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Abstract

Early warning signals (EWS) identify systems approaching a critical transition, where the
system undergoes a sudden change in state. For example, monitoring changes in variance
or autocorrelation offers a computationally inexpensive method which can be used in real-
time to assess when an infectious disease transitions to elimination. EWS have a promising
potential to not only be used to monitor infectious diseases, but also to inform control poli-
cies to aid disease elimination. Previously, potential EWS have been identified for preva-
lence data, however the prevalence of a disease is often not known directly. In this work we
identify EWS for incidence data, the standard data type collected by the Centers for Disease
Control and Prevention (CDC) or World Health Organization (WHO). We show, through sev-
eral examples, that EWS calculated on simulated incidence time series data exhibit vastly
different behaviours to those previously studied on prevalence data. In particular, the vari-
ance displays a decreasing trend on the approach to disease elimination, contrary to that
expected from critical slowing down theory; this could lead to unreliable indicators of elimina-
tion when calculated on real-world data. We derive analytical predictions which can be gen-
eralised for many epidemiological systems, and we support our theory with simulated
studies of disease incidence. Additionally, we explore EWS calculated on the rate of inci-
dence over time, a property which can be extracted directly from incidence data. We find
that although incidence might not exhibit typical critical slowing down properties before a
critical transition, the rate of incidence does, presenting a promising new data type for the
application of statistical indicators.

Author summary

The threat posed by infectious diseases has a huge impact on our global society. It is there-
fore critical to monitor infectious diseases as new data becomes available during control
campaigns. One obstacle in observing disease emergence or elimination is understanding
what influences noise in the data and how this fluctuates when cases near to zero. The
standard type of data collected is the number of new cases per day/month/year but
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mathematical modellers often focus on data such as the total number of infectious people,
due to its analytical properties. We have developed a methodology to monitor the stan-
dard type of data to inform when a disease is approaching emergence or disease elimina-
tion. We have shown computationally how fluctuations change as timeseries data gets
closer towards a tipping point and our insights highlight how these observed changes can
be strikingly different when calculated on different types of data.

Introduction

One of the greatest challenges in society today is the burden of infectious diseases, affecting
public health and economic stability all over the world. Infectious diseases disproportionately
affect individuals in poverty, with millions of those suffering daily from diseases that are con-
sidered eradicable. The potential for eradicating diseases such as polio, guinea worm, measles,
mumps or rubella is immense (International Task Force for Disease Elimination, [1]). Even
where effective vaccines or treatments exist, disease elimination presents an ongoing challenge.
For example, after the establishment of the Global Malaria Eradication Program in 1955 by the
World Health Organisation (WHO) it was later abandoned in 1969 due to funding shortages
and drug resistance [2], leading to re-emergence of disease in Europe [3]. Assessing when a
disease is close enough to elimination to die out without further intervention, thus prompting
the end of a control campaign, is a problem of global economic importance. If campaigns are
stopped prematurely it can result in disease resurgence and subsequently put control efforts
back by decades. Conversely, the threat posed by newly emerging diseases such as SARS, Ebola
or the recent COVID-19 pandemic strains available resources, places restrictions on global
movement and disrupts the world’s most vulnerable societies. Identifying which newly-emerg-
ing diseases will present a global threat, and which will never cause a widespread epidemic is
of critical importance.

To overcome the challenges identifying disease elimination or emergence, numerous stud-
ies have suggested the use of early warning signals (EWS) [4-9]. EWS are statistics that may be
derived from data that change in a predictable way on the approach to a critical threshold. In
epidemiology this threshold is commonly described as the point at which the basic reproduc-
tion number, R, passes through R, = 1. A system with R, increasing through 1 describes an
emerging disease whereas R, decreasing through 1 results in disease elimination. We seek to
find EWS to identify when a disease is approaching such a transition. We may identify such
statistics using critical slowing down (CSD) theory, which indicates the imminent approach of
a threshold, arising from slower recovery times from perturbations as a system approaches a
critical transition [10, 11]. The recovery time increases when the dominant eigenvalue of the
steady state passes through zero, since the eigenvalue determines the relaxation time of the sys-
tem. As a result, increased recovery times can lead to stronger fluctuations around the steady
state, causing variance around the steady state to increase. Additionally, a rising memory
manifests itself as the rate of change of the system decreases to zero as a critical transition is
approached, this results in the state of the system becoming more like its past state, i.e. auto-
correlation increases. Therefore general signatures of critical slowing down include an increase
in recovery time, variance and autocorrelation as a system nears a critical transition.

EWS offer the ability to anticipate a critical transition indirectly in real world noisy time
series data, by observing, for example, increasing variance in the fluctuations around the
steady-state [11, 12]. Statistical indicators offer a computationally inexpensive and efficient
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method for assessing the status of an infectious disease, presenting a simple mechanism for
disease surveillance and monitoring of control policies.

The development of EWS is an active area of research in many fields, identifying the statisti-
cal signatures of abrupt shifts in many dynamical systems. Studies have applied EWS to histor-
ical data or laboratory experiments where a tipping point is known [10, 13, 14]; developed
methods for using spatial variation [15, 16], explored the effects of detrending [7, 17] using the
composition of multiple EWS [14, 18, 19]; and developed understanding of the limitations of
EWS [20-22].

Discrepancies in statistical signatures have been discovered in a variety of historical datasets
known to be going through a critical transition: from climate systems to stock markets, to
applications with ecological field data [13, 20, 23]. These studies observed unexpected charac-
teristic traits of common EWS, such as identifying a decreasing trend in variance or standard
deviation, leading to a discussion on the robustness of indicators. It is therefore highly impor-
tant to understand analytically how EWS are expected to change on the approach to a critical
transition for different data types to avoid any misleading results.

The initial development of EWS in epidemiology focused on prevalence data, producing
analytical solutions and numerically testing the capabilities for statistical indicators of emer-
gence and elimination of infectious diseases [4-7]. Analysis of computer simulations of
well-studied epidemiological systems have highlighted challenges such as seasonality [6] or
detrending of epidemiological time series data [7]. However epidemiological data is typically
collected in the form of the number of new infectious cases (incidence data) over a certain
period of time (weekly/monthly/yearly). Generally, the exact date of infection or recovery of
an individual is not known and therefore the exact number of infectious individuals at each
point in time (the prevalence data that has been analysed) is unknown.

