Manuscript version: Author's Accepted Manuscript The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record. #### **Persistent WRAP URL:** http://wrap.warwick.ac.uk/142924 #### How to cite: Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it. #### **Copyright and reuse:** The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. © 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/. #### **Publisher's statement:** Please refer to the repository item page, publisher's statement section, for further information. For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. - 1 Stable-isotopic and metagenomic analyses reveal metabolic and - 2 microbial link of aerobic methane oxidation coupled to - 3 denitrification at different O₂ levels - 5 Ruo-Chan Ma^{1,2}, Yi-Xuan Chu², Jing Wang², Cheng Wang², Mary Beth Leigh³, Yin - 6 Chen⁴, Ruo He^{1,2*} 4 7 - ¹Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, - 9 School of Environmental Science and Engineering, Zhejiang Gongshang University, - 10 Hangzhou, 310012, China - ²Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, - 12 China 15 - ³Institute of Arctic Biology, University of Alaska Fairbanks, Alaska 99775, USA - ⁴School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom - * Correspondence: heruo@zju.edu.cn (R. He). | 17 | Abstract: Aerobic methane (CH ₄) oxidation coupled to denitrification (AME-D) can | |----|---| | 18 | not only mitigate CH ₄ emission into the atmosphere, but also potentially alleviate | | 19 | nitrogen pollution in surface waters and engineered ecosystems, and it has attracted | | 20 | substantial research interest. O2 concentration plays a key role in AME-D, yet little is | | 21 | understood about how it impacts microbial interactions. Here, we applied isotopically | | 22 | labeled K ¹⁵ NO ₃ and ¹³ CH ₄ and metagenomic analyses to investigate the metabolic and | | 23 | microbial link of AME-D at different O2 levels. Among the four experimental O2 levels | | 24 | of 21%,10%, 5% and 2.5% and a CH ₄ concentration of 8% (i.e., the O ₂ /CH ₄ ratios of | | 25 | 2.62, 1.26, 0.63 and 0.31), the highest NO ₃ ⁻ -N removal occurred in the AME-D system | | 26 | incubated at the O2 concentration of 10%. Methanol and acetate may serve as the | | 27 | trophic linkage between aerobic methanotrophs and denitrifers in the AME-D systems. | | 28 | Methylotrophs including Methylophilus, Methylovorus, Methyloversatilis and | | 29 | Methylotenera were abundant under the O2-sufficient condition with the O2 | | 30 | concentration of 21%, while denitrifiers such as Azoarcus, Thauera and Thiobacillus | | 31 | dominated in the O ₂ -limited environment with the O ₂ concentration of 10%. The | | 32 | competition of denitrifiers and methylotrophs in the AME-D system for CH ₄ -derived | | 33 | carbon, such as methanol and acetate, might be influenced by chemotactic responses. | | 34 | More methane-derived carbon flowed into methylotrophs under the O2-sufficient | | 35 | condition, while more methane-derived carbon was used for denitrification in the O ₂ - | | 36 | limited environment. These findings can aid in evaluating the distribution and | | 37 | contribution of AME-D and in developing strategies for mitigating CH ₄ emission and | | 38 | nitrogen pollution in natural and engineered ecosystems. | 39 40 - **Keywords**: Aerobic CH₄ oxidation coupled to denitrification; aerobic methanotrophs; - denitrifers; O₂ concentration; metagenomic analyses #### 1. Introduction 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 Methane (CH₄) is a globally important greenhouse gas due to its global warming potential being approximately 28 times of CO₂ (IPCC, 2014). In the past 300 years, the average CH₄ concentration in the atmosphere increase at an average rate of 0.6%-0.8% per year (Chistoserdova et al., 2005). Microbial CH₄ oxidation is critical to reduce CH₄ emissions and can be achieved through a variety of physiological processes, including aerobic CH₄ oxidation coupled to denitrification (AME-D) (Modin et al., 2007; Sun et al., 2013; Kits et al., 2015). Since AME-D can not only mitigate CH₄ emission into the atmosphere, but also potentially alleviate nitrogen pollution in surface waters and engineered ecosystems such as wastewater treatment plants and landfills, it has attracted substantial research interest (Modin et al., 2010; Zhu et al., 2016). The AME-D process is mainly considered that the release of organic compounds from aerobic CH₄ oxidation can provide electron donors for coexisting denitrifiers and indirectly participate in denitrification (Modin et al, 2007). AME-D process is mainly performed by two microbial guilds working in concert: aerobic methanotrophs and denitrifiers. Aerobic methanotrophs are generally members of the Proteobacteria and can be divided into two groups: type I (belonging to the family Methylococcaceae in γ -Proteobacteria) and type II methanotrophs (including the genera Methylocella, Methylosinus, Methylocystis, Methylocapsa and Methyloferula, which belong to α-Proteobacteria), based on cell morphology, phylogeny, ultra-structure, and metabolic pathways (Vorobev et al., 2011; Bodelier et al., 2013; Deutzmann et al., 2014). Denitrifiers are widely distributed phylogenetically and most are facultative anaerobes using ionic and gaseous nitrogen oxides as electron accepters in absence of O₂ (Zumft, 1997). Aerobic denitrifiers, such as Hyphomicrobium and Methylotenera have been reported to utilize both O₂ and NO₃-/NO₂- as their terminal electron acceptors 67 (Meschner and Hamer, 1985; Kalyuhznaya et al., 2009). Aerobic denitrifiers usually preferentially utilize O₂ over NO₃⁻/NO₂⁻ as electron acceptors under aerobic condition 68 (Ji et al., 2015). However, some aerobic denitrifiers such as *Pseudomonas stutzeri* TR2 69 can reduce NO₃-/NO₂- to produce N₂ and a very low level of N₂O at a DO concentration 70 of 1.25 mg l⁻¹ (Miyahara et al., 2010). Some aerobic methanotrophs also have been 71 72 reported to encode partial denitrification pathways and can simultaneously reduce NO₃ /NO₂ to N₂O via NO₃, NO₂, and NO reductases during CH₄ oxidation (Nyerges et al., 73 2010; Campbell et al., 2011; Stein and Klotz, 2011). Additionally, methanotrophs can 74 also contribute to denitrification by nitrogen assimilation (Amaral et al., 1995; Bishoff 75 et al., 2021). 76 Many factors can affect the activity of aerobic methanotrophs and denitrifiers in 77 the AME-D process such as temperature, CH₄ and O₂ concentrations, O₂/CH₄ ratio and 78 nutrients (Semrau et al., 2010; Zhu et al., 2016). Among them, the availability of O₂ as 79 a substrate for aerobic CH₄ oxidation is a key factor influencing the AME-D process. 80 An O₂ concentration of 5% has been observed to be enough to sustain the activity of 81 methanotrophs and increasing O2 concentrations do not influence CH4 oxidation of 82 landfill cover soil (Wang et al., 2011). As the O₂ concentration is less than the saturated 83 84 value, an increased O2 level can lead to increased CH4 oxidation, and thus may result in more organic compounds released for denitrifiers and improvement of NO₃ removal 85 (Sun et al., 2013). When CH₄ is supplied in stoichiometric excess and methanotrophs 86 87 are sufficiently abundant, they can consume nearly all of the supplied O₂. High aerobic CH₄ oxidation mainly occurs in the hypoxic zone in the presence of a high CH₄ 88 concentration in natural systems such as lakes and wetlands, due to the opposite 89 direction of CH₄ and O₂ diffusion gradients (Lopes et al., 2011; He et al., 2012). O₂ is 90 also a known inhibitor for most denitrifiers. Additionally, O₂ has been reported to be an 91 inhibitor for the chemotaxis of some denitrifiers such as *Rhodobacter sphaeroides* 2.4.1, Rhodopseudomonas palustri, and Pseudomonas fluorescens F113 towards NO₃⁻-N/NO₂⁻-N (Lee et al., 2002; Muriel et al., 2015). However, O₂ is a requirement for the AME-D process (Sun et al., 2013; Modin et al., 2018). If O₂ is supplied in stoichiometric excess, the dissolved oxygen (DO) concentration increases and denitrification is inhibited (Thalasso et al., 1997; Modin et al., 2007). Although NO₃⁻ removal has been reported to increase at higher O₂ partial pressures due to the rapid growth of microorganisms such as methanotrophs for assimilating NO₃⁻-N into biomass (Bishoff et al., 2021), a high NO₃⁻ removal attributed to denitrification is usually observed at lower O₂ partial pressures (Thalasso et al., 1997). Thus, an optimal O₂ concentration is required to improve the performance of AME-D process. O₂ concentrations can also influence the secretion of metabolites critical to AME-D by aerobic methanotrophs during CH₄ oxidation. Generally, CH₄-derived carbon is converted into CO₂ and biomass under O₂-sufficient conditions, while more CH₄-derived carbon can be secreted into the environment in O₂-limited conditions (Wei et al., 2015; He et al., 2020). Aerobic methanotrophs can assimilate CH₄ with a highly efficient pyrophosphate-mediated glycolytic pathway and produce organic compounds, such as formate, acetate and lactate under O₂-limited conditions (5%) (Kalyuzhnaya et al., 2013). In the AME-D process, the organic compounds secreted by aerobic methanotrophs can work as carbon sources not only for denitrifiers, but also for other heterotrophic
microorganisms such as methylotrophs in the community (Stock et al., 2013; Oshkin et al., 2015). Competition for organic compounds might occur between denitrifiers and other heterotrophic bacteria, which may influence the NO₃-/NO₂-removal in the AME-D process. However, little information is available about microbial interactions among methanotrophs, denitrifiers, and other heterotrophic bacteria in the AME-D process. In this study, we applied isotopically labeled K¹⁵NO₃ and ¹³CH₄ and metagenomics analyses to investigate the metabolic linkage between aerobic CH₄ oxidation and denitrification at different O₂ concentrations. We analyzed metabolites generated and also experimentally added exogenous carbon sources including methanol, citrate, acetate, formaldehyde and formate to identify putative CH₄-derived carbon sources for denitrifiers in the AME-D systems. With isotopic and metagenomic analyses, we identified the main microorganisms and functional genes predominantly involved in CH₄ oxidation, denitrification and chemotaxis in the AME-D systems at different O₂ levels. #### 2. Materials and methods #### 2.1. Experimental set-up and operation The inoculum was prepared by mixing landfill cover soil, waste biocover soil, stabilized waste from a laboratory landfill reactor, and activated sludge (Chu et al., 2020) and transferred into 1000-ml bottles and incubated at a shaker without the addition of carbon and nitrogen sources for 7 days as described previously (Chu et al., 2020). After that, simulated NO₃⁻ wastewater prepared with the nitrate mineral salts (NMS) medium with the NO₃⁻-N concentration of about 30 mgN l⁻¹ was added into the bottle, which was then sealed and flushed with high purity N₂ (99.999%) (Chu et al., 2020). The NMS medium composition was as follows (g l⁻¹): KNO₃, 0.216; MgSO₄·7H₂O, 1; CaCl₂·2H₂O, 0.2; FeEDTA, 0.0038; FeSO₄·7H₂O, 0.0005; Na₂MoO₄, 0.00026; CuSO₄·5H₂O, 0.0002; ZnSO₄·7H₂O, 0.0004; EDTA disodium salt, 0.00025; H₃BO₃, 0.000015; CoCl₂·6H₂O, 0.00005; MnCl₂·4H₂O, 0.00002; NiCl₂·6H₂O, 0.00001; Na₂HPO₄·12H₂O, 0.716; KH₂PO₄, 0.26. Four O₂ levels (i.e., 21%, 10%, 5%, 2.5%(v/v)) that represented the aerobic to anoxic environment were selected for operational conditions. According to the inoculum quantity and activity, a CH₄ concentration of 8% (v/v) was used. After a certain amount of gas was taken from the bottle, CH₄ and O₂ were injected into the bottles to establish a CH₄ concentration of 8% (v/v) and O₂ concentrations of 21%, 10%, 5%, 2.5%(v/v) with the O₂/CH₄ ratios of 2.62, 1.26, 0.63 and 0.31 in triplicate for each treatment, and identified hereafter as O₂₁, O₁₀, O₅ and O_{2.5}, respectively. All bottles were incubated in a shaker at 130 rpm and 30 °C and operated as a sequencing batch reactor with a hydraulic retention time of 64 h (Chu et al., 2020). CH₄ and O₂ were replenished into the bottle to the initial concentrations at each 24 h-cycle. The experiment lasted for 178 d. Granular sludge was formed at the end of the experiment. At the end of the cycle, gas samples in the headspace of the bottles and the effluent samples were collected periodically to analyze the concentrations of CH₄ and NO₃-N as described previously (He et al., 2017). # 2.2. Quantification of ¹³C and ¹⁵N in the AME-D systems In order to investigate the fate of CH₄-C and NO₃⁻-N in the AME-D systems, isotopically labeled K¹⁵NO₃ and ¹³CH₄ were applied and the amount of ¹³C and ¹⁵N in the gas, solid (i.e., sludge) and liquid phases was quantified. Approximately 0.1 g (dry weight) of granular sludge from the O₂₁ and O₁₀ systems was used for the test. The sludge was transferred into 80-ml serum bottles with 24 replicates created per treatment (O₂₁ and O₁₀). In order to avoid the interference of other impurities in the liquid phase, the sludge was washed with the NMS medium (without NO₃⁻-N) twice. Then, 20 ml NMS medium with the ¹³NO₃⁻-N concentration of 30 mgN l⁻¹ (KNO₃, 99% of ¹⁵N) was added to the serum bottles. After mixing, 1-ml water sample was withdrawn from each bottle to measure the initial NO₃⁻-N concentration. Then the serum bottles were flushed with high purity N₂ (99.999%) at a flow rate of 200 ml min⁻¹ for 5 min, and then sealed with a butyl rubber stopper. After extracting a certain amount of gas from the headspace of the serum bottles, O₂ was injected to achieve the O₂ concentrations of 21% and 10% (v/v), respectively. ¹³CH₄ (99% of ¹³C, Cambridge Isotope Laboratories, Inc., United States) was injected to a concentration of 8% (v/v). The serum bottles were incubated on a shaker at 30 °C and 130 rpm. Three serum bottles were randomly selected to measure the concentrations of $^{13}\text{CH}_4$, $^{13}\text{CO}_2$, $^{15}\text{N}_2$ and $^{15}\text{N}_2\text{O}$ at periodic intervals within a 24-h cycle using a gas chromatograph-mass spectrometer (Agilent 7890B inert 5977A MSD, Agilent, United States) as described previously (Ettwig et al., 2009). The O_2 concentration was detected as described by Wang et al. (2011). The total amount of $^{15}\text{N}_2\text{O}$ and $^{13}\text{CO}_2$ (including in the headspace of the serum bottles and liquid) produced in the AME-D systems was calculated as described by He et al. (2016) and standard curves of $N_2\text{O}$ and CO_2 concentrations in the headspace of bottles with NMS medium and the same test