether the Zn centre is directly involved in 

the physical interactions from the positions preferred by MO on 1 and 2 during Forcite pre-

optimization.  

Geometry optimization was then carried out using slightly modified literature methods in the 

Biovia DMol3 module (Figure 11 and Table 5) [42,43]. MO remains flat allowing its phenyl 

groups to interact with the phenyl groups in compounds 1 and 2. In compound 1 MO lies 

parallel to the nitrobenzoic acid groups allowing each of its phenyl groups to interact with the 

adjacent nitrobenzoic groups. With compound 2, the most stable complex is where MO is 

sandwiched between biphen and tmdp allowing the sulfonate end to interact with the 

carboxylic end phenyl of biphen while the amine phenyl end interacted with the tmdp phenyl. 

The interaction is less stable compared to the compound 1-MO complex. The chance of such 

an interaction to occur in the polymeric form of compound 2 is also less likely due to steric 

hindrance. Considering that the binding energy between compound 2 and MO is lower 

compared to that between compound 1 and MO and the unlikelihood of the preferred position 

to occur in the bulk material, the lower adsorption capacity observed in Section 3.7.1 is 

expected. The negative binding energies confirmed the feasibility of interaction. Adducts 

formed between 1 and MO indicated that HOMO (highest occupied molecular orbital) is 

centered on MO, while LUMO (lowest unoccupied molecular orbital) originated around 4-

nitrobenzoic (Hnba) moiety (Figure S21). This clearly indicated that the interaction between 

the MO and 1 is mainly driven by electron donation from the HOMO to the LUMO. 
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Figure 11. Biovia Materials Studio 2018 DMol3 modelled structures showing adsorption of 

MO on 1 (a) neutral model and (b) anionic model. 

 

Table 5. Energies of the adsorbents, adsorbates and their clusters; and calculations for 

binding energy (BE). 

 Eadsorbent + adsorbate 

(kJmol-1) 

Eadsorbent (kJmol-1) Eadsorbate (kJmol-1) E (kJmol-1) 

1 -14657161.26 -11167559.84 -3489527.28 -74.14 

2 -14795943.39 -11306355.00 -3489527.28 -61.11 

ΔE (BE) = Eadsorbent + adsorbate – (Eadsorbent + Eadsorbate) 

 

3.9 Comparing adsorption of MO on 1 with other reported adsorbents 

The adsorption capacity of 1 is relatively greater than that of most reported adsorbents as 

shown on Table 6. Coupled with its reusability which is favourable, this makes it an 

economical adsorbent for MO removal from wastewater. 

 

Table 6: Performance evaluation of 1 in MO removal compared to other literature materials.  

Adsorbent Qm (mg/g) Reference 

Mesoporous carbon 294.1 [19]  

Functionalized chromium-

benzenedicarboxylates MOF 

194-241 [56] 

Anion–cationic surfactants modified 

montmorillonite 

54 [64]  

EDTA-functionalized electrospun 99.15 [58] 

(a) (b)
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polyacrylonitrile nanofibers 

Cd-based metal-organic framework 166 [34] 

Compound 1 546.31 This work 

 

 

3.10 Conclusions 

The synthesis of coordination polymers; [Zn(nba)2(tmdp)]n (1)  and [Zn(biphen)2(tmdp)]n (2) 

and the removal efficiency of MO dye by (1) was reported.  The adsorption capacity of 1 

towards MO was found to be 546.31 mg/g and higher than 2 (22.67 mg/g). Freundlich 

isotherm and pseudo second order kinetic models were found to fit best. Hirshfeld surface 

analyses indicated that compound (1) contributed a higher O–H···O interaction compared to 

(2), while, DFT studies showed that pi-pi interactions also played a crucial role in the 

adsorption of MO. It was also demonstrated that the adsorbent can be regenerated and reused 

even after four adsorption cycles with minimal loss of adsorption capacity. The results of the 

adsorption process demonstrated that 1 could serve as effective candidate adsorbent for the 

removal of methyl orange from wastewater. 

 

Supplementary data 

CCDC 1954756 and 1954762 contains the crystallographic data of [Zn(nba)2(tmdp)]n (1)  and 

[Zn(biphen)2(tmdp)]n (2), respectively. The data can be obtained free of charge from the 

Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.  
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   Highlights 

 Two novel zinc coordination polymers [Zn(nba)2(tmdp)]n  and [Zn(biphen)2(tmdp)]n 

were synthesized by stirring in DMF at ambient temperature. 

 They were investigated for the adsorptive removal of methyl orange (MO) dye from 

water. 

 [Zn(nba)2(tmdp)]n exhibited higher removal of MO (546.31 mg/g) than 

[Zn(biphen)2(tmdp)]n (22.67 mg/g). 

 DFT studies indicated that the adsorption was aided by π-π stacking and electrostatic 

interactions. 
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Graphical Abstract Synopsis 

Two new zinc (II) coordination polymers, [Zn(nba)2(tmdp)]n  and [Zn(biphen)2(tmdp)]n, 

were synthesized and characterized using microanalysis, spectroscopic techniques and 

single x-ray crystallography. They were used for removal of methyl orange from aqueous 

solution, thereby positioning them as adsorbents for environmental remediation.  

Mechanism of adsorption was analyzed using DFT studies. 
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