Simulation-based studies exploring incidence-type data have suggested that the potential
for emergence of an infectious disease can be informed by statistical signatures [8, 9]. These
studies represent the first attempts to understand the robustness of some indicators when used
with disease emergence incidence data, subject to underreporting and time aggregation. Both
studies find that EWS do precede disease emergence even when reporting is low. When the
numerical performance of 10 EWS are compared, Brett et al. find that the mean and variance
perform well unless incidence is subject to a highly overdispersed reporting error and they
compare these results with previously studied prevalence results. Theoretical predictions are
given for prevalence data, however the analytical behaviour of incidence is not explored.

O’Dea et al. [9] incorporate an observation model into a Birth-Death-Immigration (BDI)
process to present an analytical study of EWS of disease emergence. This model allows predic-
tion of the behaviour of EWS for dynamics captured by a BDI process but is not suitable for
diseases with population-level immunity. O’Dea et al. additionally conducted an investigation
into reporting errors in incidence-type data by recording the removal of individuals (“death”
component in the BDI process). They describe the probability of a case being reported with
either a Binomial or Negative Binomial distribution, allowing for over and under-reporting. In
contrast to Brett et al., they conclude that the mean, variance and coefficient of variation (CV)
are poor indicators since they are sensitive to reporting errors and insensitive to differences
between transmission and recovery rates.

In this paper, we advance the current literature to describe generalised signatures of statisti-
cal indicators for incidence data, on the approach to a threshold, highlighting the differences
between EWS descriptors of incidence and prevalence. Our results demonstrate that EWS of
emergence exhibit an increasing variance, a trait associated with CSD and supporting results
from Brett et al. and O’Dea et al. Strikingly however, we demonstrate that as a disease
approaches elimination the opposite is true—variance decreases, and thus an increase in the
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variance of incidence is not observed as an early warning signal of eradication under the CSD
framework.

Nevertheless we find that the time series trends of incidence are still a valuable tool to pre-
dict disease elimination. The discrepancy between prevalence and incidence on the one hand,
and elimination and emergence on the other, could lead to potential problems in detecting
thresholds if the differences are not clearly understood.

We introduce an analytical theory from stochastic processes to address why variance in
incidence decreases for disease elimination. We study multiple other indicators of disease
elimination predicted by this theory, and compare their responses with stochastic simulations.
We also consider the rate of incidence as a measurement that can be extracted from incidence
data. Notably, we find that on the approach to a critical transition the rate of incidence exhibits
typical CSD signatures which correspond with prevalence data, such as an increasing variance.
We present a broad analytical framework for EWS of incidence and rate of incidence for a
variety of different disease systems. We explore more intricate systems where elimination is
driven by different factors to understand the robustness of this theory. This simple generalised
result can be applied to many infectious diseases undergoing emergence or elimination, a
promising development for EWS of infectious diseases.

Methods & mathematical theory

In this paper we focus on the application of EWS to disease elimination where there is a limited
understanding on how time series statistics of incidence data behaves on the approach towards
this threshold. We consider two simple models, where disease elimination is forced with
different mechanisms, to explore how EWS of disease elimination behave for prevalence and
incidence data. To demonstrate the broadness of our results, we additionally present a com-
parative case study to the analytical results for emerging diseases by O’Dea et al.

In this section we review the following models: SIS model (Susceptible-Infected-Susceptible
model, see for example Keeling & Rohani [24]); SIS model with vaccination and SIS model
with external force of infection. For each model that we have chosen to investigate, we derive
the stochastic differential equations (SDEs) that describe the analytical behaviour of prevalence
in these systems. Derivations of the analytical results and calculations of each statistic can be
found in the supporting text (S1 Text). We present our analysis for incidence data and derive
the corresponding statistical indicators. We exploit the well known fact that a counting process
can be described by a Poisson process. We apply this result to the field of EWS to incorporate
statistical signatures of a Poisson distributed variable to describe the behaviour of the number
of new infectious cases in epidemiology.

We verify our analytical results for prevalence and incidence with simulated studies, and
compare the contrasting results between prevalence and incidence. We measure the change in
trend of multiple statistical indicators using the Kendall’s Tau score which gives an indication
of an increasing or decreasing trend.

Elimination and emergence models

SIS with social distancing. We begin with a simple example of a system that is approach-
ing elimination from an existing endemic state of I. We consider an SIS model where the effec-
tive contact rate 3 acts as the control parameter. Effective reduction of # can be induced by

public health campaigns (such as washing hands or improving food hygiene) and through

social distancing (such as school closure). By decreasing A(£) in time, it slowly forces R, = £

i

through the critical transition at R, = 1. The transition probabilities for these dynamics are
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Table 1. Transition probabilities in prevalence theory for all models.

Event

SIS with social distancing

Infection

Recovery
SIS with vaccination

Infection

Recovery

Incoming to S (non-vaccinated)
Removal from I

Removal from S

SIS emergence

Infection

Recovery

Transition

T(I + 1|1
T(I - 1|1)

T(S-1,I+1S,1)
T(S+1,1-1]S,1)
T(S+1,1|S, 1)
(S, I-1/S, )
T(S-1,1|S,I)

T+ 1|1
T - 1|1

https://doi.org/10.1371/journal.pchi.1007836.t001

given in Table 1, where S(f) changes slowly in time, given by,

pt) = Bi(1—po),

Rate

BO(N=D)I
N

yI

BoSI
N

vl

uN( - p(1))

ul

us

BON-DI + V(N _ I)

N

vl

(1)

(2)

and we fix the population such that N = § + I. Previously work has shown that the fluctuations,

awm)

{, about the prevalence steady state, ¢(t) = “-* can be separated using the linear noise approx-

imation [4, 7, 25], see S1 Text for details and the corresponding SDE.

SIS with increasing vaccination coverage. We consider an SIS model where a proportion
of susceptible individuals are vaccinated and gain immunity to the disease, while the remain-
ing (unvaccinated) individuals enter the susceptible compartment. By increasing the propor-
tion of individuals vaccinated p(t), this control will reduce the effective reproduction number
as the susceptible populations is depleting. Births and deaths are considered to allow for a non-
zero steady state of I initially, and to ensure that the susceptible population does not decrease
to zero. By increasing the proportion of individuals vaccinated p(t), the system is pushed away
from this steady state. We gradually increase the proportion of vaccinated individuals over

time by,

p(t) = p, +pt,
R[)(t) _ (1 _p(t))ﬁ(]
yAu

(3)

(4)

to push the system through the critical transition at Ry = 1. We interpret the dynamics of the
fluctuations about prevalence I and susceptible individuals S, with a two-dimensional Fokker-
Planck Equation (see supplementary text SI1 Text and Table 1 for transition rates).