conditions. After detecting the concentrations of ¹³C and ¹⁵N compounds in the headspace, the three serum bottles were destructively harvested to collect the water and sludge samples. After centrifugation at 10,000 rpm for 5 min, an aliquot of the supernatant was used to detect the NO₃⁻-N concentrations. Another portion of supernatant was dried using a rotary evaporator (Eyela N-1200AS-W, Tokyo Kikakikai Co., Ltd., Japan) at 60 °C, and dissolved with acetone and then freeze-dried to detect the concentrations of ¹³C and ¹⁵N in the water samples. The remaining precipitate and sludge sample was mixed and freeze-dried. After grinding and sieving through 0.15 mm-mesh, approximately 1 g of the frozen dried sample was used to detect the contents of ¹³C and ¹⁵N with an Elementar Vario MICRO cube elemental analyzer coupled to the GV Isoprime 100 isotope ratio mass spectrometer (GV Instruments, UK) as described previously (Zong et al., 2018). # 2.3. Analysis of intermediate metabolites of AME-D systems Approximately 0.1 g (dry weight) of granular sludge from the O_{21} and O_{10} systems was added into the 80-ml serum bottles and incubated on a shaker as described above in section 2.2. Three serum bottles were randomly sampled for water analyses. After passing through a 0.45 μ m filter, the water sample was added with barium chloride to precipitate sulfate, and then was centrifuged at 8000 rpm for 2 min. The supernatant was sequentially filtered through a 0.22 μ m filter and an IC-Ag column, and then was analyzed for organic metabolites generated from aerobic CH₄ oxidation using a thermoelectric AQUION ion chromatograph equipped with a AS11-HC protection column (4 μ m \times 5 cm) and a AS11-HC analysis column (4 μ m \times 25 cm). KOH was used as the eluent at the flow rate of 1ml min⁻¹. The gradient run of the eluent was as follows: 0-5 min, 5 mM; 5-20 min, 5-30 mM; 20-23 min, 30 mM; 23-31 min, 5 mM. Detection was performed using a suppressed conductivity detector. The column temperature was 30°C. # 2.4. Batch test of CH₄ oxidation and denitrification kinetics #### (1) CH₄ oxidation Approximately 0.1 g (dry weight) of granular sludge from the O_{21} and O_{10} systems was added into 80-ml serum bottles containing 20 ml NMS medium with the NO_3 ⁻-N concentration of 30 mgN l⁻¹ (the determined NO_3 ⁻-N concentration of 29.1-30.5 mgN l⁻¹ 1 in the bottles), and then sealed with butyl rubber stoppers (prepared as described above in section 2.2). After extracting a certain amount of gas from the headspace of the serum bottles, O_{2} and CH_{4} were injected to obtain O_{2} concentrations of 21% and 10% (v/v), and CH_{4} concentrations of 1%, 2%, 4%, 8%, 10%, 15%, 20% and 30% (v/v). ## (2) Denitrification Approximately 0.1 g (dry weight) of granular sludge from the O_{21} and O_{10} systems was added into 80-ml serum bottles as described above and washed with NMS medium with the NO_3 -N concentrations of 3, 8, 10, 15, 30, 40, 50 and 80 mgN l⁻¹, respectively, twice to avoid the interference of other impurities in the liquid phase. Then, 20 ml NMS with the NO_3 -N concentrations of 3, 8, 10, 15, 30, 40, 50 or 80 mgN l⁻¹ was added the serum bottles containing granular sludge samples previously washed with the medium having corresponding NO_3 -N concentrations. The serum bottles were sealed and injected with O_2 and CH_4 to obtain the O_2 concentrations of 21% or 10% and the CH_4 concentration of 8%. Sterilized sludge was used as control for each treatment. All treatments were performed in triplicate. The serum bottles were incubated at 30 °C and 130 rpm for 0.5-3 h. Gas and liquid samples were withdrawn to detect the concentrations of CH₄ and NO₃-N at the beginning and the end of incubation. The CH₄ oxidation activity and NO₃-N removal rate was calculated by a zero-order decrease (Wang et al., 2011) and expressed as milligram per gram volatile solid per hour (mg gVS⁻¹ h⁻¹). The differences in the CH₄ oxidation activity and NO₃-N removal rate of the sludge samples from the O₂₁ and O₁₀ systems were analyzed by ANOVA (one-way analysis of variance) using SPSS 19.0 software. #### 2.5. Exogenous carbon sources test Approximately 0.1 g (dry weight) of granular sludge from the O₂₁ and O₁₀ systems was added into 80-ml serum bottles containing 20 ml NMS medium with the NO₃⁻-N concentration of 30 mgN l⁻¹ and a series of concentrations between 10 and 500 mg l⁻¹ of sodium acetate, methanol, sodium citrate, sodium formate and formaldehyde in triplicate and incubation as described above in section 2.2. These metabolite concentrations
were selected based on the hypotheses that the conversion rate of methane-to-methanol was 64% (Duan et al., 2011). Liquid samples were withdrawn to detect the NO₃⁻-N concentration at the beginning and the end of incubation, and then the NO₃⁻-N removal rate was calculated. #### 2.6. Metagenomic analyses Sludge samples were taken from the O₂₁ and O₁₀ systems at the end of the experiment. Genomic DNA was extracted from the samples using E.Z.N.A.TM Soil DNA Kit (Omega Bio-Tek, Inc., Norcross, USA), verified using gel electrophoresis, and quantified using a Qubit Fluorometer (Thermo, USA). Shotgun metagenomic analysis was conducted by BGI (Shenzhen, China). Specifically, after fragmentation, paired-end fragment library with the insert size of 350 bp was constructed. Adaptorappended fragments were sequenced on Illumina HiSeq 4000 platform. Reads were excluded from further analysis if they had 10% or more ambiguous bases, contained 15 bp or more overlapping regions with adapter sequences, had 40% or more low quality (Q<20) bases. Qualified sequencing data that produced by Illumina platform were preprocessed and then assembled *de novo* with SOAP denovo2 (Luo et al., 2012) and Rabbit (You et al., 2013). MetaGeneMark (version 2.10, default parameters) was used to predict open reading frames based on assembly results (Zhu et al., 2010; Guo et al., 2016). Genes | from different samples were combined together and clustered using CD-HIT. CD-HIT | |---| | (version 4.6.1) was used to remove redundant sequences (sequence identity threshold | | 95% and alignment coverage threshold 90%) and to determine gene abundance and | | statistics among the samples (Guo et al., 2016). | The gene catalogs were blasted against public databases including nr, Swiss-Prot, COG, KEGG, GO and eggNOG with an e-value cutoff of 10⁻⁵ (Guo et al., 2016). Reads mapping to multiple genes were then reassigned to a gene using Pathoscope v1.0 (Francis et al., 2013), which used a Bayesian framework to examine each read's sequence and mapping quality within the context of a global reassignment. The gene abundance of each sample was calculated. Taxonomic classification of nr BLAST output files was assigned to NCBI taxonomies with MEGAN (version 5.3) by using the lowest common ancestor algorithm. After that, we summed the relative abundance of each taxonomy level from the same taxonomy. Significance analysis of gene abundance was performed as described by Audic and Claverie (1997). The taxonomic affiliation of the genes was estimated the correlation of their abundances between the O₂₁ and O₁₀ systems with ccrepe (version 1.7.0). The species network of the top 300 correlation coefficient was visualized by Cytoscape 3.4.0 (Shannon et al., 2003). The phylogenies and relative abundance of the top 500 taxonomically assigned species were constructed using GraphlAn (Asnicar et al., 2015). The difference in the gene abundance of nitrogen metabolism and CH₄ oxidation between the two groups was analyzed by ANOVA (one-way analysis of variance) using SPSS 19.0 software. The metagenomic data sets were deposited in NCBI Short Read Archive under the accession number of SAMN08813215. #### 3. Results 3.1. Nitrogen removal in the AME-D systems Among the four experimental O₂ levels of 21%,10%, 5% and 2.5% with the CH₄ concentration of 8% (i.e., O₂/CH₄ ratios of 2.62, 1.26, 0.63 and 0.31), the highest NO₃⁻-N removal occurred in the O₁₀ system, reaching about 100% after day 169, followed by the O₂₁ system, while the O₅ and O_{2.5} systems had the lowest NO₃⁻-N removal (Fig. 1a). The CH₄ removal efficiency increased with the increasing O₂ concentration and the highest was observed in the O₂₁ system (Fig. 1b). From day 76, the CH₄ removal efficiency in the O₂₁ system reached 100%, while it was kept stable at 12%-70% in the other systems. At the end of experiment, the sludge formed granules, likely due to the secretion of extracellular polymeric substances, microbial self-immobilization, or the growth of filamentous microorganisms. Compared with the other sludge samples, the sludge in the O₁₀ system was slightly black at the end of the experiment (Fig.1c). #### 3.2. Fate of CH_4 -C and NO_3 -N Based on the NO₃⁻-N removal in the AME-D systems, we selected the granular sludge samples in the O₂₁ and O₁₀ systems to further characterize the AME-D process. The fate of CH₄-C and NO₃⁻-N in the AME-D systems was investigated by applying isotopically labeled K¹⁵NO₃ and ¹³CH₄. After CH₄ was completely consumed at 13 h, the NO₃⁻-N concentration decreased slowly over time in the O₂₁ system (Fig. 2). ¹⁵NO₃⁻-N was mainly converted into ¹⁵N₂O-N and sludge-¹⁵N (mainly biomass-N) in the O₂₁ system, accounting for 50.3% and 35.8% of the ¹⁵NO₃⁻-N loss, respectively. In the O₁₀ system, after O₂ was used up at 13 h, NO₃⁻-N was still removed quickly between 13 and 18 h. ¹⁵NO₃⁻-N was mainly converted into ¹⁵N₂-N, ¹⁵N₂O-N and sludge-¹⁵N, accounting for 57.1%, 25.3% and 5.2% of the ¹⁵NO₃⁻-N loss, respectively, in the O₁₀ system. After a 24-h cycle, the NO_3 -N removal efficiency was 45.2% in the O_{21} system, while it reached 88.3% in the O_{10} system. As CH₄ was consumed, the amount of CO₂-C and sludge-C (mainly biomass-C) increased in the AME-D systems. Compared with the O₁₀ system, more CO₂-C and sludge-C were produced in the O₂₁ system. Moreover, the conversion of ¹³CH₄-derived carbon to ¹³CO₂-C and sludge-¹³C was also higher in the O₂₁ system, accounting for 70.8% and 22.6%, respectively, while they were 48.7% and 9.3%, respectively, in the O₁₀ system. ## 3.3. Kinetics of CH₄ oxidation and denitrification When the CH₄ concentration was below 8%, the CH₄ oxidation rate increased with the increasing CH₄ concentration and no significant difference was observed in the CH₄ oxidation rate at the two experimental O₂ concentrations (*P*=0.136-0.783) (Fig. 3a). The CH₄ oxidation rate reached 60.1 mg gVS⁻¹ h⁻¹ at the CH₄ concentration of 15% and then kept stable at higher concentrations in the O₂₁ system. However, when the CH₄ concentration was above 8%, the CH₄ oxidation rate did not change significantly and fluctuated around 36.1 mg gVS⁻¹ h⁻¹ in the O₁₀ system. These data suggested that the CH₄ concentration was a limiting factor for the CH₄ oxidation rate at concentrations below 15% CH₄ for the O₂₁ system and below about 8% for the O₁₀ system. Above these concentrations, the CH₄ oxidation rate did not increase, indicating saturation. When the CH₄ concentration ranged from 1% to 30%, the kinetics of CH₄ oxidation of the AME-D systems fit the Michaelis—Menten model well (R²=0.932-0.974, P<0.001). When the NO₃-N concentration was less than 40 mgN l⁻¹, the NO₃-N removal rate increased with the influent NO₃-N concentration (Fig. 3b). Compared with the O₂₁ system, the NO₃-N removal rate was higher in the O₁₀ system. When the NO₃-N concentration was between 40 and 80 mgN I^{-1} , the NO₃⁻-N removal rate in both systems showed no obvious variation. When the NO₃⁻-N concentration was 3-80 mgN I^{-1} , the Michaelis–Menten model fit the NO₃⁻-N removal rate in the AME-D systems well (R^2 =0.892-0.975, P<0.001). Compared with the O₂₁ system, the maximum NO₃⁻-N removal rate was higher in the O₁₀ system, which was about 3.7 times of the former. And, the affinity of denitrifiers for NO₃⁻-N was higher with the K_m value of 6.9 mgN I^{-1} in the O₁₀ system relative to the O₂₁ system. ## 3.4. Trophic linkage in AME-D In this study, we investigated organic compounds that may serve as trophic linkages between methanotrophs and denitrifiers in the AME-D systems. Ion chromatography analysis showed that acetate and oxalate were the only organic acids detected in the AME-D systems (Fig. 4a and Fig.4b). The highest oxalate concentration was determined at 7-13 h with 311.2 and 611.0 ng l^{-1} in the O_{10} and O_{21} systems, respectively. Compared with oxalate, the concentration of acetate was lower, with the highest concentration of 3.5 ng l^{-1} in the O_{10} system at 13 h and 5.6 ng l^{-1} in the O_{21} system at 7 h, respectively. At 3, 18 and 23 h, acetate was undetectable in the two systems with the detection limit of \sim 0.4 ng l^{-1} . In order to examine the possible carbon sources for denitrification in the AME-D systems, exogenous carbon sources including methanol, sodium acetate, sodium citrate, sodium formate, sodium oxalate and formaldehyde were added to the AME-D systems. Little or no NO₃⁻-N removal was observed with the addition of sodium citrate, sodium oxalate and sodium formate as carbon sources (Fig. S1). When the methanol concentration was below 25 mg l⁻¹, almost no NO₃⁻-N was removed in the O₂₁ system (Fig. 4d). An obvious increase in the NO₃⁻-N removal rate occurred in the O₂₁ system at the methanol concentration of 30 mg l⁻¹. The NO₃⁻-N removal rate rapidly increased to 2.71 mgN gVS⁻¹ h⁻¹ when the methanol concentration was 200 mg l⁻¹, and then kept steady at the methanol concentration between 300 and 500 mg l⁻¹. However, in the O₁₀ system, the NO₃⁻-N removal rate increased with the increasing methanol concentration, and reached 12.13 mgN gVS⁻¹ h⁻¹ at the methanol concentration of 500 mg l⁻¹, which was about four times of that at the acetate concentration of 500 mg l⁻¹ (Fig. 4e and Fig. 4f). In the O_{21} system, when the concentration of sodium acetate increased to 20 mg l⁻¹, the NO_3 ⁻-N removal rate increased rapidly to 1.46 mgN gVS⁻¹ h⁻¹ and then remained steady (Fig. 4c). In the O_{10} system, when the concentration of sodium acetate increased to 150 mg l⁻¹, the NO_3 ⁻-N removal rate increased rapidly to 3.21 mgN gVS⁻¹ h⁻¹ and then kept steady (Fig. 4e). Compared with methanol, the addition of acetate had lower NO_3 ⁻-N removal in the O_{10} system. There was no significant difference in the NO_3 ⁻-N removal between acetate and methanol treatments in the O_{21} system
at the O_2 concentration of ~ 0 . However, the NO_3 ⁻ removal rate increased quickly to the maximum with the acetate addition of 20 mg l⁻¹, while there was a lag phase (little or no NO_3 ⁻-N removal) with the methanol addition in the O_{21} system. When the O_2 concentration was decreased to 10% and ~ 0 , no lag phase was observed in the O_{21} system. Of the two exogenous carbon sources, the K_m value of Michaelis-Menten model was lower for acetate treatments at the O_2 concentration of ~ 0 (Table S1). 3.5. Taxonomic profiling of the metagenomes Average contig lengths were 1674 and 1973 bp for the metagenomic assemblies from the O_{21} and O_{10} systems, respectively (Table S2). Taxonomic assignment for the gene catalogue using nr annotation and Megan showed that there was no significant difference in the total gene number and the annotated gene number in the two experimental treatments (P=0.667-0.852). 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 Proteobacteria. Chloroflexi, Bacteroidetes, Planctomycetes, Firmicutes. Verrucomicrobia and Cyanobacteria predominated in the two AME-D systems, accounting for 56.4% and 58.5% of the metagenomic reads in the O_{21} and O_{10} systems, respectively (Fig. 5a). Compared with the O₁₀ system, higher microbial diversity was observed in the O₂₁ system (Figure S2). In the top 30 genera of the two AME-D systems, methanotrophs, methylotrophs and denitrifiers accounted for about 50% (Fig. S3). Among the top 30 genera, 18 genera had significant difference in the relative abundance between the O₂₁ and O₁₀ systems (Fig. 5b). Methanotrophs including *Methylocaldum*, Methylomicrobium, Methylomonas, Methylobacter, Methylococcus had similar relative abundance in the two treatments, but Methylosarcina and Methylocystis were more abundant in the O_{21} system than in the O_{10} system. Methylotrophs including Methylophilus, Methylovorus, Methyloversatilis and Methylotenera were abundant in the O₂₁ system with the relative abundance of 1.7%, 0.6%, 0.3% and 0.5%, respectively. The relative abundance of Methylophilus, Methylovorus and Methylotenera was significantly lower in the O₁₀ system than in the O₂₁ system, while the relative abundance of Methyloversatilis was significantly higher in the former. Denitrifiers including Azoarcus, Pseudomonas, Thauera and Thiobacillus dominated in the two treatments. Among them, Azoarcus, Thauera and Thiobacillus were more abundant in the O_{10} system than in the O_{21} system. The top 300 species associations in the two AME-D systems showed that many microorganisms had significantly higher relative abundance in the O₂₁ system, including methanotrophs *Methylosarcina fibrate*, *Methylocystis* sp. SB2, *Methylocystis* rosea, *Methylocystis* sp. SC2, *Methylocystis parvus*, *Methylosinus trichosporium* and methylotrophs *Methylophilus methylotrophus*, *Hyphomicrobium* sp. MC1, *Hyphomicrobium* sp. 802, *Bacillus mycoides*, *Methylibium petroleiphilum*, *Thiobacillus prosperus* (Fig. 6). Moreover, complicated associations occurred between aerobic methanotrophs and non-methanotrophs in the O₂₁ system. In the O₁₀ system, fewer microorganisms had obviously higher relative abundance than in the O₂₁ system and the associated species mainly belonged to methylotrophs and denitrifiers. 3.6. Differences in gene abundances of CH₄ oxidation, denitrification and chemotaxis CH₄ is first converted to methanol by methane monooxygenase (MMO) during CH₄ oxidation, which has two forms, soluble MMO (sMMO) and particulate MMO (pMMO). The genes of pmoA and mmoX encode key subunits of pMMO and sMMO, respectively. Compared with mmoX, pmoA was more abundant in the AME-D system accounting for 0.0131%-0.0135% of the total genes. The relative abundance of mmoX in the O₂₁ system was 0.00084%, which was two orders of magnitude higher than in the O₁₀ system, while the relative abundance of pmoA was similar in the two AME-D systems (Fig. 7a and Fig. 7c). The gene mxaF encoding key subunit of methanol dehydrogenase was more abundant in the O₂₁ system. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of CH₄ oxidation, there are three pathways involved in formaldehyde oxidation with the first stage catalyzed by enzymes, i.e., glutathione-independent formaldehyde dehydrogenase (fdhA), S-hydroxymethyl glutathione synthase (gfa) and 5,6,7,8-tetrahydromethanopterin hydro-lyase (fae). fae was the most abundant gene, accounting for 81.8% and 88.3% of the total abundance of the three genes. *fae* was mainly associated with methanotrophs, accounting for 50.3% in the O_{21} system, while it was less abundant in the O_{10} system (Table S3). In addition, the gene encoding formate dehydrogenase (FDH) was also more abundant in the O_{21} system. NO₃⁻ can be removed by assimilatory NO₃⁻ reduction, dissimilatory NO₃⁻ reduction and denitrification. The metagenomic data revealed that *nar*B and *nas*A associated with assimilatory NO₃⁻ reduction and *nor*B and *nor*C denitrification genes were significantly more abundant in the O₂₁ system than in the O₁₀ system (Fig. 7b and Fig. 7d). Genes involved in dissimilatory NO₃⁻ reduction including *nar*G, *nar*J, *nap*A and *nap*B, and *nir*S were significantly more abundant in the O₁₀ system than in the O₂₁ system. Some methanotrophs have genes involved in nitrogen metabolism such as *haoAB*, *nirS*, *nirK* and *norCB* (Stein and Klotz, 2011). In the two AME-D systems, some *nas*A, *nar*G, *nar*H, *nar*I, *nar*J, *nir*B, *nir*D, *nir*K, *nor*B and *nor*C were affiliated with methanotrophs (Table S4). Among them, *nar*G, *nar*H, *nar*I, *nar*J, *nir*B, *nir*K, *nor*B and *nor*C associated with methanotrophs were all significantly more abundant in the O₂₁ system. Since the relative abundance of genes involved in bacterial chemotaxis appeared in the top 10 list of genes with significantly different abundances in the two AME-D systems (Fig. S4), the chemotactic genes and associated with microorganisms were analyzed. Genes involved in chemotaxis including MCP, Aer, CheA, CheB, CheR and CheV, CheX and FliG were significantly more abundant in the O₁₀ system (Fig. 8a). Methylotrophs and denitrifiers were the main two type microorganisms associated with the chemotactic genes with the average relative abundance of 28.9-35.9% and some even reaching the relative abundance of 81.9% in the two AME-D systems. Except for CheV, the genes involved in bacterial chemotaxis that were associated with methylotrophs were significantly more abundant in the O₂₁ system than in the O₁₀ system (Fig. 8b). However, the genes involved in bacterial chemotaxis associated with denitrifiers were significantly more abundant in the O₁₀ system (Fig. 8c). Based on these data, we hypothesized proposed schemes for the AME-D process at different O₂ levels (Fig. 8d). In this study, methanol and acetate might serve as the trophic linkage between aerobic methanotrophs and denitrifiers. Under the O₂-sufficient condition (the O₂ concentration of 21% and O₂/CH₄ ratio of 2.62 with the O₂ concentration kept at above 8% within the cycle), methylotrophs could outcompete denitrifiers for CH₄-derived carbon, such as methanol and acetate, thus resulting in the low NO₃⁻ removal in the AME-D process. The competition of denitrifiers and methylotrophs for CH₄-derived carbon could be influenced by chemotaxis. Under the O₂-sufficient condition, methylotrophs had a competitive advantage in obtaining CH₄-derived carbon, while they might not outcompete denitrifiers in the O₂-limited environment (the O₂ concentration of 10% and O₂/CH₄ ratio of 1.25 with the O₂ concentration lower than the detection limit for half a cycle). Additionally, methanotrophs might participate in incomplete denitrification and produce N₂O. # 4. Discussion The data presented in this study suggested that O₂ level played an important role in regulating the AME-D process. Among the four experimental O₂ levels of 21%,10%, 5% and 2.5% at a CH₄ concentration of 8% (i.e., O₂/CH₄ ratios of 2.62, 1.26, 0.63 and 0.31), the highest NO₃⁻-N removal occurred in the O₁₀ system, followed by the O₂₁ system, while the O₅ and O_{2.5} systems had the lowest NO₃⁻-N removal. This indicated that the nitrate removal in the AME-D system highly depended on the carbon sources generated by CH₄ oxidation that correlated well with O₂ concentrations and O₂/CH₄ ratios. Similarly, Sun et al. (2013) reported that an apparently improved NO₃⁻ removal rate when the O₂/CH₄ ratio ranged from 1.0 to 1.5, due to the suitable O₂ levels for the biomass mixture, by which sufficient organic substrate could be generated from CH₄ oxidation for denitrification in the AME-D system. 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 The relative abundance of the genes involved in bacterial chemotaxis (Bonnie et al., 2006; Bi and Sourjik, 2018) differed significantly between the experimental AME-D systems with the O₂ concentration of 21% and the O₂/CH₄ ratio of 2.62 (where the O₂ concentrations were kept at above 8% within the cycle, referred to as "the O₂sufficient condition") and the O₂ concentration of 10% and the O₂/CH₄ ratio of 1.25 (where the O₂ concentrations were lower the detection limit for half a cycle, referred to as "the O2-limited condition") (Fig. S4). The genes associated with methylotrophs were significantly more abundant under the O₂-sufficient condition, while the genes associated with denitrifiers were significantly more abundant in the O2-limited environment. This might be attributed to the difference in aerotaxis between methylotrophs (most are strongly positively aerotactic) and denitrifiers (usually are attracted by low O₂ concentration (Grishanin and Bibikov, 1997), which resulted in the flow of methane-derived carbon into different heterotrophic species. In the experimental AME-D systems, more
methane-derived carbon flowed into methylotrophs under the O₂-sufficient condition, while more methane-derived carbon was used for denitrification in the O₂-limited environment (Fig. S3). Organic metabolites generated from aerobic CH₄ oxidation including methanol, citrate, acetate, formaldehyde and formate have been reported to be the possible carbon sources for coexisting denitrifiers in the AME-D process (Zhu et al., 2016). In this study, acetate and oxalate were detectable in the AME-D systems. Between 13 and 23 h into a cycle, the oxalate concentration was high in the experimental AME-D systems (Fig. 4b), yet little NO₃⁻ was removed (Fig. 2a). Additionally, NO₃⁻ removal was negligible in the AME-D systems with the addition of exogenous oxalate. This demonstrated that oxalate was unlikely the direct trophic linkage between aerobic methanotrophs and denitrifiers in the AME-D systems. The highest concentration of acetate was observed at 7 h under the O₂-sufficient condition when CH₄ was rapidly consumed, while it occurred at 13 h in the O₂-limited environment when O₂ was consumed (Fig. 4a). This might be attributed to the highly efficient pyrophosphate-mediated glycolytic pathway of aerobic methanotrophs under the O₂-limited condition, which converted less CO₂ but produced more organic compounds, such as formate, acetate and lactate in the environment (Kalyuzhnaya et al., 2013). After O₂ was depleted, acetate was quickly consumed and not detected in the O₂-limited environment at 18 h. Meanwhile, a high NO₃⁻-N removal occurred in the O₂-limited environments. It suggested that acetate was an important trophic linkage between aerobic methanotrophs and denitrifiers in the AME-D system under the O₂-limited condition. Although methanol was not detectable in the AME-D systems (the detection limit was about 200 ng l⁻¹ in this study), the addition of exogenous methanol enhanced the denitrification capacity in the AME-D systems. This suggested that methanol might work as the trophic linkage between aerobic methanotrophs and denitrifiers in the two AME-D systems. Among the possible carbon sources, methanol is considered as a critical intermediate for the cooperative AME-D process performed by the microbial consortium (Zhu et al., 2016). In this study, the wastewater was simulated with NMS medium including phosphate and ethylenediaminetetraacetic acid ferric sodium salt. Aerobic methanotrophs could excrete methanol to adjust their metabolic pathways for survival under specific environments such as phosphate, NaCl and sodium formate (Mehta et al., 1987; Duan et al., 2011; Hur et al., 2017). There was a lag phase in the NO₃ removal efficiency in the O₂₁ system at the O₂ concentration of 21% with the addition of methanol, while it was absent when the O₂ concentration decreased to 10% and ~ 0 . This might be attributed to two causes: 1) some bacteria such as methylotrophs competed with denitrifiers for methanol under the O2-sufficient condition (Veillette et al., 2011); 2) some denitrifiers could use both NO₃⁻ and O₂ as electron acceptors and preferentially utilize O₂ over NO₃⁻ at high O₂ concentrations (Ji et al., 2015). Methylotrophs were observed to dominate in various methanotrophic environments such as lake sediments and landfill cover soils (Hernandez et al., 2015; He et al., 2020). Among the two AME-D systems, a higher relative abundance of methylotrophs was observed in the O_{21} system. Compared with the O_{10} system, Methylophilus were more abundant in the O₂₁ system, which was in agreement with previous studies (Oshkin et al., 2015; Hernandez et al., 2015). Oshkin et al. (2015) observed that Methylophilus was more competitive at higher O₂ concentration of 150 mM and resembled with the organism was not capable of respiratory denitrification and possessed MxaFI type methanol dehydrogenase, while *Methylotenera* dominated at low O₂ concentration of 15 mM, which could potentially denitrify and utilized a more efficient variant of the ribulose monophosphate pathway, likely due to a lack of an MxaFI methanol dehydrogenase (Beck et al., 2014). The occurrence of specific Methylophilaceae types was considered as oxygen-dependent (Hernandez et al., 2015). Methylotrophs such as Methylophilaceae also have been found to dominate in a methanol-denitrifying bioreactor (Osaka et al., 2006). Compared with the O₂₁ system, Methyloversatilis was significantly more abundant in the O₁₀ system. It was plausible that Methyloversatilis can utilize several C1 and multicarbon compounds (Kalyuzhnaya et al., 2006). A similar result was observed by Baytshtok et al. (2008) who showed that 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 Methyloversatilis dominated in methanol and ethanol-fed denitrifying bioreactors. In the top 30 genera, Azoarcus, Thauera, Acidovorax and Dechloromonas were significantly more abundant in the O₁₀ system and have also been reported to dominate in methanol or acetate-fed denitrifying bioreactors (Hallin et al., 2006; Baytshtok et al., 2008; Osaka et al., 2008). These findings further