SIS with external force of infection and increasing transmission. Finally we consider
the SIS model with external infection which has been used to investigate EWS in prevalence
and in incidence [4, 9]. We demonstrate how our analytical results compare for this system,

and illustrate differences when applied to disease elimination.
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In this model, in addition to the underlying SIS dynamics, susceptible individuals can be
infected by an external force of infection (governed by parameter v) that does not depend on
the level of infection.

We consider the model in a stochastic formulation, with transition probabilities given in
Table 1. Disease emergence is driven by increasing the effective contact rate (t) over time,
that slowly increases R, through the critical transition at Ry = 1,

p(t) = By(1 + pt), (5)

(6)

Prior work by O’Regan & Drake [4] derived the SDE for the fluctuations, { about the preva-
lence steady state for this system—we have included them in the S1 Text for the convenience
of the reader.

Incidence theory

A counting process can be used as a generalised theory to understand the dynamics of the
number of new events over a period of time. In particular, a diverse range of data types can be
described by a counting process and this motivates us to characterise how statistics of such
processes behave on the approach to a critical transition. Incidence (the number of new cases,
n.) is a counting process, which is known to be described by a non-homogeneous Poisson pro-
cess {n.(t): t € [0, co0)} with time dependent rate A(t),

n(t+At) = Poi(/tt+At7u(s)ds> ~ Poi(AtA(t)). (7)

where the integral approximation holds for At sufficiently small. In the supporting text (S1
Fig) we demonstrate that for our parameters, this approximation works well for At up to 3. We
can derive EWS in disease incidence aggregated over a time interval At (e.g. daily, weekly,
biweekly cases) using the well-known central moments of the Poisson distribution:

Var(n,) = AtL(1), (8)
CV(n) ~—e ©)
ARG
SK(n) ~——— (10)
S A
KT(n,) ~ ! (11)

AEM(t)

Prior work from O’Dea et al. [9] & Brett et al. [8] have incorporated under-reporting using
a negative binomial distribution; this can be included in this model when the rate A(f) is itself a
random variable. In particular, if A(f) is distributed as a gamma distribution then Poi(A) would
be a negative binomial distribution. The gamma distribution is described by its mean and dis-
persion parameter (0). O’Dea et al. & Brett et al. took the mean to be &n,, where £ is the proba-
bility of reporting a case and considered different values for the dispersion parameter, relating
to levels of overdispersion in the data.
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Without under-reporting the rate of new cases is given by the incoming transition probabil-
ities to the infectious state,

ME) = T(I+ 1]1). (12)

A common form of this force of infection is,

BOSOI) 13)

T(1+ 11 = ===,

as such, A(t) depends on the prevalence of infection, I(t). When we consider social distancing
measures, (t) is a function of time whereas for our vaccine uptake model 3(t) = f, is fixed.
Infection can also be increased in other ways such as an external force of infection,

A(t) = 2S00 4 yg(t), that is typically used to describe zoonotic spillover events or as an

approximation for human migration.

We evaluate the statistical indicators of incidence, e.g. the variance (in incidence) given by
AfM(t) = AtB(1)S(£)I(t)/N, by substituting in the solution to the ordinary differential equations
of I(t) and S(¢) (described by the mean field o(f), see Table 2 and S1 Text).

We compare our approximation of incidence using a counting process with the recent
study by O’Dea et al. [9]. In this work, the SIS model with external infection events was

Table 2. Model notation and parameter values shared among all models.

Parameter Description Value

Bo Initial Transmission Rate ﬁé”} =1, ﬁ({f} —=0.12

¥ Recovery rate 7/“’3) =0.2, 7,{2} =0.18

u Population turn over rate ”{2) =0.02

Po Initial vaccination rate =0

p Rate of change of f, or p, 123 = 0.002

v External rate of infection Y2 =0, 43 = 0.001

N Population Size N =10, 000

At Time aggregation of incidence data At =1, daily

T Time simulations run for T = 500 (after burn in of 300 days)

BW Bandwidth for Rol approx. simulations BW =30

Model Notation Description

gl Fluctuations about the infected steady state

(1,6 Fluctuations about the susceptible and infected steady state respectively (vaccination
model)

(1) Proportion of infected individuals (mean-field)

w(t) Proportion of susceptible individuals (mean-field)

a(t) = B y(t) Mean-field equation of the rate of incidence

nJ(t) Number of new cases at time ¢

A1) Rate of Incidence (rate of the Poisson process)

n Fluctuations about the Rate of Incidence steady state

Ext Extinction Simulations (social-distancing & vaccination)

Emg Emergence Simulations

Fix Simulations with fixed parameters (null)

values in braces directs to the model number which was implemented at that value. Superscript 1: SIS with social

distancing; superscript 2: SIS with vaccination; superscript 3: SIS emergence. Parameters without braces are shared
amongst all models.

https://doi.org/10.1371/journal.pcbi.1007836.t002
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approximated with a Birth-Death-Immigration process, where an immigration event approxi-
mates the external force of infection; birth events give new infections and the death component
is analogous with recovery events. O’Dea et al. derive statistics for incidence data by monitor-
ing the number of individuals recovering (e.g. the transition rate T(I — 1|I) = yI). Results from
this study can be found in the supplementary text (S1 Text). One limitation of this methodol-
ogy is its difficulty to extend to other systems. It was developed for a specific disease emergence
model—prompting the current search for generic EWS that can describe all epidemiological
systems by using the easy-to-obtain transition probabilities.

Rate of incidence theory

We also consider the rate of incidence (or the rate of the Poisson process) A(f) = T(I + 1|I),
which can be described dynamically with an SDE. Our analyses shows that the critical transi-
tion of the rate of the Poisson process corresponds to prevalence models (e.g. at Ry = 1) and
importantly exhibits behaviours associated with CSD.

We investigate here calculating statistics on the rate of incidence (Rol) and its potential to
be used as an EWS for disease transitions. Below we present our analytical results describing
statistical indicators for each model. These theoretical solutions can be used to derive time-
varying indicators for the fluctuations of the rate of incidence. Full derivations of the analytical
work are given in the supporting text: S1 Text.

SIS: Social distancing and emergence. For the SIS model with social distancing (decreas-
ing transmission) and the SIS model for emergence (increasing transmission), we describe the

rate of incidence as &, = B(t) "2 + y(N — I), where for the former model v = 0 as there are
no external infections. We are interested in the statistical indicators of the rate of incidence, as
such we substitute the linear noise approximation of I(t) (considered previously for prevalence
data) and S(¢). In particular, by considering the time derivative of A, we can conclude that the
fixed points of the rate of incidence can be described by the transcritical bifurcation at Ry = 1.
We find that the stability of the fixed points of A, also correspond to those of I, as expected.