confirmed that methanol and acetate might be the trophic linkage between aerobic CH₄ oxidation and denitrification in the AME-D systems. In addition to denitrifiers, some genes such as nasA, narG, narH, narI, narJ, nirB, nirD, nirK, norB and norC were associated with methanotrophs in the AME-D systems. Many methanotrophs have been reported to encode partial denitrification pathways and have the ability to reduce NO₃⁻ and/or NO₂⁻ to N₂O (Nyerges et al., 2010; Campbell et al., 2011). The methanotrophs having narG, narH, narI, narJ, nirB, nirK, norB and *nor*C were all significantly more abundant in the O_{21} system than in the O_{10} system. This might be attributed to methanotrophs with denitrifying capacity outcompeting other methanotrophs under aerobic conditions. Nyerges et al. (2010) also found that methanotrophs with denitrifying capacity might outcompete other methanotrophs in ecosystems with high nitrogen loading as they have the capacity to withstand NO₃and/or NO₂ stress and may even derive a growth benefit in the presence of both oxygen and nitrite. However, it cannot be ruled out that the high O2 concentration might result in high numbers of methanotrophs with denitrifying capacity in the O₂₁ system. Further investigation is needed to understand the effects of oxygen and NO₃ on the denitrifying activity of methanotrophs. NO₃-N was mainly converted into N₂O-N and sludge-N (mainly biomass-N) in the 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 O_{21} system, while the majority was converted into N_2 -N in the O_{10} system. Compared to the O₂-limited condition, microorganisms grew more quickly under the O₂-sufficient condition and more NO₃⁻-N was converted into biomass-N. Denitrification can proceed under both aerobic and anaerobic conditions. In anaerobic respiratory NO₃⁻ reduction, O₂ is toxic to anaerobic denitrifiers. However, most aerobic denitrifiers, such as *Hyphomicrobium*, *Methylotenera* and *Pseudomonas stutzeri* TR2 can utilize both O₂ and NO₃⁻ or NO₂⁻ as their terminal electron acceptors (Meschner and Hamer, 1985; Kalyuhznaya et al., 2009; Ji et al., 2015). Under aerobic condition, O₂ can inhibit N₂O reductase and result in the production of N₂O, an important greenhouse gas with a global warming potential of 298 times of CO₂, rather than N₂ (Thomson et al., 2012). Under the O₂-limited condition, aerobic denitrifiers might utilize NO₃⁻ or NO₂⁻ as their terminal electron acceptors and convert the majority of NO₃⁻ into N₂. Additionally, aerobic methanotrophs have the capacity for denitrification, but they only reduce NO₃⁻ and/or NO₂⁻ to N₂O (Nyerges et al., 2010; Campbell et al., 2011). Thus, an optimal O₂ concentrations is needed to control the AME-D process to mitigate nitrogen pollution and the emission of greenhouse gases such as CH₄ and N₂O. ## 5. Conclusion O₂ level was an important factor influencing the performance of AME-D process and the microbial communities and metabolic pathways involved. Acetate and methanol could serve as the key compounds trophically linking aerobic methanotrophs to methylotrophs and denitrifiers in the AME-D process. The chemotactic abilities of the bacterial community might influence the trophic link of aerobic methanotrophs to methylotrophs and denitrifiers in the AME-D systems at different O₂ levels. Under the O₂-sufficient condition, methylotrophs dominated the assimilation of CH₄-derived carbon, while more methane-derived carbon was used for denitrification in O₂-limited environments. These findings may help in future efforts to evaluate the distribution and 611 contribution of AME-D and develop strategies for mitigating CH₄ emission and nitrogen pollution in natural and engineered ecosystems. 612 613 **Declaration of competing interest** 614 The authors declare that they have no known competing financial interests or 615 616 personal relationships that could have appeared to influence the work reported in this 617 paper. 618 619 Acknowledgements This work was financially supported by National Natural Science Foundation of 620 China with Grants No. 91851109, 41671245 and 41911530193 and Natural Science 621 Foundation of Zhejiang province with Grant No. LZ20E080002. 622 623 References 624 625 Amaral, J.A., Archambault, C., Richards, S.R., Knowles, R., 1995. Denitrification associated with Groups I and II methanotrophs in a gradient enrichment system, 626 FEMS Microbiol Ecol. 18, 289-298. 627 628 Asnicar, F., Weingart, G., Tickle, T.L, Huttenhower, C., Segata, N., 2015. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. Peer J. 629 DOI: 10.7717/peerj.1029. 630 Audic, S., Claverie, J.M., 1997. The significance of digital gene expression profiles. 631 Genome Res. 7, 986-995. 632 Baytshtok, V., Kim, S., Yu, R., Park, H.,
Chandran, K., 2008. Molecular and biokinetic 633 characterization of methylotrophic denitrification using nitrate and nitrite as 634 terminal electron acceptors. Water Sci. Technol. 58, 359-365. 635 - Beck, D.A.C., McTaggart, T.L., Setboonsarng, U., Vorobev, A, Kalyuzhnaya, M.G., - 637 Ivanova, N., Goodwin, L., Woyke, T., Lidstrom, M.E., Chistoserdova, L., 2014. The - expanded diversity of *Methylophilaceae* from Lake Washington through cultivation - and genomic sequencing of novel ecotypes. PLoS One 9. DOI: - 640 10.1371/journal.pone.0102458. - Bi, S., Sourjik, V., 2018. Stimulus sensing and signal processing in bacterial chemotaxis. - 642 Curr Opin Microbiol. 45, 22-29. - Bishoff, D., AlSayed, A., Fergala, A., Eldyasti, A., 2021. Redirecting methane for a - novel biological nitrogen removal process using methanotrophic mixed culture in a - sequential batch reactor. Chem. Eng. J. 404. DOI:10.1016/j.cej.2020.126487. - Bodelier, P.L., Meimafranke, M., Hordijk, C.A., Steenbergh, A.K., Hefting, M.M., - Bodrossy, L., 2013. Microbial minorities modulate methane consumption through - niche partitioning. ISME J. 7, 2214-2228. - Bonnie, B., Stephens, B.B., Loar, S.N., Alexandre, G., 2006. Role of CheB and CheR - 650 in the complex chemotactic and aerotactic pathway of Azospirillum brasilense. J - 651 Bacteriol. 188, 4759-4768. - 652 Campbell, M.A., Nyerges, G., Kozlowski, J.A., Poret-Peterson, A.T., Stein, L.Y., Klotz, - M.G., 2011. Model of the molecular basis for hydroxylamine oxidation and nitrous - oxide production in methanotrophic bacteria. FEMS Microbiol. Lett. 322, 82-89. - 655 Chistoserdova, L., Vorholt, J.A., Lidstrom, M.E., 2005. A genomic view of methane - oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6, - DOI: 10.1186/gb-2005-6-2-208. - 658 Chu, Y.X., Ma, R.C., Wang, J., Zhu, J.T., Kang, Y.R., He, R., 2020. Effects of oxygen - tension on the microbial community and functional gene expression of aerobic - methane oxidation coupled to denitrification systems. Environ. Sci. Pollut. Res. - DOI:10.1007/s11356-020-07767-8. - Deutzmann, J.S., Stief, P., Brandes, J., Schink, B., 2014. Anaerobic methane oxidation - coupled to denitrification is the dominant methane sink in a deep lake. Proc. Nat. - 664 Acad. Sci. 111, 18273-18278. - Duan, C.H., Luo, M.F., Xing, X.H., 2011. High-rate conversion of methane to methanol - by *Methylosinus trichosporium* OB3b. Bioresource Technol. 102, 7349-7353. - Ettwig, K.F., van Alen, T., van de Pas-Schoonen, K.T., Jetten, M.S.M., Strous, M., 2009. - Enrichment and molecular detection of denitrifying methanotrophic bacteria of the - NC10 phylum. Appl. Environ. Microb. 75, 3656-3662. - 670 Francis, O.E., Bendall, M., Manimaran, S., Hong, C.J., Clement, N.L., Castro-Nallar, - E., Snell, Q., Schaalje, G.B., Clement, M.J., Crandall, K.A., Johnson, W.E., 2013. - Pathoscope: Species identification and strain attribution with unassembled - sequencing data. Genome Res. 23, 1721-1729. - 674 Grishanin, R.N., Bibikov, S.I., 1997. Mechanisms of oxygen taxis in bacteria. Biosci. - 675 Rep. 17, 77-83. - 676 Guo, J.H., Peng, Y.Z., Fan, L., Zhang, L., Ni, B.J., Kartal, B., Feng, X., Jetten, M.S.M., - Yuan, Z.G., 2016. Metagenomic analysis of anammox communities in three different - 678 microbial aggregates. Appl. Environ. Microb. 18, 2979-2993. - Hallin, S., Throback, I.N., Dicksved, J., Pell, M., 2006. Metabolic profiles and genetic - diversity of denitrifying communities in activated sludge after addition of methanol - or ethanol. Appl. Environ. Microbiol. 72, 5445-5452. - He, R., Chen, M., Ma, R.C., Su, Y., Zhang, X., 2017. Ammonium conversion and its - feedback effect on methane oxidation of *Methylosinus sporium*. J. Biosci. Bioeng. - 684 123, 466-473. - 685 He, R., Su, Y., Leewis, M.C., Chu, Y.X., Wang, J., Ma, R.C., Wu, D., Zhang, L.T., - Herriott, I.C., Leigh, M.B., 2020. Low O₂ level enhances CH₄-derived carbon flow - into microbial communities in landfill cover soils. Environ. Pollut. 258. - DOI:10.1016/j.envpol.2019.113676. - He, R., Wooller. M.J., Pohlman. J.W., Quensen. J., Tiedje. J.M., Leigh. M.B., 2012. - Diversity of active aerobic methanotrophs along depth profiles of arctic and - subarctic lake water column and sediments. ISME J. 6, 1937-1948. - 692 He, Z.F., Wang, J.Q., Hu, J.J., Zhang, H., Cai, C.Y., Shen, J.X., Xu, X.H., Zheng, P., - 693 Hu, B.L., 2016. Improved PCR primers to amplify 16S rRNA genes from NC10 - bacteria. Appl. Microbiol. Biot. 100, 5099-5108. - Hernandez, M.E., Beck, D.A.C., Lidstrom, M.E., Chistoserdova, L., 2015. Oxygen - availability is a major factor in determining the composition of microbial - communities involved in methane oxidation. Peer J. DOI:10.7717/peerj.801. - Hur, D.H., Nguyen, T.T., Kim, D., Lee, E.Y., 2017. Selective bio-oxidation of propane - to acetone using methane-oxidizing *Methylomonas* sp DH-1. J. Ind. Microbiol. Biot. - 700 44, 1097-1105. - 701 IPCC, 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of - Working Group III to the Fifth Assessment Report of the Intergovernmental Panel - on Climate Change. Cambridge University Press, Cambridge, United Kingdom. - 704 Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H.Y., Zhou, J., Zhang, H.N., 2015. Aerobic - denitrification: A review of important advances of the last 30 years. Biotechnol. - 706 Bioproc. E. 20, 643-651. - Kalyuhznaya, M.G., Martens-Habbena, W., Wang, T.S., Hackett, M., Stolyar, S.M., - 708 Stahl, D.A., Lidstrom, M.E., Chistoserdova, L., 2009. Methylophilaceae link - 709 methanol oxidation to denitrification in freshwater lake sediment as suggested by - stable isotope probing and pure culture analysis. Environ. Microbiol. Rep. 1, 385- - 711 392. - Kalyuzhnaya, M.G., De Marco, P., Bowerman, S., Pacheco, C.C., Lara, J.C., Lidstrom, - M.E., Chistoserdova, L., 2006. Methyloversatilis universalis gen. nov. sp. nov. a - novel taxon within the Betaproteobacteria represented by three methylotrophic - 715 isolates. Int. J. Syst. Evol. Micr. 56, 2517-2522. - Kalyuzhnaya, M.G., Yang, S., Rozova, O.N., Smalley, N.E., Clubb, J., Lamb, A., - Gowda, G.A.N., Raftery, D., Fu, Y., Bringel, F., 2013. Highly efficient methane - biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4: 1-7. - 719 Kits, K.D., Klotz, M.G., Stein, L.Y., 2015. Methane oxidation coupled to nitrate - 720 reduction under hypoxia by the Gammaproteobacterium Methylomonas - *denitrificans* sp. Nov. type strain FJG1. Environ. Microbiol. 17, 3219-3232. - Lee, D.Y., Ramos, A., Macomber, L., Shapleigh, J.P., 2002. Taxis response of various - denitrifying bacteria to nitrate and nitrite. Appl. Environ. Microbiol. 68, 2140-2147. - Lopes, F., Viollier, E., Thiam, A., Michard, G., Abril, G., Groleau, A., Prévot, F., - Carrias, J.F., Albéric, P., Jézéquel, D., 2011. Biogeochemical modelling of - anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, - 727 France). Appl. Geochemistry 26, 1919-1932. - 728 Luo, R.B., Liu, B.H., Xie, Y.L., Li, Z.Y., Huang, W.H., Yuan, J.Y., He, G.Z., Chen, Y.X., - Pan, Q., Liu, Y.J., Tang, J.B., Wu, G.X., Zhang, H., Shi, Y.J., Liu, Y., Yu, C., Wang, - 730 B., Lu, Y., Han, C.L., Cheung, D.W., Yiu, S.M., Peng, S.L., Zhu, X.Q., Liu, G.M., - T31 Liao, X.K., Li, Y.R., Yang, H.M., Wang, J., Lam, T.W., Wang, J., 2012. - SOAPdenovo2: an empirically improved memory-efficient short-read de novo - 733 assembler. GigaScience DOI: 10.1186/2047-217X-1-18. - Mehta, P.K., Mishra, S., Ghose, T.K., 1987. Methanol accumulation by resting cells of - 735 *Methylosinus trichosporium* .1. J. Gen. Appl. Microbiol. 33, 221-229. - 736 Meschner, K.L., Hamer, G., 1985. Denitrification by methanotrophic/metylotrophic - bacterial associations in aquatic environments. In: Golterman, H.L. (Ed.), - Denitrification in the Nitrogen Cycle. Plenum Press, New York, pp. 257-271. - Miyahara, M., Kim, S.W., Fushinobu, S., Takaki, K., Yamada, T., Watanabe, A., - Miyauchi, K., Endo, G., Wakagi, T., Shoun, H., 2010. Potential of aerobic - denitrification by *Pseudomonas stutzeri* TR2 to reduce nitrous oxide emissions from - wastewater treatment plants. Appl. Environ. Microbiol. 76, 4619-4625. - 743 Modin, O., Fukushi, K., Nakajima, F., Yamamoto, K., 2010. Aerobic methane oxidation - coupled to denitrification: kinetics and effect of oxygen supply. J. Enoviron. Eng- - 745 ASCE. 136, 211-219. - Modin, O., Fukushi, K., Yamamoto, K., 2007. Denitrification with methane as external - 747 carbon source. Water Res. 41, 2726-2738. - Modin, Oskar., 2018. A mathematical model of aerobic methane oxidation coupled to - denitrification. Environ. Technol. 39, 1217-1225. - Muriel, C., Jalvo, B., Redondo-Nieto, M., Rivilla, R., Martín, M., 2015. Chemotactic - motility of *Pseudomonas fluorescens* F113 under aerobic and denitrification - conditions. PLoS ONE. DOI:10.1371/journal.pone.0132242. - 753 Nyerges, G., Han, S.K., Stein, L.Y., 2010. Effects of ammonium and nitrite on growth - and competitive fitness of cultivated methanotrophic Bacteria. Appl. Environ. - 755 Microbiol. 76, 5648-5651. - Osaka, T., Shirotani, K., Yoshie, S., Yoshie, S., Tsuneda, S., 2008. Effects of carbon - source on denitrification efficiency and microbial community structure in a saline - wastewater treatment process. Water Res. 42, 3709-3718. - Osaka, T., Yoshie, S., Tsuneda, S., Hirata, A., Iwami, N., Inamori, Y., 2006. - 760 Identification of acetate-or methanol-assimilating bacteria under nitrate-reducing - conditions by stable-isotope probing. Microbial Ecol. 52, 253-266. - Oshkin, I.Y., Beck, D.A.C., Lamb, A.E., Tchesnokova, V., Benuska, G., McTaggart, - T.L., Kalyuzhnaya, M.G., Dedysh, S.N., Lidstrom, M.E., Chistoserdova, L., 2015. - Methane-fed microbial microcosms show differential community dynamics and - pinpoint taxa involved in communal response. ISME J. 9, 1119-1129. - Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., - 767 Schwikowski, B., Ideker, T., 2003.
Cytoscape: a software environment for integrated - models of biomolecular interaction networks. Genome Res. 13, 2498-2504. - 769 Semrau, J.D., Dispirito, A.A., Yoon, S., 2010. Methanotrophs and copper. FEMS - 770 Microbiol. Rev. 34, 496-531. - Stein, L.Y., Klotz, M.G., 2011. Nitrifying and denitrifying pathways of methanotrophic - bacteria. Biochem. Soc. T. 39, 1826-1831. - Stock, M., Hoefman, S., Kerckhof, F.M., Boon, N., De Vos, P., De Baets, B., Heylen, - K., Waegeman, W., 2013. Exploration and prediction of interactions between - methanotrophs and heterotrophs. Res. Microbiol. 164, 1045-1054. - 776 Sun, F.Y., Dong, W.Y., Shao, M.F., Lv, X.M., Li, J., Peng, L.Y., Wang, H.J., 2013. - 777 Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: - 778 Treatment performance and the effect of oxygen ventilation. Bioresource Technol. - 779 145, 2-9. - 780 Thalasso, F., Vallecillo, A., Garcia-Encina, P., Fdz-Polanco, F., 1997. The use of - methane as a sole carbon source for wastewater denitrification. Water Res. 31, 55- - 782 60. - 783 Thomson, A.J., Giannopoulos, G., Pretty, J., Baggs, E.M., Richardson, D.J., 2012. - 784 Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. - 785 Philos. T. R. Soc. B. 367, 1157-1168. - 786 Veillette, M., Viens, P., Ramirez, A.A., Brzezinski, R., Heitz, M., 2011. Effect of - ammonium concentration on microbial population and performance of a biofilter - treating air polluted with methane. Chem. Eng. J. 171, 1114-1123. - Vorobev, A.V., Baani, M., Doronina, N.V., Brady, A.L., Liesack, W., Dunfield, P.F., - 790 2011. Methyloferula stellata gen. nov. sp. nov. an acidophilic, obligately - methanotrophic bacterium that possesses only a soluble methane monooxygenase. - 792 Int. J. Syst. Evol. Microbiol. 61, 2456-2463. - Wang, J., Xia, F.F., Bai, Y., Fang, C.R., Shen, D.S., He, R., 2011. Methane oxidation in - landfill waste biocover soil: kinetics and sensitivity to ambient conditions. Waste - 795 Manage. 31, 864-870. - Wei, X.M., Su, Y., Zhang, H.T., Chen, M., He, R., 2015. Responses of methanotrophic - activity, community and EPS production to CH₄ and O₂ concentrations in waste - biocover soils. Waste Manage. 42, 118-127. - 799 You, M., 2013. A heterozygous moth genome provides insights into herbivory and - detoxification. Nat Genet. 45, 220-225. - 801 Zhu, J., Wang, Q., Yuan, M.D., Tan, G.Y., Sun, F.Q., Wang, C., Wu, W.X., Lee, P.H., - 2016. Microbiology and potential applications of aerobic methane oxidation coupled - to denitrification (AME-D) process: A review. Water Res. 90, 203-215. - 804 Zhu, W., Lomsadze, A., Borodovsky, M., 2010. Ab initio gene identification in - metagenomic sequences. Nucleic Acids Res. 38, DOI: 10.1093/nar/gkg275. - Zong, Y.T., Xiao, Q., Lu, S.G., 2018. Morphology, molecular structure, and stable - carbon isotopic composition of black carbon (BC) in urban topsoils. Environ. Sci. - 808 Pollut. R. 25, 3301-3312. - 809 Zumft, W.G., 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. - Biol. R. 61, 533-616. # Graphical abstract # Highlights - ➤ Methanol and acetate serve as trophic linkage between denitrifiers and methanotrophs in AME-D - > O₂ concentrations influence the microbial community and contribution of AME-D - ➤ Methylotrophs and denitrifiers dominate in O₂-sufficient and O₂-limited environment, respectively - Bacterial chemotaxis affects the competition of denitrifiers and methylotrophs in AME-D - 1 Stable-isotopic and metagenomic analyses reveal metabolic and - 2 microbial link of aerobic methane oxidation coupled to - 3 denitrification at different O₂ levels - 5 Ruo-Chan Ma^{1,2}, Yi-Xuan Chu², Jing Wang², Cheng Wang², Mary Beth Leigh³, Yin - 6 Chen⁴, Ruo He^{1,2*} 4 7 - 8 ¹Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, - 9 School of Environmental Science and Engineering, Zhejiang Gongshang University, - 10 Hangzhou, 310012, China - ²Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, - 12 China 15 - ³Institute of Arctic Biology, University of Alaska Fairbanks, Alaska 99775, USA - ⁴School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom - * Correspondence: heruo@zju.edu.cn (R. He). | 17 | Abstract: Aerobic methane (CH ₄) oxidation coupled to denitrification (AME-D) can | |----|---| | 18 | not only mitigate CH ₄ emission into the atmosphere, but also potentially alleviate | | 19 | nitrogen pollution in surface waters and engineered ecosystems, and it has attracted | | 20 | substantial research interest. O2 concentration plays a key role in AME-D, yet little is | | 21 | understood about how it impacts microbial interactions. Here, we applied isotopically | | 22 | labeled K ¹⁵ NO ₃ and ¹³ CH ₄ and metagenomic analyses to investigate the metabolic and | | 23 | microbial link of AME-D at different O2 levels. Among the four experimental O2 levels | | 24 | of 21%,10%, 5% and 2.5% and a CH ₄ concentration of 8% (i.e., the O ₂ /CH ₄ ratios of | | 25 | 2.62, 1.26, 0.63 and 0.31), the highest NO ₃ ⁻ -N removal occurred in the AME-D system | | 26 | incubated at the O2 concentration of 10%. Methanol and acetate may serve as the | | 27 | trophic linkage between aerobic methanotrophs and denitrifers in the AME-D systems. | | 28 | Methylotrophs including Methylophilus, Methylovorus, Methyloversatilis and | | 29 | Methylotenera were abundant under the O2-sufficient condition with the O2 | | 30 | concentration of 21%, while denitrifiers such as Azoarcus, Thauera and Thiobacillus | | 31 | dominated in the O ₂ -limited environment with the O ₂ concentration of 10%. The | | 32 | competition of denitrifiers and methylotrophs in the AME-D system for CH ₄ -derived | | 33 | carbon, such as methanol and acetate, might be influenced by chemotactic responses. | | 34 | More methane-derived carbon flowed into methylotrophs under the O2-sufficient | | 35 | condition, while more methane-derived carbon was used for denitrification in the O ₂ - | | 36 | limited environment. These findings can aid in evaluating the distribution and | | 37 | contribution of AME-D and in developing strategies for mitigating CH ₄ emission and | | 38 | nitrogen pollution in natural and engineered ecosystems. | 39 40 - **Keywords**: Aerobic CH₄ oxidation coupled to denitrification; aerobic methanotrophs; - denitrifers; O₂ concentration; metagenomic analyses #### 1. Introduction 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 Methane (CH₄) is a globally important greenhouse gas due to its global warming potential being approximately 28 times of CO₂ (IPCC, 2014). In the past 300 years, the average CH₄ concentration in the atmosphere increase at an average rate of 0.6%-0.8% per year (Chistoserdova et al., 2005). Microbial CH₄ oxidation is critical to reduce CH₄ emissions and can be achieved through a variety of physiological processes, including aerobic CH₄ oxidation coupled to denitrification (AME-D) (Modin et al., 2007; Sun et al., 2013; Kits et al., 2015). Since AME-D can not only mitigate CH₄ emission into the atmosphere, but also potentially alleviate nitrogen pollution in surface waters and engineered ecosystems such as wastewater treatment plants and landfills, it has attracted substantial research interest (Modin et al., 2010; Zhu et al., 2016). The AME-D process is mainly considered that the release of organic compounds from aerobic CH₄ oxidation can provide electron donors for coexisting denitrifiers and indirectly participate in denitrification (Modin et al, 2007). AME-D process is mainly performed by two microbial guilds working in concert: aerobic methanotrophs and denitrifiers. Aerobic methanotrophs are generally members of the Proteobacteria and can be divided into two groups: type I (belonging to the family Methylococcaceae in γ -Proteobacteria) and type II methanotrophs (including the genera Methylocella, Methylosinus, Methylocystis, Methylocapsa and Methyloferula, which belong to α-Proteobacteria), based on cell morphology, phylogeny, ultra-structure, and metabolic pathways (Vorobev et al., 2011; Bodelier et al., 2013; Deutzmann et al., 2014). Denitrifiers are widely distributed phylogenetically and most are facultative anaerobes using ionic and gaseous nitrogen oxides as electron accepters in absence of O₂ (Zumft, 1997). Aerobic denitrifiers, such as Hyphomicrobium and Methylotenera have been reported to utilize both O₂ and NO₃-/NO₂- as their terminal electron acceptors 67 (Meschner and Hamer, 1985; Kalyuhznaya et al., 2009). Aerobic denitrifiers usually preferentially utilize O₂ over NO₃⁻/NO₂⁻ as electron acceptors under aerobic condition 68 (Ji et al., 2015). However, some aerobic denitrifiers such as *Pseudomonas stutzeri* TR2 69 can reduce NO₃-/NO₂- to produce N₂ and a very low level of N₂O at a DO concentration 70 of 1.25 mg l⁻¹ (Miyahara et al., 2010). Some aerobic methanotrophs also have been 71 72 reported to encode partial denitrification pathways and can simultaneously reduce NO₃ /NO₂ to N₂O via NO₃, NO₂, and NO reductases during CH₄ oxidation (Nyerges et al., 73 2010; Campbell et al., 2011; Stein and Klotz, 2011). Additionally, methanotrophs can 74 also contribute to denitrification by nitrogen assimilation (Amaral et al., 1995; Bishoff 75 et al., 2021). 76 Many factors can affect the activity of aerobic methanotrophs and denitrifiers in 77 the AME-D process such as temperature, CH₄ and O₂ concentrations, O₂/CH₄ ratio and 78 nutrients (Semrau et al., 2010; Zhu et al., 2016). Among them, the availability of O₂ as 79 a substrate for aerobic CH₄ oxidation is a key factor influencing the AME-D process. 80 An O₂ concentration of 5% has been observed to be enough to sustain the activity of 81 methanotrophs and increasing O2 concentrations do not influence
CH4 oxidation of 82 landfill cover soil (Wang et al., 2011). As the O₂ concentration is less than the saturated 83 84 value, an increased O2 level can lead to increased CH4 oxidation, and thus may result in more organic compounds released for denitrifiers and improvement of NO₃ removal 85 (Sun et al., 2013). When CH₄ is supplied in stoichiometric excess and methanotrophs 86 87 are sufficiently abundant, they can consume nearly all of the supplied O₂. High aerobic CH₄ oxidation mainly occurs in the hypoxic zone in the presence of a high CH₄ 88 concentration in natural systems such as lakes and wetlands, due to the opposite 89 direction of CH₄ and O₂ diffusion gradients (Lopes et al., 2011; He et al., 2012). O₂ is 90 also a known inhibitor for most denitrifiers. Additionally, O₂ has been reported to be an 91 inhibitor for the chemotaxis of some denitrifiers such as *Rhodobacter sphaeroides* 2.4.1, Rhodopseudomonas palustri, and Pseudomonas fluorescens F113 towards NO₃⁻-N/NO₂⁻-N (Lee et al., 2002; Muriel et al., 2015). However, O₂ is a requirement for the AME-D process (Sun et al., 2013; Modin et al., 2018). If O₂ is supplied in stoichiometric excess, the dissolved oxygen (DO) concentration increases and denitrification is inhibited (Thalasso et al., 1997; Modin et al., 2007). Although NO₃⁻ removal has been reported to increase at higher O₂ partial pressures due to the rapid growth of microorganisms such as methanotrophs for assimilating NO₃⁻-N into biomass (Bishoff et al., 2021), a high NO₃⁻ removal attributed to denitrification is usually observed at lower O₂ partial pressures (Thalasso et al., 1997). Thus, an optimal O₂ concentration is required to improve the performance of AME-D process. O₂ concentrations can also influence the secretion of metabolites critical to AME-D by aerobic methanotrophs during CH₄ oxidation. Generally, CH₄-derived carbon is converted into CO₂ and biomass under O₂-sufficient conditions, while more CH₄-derived carbon can be secreted into the environment in O₂-limited conditions (Wei et al., 2015; He et al., 2020). Aerobic methanotrophs can assimilate CH₄ with a highly efficient pyrophosphate-mediated glycolytic pathway and produce organic compounds, such as formate, acetate and lactate under O₂-limited conditions (5%) (Kalyuzhnaya et al., 2013). In the AME-D process, the organic compounds secreted by aerobic methanotrophs can work as carbon sources not only for denitrifiers, but also for other heterotrophic microorganisms such as methylotrophs in the community (Stock et al., 2013; Oshkin et al., 2015). Competition for organic compounds might occur between denitrifiers and other heterotrophic bacteria, which may influence the NO₃-/NO₂-removal in the AME-D process. However, little information is available about microbial interactions among methanotrophs, denitrifiers, and other heterotrophic bacteria in the AME-D process. In this study, we applied isotopically labeled K¹⁵NO₃ and ¹³CH₄ and metagenomics analyses to investigate the metabolic linkage between aerobic CH₄ oxidation and denitrification at different O₂ concentrations. We analyzed metabolites generated and also experimentally added exogenous carbon sources including methanol, citrate, acetate, formaldehyde and formate to identify putative CH₄-derived carbon sources for denitrifiers in the AME-D systems. With isotopic and metagenomic analyses, we identified the main microorganisms and functional genes predominantly involved in CH₄ oxidation, denitrification and chemotaxis in the AME-D systems at different O₂ levels. #### 2. Materials and methods #### 2.1. Experimental set-up and operation The inoculum was prepared by mixing landfill cover soil, waste biocover soil, stabilized waste from a laboratory landfill reactor, and activated sludge (Chu et al., 2020) and transferred into 1000-ml bottles and incubated at a shaker without the addition of carbon and nitrogen sources for 7 days as described previously (Chu et al., 2020). After that, simulated NO₃⁻ wastewater prepared with the nitrate mineral salts (NMS) medium with the NO₃⁻-N concentration of about 30 mgN l⁻¹ was added into the bottle, which was then sealed and flushed with high purity N₂ (99.999%) (Chu et al., 2020). The NMS medium composition was as follows (g l⁻¹): KNO₃, 0.216; MgSO₄·7H₂O, 1; CaCl₂·2H₂O, 0.2; FeEDTA, 0.0038; FeSO₄·7H₂O, 0.0005; Na₂MoO₄, 0.00026; CuSO₄·5H₂O, 0.0002; ZnSO₄·7H₂O, 0.0004; EDTA disodium salt, 0.00025; H₃BO₃, 0.000015; CoCl₂·6H₂O, 0.00005; MnCl₂·4H₂O, 0.00002; NiCl₂·6H₂O, 0.00001; Na₂HPO₄·12H₂O, 0.716; KH₂PO₄, 0.26. Four O₂ levels (i.e., 21%, 10%, 5%, 2.5%(v/v)) that represented the aerobic to anoxic environment were selected for operational conditions. According to the inoculum quantity and activity, a CH₄ concentration of 8% (v/v) was used. After a certain amount of gas was taken from the bottle, CH₄ and O₂ were injected into the bottles to establish a CH₄ concentration of 8% (v/v) and O₂ concentrations of 21%, 10%, 5%, 2.5%(v/v) with the O₂/CH₄ ratios of 2.62, 1.26, 0.63 and 0.31 in triplicate for each