We describe the fluctuations, 7, about the steady state of A, = w + V(N —I) using the
linear noise approximation (LNA). We are interested in statistics calculated on the fluctuations
about the rate of incidence, to develop new indicators of disease elimination (emergence). We
derive the resulting analytical solution for 77 using Ito’s Change of variable formulae (details in
supporting text: S1 Text) to approximate 7 with the following Gaussian process:

A, = No + Ny, (14)

n~ [l —2¢) —vo)lL, (15)

2p
B 2g) — PO =9) =76 +v(1 = ) ndt )

+ (B =2¢) = v)\/Bo(1 — §) + 70 + (1 — P)dW,.

dp = |p(1—-2¢)—y—v-—
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In particular, the changing behaviour of the variance of the rate of incidence as the system
approaches disease elimination can be calculated from the SDE Eq 16,

%@ - 2<'B(t)(1 —2¢) =y —v-— /3(1_22[;)_‘)(/3¢(1 —¢) —yp+v(l— ¢))> (n*) (17)
+ (B —20) —v)’Bo(1 — ¢) + 9 + v(1 — §). (18)

SIS with vaccination. If we consider models where there is population-level immunity,
then A, = £ and we can no longer reduce the dimension of incoming transitions using S = N
— I. This can be seen in the SIS model with increasing rate of vaccination, in particular the
prevalence analysis of these systems presented in S1 Text results in a multivariable Fokker-
Plank Equation.

However, we can similarly describe the fluctuations, 7, about the steady state of &, = £
using the linear noise approximation (LNA) as with the above case.

We again use Ito’s change of variable formulae for the multivariable system (which depends
on the fluctuations about susceptible and infectious individuals, {; and {, respectively) to
approximate 7. This leads to an SDE equation which depends on the description of {; and {,
(Supplementary eqn. 25). In particular, we are interested in statistics of the rate of incidence,
such as the variance, which can be simplified in terms of the original covariance matrix ©
(Supplementary eqn. 28) and mean-field equations of infectious (¢) and susceptible () indi-
viduals to give,

% = No + N1/217, (19)
n~ B, +UL), 20)
Va]:f(n) = ﬁ2($2®22 + ¢2®11 +2000,,). (21)

Simulated study

Gillespie simulations. We use the Gillespie algorithm [26] to simulate each model, using
time varying parameters (3(t) for SIS with social distancing & SIS emergence and p(t) for SIS
with vaccination) to drive the model either to extinction (social distancing & vaccination) or
emergence. We record prevalence outputs at time steps of 0.1 per day and we aggregate inci-
dence outputs to daily time steps At = 1. Parameters common to each model are given in
Table 2. For SIS with social distancing, the transmission parameter § was reduced from f, = 1
to 0, slowly forcing R, = 5 to 0. For SIS with vaccination, the rate of vaccination was increased
from po = 0 to 1, slowly forcing Ry = 5 to 0. For emergence, the transmission parameter S was
increased from Sy = 0.12 to 0.24 so that the basic reproduction number increases from R, ~
0.6to~1.2.

Code to reproduce the simulations and calculate the statistical indicators is available online
at https://github.com/ersouthall/Rate-Of-Incidence-EWS. A description of the numerical esti-
mators used in this paper are listed in Supplementary S1 Table.

Numerical estimation of rate of incidence. A drawback of using the rate of incidence
(Rol) as a measure of disease elimination, is the need to develop methods to extract this rate
from incidence data. In our simulation study, we calculate the Rol in two ways from Gillespie
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output: true Rol and rolling Rol. After estimating Rol from the either method, we calculate the
EWS of Rol over multiple realisations.
True Rol.

Firstly, using simulations of prevalence and taking the produc st

=t vStoinclude
external infections), evaluates our definition of A(f). This method, although unrealistic as it
requires knowledge of prevalence (I), demonstrates the accuracy of the analytical results, as it
is the “true” definition of Rol.

Rolling Rol.

An alternative method uses the Poisson property of incidence, illustrating that the rate of
incidence A(f) is equal to the mean and the variance of incidence over time. Our second
method evaluates Rol by calculating the mean on a rolling window of the Gillespie output of
incidence (n.) with bandwidth size BW. Likewise, we could also calculate the variance on a
rolling window of the Gillespie output of incidence—we do not present this method here.

Taking the rolling average of incidence over time gives an approximation of the mean num-

B(t)SI
t -~ (or

ber of new cases (mean of the Poisson Process is Rol, A(t)) for each realisation, we refer to this
method as “rolling” Rol.

Calculation of statistical indicators. For each model, we also perform simulations where
the disease has not fully gone through a critical transition (null model) which we refer to as Fix
simulations. Fix simulations are a null model which has no control mechanism and the disease
fluctuates about the fixed endemic steady state, at Ry = 5 (elimination models) and Ry = 0.5
(emergence models).

Before calculating the time changing statistics, we detrend each simulation by removing the
mean over all realisations of that setting (Ext, Emg or Fix). We are interested in five common
statistical indicators: variance (V), coefficient of variation (CV), skewness (SK), kurtosis (K)
and autocorrelation lag-1 (AC(1)). We illustrate how EWS change over time, and how accurate
the theory is to predicting these trends. Initially, we compare the analytical results of incidence,
prevalence and Rol to the simulations by calculating each statistic over multiple realisations.
In the section below, we describe how we calculate each statistic (over a moving window) to
perform the receiver operating characteristic analysis for each detrended simulation of: inci-
dence, prevalence and “rolling” Rol.

Kendall-tau score and receiver operator characteristic curves. The Kendall-tau score
gives a measure of an increasing or decreasing trend of each statistic over the time series. We
use the measure to evaluate whether a statistic corresponds to an increasing or decreasing
trend and compare this for different data types (prevalence, incidence and RoI). The Kendall-
tau score is defined as [27],

# concordant pairs — # discordant pairs

°= MM —1)/2 ! (22)

where M is the number of time points. Two points in the time series (£,,x, ) and (£,, x, ) with
t; <, are said to be a concordant pair if x, < x, ,and a discordant pair if x, > x, . If the two
points are equal (x, = x, ) then the pair is neither concordant or discordant.