treatment, and identified hereafter as O₂₁, O₁₀, O₅ and O_{2.5}, respectively. All bottles were incubated in a shaker at 130 rpm and 30 °C and operated as a sequencing batch reactor with a hydraulic retention time of 64 h (Chu et al., 2020). CH₄ and O₂ were replenished into the bottle to the initial concentrations at each 24 h-cycle. The experiment lasted for 178 d. Granular sludge was formed at the end of the experiment. At the end of the cycle, gas samples in the headspace of the bottles and the effluent samples were collected periodically to analyze the concentrations of CH₄ and NO₃-N as described previously (He et al., 2017). # 2.2. Quantification of ¹³C and ¹⁵N in the AME-D systems In order to investigate the fate of CH₄-C and NO₃⁻-N in the AME-D systems, isotopically labeled K¹⁵NO₃ and ¹³CH₄ were applied and the amount of ¹³C and ¹⁵N in the gas, solid (i.e., sludge) and liquid phases was quantified. Approximately 0.1 g (dry weight) of granular sludge from the O₂₁ and O₁₀ systems was used for the test. The sludge was transferred into 80-ml serum bottles with 24 replicates created per treatment (O₂₁ and O₁₀). In order to avoid the interference of other impurities in the liquid phase, the sludge was washed with the NMS medium (without NO₃⁻-N) twice. Then, 20 ml NMS medium with the ¹³NO₃⁻-N concentration of 30 mgN l⁻¹ (KNO₃, 99% of ¹⁵N) was added to the serum bottles. After mixing, 1-ml water sample was withdrawn from each bottle to measure the initial NO₃⁻-N concentration. Then the serum bottles were flushed with high purity N₂ (99.999%) at a flow rate of 200 ml min⁻¹ for 5 min, and then sealed with a butyl rubber stopper. After extracting a certain amount of gas from the headspace of the serum bottles, O₂ was injected to achieve the O₂ concentrations of 21% and 10% (v/v), respectively. ¹³CH₄ (99% of ¹³C, Cambridge Isotope Laboratories, Inc., United States) was injected to a concentration of 8% (v/v). The serum bottles were incubated on a shaker at 30 °C and 130 rpm. Three serum bottles were randomly selected to measure the concentrations of $^{13}\text{CH}_4$, $^{13}\text{CO}_2$, $^{15}\text{N}_2$ and $^{15}\text{N}_2\text{O}$ at periodic intervals within a 24-h cycle using a gas chromatograph-mass spectrometer (Agilent 7890B inert 5977A MSD, Agilent, United States) as described previously (Ettwig et al., 2009). The O_2 concentration was detected as described by Wang et al. (2011). The total amount of $^{15}\text{N}_2\text{O}$ and $^{13}\text{CO}_2$ (including in the headspace of the serum bottles and liquid) produced in the AME-D systems was calculated as described by He et al. (2016) and standard curves of $N_2\text{O}$ and CO_2 concentrations in the headspace of bottles with NMS medium and the same test conditions. After detecting the concentrations of ¹³C and ¹⁵N compounds in the headspace, the three serum bottles were destructively harvested to collect the water and sludge samples. After centrifugation at 10,000 rpm for 5 min, an aliquot of the supernatant was used to detect the NO₃⁻-N concentrations. Another portion of supernatant was dried using a rotary evaporator (Eyela N-1200AS-W, Tokyo Kikakikai Co., Ltd., Japan) at 60 °C, and dissolved with acetone and then freeze-dried to detect the concentrations of ¹³C and ¹⁵N in the water samples. The remaining precipitate and sludge sample was mixed and freeze-dried. After grinding and sieving through 0.15 mm-mesh, approximately 1 g of the frozen dried sample was used to detect the contents of ¹³C and ¹⁵N with an Elementar Vario MICRO cube elemental analyzer coupled to the GV Isoprime 100 isotope ratio mass spectrometer (GV Instruments, UK) as described previously (Zong et al., 2018). ## 2.3. Analysis of intermediate metabolites of AME-D systems Approximately 0.1 g (dry weight) of granular sludge from the O_{21} and O_{10} systems was added into the 80-ml serum bottles and incubated on a shaker as described above in section 2.2. Three serum bottles were randomly sampled for water analyses. After passing through a 0.45 μ m filter, the water sample was added with barium chloride to precipitate sulfate, and then was centrifuged at 8000 rpm for 2 min. The supernatant was sequentially filtered through a 0.22 μ m filter and an IC-Ag column, and then was analyzed for organic metabolites generated from aerobic CH₄ oxidation using a thermoelectric AQUION ion chromatograph equipped with a AS11-HC protection column (4 μ m \times 5 cm) and a AS11-HC analysis column (4 μ m \times 25 cm). KOH was used as the eluent at the flow rate of 1ml min⁻¹. The gradient run of the eluent was as follows: 0-5 min, 5 mM; 5-20 min, 5-30 mM; 20-23 min, 30 mM; 23-31 min, 5 mM. Detection was performed using a suppressed conductivity detector. The column temperature was 30°C. ## 2.4. Batch test of CH₄ oxidation and denitrification kinetics ### (1) CH₄ oxidation Approximately 0.1 g (dry weight)
of granular sludge from the O_{21} and O_{10} systems was added into 80-ml serum bottles containing 20 ml NMS medium with the NO_3 ⁻-N concentration of 30 mgN l⁻¹ (the determined NO_3 ⁻-N concentration of 29.1-30.5 mgN l⁻¹ 1 in the bottles), and then sealed with butyl rubber stoppers (prepared as described above in section 2.2). After extracting a certain amount of gas from the headspace of the serum bottles, O_{2} and CH_{4} were injected to obtain O_{2} concentrations of 21% and 10% (v/v), and CH_{4} concentrations of 1%, 2%, 4%, 8%, 10%, 15%, 20% and 30% (v/v). ### (2) Denitrification Approximately 0.1 g (dry weight) of granular sludge from the O_{21} and O_{10} systems was added into 80-ml serum bottles as described above and washed with NMS medium with the NO_3 -N concentrations of 3, 8, 10, 15, 30, 40, 50 and 80 mgN l⁻¹, respectively, twice to avoid the interference of other impurities in the liquid phase. Then, 20 ml NMS with the NO_3 -N concentrations of 3, 8, 10, 15, 30, 40, 50 or 80 mgN l⁻¹ was added the serum bottles containing granular sludge samples previously washed with the medium having corresponding NO_3 -N concentrations. The serum bottles were sealed and injected with O_2 and CH_4 to obtain the O_2 concentrations of 21% or 10% and the CH_4 concentration of 8%. Sterilized sludge was used as control for each treatment. All treatments were performed in triplicate. The serum bottles were incubated at 30 °C and 130 rpm for 0.5-3 h. Gas and liquid samples were withdrawn to detect the concentrations of CH₄ and NO₃-N at the beginning and the end of incubation. The CH₄ oxidation activity and NO₃-N removal rate was calculated by a zero-order decrease (Wang et al., 2011) and expressed as milligram per gram volatile solid per hour (mg gVS⁻¹ h⁻¹). The differences in the CH₄ oxidation activity and NO₃-N removal rate of the sludge samples from the O₂₁ and O₁₀ systems were analyzed by ANOVA (one-way analysis of variance) using SPSS 19.0 software. ### 2.5. Exogenous carbon sources test Approximately 0.1 g (dry weight) of granular sludge from the O₂₁ and O₁₀ systems was added into 80-ml serum bottles containing 20 ml NMS medium with the NO₃⁻-N concentration of 30 mgN l⁻¹ and a series of concentrations between 10 and 500 mg l⁻¹ of sodium acetate, methanol, sodium citrate, sodium formate and formaldehyde in triplicate and incubation as described above in section 2.2. These metabolite concentrations were selected based on the hypotheses that the conversion rate of methane-to-methanol was 64% (Duan et al., 2011). Liquid samples were withdrawn to detect the NO₃⁻-N concentration at the beginning and the end of incubation, and then the NO₃⁻-N removal rate was calculated. ### 2.6. Metagenomic analyses Sludge samples were taken from the O₂₁ and O₁₀ systems at the end of the experiment. Genomic DNA was extracted from the samples using E.Z.N.A.TM Soil DNA Kit (Omega Bio-Tek, Inc., Norcross, USA), verified using gel electrophoresis, and quantified using a Qubit Fluorometer (Thermo, USA). Shotgun metagenomic analysis was conducted by BGI (Shenzhen, China). Specifically, after fragmentation, paired-end fragment library with the insert size of 350 bp was constructed. Adaptorappended fragments were sequenced on Illumina HiSeq 4000 platform. Reads were excluded from further analysis if they had 10% or more ambiguous bases, contained 15 bp or more overlapping regions with adapter sequences, had 40% or more low quality (Q<20) bases. Qualified sequencing data that produced by Illumina platform were preprocessed and then assembled *de novo* with SOAP denovo2 (Luo et al., 2012) and Rabbit (You et al., 2013). MetaGeneMark (version 2.10, default parameters) was used to predict open reading frames based on assembly results (Zhu et al., 2010; Guo et al., 2016). Genes | from different samples were combined together and clustered using CD-HIT. CD-HIT | |---| | (version 4.6.1) was used to remove redundant sequences (sequence identity threshold | | 95% and alignment coverage threshold 90%) and to determine gene abundance and | | statistics among the samples (Guo et al., 2016). | The gene catalogs were blasted against public databases including nr, Swiss-Prot, COG, KEGG, GO and eggNOG with an e-value cutoff of 10⁻⁵ (Guo et al., 2016). Reads mapping to multiple genes were then reassigned to a gene using Pathoscope v1.0 (Francis et al., 2013), which used a Bayesian framework to examine each read's sequence and mapping quality within the context of a global reassignment. The gene abundance of each sample was calculated. Taxonomic classification of nr BLAST output files was assigned to NCBI taxonomies with MEGAN (version 5.3) by using the lowest common ancestor algorithm. After that, we summed the relative abundance of each taxonomy level from the same taxonomy. Significance analysis of gene abundance was performed as described by Audic and Claverie (1997). The taxonomic affiliation of the genes was estimated the correlation of their abundances between the O₂₁ and O₁₀ systems with ccrepe (version 1.7.0). The species network of the top 300 correlation coefficient was visualized by Cytoscape 3.4.0 (Shannon et al., 2003). The phylogenies and relative abundance of the top 500 taxonomically assigned species were constructed using GraphlAn (Asnicar et al., 2015). The difference in the gene abundance of nitrogen metabolism and CH₄ oxidation between the two groups was analyzed by ANOVA (one-way analysis of variance) using SPSS 19.0 software. The metagenomic data sets were deposited in NCBI Short Read Archive under the accession number of SAMN08813215. #### 3. Results 3.1. Nitrogen removal in the AME-D systems Among the four experimental O₂ levels of 21%,10%, 5% and 2.5% with the CH₄ concentration of 8% (i.e., O₂/CH₄ ratios of 2.62, 1.26, 0.63 and 0.31), the highest NO₃⁻-N removal occurred in the O₁₀ system, reaching about 100% after day 169, followed by the O₂₁ system, while the O₅ and O_{2.5} systems had the lowest NO₃⁻-N removal (Fig. 1a). The CH₄ removal efficiency increased with the increasing O₂ concentration and the highest was observed in the O₂₁ system (Fig. 1b). From day 76, the CH₄ removal efficiency in the O₂₁ system reached 100%, while it was kept stable at 12%-70% in the other systems. At the end of experiment, the sludge formed granules, likely due to the secretion of extracellular polymeric substances, microbial self-immobilization, or the growth of filamentous microorganisms. Compared with the other sludge samples, the sludge in the O₁₀ system was slightly black at the end of the experiment (Fig.1c). ### 3.2. Fate of CH_4 -C and NO_3 -N Based on the NO₃⁻-N removal in the AME-D systems, we selected the granular sludge samples in the O₂₁ and O₁₀ systems to further characterize the AME-D process. The fate of CH₄-C and NO₃⁻-N in the AME-D systems was investigated by applying isotopically labeled K¹⁵NO₃ and ¹³CH₄. After CH₄ was completely consumed at 13 h, the NO₃⁻-N concentration decreased slowly over time in the O₂₁ system (Fig. 2). ¹⁵NO₃⁻-N was mainly converted into ¹⁵N₂O-N and sludge-¹⁵N (mainly biomass-N) in the O₂₁ system, accounting for 50.3% and 35.8% of the ¹⁵NO₃⁻-N loss, respectively. In the O₁₀ system, after O₂ was used up at 13 h, NO₃⁻-N was still removed quickly between 13 and 18 h. ¹⁵NO₃⁻-N was mainly converted into ¹⁵N₂-N, ¹⁵N₂O-N and sludge-¹⁵N, accounting for 57.1%, 25.3% and 5.2% of the ¹⁵NO₃⁻-N loss, respectively, in the O₁₀ system. After a 24-h cycle, the NO_3 -N removal efficiency was 45.2% in the O_{21} system, while it reached 88.3% in the O_{10} system. As CH₄ was consumed, the amount of CO₂-C and sludge-C (mainly biomass-C) increased in the AME-D systems. Compared with the O₁₀ system, more CO₂-C and sludge-C were produced in the O₂₁ system. Moreover, the conversion of ¹³CH₄-derived carbon to ¹³CO₂-C and sludge-¹³C was also higher in the O₂₁ system, accounting for 70.8% and 22.6%, respectively, while they were 48.7% and 9.3%, respectively, in the O₁₀ system. ## 3.3. Kinetics of CH₄ oxidation and denitrification When the CH₄ concentration was below 8%, the CH₄ oxidation rate increased with the increasing CH₄ concentration and no significant difference was observed in the CH₄ oxidation rate at the two experimental O₂ concentrations (*P*=0.136-0.783) (Fig. 3a). The CH₄ oxidation rate reached 60.1 mg gVS⁻¹ h⁻¹ at the CH₄ concentration of 15% and then kept stable at higher concentrations in the O₂₁ system. However, when the CH₄ concentration was above 8%, the CH₄ oxidation rate did not change significantly and fluctuated around 36.1 mg gVS⁻¹ h⁻¹ in the O₁₀ system. These data suggested that the CH₄ concentration was a limiting factor for the CH₄ oxidation rate at concentrations below 15% CH₄ for the O₂₁ system and below about 8% for the O₁₀ system. Above these concentrations, the CH₄ oxidation rate did not increase, indicating saturation. When the CH₄ concentration ranged from 1% to 30%, the kinetics of CH₄ oxidation of the AME-D systems fit the Michaelis—Menten model well (R²=0.932-0.974, P<0.001). When the NO₃-N concentration was less than 40 mgN l⁻¹, the NO₃-N removal rate increased with the influent NO₃-N concentration (Fig. 3b). Compared with the O₂₁ system, the NO₃-N removal rate was higher in the O₁₀ system. When the NO₃-N concentration was between 40 and 80 mgN I^{-1} , the NO₃⁻-N removal rate in both systems showed no obvious variation. When the NO₃⁻-N concentration was 3-80 mgN I^{-1} , the Michaelis–Menten model fit the NO₃⁻-N removal rate in the AME-D systems well (R^2 =0.892-0.975, P<0.001). Compared with the O₂₁ system, the maximum NO₃⁻-N removal rate was higher in the O₁₀ system, which was about 3.7 times of the former. And, the affinity of denitrifiers for NO₃⁻-N was higher with the K_m value of 6.9 mgN I^{-1} in the O₁₀ system relative to the O₂₁ system. ### 3.4.