We compare the Kendall-tau scores calculated on simulations going through a critical tran-
sition with null simulations. We quantify the predictive power of each statistical indicator
using its time-changing trend to classify simulations as either extinct (Ext simulations), emerg-
ing (Emg simulations) or null simulations (Fix simulations). We calculate each statistic on a
moving window (size 50) for each detrended simulation, and compare the Kendall-tau score
calculated over each time series up to two end points: before the critical transition (¢,) and
after the critical transition (,).
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We use receiver operating characteristic (ROC) analysis [28] to classify each simulations as
either null or disease-changing and present a ROC curve (in Supplementary S10 Fig) which
gives a graphical plot of the true/false positive rate for each statistical indicator. We compare
each statistical indicator’s ability to correctly distinguish which Kendall-tau scores belong to
those from a null simulation and which belong to a model undergoing a critical transition. The
performance of each model statistic is given by the area under the curve (AUC) of the ROC
curve.

The AUC score gives a predictive measure between different indicators, which we use to
assess their performances. Good statistics have an AUC score close to 1 or 0 since this indicates
the statistic is far from picking by chance. The closer the AUC score is to 0.5, the worse the sta-
tistical indicator is at identifying a critical transition. This is analogous to randomly selecting
simulations that are the null and disease-changing simulations. A score close to 1 indicates
nearly perfect sensitivity and specificity. For each EWS, we assume that an increasing trend
represents a disease going through a critical transition. As a result a AUC score of 1 informs us
that the indicator is increasing and that it is possible to identify all Ext/Emg simulations when
compared to the null simulations by its increasing trend. An AUC score of 0 demonstrates that
the time series trend is instead decreasing and as such it does not correspond to the predeter-
mined prediction. A perfectly diagnosed decreasing indicator when compared to the null
model will result in zero sensitivity under these conditions and an AUC score of 0.

Results
Variance (incidence and prevalence)

Variance is one of the most intuitive statistical indicators. As a system approaches a critical
transition the time taken to recover from small perturbations increases, as described by Critical
Slowing Down theory. This can be observed in the fluctuations about the steady state, which
on the approach to a critical transition take longer to return and consequently vary far more,
defining the increasing nature of variance as an early warning signal.

We evaluate analytical solutions of the variance in prevalence using the derived SDE for
each model (SIS with social distancing: Supp. Eqn. 8, SIS with vaccination: Supp. Eqn.28, SIS
emergence: Supp. Eqn. 30). We compare this to theoretical solutions of the variance in inci-
dence given in Eq 8. The approximation that A(t) = B(1)¢y + vy = y¢ was used by O’Dea et al.,
[9] and has been implemented in the wider literature; for this reason we also include this
approximation for the rate of the Poisson Process describing incidence in the Supplementary
Material S2 Fig.

Fig 1 presents the simulated statistics for both prevalence and incidence theories of elimina-
tion and emergence, where we have plotted the variance between multiple homogeneous simu-
lations at each time point (described in supporting text: S1 Table and with the null model: S5
Fig). Our prediction for the variance is similar to the stochastic simulations with a slight
underdispersion in the incidence simulations (Fig 1a, 1c and le), since the theory (rate of Pois-
son process, green line) is higher than that of the variance in the fluctuations of the simulations
(blue line). We note that our solution for SIS emergence (Fig 1e) follows the gradient of the
stochastic simulations more closely. Since the analytical solution by O’Dea et al. (orange line)
is evaluated at the steady state then the result diverges at the critical transition. It can be shown
that for larger values of 5y, O'Dea et al. results fit closer to the stochastic simulation, although
the general trend of variance for both approaches follows the simulations.

We observe that variance in prevalence simulations (Fig 1b, 1d and 1f) increases on the
approach to the critical transition, as predicted by critical slowing down. In comparison the
variance in incidence decreases before the critical transition for all disease elimination models
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Fig 1. Comparing predictions to simulations for variance. For each model (SIS with social distancing; SIS with vaccination; SIS emergence) we
calculate the variance between 500 homogeneous realisations at every time step (daily). Each figure shows: Poisson process distribution (green line);
dynamic predictions (red line) and Gillespie simulations (blue line). The bottom left panel also shows the dynamical prediction from O’Dea et al.
which was derived for this specific system (lilac line).

https://doi.org/10.1371/journal.pchi.1007836.9001
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(SIS with social distancing Fig 1a and SIS with vaccination Fig 1¢) and increases similarly to
prevalence for the disease emergence model (Fig le).

As expected by our Poisson process analysis, the variance of this system should be the
same as the mean of the system. Therefore for disease elimination models, we should expect a
decreasing variance (along with a decreasing mean) when calculated on incidence data, in con-
trast to an increasing variance with prevalence data. Likewise with disease emergence models
we expect an increasing variance to correspond to the increasing mean. This demonstrates
that our analysis of incidence has successfully predicted the time-varying variance for these dif-
ferent systems.

Variance (rate of incidence)

Fig 1 demonstrates that the variance of incidence does not necessarily increase on the
approach to a critical transition. A new approach for working with incidence-type data is to
consider the rate of incidence, A(t) = T(I + 1|I), which for each model we have derived the
dynamical SDE (see Methods).

We present results calculated in Rol simulations using the two methods: “true” and “roll-
ing” Rol, in Fig 2. The first method uses prevalence data (“true”, purple line) and corresponds
well with the analytical solution (orange line) for all models and the latter method (smoothing
incidence data “rolling”, blue line) fits particularly well for the emergence model (Fig 2(c)).
However it does not follow as closely to some time-varying properties of the variance for elimi-
nation scenarios (Fig 2(a) and 2(b)) respectively. Although the early dynamics are misrepre-
sented for disease elimination, all time series indicate an increasing variance on the approach
to the critical transition.

We observe that the analytical prediction fits well with the stochastic simulations of “true”
Rol (’% purple line Fig 2(a) and 2(b)) for SIS with social distancing and SIS with vaccination
respectively. This demonstrates that this theory approximates the behaviour of the system well.
Indeed, we observe that approximating the rate of incidence by smoothing Gillespie simula-
tions of new cases (“rolling” Rol, blue line Fig 2(a) and 2(b)) predicts a similar increasing
behaviour before the critical transition. This corresponds to the same peak as the analytical
prediction and “true” simulations. However, it fails to capture the magnitude of the behaviour
earlier on in the dynamics.