Trophic linkage in AME-D In this study, we investigated organic compounds that may serve as trophic linkages between methanotrophs and denitrifiers in the AME-D systems. Ion chromatography analysis showed that acetate and oxalate were the only organic acids detected in the AME-D systems (Fig. 4a and Fig.4b). The highest oxalate concentration was determined at 7-13 h with 311.2 and 611.0 ng l^{-1} in the O_{10} and O_{21} systems, respectively. Compared with oxalate, the concentration of acetate was lower, with the highest concentration of 3.5 ng l^{-1} in the O_{10} system at 13 h and 5.6 ng l^{-1} in the O_{21} system at 7 h, respectively. At 3, 18 and 23 h, acetate was undetectable in the two systems with the detection limit of \sim 0.4 ng l^{-1} . In order to examine the possible carbon sources for denitrification in the AME-D systems, exogenous carbon sources including methanol, sodium acetate, sodium citrate, sodium formate, sodium oxalate and formaldehyde were added to the AME-D systems. Little or no NO₃⁻-N removal was observed with the addition of sodium citrate, sodium oxalate and sodium formate as carbon sources (Fig. S1). When the methanol concentration was below 25 mg l⁻¹, almost no NO₃⁻-N was removed in the O₂₁ system (Fig. 4d). An obvious increase in the NO₃⁻-N removal rate occurred in the O₂₁ system at the methanol concentration of 30 mg l⁻¹. The NO₃⁻-N removal rate rapidly increased to 2.71 mgN gVS⁻¹ h⁻¹ when the methanol concentration was 200 mg l⁻¹, and then kept steady at the methanol concentration between 300 and 500 mg l⁻¹. However, in the O₁₀ system, the NO₃⁻-N removal rate increased with the increasing methanol concentration, and reached 12.13 mgN gVS⁻¹ h⁻¹ at the methanol concentration of 500 mg l⁻¹, which was about four times of that at the acetate concentration of 500 mg l⁻¹ (Fig. 4e and Fig. 4f). In the O_{21} system, when the concentration of sodium acetate increased to 20 mg l⁻¹, the NO_3 ⁻-N removal rate increased rapidly to 1.46 mgN gVS⁻¹ h⁻¹ and then remained steady (Fig. 4c). In the O_{10} system, when the concentration of sodium acetate increased to 150 mg l⁻¹, the NO_3 ⁻-N removal rate increased rapidly to 3.21 mgN gVS⁻¹ h⁻¹ and then kept steady (Fig. 4e). Compared with methanol, the addition of acetate had lower NO_3 ⁻-N removal in the O_{10} system. There was no significant difference in the NO_3 ⁻-N removal between acetate and methanol treatments in the O_{21} system at the O_2 concentration of ~ 0 . However, the NO_3 ⁻ removal rate increased quickly to the maximum with the acetate addition of 20 mg l⁻¹, while there was a lag phase (little or no NO_3 ⁻-N removal) with the methanol addition in the O_{21} system. When the O_2 concentration was decreased to 10% and ~ 0 , no lag phase was observed in the O_{21} system. Of the two exogenous carbon sources, the K_m value of Michaelis-Menten model was lower for acetate treatments at the O_2 concentration of ~ 0 (Table S1). 3.5. Taxonomic profiling of the metagenomes Average contig lengths were 1674 and 1973 bp for the metagenomic assemblies from the O_{21} and O_{10} systems, respectively (Table S2). Taxonomic assignment for the gene catalogue using nr annotation and Megan showed that there was no significant difference in the total gene number and the annotated gene number in the two experimental treatments (P=0.667-0.852). 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 Proteobacteria. Chloroflexi, Bacteroidetes, Planctomycetes, Firmicutes. Verrucomicrobia and Cyanobacteria predominated in the two AME-D systems, accounting for 56.4% and 58.5% of the metagenomic reads in the O_{21} and O_{10} systems, respectively (Fig. 5a). Compared with the O₁₀ system, higher microbial diversity was observed in the O₂₁ system (Figure S2). In the top 30 genera of the two AME-D systems, methanotrophs, methylotrophs and denitrifiers accounted for about 50% (Fig. S3). Among the top 30 genera, 18 genera had significant difference in the relative abundance between the O₂₁ and O₁₀ systems (Fig. 5b). Methanotrophs including *Methylocaldum*, Methylomicrobium, Methylomonas, Methylobacter, Methylococcus had similar relative abundance in the two treatments, but Methylosarcina and Methylocystis were more abundant in the O_{21} system than in the O_{10} system. Methylotrophs including Methylophilus, Methylovorus, Methyloversatilis and Methylotenera were abundant in the O₂₁ system with the relative abundance of 1.7%, 0.6%, 0.3% and 0.5%, respectively. The relative abundance of Methylophilus, Methylovorus and Methylotenera was significantly lower in the O₁₀ system than in the O₂₁ system, while the relative abundance of Methyloversatilis was significantly higher in the former. Denitrifiers including Azoarcus, Pseudomonas, Thauera and Thiobacillus dominated in the two treatments. Among them, Azoarcus, Thauera and Thiobacillus were more abundant in the O_{10} system than in the O_{21} system. The top 300 species associations in the two AME-D systems showed that many microorganisms had significantly higher relative abundance in the O₂₁ system, including methanotrophs *Methylosarcina fibrate*, *Methylocystis* sp. SB2, *Methylocystis* rosea, *Methylocystis* sp. SC2, *Methylocystis parvus*, *Methylosinus trichosporium* and methylotrophs *Methylophilus methylotrophus*, *Hyphomicrobium* sp. MC1, *Hyphomicrobium* sp. 802, *Bacillus mycoides*, *Methylibium petroleiphilum*, *Thiobacillus prosperus* (Fig. 6). Moreover, complicated associations occurred between aerobic methanotrophs and non-methanotrophs in the O₂₁ system. In the O₁₀ system, fewer microorganisms had obviously higher relative abundance than in the O₂₁ system and the associated species mainly belonged to methylotrophs and denitrifiers. 3.6. Differences in gene abundances of CH₄ oxidation, denitrification and chemotaxis CH₄ is first converted to methanol by methane monooxygenase (MMO) during CH₄ oxidation, which has two forms, soluble MMO (sMMO) and particulate MMO (pMMO). The genes of pmoA and mmoX encode key subunits of pMMO and sMMO, respectively. Compared with mmoX, pmoA was more abundant in the AME-D system accounting for 0.0131%-0.0135% of the total genes. The relative abundance of mmoX in the O₂₁ system was 0.00084%, which was two orders of magnitude higher than in the O₁₀ system, while the relative abundance of pmoA was similar in the two AME-D systems (Fig. 7a and Fig. 7c). The gene mxaF encoding key subunit of methanol dehydrogenase was more abundant in the O₂₁ system. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of CH₄ oxidation, there are three pathways involved in formaldehyde oxidation with the first stage catalyzed by enzymes, i.e., glutathione-independent formaldehyde dehydrogenase (fdhA), S-hydroxymethyl glutathione synthase (gfa) and 5,6,7,8-tetrahydromethanopterin hydro-lyase (fae). fae was the most abundant gene, accounting for 81.8% and 88.3% of the total abundance of the three genes. *fae* was mainly associated with methanotrophs, accounting for 50.3% in the O_{21} system, while it was less abundant in the O_{10} system (Table S3). In addition, the gene encoding formate dehydrogenase (FDH) was also more abundant in the O_{21} system. NO₃⁻ can be removed by assimilatory NO₃⁻ reduction, dissimilatory NO₃⁻ reduction and denitrification. The metagenomic data revealed that *nar*B and *nas*A associated with assimilatory NO₃⁻ reduction and *nor*B and *nor*C denitrification genes were significantly more abundant in the O₂₁ system than in the O₁₀ system (Fig. 7b and Fig. 7d). Genes involved in dissimilatory NO₃⁻ reduction including *nar*G, *nar*J, *nap*A and *nap*B, and *nir*S were significantly more abundant in the O₁₀ system than in the O₂₁ system. Some methanotrophs have genes involved in nitrogen metabolism such as *haoAB*, *nirS*, *nirK* and *norCB* (Stein and Klotz, 2011). In the two AME-D systems, some *nas*A, *nar*G, *nar*H, *nar*I, *nar*J, *nir*B, *nir*D, *nir*K, *nor*B and *nor*C were affiliated with methanotrophs (Table S4). Among them, *nar*G, *nar*H, *nar*I, *nar*J, *nir*B, *nir*K, *nor*B and *nor*C associated with methanotrophs were all significantly more abundant in the O₂₁ system. Since the relative abundance of genes involved in bacterial chemotaxis appeared in the top 10 list of genes with significantly different abundances in the two AME-D systems (Fig. S4), the chemotactic genes and associated with microorganisms were analyzed. Genes involved in chemotaxis including MCP, Aer, CheA, CheB, CheR and CheV, CheX and FliG were significantly more abundant in the O₁₀ system (Fig. 8a). Methylotrophs and denitrifiers were the main two type microorganisms associated with the chemotactic genes with the average relative abundance of 28.9-35.9% and some even reaching the relative abundance of 81.9% in the two AME-D systems. Except for CheV, the genes involved in bacterial chemotaxis that were associated with methylotrophs were significantly more abundant in the O₂₁ system than in the O₁₀ system (Fig. 8b). However, the genes involved in bacterial chemotaxis associated with denitrifiers were significantly more abundant in the O₁₀ system (Fig. 8c). Based on these data, we hypothesized proposed schemes for the AME-D process at different O₂ levels (Fig. 8d). In this study, methanol and acetate might serve as the trophic linkage between aerobic methanotrophs and denitrifiers. Under the O₂-sufficient condition (the O₂ concentration of 21% and O₂/CH₄ ratio of 2.62 with the O₂ concentration kept at above 8% within the cycle), methylotrophs could outcompete denitrifiers for CH₄-derived carbon, such as methanol and acetate, thus resulting in the low NO₃⁻ removal in the AME-D process. The competition of denitrifiers and methylotrophs for CH₄-derived carbon could be influenced by chemotaxis. Under the O₂-sufficient condition, methylotrophs had a
competitive advantage in obtaining CH₄-derived carbon, while they might not outcompete denitrifiers in the O₂-limited environment (the O₂ concentration of 10% and O₂/CH₄ ratio of 1.25 with the O₂ concentration lower than the detection limit for half a cycle). Additionally, methanotrophs might participate in incomplete denitrification and produce N₂O. ## 4. Discussion The data presented in this study suggested that O₂ level played an important role in regulating the AME-D process. Among the four experimental O₂ levels of 21%,10%, 5% and 2.5% at a CH₄ concentration of 8% (i.e., O₂/CH₄ ratios of 2.62, 1.26, 0.63 and 0.31), the highest NO₃⁻-N removal occurred in the O₁₀ system, followed by the O₂₁ system, while the O₅ and O_{2.5} systems had the lowest NO₃⁻-N removal. This indicated that the nitrate removal in the AME-D system highly depended on the carbon sources generated by CH₄ oxidation that correlated well with O₂ concentrations and O₂/CH₄ ratios. Similarly, Sun et al. (2013) reported that an apparently improved NO₃⁻ removal rate when the O₂/CH₄ ratio ranged from 1.0 to 1.5, due to the suitable O₂ levels for the biomass mixture, by which sufficient organic substrate could be generated from CH₄ oxidation for denitrification in the AME-D system. 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 The relative abundance of the genes involved in bacterial chemotaxis (Bonnie et al., 2006; Bi and Sourjik, 2018) differed significantly between the experimental AME-D systems with the O₂ concentration of 21% and the O₂/CH₄ ratio of 2.62 (where the O₂ concentrations were kept at above 8% within the cycle, referred to as "the O₂sufficient condition") and the O₂ concentration of 10% and the O₂/CH₄ ratio of 1.25 (where the O₂ concentrations were lower the detection limit for half a cycle, referred to as "the O2-limited condition") (Fig. S4). The genes associated with methylotrophs were significantly more abundant under the O2-sufficient condition, while the genes associated with denitrifiers were significantly more abundant in the O2-limited environment. This might be attributed to the difference in aerotaxis between methylotrophs (most are strongly positively aerotactic) and denitrifiers (usually are attracted by low O₂ concentration (Grishanin and Bibikov, 1997), which resulted in the flow of methane-derived carbon into different heterotrophic species. In the experimental AME-D systems, more methane-derived carbon flowed into methylotrophs under the O₂-sufficient condition, while more methane-derived carbon was used for denitrification in the O₂-limited environment (Fig. S3). Organic metabolites generated from aerobic CH₄ oxidation including methanol, citrate, acetate, formaldehyde and formate have been reported to be the possible carbon sources for coexisting denitrifiers in the AME-D process (Zhu et al., 2016). In this study, acetate and oxalate were detectable in the AME-D systems. Between 13 and 23 h into a cycle, the oxalate concentration was high in the experimental AME-D systems (Fig. 4b), yet little NO₃⁻ was removed (Fig. 2a). Additionally, NO₃⁻ removal was negligible in the AME-D systems with the addition of exogenous oxalate. This demonstrated that oxalate was unlikely the direct trophic linkage between aerobic methanotrophs and denitrifiers in the AME-D systems. The highest concentration of acetate was observed at 7 h under the O₂-sufficient condition when CH₄ was rapidly consumed, while it occurred at 13 h in the O₂-limited environment when O₂ was consumed (Fig. 4a). This might be attributed to the highly efficient pyrophosphate-mediated glycolytic pathway of aerobic methanotrophs under the O₂-limited condition, which converted less CO₂ but produced more organic compounds, such as formate, acetate and lactate in the environment (Kalyuzhnaya et al., 2013). After O₂ was depleted, acetate was quickly consumed and not detected in the O₂-limited environment at 18 h. Meanwhile, a high NO₃⁻-N removal occurred in the O₂-limited environments. It suggested that acetate was an important trophic linkage between aerobic methanotrophs and denitrifiers in the AME-D system under the O₂-limited condition. Although methanol was not detectable in the AME-D systems (the detection limit was about 200 ng l⁻¹ in this study), the addition of exogenous methanol enhanced the denitrification capacity in the AME-D systems. This suggested that methanol might work as the trophic linkage between aerobic methanotrophs and denitrifiers in the two AME-D systems. Among the possible carbon sources, methanol is considered as a critical intermediate for the cooperative AME-D process performed by the microbial consortium (Zhu et al., 2016). In this study, the wastewater was simulated with NMS medium including phosphate and ethylenediaminetetraacetic acid ferric sodium salt. Aerobic methanotrophs could excrete methanol to adjust their metabolic pathways for survival under specific environments such as phosphate, NaCl and sodium formate (Mehta et al., 1987; Duan et al., 2011; Hur et al., 2017). There was a lag phase in the NO₃ removal efficiency in the O₂₁ system at the O₂ concentration of 21% with the addition of methanol, while it was absent when the O₂ concentration decreased to 10% and ~ 0 . This might be attributed to two causes: 1) some bacteria such as methylotrophs competed with denitrifiers for methanol under the O2-sufficient condition (Veillette et al., 2011); 2) some denitrifiers could use both NO₃⁻ and O₂ as electron acceptors and preferentially utilize O₂ over NO₃⁻ at high O₂ concentrations (Ji et al., 2015). Methylotrophs were observed to dominate in various methanotrophic environments such as lake sediments and landfill cover soils (Hernandez et al., 2015; He et al., 2020). Among the two AME-D systems, a higher relative abundance of methylotrophs was observed in the O_{21} system. Compared with the O_{10} system, Methylophilus were more abundant in the O₂₁ system, which was in agreement with previous studies (Oshkin et al., 2015; Hernandez et al., 2015). Oshkin et al. (2015) observed that Methylophilus was more competitive at higher dissolved O₂ concentration of 150 mM and resembled the organism was not capable of respiratory denitrification and possessed MxaFI type methanol dehydrogenase, while Methylotenera dominated at low dissolved O₂ concentration of 15 mM, which could potentially denitrify and utilized a more efficient variant of the ribulose monophosphate pathway, likely due to a lack of an MxaFI methanol dehydrogenase (Beck et al., 2014). The occurrence of specifc Methylophilaceae types was considered as oxygen-dependent (Hernandez et al., 2015). Methylotrophs such as Methylophilaceae also have been found to dominate in a methanol-denitrifying bioreactor (Osaka et al., 2006). Compared with the O₂₁ system, Methyloversatilis was significantly more abundant in the O_{10} system. It was plausible that Methyloversatilis can utilize several C1 and multicarbon compounds (Kalyuzhnaya 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 et al., 2006). A similar result was observed by Baytshtok et al. (2008) who showed that Methyloversatilis dominated in methanol and ethanol-fed denitrifying bioreactors. In the top 30 genera, Azoarcus, Thauera, Acidovorax and Dechloromonas were significantly more abundant in the O₁₀ system and have also been reported to dominate in methanol or acetate-fed denitrifying bioreactors (Hallin et al., 2006; Baytshtok et al., 2008; Osaka et al., 2008). These findings further confirmed that methanol and acetate might be the trophic linkage between aerobic CH₄ oxidation and denitrification in the AME-D systems. In addition to denitrifiers, some genes such as nasA, narG, narH, narI, narJ, nirB, nirD, nirK, norB and norC were associated with methanotrophs in the AME-D systems. Many methanotrophs have been reported to encode partial denitrification pathways and have the ability to reduce NO₃⁻ and/or NO₂⁻ to N₂O (Nyerges et al., 2010; Campbell et al., 2011). The methanotrophs having narG, narH, narI, narJ, nirB, nirK, norB and *nor*C were all significantly more abundant in the O_{21} system than in the O_{10} system. This might be attributed to methanotrophs with denitrifying capacity outcompeting other methanotrophs under aerobic conditions. Nyerges et al. (2010) also found that methanotrophs with denitrifying capacity might outcompete other methanotrophs in ecosystems with high nitrogen loading as they have the capacity to withstand NO₃and/or NO₂ stress and may even derive a growth benefit in the presence of both oxygen and nitrite. However, it cannot be ruled out that the high O2 concentration might result in high numbers of methanotrophs with denitrifying capacity in the O₂₁ system. Further investigation is needed to understand the effects of oxygen and NO₃ on the denitrifying activity of methanotrophs. NO₃-N was mainly converted into N₂O-N and sludge-N (mainly biomass-N) in the 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 O_{21} system, while the majority was converted into N_2 -N in the O_{10} system. Compared to the O₂-limited condition, microorganisms grew more quickly under the O₂-sufficient condition and more NO₃⁻-N was converted into biomass-N. Denitrification can proceed under both aerobic and anaerobic conditions. In anaerobic respiratory NO₃⁻ reduction, O₂ is toxic to anaerobic denitrifiers. However, most aerobic denitrifiers, such as *Hyphomicrobium*, *Methylotenera* and *Pseudomonas stutzeri* TR2 can utilize both O₂ and NO₃⁻ or NO₂⁻ as their terminal electron acceptors (Meschner and Hamer, 1985; Kalyuhznaya et al., 2009; Ji et al., 2015). Under aerobic condition, O₂ can inhibit N₂O reductase and result in the production of N₂O, an important greenhouse gas with a global warming potential of 298 times of CO₂, rather than N₂
(Thomson et al., 2012). Under the O₂-limited condition, aerobic denitrifiers might utilize NO₃⁻ or NO₂⁻ as their terminal electron acceptors and convert the majority of NO₃⁻ into N₂. Additionally, aerobic methanotrophs have the capacity for denitrification, but they only reduce NO₃⁻ and/or NO₂⁻ to N₂O (Nyerges et al., 2010; Campbell et al., 2011). Thus, an optimal O₂ concentrations is needed to control the AME-D process to mitigate nitrogen pollution and the emission of greenhouse gases such as CH₄ and N₂O. ### 5. Conclusion O₂ level was an important factor influencing the performance of AME-D process and the microbial communities and metabolic pathways involved. Acetate and methanol could serve as the key compounds trophically linking aerobic methanotrophs to methylotrophs and denitrifiers in the AME-D process. The chemotactic abilities of the bacterial community might influence the trophic link of aerobic methanotrophs to methylotrophs and denitrifiers in the AME-D systems at different O₂ levels. Under the O₂-sufficient condition, methylotrophs dominated the assimilation of CH₄-derived carbon, while more methane-derived carbon was used for denitrification in O₂-limited environments. These findings may help in future efforts to evaluate the distribution and 611 contribution of AME-D and develop strategies for mitigating CH₄ emission and nitrogen pollution in natural and engineered ecosystems. 612 613 **Declaration of competing interest** 614 The authors declare that they have no known competing financial interests or 615 616 personal relationships that could have appeared to influence the work reported in this 617 paper. 618 619 Acknowledgements This work was financially supported by National Natural Science Foundation of 620 China with Grants No. 91851109, 41671245 and 41911530193 and Natural Science 621 Foundation of Zhejiang province with Grant No. LZ20E080002. 622 623 References 624 625 Amaral, J.A., Archambault, C., Richards, S.R., Knowles, R., 1995. Denitrification associated with Groups I and II methanotrophs in a gradient enrichment system, 626 FEMS Microbiol Ecol. 18, 289-298. 627 628 Asnicar, F., Weingart, G., Tickle, T.L, Huttenhower, C., Segata, N., 2015. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. Peer J. 629 DOI: 10.7717/peerj.1029. 630 Audic, S., Claverie, J.M., 1997. The significance of digital gene expression profiles. 631 Genome Res. 7, 986-995. 632 Baytshtok, V., Kim, S., Yu, R., Park, H., Chandran, K., 2008. Molecular and biokinetic 633 characterization of methylotrophic denitrification using nitrate and nitrite as 634 terminal electron acceptors. Water Sci. Technol. 58, 359-365. 635 - Beck, D.A.C., McTaggart, T.L., Setboonsarng, U., Vorobev, A, Kalyuzhnaya, M.G., - 637 Ivanova, N., Goodwin, L., Woyke, T., Lidstrom, M.E., Chistoserdova, L., 2014. The - expanded diversity of *Methylophilaceae* from Lake Washington through cultivation - and genomic sequencing of novel ecotypes. PLoS One 9. DOI: - 640 10.1371/journal.pone.0102458. - Bi, S., Sourjik, V., 2018. Stimulus sensing and signal processing in bacterial chemotaxis. - 642 Curr Opin Microbiol. 45, 22-29. - Bishoff, D., AlSayed, A., Fergala, A., Eldyasti, A., 2021. Redirecting methane for a - novel biological nitrogen removal process using methanotrophic mixed culture in a - sequential batch reactor. Chem. Eng. J. 404. DOI:10.1016/j.cej.2020.126487. - Bodelier, P.L., Meimafranke, M., Hordijk, C.A., Steenbergh, A.K., Hefting, M.M., - Bodrossy, L., 2013. Microbial minorities modulate methane consumption through - niche partitioning. ISME J. 7, 2214-2228. - Bonnie, B., Stephens, B.B., Loar, S.N., Alexandre, G., 2006. Role of CheB and CheR - 650 in the complex chemotactic and aerotactic pathway of Azospirillum brasilense. J - 651 Bacteriol. 188, 4759-4768. - 652 Campbell, M.A., Nyerges, G., Kozlowski, J.A., Poret-Peterson, A.T., Stein, L.Y., Klotz, - M.G., 2011. Model of the molecular basis for hydroxylamine oxidation and nitrous - oxide production in methanotrophic bacteria. FEMS Microbiol. Lett. 322, 82-89. - 655 Chistoserdova, L., Vorholt, J.A., Lidstrom, M.E., 2005. A genomic view of methane - oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6, - DOI: 10.1186/gb-2005-6-2-208. - 658 Chu, Y.X., Ma, R.C., Wang, J., Zhu, J.T., Kang, Y.R., He, R., 2020. Effects of oxygen - tension on the microbial community and functional gene expression of aerobic - methane oxidation coupled to denitrification systems. Environ. Sci. Pollut. Res. - DOI:10.1007/s11356-020-07767-8. - Deutzmann, J.S., Stief, P., Brandes, J., Schink, B., 2014. Anaerobic methane oxidation - coupled to denitrification is the dominant methane sink in a deep lake. Proc. Nat. - 664 Acad. Sci. 111, 18273-18278. - Duan, C.H., Luo, M.F., Xing, X.H., 2011. High-rate conversion of methane to methanol - by *Methylosinus trichosporium* OB3b. Bioresource Technol. 102, 7349-7353. - Ettwig, K.F., van Alen, T., van de Pas-Schoonen, K.T., Jetten, M.S.M., Strous, M., 2009. - Enrichment and molecular detection of denitrifying methanotrophic bacteria of the - NC10 phylum. Appl. Environ. Microb. 75, 3656-3662. - 670 Francis, O.E., Bendall, M., Manimaran, S., Hong, C.J., Clement, N.L., Castro-Nallar, - E., Snell, Q., Schaalje, G.B., Clement, M.J., Crandall, K.A., Johnson, W.E., 2013. - Pathoscope: Species identification and strain attribution with unassembled - sequencing data. Genome Res. 23, 1721-1729. - 674 Grishanin, R.N., Bibikov, S.I., 1997. Mechanisms of oxygen taxis in bacteria. Biosci. - 675 Rep. 17, 77-83. - 676 Guo, J.H., Peng, Y.Z., Fan, L., Zhang, L., Ni, B.J., Kartal, B., Feng, X., Jetten, M.S.M., - Yuan, Z.G., 2016. Metagenomic analysis of anammox communities in three different - 678 microbial aggregates. Appl. Environ. Microb. 18, 2979-2993. - Hallin, S., Throback, I.N., Dicksved, J., Pell, M., 2006. Metabolic profiles and genetic - diversity of denitrifying communities in activated sludge after addition of methanol - or ethanol. Appl. Environ. Microbiol. 72, 5445-5452. - He, R., Chen, M., Ma, R.C., Su, Y., Zhang, X., 2017. Ammonium conversion and its - feedback effect on methane oxidation of *Methylosinus sporium*. J. Biosci. Bioeng. - 684 123, 466-473. - 685 He, R., Su, Y., Leewis, M.C., Chu, Y.X., Wang, J., Ma, R.C., Wu, D., Zhang, L.T., - Herriott, I.C., Leigh, M.B., 2020. Low O₂ level enhances CH₄-derived carbon flow - into microbial communities in landfill cover soils. Environ. Pollut. 258. - DOI:10.1016/j.envpol.2019.113676. - He, R., Wooller. M.J., Pohlman. J.W., Quensen. J., Tiedje. J.M., Leigh. M.B., 2012. - Diversity of active aerobic methanotrophs along depth profiles of arctic and - subarctic lake water column and sediments. ISME J. 6, 1937-1948. - 692 He, Z.F., Wang, J.Q., Hu, J.J., Zhang, H., Cai, C.Y., Shen, J.X., Xu, X.H., Zheng, P., - 693 Hu, B.L., 2016. Improved PCR primers to amplify 16S rRNA genes from NC10 - bacteria. Appl. Microbiol. Biot. 100, 5099-5108. - Hernandez, M.E., Beck, D.A.C., Lidstrom, M.E., Chistoserdova, L., 2015. Oxygen - availability is a major factor in determining the composition of microbial - communities involved in methane oxidation. Peer J. DOI:10.7717/peerj.801. - Hur, D.H., Nguyen, T.T., Kim, D., Lee, E.Y., 2017. Selective bio-oxidation of propane - to acetone using methane-oxidizing *Methylomonas* sp DH-1. J. Ind. Microbiol. Biot. - 700 44, 1097-1105. - 701 IPCC, 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of - Working Group III to the Fifth Assessment Report of the Intergovernmental Panel - on Climate Change. Cambridge University Press, Cambridge, United Kingdom. - 704 Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H.Y., Zhou, J., Zhang, H.N., 2015. Aerobic - denitrification: A review of important advances of the last 30 years. Biotechnol. - 706 Bioproc. E. 20, 643-651. - Kalyuhznaya, M.G., Martens-Habbena, W., Wang, T.S., Hackett, M., Stolyar, S.M., - 708 Stahl, D.A., Lidstrom, M.E., Chistoserdova, L., 2009. Methylophilaceae link - 709 methanol oxidation to denitrification in freshwater lake sediment as suggested by - stable isotope probing and pure culture analysis. Environ. Microbiol. Rep. 1, 385-