An area that still needs to be addressed with the “rolling” Rol methodology is understand-
ing why the early dynamics in the disease elimination scenarios are poor. In the supporting
text S3 Fig, we demonstrate that if the disease is approaching elimination at a slower rate, both
methods (“true” and “rolling”) converge to the analytical solution. We chose parameters such
that B(t) changes on a much slower time scale and approaches disease elimination (social dis-
tancing model) at the same rate as (¢) approaches disease emergence for the SIS emergence
scenario (R, changes from 1.2 to 0, ') = 0.24). As the system changes slowly enough then
the system will be approximately ergodic, such that the moving average resembles the mean
incidence. Thus the “rolling” method will be closer to the “true” solution. In comparison, the
faster a system changes over time, will correspond to a wider range in incidence cases across
the moving window. Resulting in a lower mean over the window which can be seen in Fig 2(a)
and 2(b); although the statistic will be more pronounced at the threshold.

We also investigated determining a suitable window size for calculating “rolling” Rol. In
the supporting text 54 Fig, we considered a large range of bandwidth sizes: from window size
10 to 125 (for a total time period of size 800) and took BW = 30 in the main text. We found
that the “peak” as elimination is approached was pronounced and captured for all bandwidth
choices. We find it reassuring that the methodology is robust for bandwidth size choice,
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Fig 2. Variance calculated on the rate of incidence. For each model (SIS with social distancing (panel a); SIS with vaccination (panel b); SIS
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purple line).

https://doi.org/10.1371/journal.pcbi.1007836.9002

however all choices failed to reproduce the magnitude of the early dynamics. This limitation
could result in misinterpretation when used in practice.

We find that for SIS with vaccination (Fig 2(b)) the general trend of the variance is less pro-
nounced at the critical transition than observed for SIS with social distancing. We observe that
the analytical solution (Fig 2(b) orange line) and true stochastic simulations (Fig 2(b) purple)
only slightly increase before the critical transition, implying this trend would be difficult to
detect in real-world data. In particular, the Kendall-tau score which can be an indication of an
increasing trend, is negative (decreasing, 7 = —1) for this model, whilst for SIS with social dis-
tancing and SIS emergence we find that 7 = 0.987 and 7 = 1 respectively. Although, we observe
that the “rolling” simulations of the rate of incidence (Fig 2(b) blue line) exhibit similar prop-
erties as SIS with social distancing. We again observe that the early stage dynamics of this
method have not predicted the expected behaviour of the analytical solution. It can be noted
that R, decreases at the same rate as the SIS with social distancing model, suggesting that this
could also be due to when R is not slowly changing.

In Fig 2(c) we observe that both measurements of the variance of A, calculated on stochastic
simulations of SIS emergence have closely followed the analytical solution of variance. As
expected the true stochastic simulations (Fig 2(c) purple line) follow closely to the theory,
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supporting that this derivation of 77 is correct. More interestingly, calculating the variance of
the rate of incidence directly from simulations of new cases (1, Fig 2(c) blue line) has per-
formed far better than when presented in elimination models (Fig 2(a) and 2(b)). For emer-
gence, we observe that the variance of the rate of incidence increases before the critical
threshold, similar to prevalence for this model. We further found that the early dynamics of
the “rolling” Rol simulations represent the true behaviour of the variance. This result may be
due to R, increasing more slowly in emergence model than the rate it decreases at in the elimi-
nation models, satisfying the ergodic condition.

Other statistical indicators

In this section, we investigate the potential of identifying an epidemiological transition using
five commonly implemented early-warning signals: variance, coefficient of variation (CV),
skewness, kurtosis and lag-1 autocorrelation (AC(1)). Exploration of each EWS follows simi-
larly to variance, as analysed above theoretically and numerically for prevalence, incidence and
rate of incidence. In the supporting text, time series trends for each indicator are presented for
each dataset and model (S5 Fig: variance, S6 Fig: CV, S7 Fig: Skewness, S8 Fig: kurtosis, S9 Fig:
AC(1)), along with analytical analyses for these indicators (S1 Text).

Here, we quantify these time series trends for each statistical indicator using the Kendall-
Tau score as a measure of an overall increasing or decreasing trend. We present in Fig 3 the
predictive power of each statistical indicator by its measuring the AUC score up to two end
points: before the critical transition (¢;) and after the critical transition (¢,) which gives an
overall score of the true/false positive rate.

Fig 3 highlights which indicators are in some cases increasing (AUC close to one), decreas-
ing (AUC close to zero) or are poor indicators (AUC close to 0.5). In particular, as discussed
in the previous section, variance always increases prior to disease emergence (Fig 3(b)). How-
ever, for disease elimination (SIS with social distancing: Fig 3(a) and SIS with vaccination: S11
Fig) results are substantially different when we compare variance calculated in rate of inci-
dence and prevalence (orange and red bars respectively) with incidence (green bars). For Rol
and prevalence data types, the statistical signature is an increasing variance with an AUC near
1. This is in contrast to the latter where the trend is decreasing with an AUC near 0. However,
the results for variance (both increasing and decreasing) are highly predictive (JAUC - 0.5| &
0.5). Thus, if a system is not known or there is difficultly in determining the type of data, incor-
rect conclusions could be drawn when interpreting the time series trend.

We observe that skewness is a poor indicator because of its inability (AUC score close to
0.5) to identify disease elimination with any type of disease data it is applied to (rate of inci-
dence, incidence and prevalence). Identifying emergence with skewness in prevalence or Rol
data (red and orange bars respectively) is also very poor and its predictive ability is only slightly
increased with incidence (green bars). Whereas, coefficient of variation calculated on all types
of disease data (rate of incidence, incidence and prevalence) and for both SIS elimination mod-
els, exhibits a near perfect ability to identify the increasing trend.

Discussion

While studies for EWS on incidence-type data have been growing in recent years, theoretical
exploration of how these indicators change on the approach to a critical transition have been
neglected. In this paper, we have shown that the typical trends of EWS that precede a critical
transition are exhibited in prevalence-type data but do not always exist in incidence-type data.
In particular, we have focused our investigation on the trend of variance over time as an infec-
tious disease system approaches a tipping point.
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Fig 3. AUC scores for different EWS. We compare the performance of 5 common statistical indicators for SIS with social
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Prior work has shown that variance in incidence increases on the approach towards disease
emergence. However, our work highlights that this property might not be a result from critical
slowing down theory as first expected. We have shown it is a consequence of the counting pro-
cess that can approximate incidence-type data. As such, we demonstrated that the variance in
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incidence is expected to follow the mean in incidence. In particular, the variance of incidence
will increase on the approach to disease emergence, but will notably decrease before a disease
elimination threshold. We applied these findings to two systems of disease elimination and
verified that variance of incidence exhibits a decreasing trend on the approach, following the
behaviour of the mean of incidence, instead of rising.

Therefore, it is highly recommended to understand analytically how EWS change on the
approach to a critical transition in order to avoid misleading results. The generalised theory of
a counting process can be applied to many other systems outside of the scope of epidemiology
where we would expect a decreasing variance preceding a critical transition. Potential applica-
tions include the observation of animals through camera traps, disease surveillance sampling
in wildlife or movements in stock prices, which are all examples of incidence-type data. Nota-
bly, a substantial number of studies on ecosystem data, climate data and financial data have
observed inconsistencies in statistical indicators [13, 20, 23, 29]. In particular, systems where a
rising variance but decreasing autocorrelation is exhibited [11, 20] or recent work finding both
decreasing variance and decreasing autocorrelation for systems where the basin of attraction
narrows as the critical transition is approached [30], are examples which do not produced
CSD based warning signals. Although we found the Poisson process to be overdispersed in the
context of epidemiology, it provides a broad framework which can be extended to many other
infectious disease systems using the incoming transition probabilities into the infectious class.

We proposed extracting the rate of incidence (Rol) or intensity of Poisson process from
incidence-type data to illustrate that utilising CSD, such as observing an increasing variance,
could depend on suitable data which directly undergoes a bifurcation. In particular, we have
shown that the critical threshold in the Rol corresponds with that of prevalence; and as
expected we demonstrated that the trend in variance in Rol does increase before an imminent
epidemiological transition. A clear limitation with using Rol is developing suitable methods
for extracting this quantity from incidence data. We presented a method (named “rolling”
Rol) to perform this extraction and found it poorly represented the early dynamics of Rol.
However, the signal correctly increased prior to the critical transition in correspondence with
the theory and this trend was consistently exhibited for a large range of bandwidth choices.
Future work will include developing these methods to approximate Rol from real-world data.

We applied five early warning signals to simulated datasets comprising of the three discussed
data types: prevalence, incidence and rate of incidence. The simulated data we have investigated
represents perfect reporting or the “best case scenario”. Often is the case that there is underre-
porting that may reduce the detectability of signals in real-world data. The work we have pre-
sented here can be extended to include a gamma distributed intensity A. Using a gamma
distributed rate of incidence will account for reporting errors as described by O’Dea et al.

Opverall, our study suggests that a robust indicator is one that shares a highly predictive time
series trait (JAUC — 0.5| & 0.5) amongst all three data types, even with inconsistent trends
(increasing or decreasing). Therefore, we suggest that variance and coefficient of variation are
overall good indicators due to their high predictive power in all cases. Coefficient of variation
is a robust indicator for disease elimination since the trend is similar between different types
of data (Fig 3(a)) and S11 Fig. However discrepancies are demonstrated when considering
opposite disease thresholds as shown with disease emergence (Fig 3(b)) which has a decreasing
trend for CV and performs less well with disease prevalence data.

However, we found that kurtosis and AC(1) are not robust indicators. Although kurtosis
and AC(1) have a predictive trend with prevalence data, this is not typically the data which is
readily available. In particular, kurtosis is highly predictive (with a decreasing trend) in preva-
lence data on the approach to disease elimination (Fig 3(a)) and fairly predictive with an
decreasing trend in the case of prevalence with emergence (Fig 3(b)); it is a poor indicator for
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all other types of data. Likewise, although AC(1) has a clear increasing trend for prevalence
data elimination systems (Fig 3(a), S11 Fig), it is less predictive trend for incidence and Rol
data. Additionally, the trend is not distinct for any datasets when considering an emergence
transition, therefore there is a potential for this indicator to be used incorrectly. In the cases
where an EWS is poor in some types of data but good for others could lead to misleading
judgements of systems, and therefore are not robust.

These findings support prior work on prevalence and initial work from O’Dea et al. and
Brett et al. with incidence-type data. Our analytical exploration of incidence has indicated a
new data source, Rol, which can be extracted from incidence timeseries. A potential powerful
tool would be to compute variance and CV indicators with different types of data (incidence,
rate of incidence and prevalence) and ensemble these. A composite of multiple statistical indi-
cators was suggested by Drake & Griffen [14] and has been applied to case studies with the
same data-type and a combination of EWS by Kefi et al. [19] to help interpret between differ-
ent critical transitions and also has successfully detected transitions using an ensemble of dif-
ferent time series data [18]. This suggests a potential approach to achieve a single metric from
a combination of indicators calculated on multiple timeseries data with different trends, such
as we have observed with incidence and Rol, to achieve a more pronounced indication of dis-
ease transitions.

Additionally, further work would be to include a heterogeneous ensemble as suggested by
O’Dea et al. [9], whereby all parameters are sampled randomly for each realisation rather than
being equal. This will lead to more realistic results, as each parameter sample represents time
series data from different locations, as suggested by studies on spatial statistics, a promising
method for addressing limited data [7, 15, 16]. Comparatively, we have shown here that com-
puting the statistics on a homogeneous ensemble although unrealistic, it returns exact stochas-
tic behaviours of the system and we used this to verify the simulated study with the theory.

In conclusion, there is a tremendous potential for using early warning signals to provide
evidence on our progress towards elimination and inform public health policies. We have indi-
cated that by monitoring simple statistics over time it is possible to observe disease emergence
and elimination, which with further development offers a promising solution for an automated
system that can update time series statistics in real-time as new data becomes available. This
would be particularly useful for emerging diseases where EWS could be used to prompt early
detection and help aid rapid responses. The focus of our paper has provided insight on how
statistics behave for different types of infectious disease data, where we considered suitable
data which could be incorporated into such monitoring system. We have researched the
resemblance of observed time series results between different data types, a necessary explora-
tion for the development of EWS before they can impact decision making. We reported that
some indicators traits are inconsistent across all data types and some EWS differ significantly
between disease thresholds: elimination and emergence. Knowledge of the type of data which
has been collected is imperative to avoid misleading judgements in response to time series
trends. Our work has provided analytical evidence to understand why results differ, improving
our ability to monitor EWS for infectious disease transitions.

Supporting information

S1 Text. Analytical derivations.
(PDF)

S1 Table. List of early warning signals.
(PDF)
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S1 Fig. Sensitivity to time aggregation (Af) when approximating non-homogeneous Pois-
son process. For each model (Model 1 (panel a and b): SIS with social distancing (elimina-
tion); Model 2 (panel ¢ and d): SIS increasing vaccination (elimination); Model 3 (panel e and
f): SIS increasing transmission (emergence) we calculate the variance between 500 homoge-
neous realisations subject to aggregation of time steps (Af). We take the average of new cases
over time step aggregation. Each figure shows: theory (dotted black line); critical transition
(dashed black line) and Gillespie simulations (colours correspond to time aggregation). The
last model also shows the dynamical prediction from O’Dea which was derived for this specific
system (solid black line).

(PDF)

S2 Fig. Approximating incidence by using the rate of the Poisson Process, A(f) = Atyl. For
each model: SIS with social distancing (a), SIS with vaccination (b), SIS increasing transmis-
sion/emergence (c) and the SIR epidemic curve (d) we plot two approximations of the inten-
sity of a Poisson process. The dashed line is the point where Ry = 1 or Ry5= 1 (effective
reproduction number—SIR model). Blue line is variance calculated over stochastic simula-
tions. Orange line: Poisson Process with A(t) = ¥I(t). Green line: Poisson Process with A(f) =
BS(H)I(t). Panel (d): SIR epidemic curve, is included here to demonstrate an example where
the approximation BSI/N = yI isn’t appropriate. This is the SIR model with: f(f) = 0.1 and y =
0.01.

(PDF)

S$3 Fig. Slower rate reduces discrepancies between theory and simulated variance in “roll-
ing” Rol. SIS with social distancing (elimination) and parameters 3, = 0.24. In this example,
the dynamics follow those of Section 1.1 but with different parameters. This leads to the
approach towards R, = 1 being at a slower rate where R, changes from 1.2 to 0.

(PDF)

$4 Fig. Approximation method “rolling” Rol is consistent across different bandwidth
sizes. Calculating “rolling” RoI with a range of bandwidths for: a). SIS with social distancing,
b). SIS with vaccination and c). SIS emergence.

(PDF)

S5 Fig. Comparing predictions to simulations for variance. For each model: a,b,c).SIS social
distancing (elimination); d,e,f). SIS increasing vaccination (elimination); g, h, i). SIS increasing
transmission, (emergence) we calculate the variance between 500 homogeneous realisations at
every time step (daily). Each figure shows: Poisson Process distribution (green line); dynamic
predictions (red line) and Gillespie simulations (Ext and Emg, blue line). The last model also
shows the dynamical prediction from O’Dea which was derived for this specific system (orange
line).

(PDF)

S6 Fig. Comparing predictions to simulations for coefficient of variation. For each model:
a, b, ¢). SIS social distancing (elimination); d,e,f). SIS increasing vaccination (elimination); g,h,
i). SIS increasing transmission, (emergence) we calculate the CV between 500 homogeneous
realisations at every time step (daily). Each figure shows: Poisson Process distribution (green
line); dynamic predictions (red line) and Gillespie simulations (Ext and Emg, blue line).
(PDF)

S7 Fig. Comparing predictions to simulations for skewness. For each model: a,b,c). SIS
social distancing (elimination); d,e,f). SIS increasing vaccination (elimination); g,h,i). SIS
increasing transmission, (emergence) we calculate the skewness between 500 homogeneous
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realisations at every time step (daily). Each figure shows: Poisson Process distribution (green
line); dynamic predictions (red line) and Gillespie simulations (Ext and Emg, blue line).
(PDF)

S8 Fig. Comparing predictions to simulations for Kurtosis. For each model: a,b,c). SIS social
distancing (elimination); d,e,f). SIS increasing vaccination (elimination); g,h,i). SIS increasing
transmission, (emergence) we calculate the kurtosis between 500 homogeneous realisations at
every time step (daily). Each figure shows: Poisson Process distribution (green line); dynamic
predictions (red line) and Gillespie simulations (Ext and Emg, blue line).

(PDF)

S9 Fig. S9A: Comparing predictions to simulations for autocorrelation lag-1 For each
model: a,b,c). SIS social distancing (elimination); d,e,f). SIS increasing vaccination (elimina-
tion); g,h,i). SIS increasing transmission, (emergence) at each point ¢ we calculate the lag-1 AC
on an interval [t — W/2, t+ W/2]. We then calculate the mean of this AC over 500 homoge-
neous realisations at every time step. Each figure shows: Poisson Process distribution (green
line); dynamic predictions (red line) and Gillespie simulations (Ext and Emg, blue line). S9B:
Evaluating the MSE between theoretical prediction and simulations for different window
sizes. For each mode, we calculate how the error between theoretical solution and simulations
changes with different window sizes used in the moving average calculated of AC(1). We dem-
onstrate that these errors narrow, and define the minimum window size of which the error is
below some threshold (given in the plots) to be chosen suitable window size (for the moving
average calculations).

(PDF)

$10 Fig. ROC curves for indicators: V, CV and AC(1) (Figo. S10A); Skewness and Kurtosis
(Figo. S10B). Comparison of disease transitioning simulations: SIS with social distancing
(solid lines); SIS with vaccination (dashed lines) and SIS disease emergence with increasing
transmission (dotted lines) to the null model (Fixed endemic simulations). Each curve com-
pares the null simulations to each model for different indicators and for each data type: preva-
lence (P, red lines), incidence (I, green lines) and rate of incidence (Rol, orange lines). ROC
curves calculated for indicators: variance; coefficient of variation (CV) and lag-1 autocorrela-
tion (AC). Kendall-tau scores measured over each data-type up to t; = 390 (pre disease trans-
mission) are given in the left column and up to #, = 450 (post disease transmission) are given
in the right column. For each ROC curve we measured the AUC score which is given in leg-
end, which is an indication of how predictive each indicator is by its ability to distinguish
between elimination simulations and the null model.

(PDF)

S11 Fig. AUC scores for different EWS (SIS with vaccination). We compare the perfor-
mance of 5 common statistical indicators for the SIS model: disease elimination with vaccina-
tion. For each ROC curve we measured the AUC which is an indication of how predictive each
indicator is by its ability to distinguish between elimination simulations and the null model.
The closer to 0.5 signifies the worst performance (random diagnosis). We evaluate the Ken-
dall-tau score up to before the critical transition (t; = 390) and after the critical transition (¢, =
450) which gives an indication if the EWS is increasing or decreasing. A score of 1 demon-
strates that it is possible to identify all Ext simulations when compared to null simulations by
its increasing trend (i.e. perfect sensitivity, true positive rate). A score of 0 means that there is
zero sensitivity and instead the simulations are decreasing.

(PDF)
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