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Abstract 

Long-term and frequent vibration monitoring has been seen one of the most suitable 

approaches to achieve a timely decision-making process concerning the health status 

of civil infrastructure including the emergency cases such as possible structural 

failures. The fact that the tragic collapse of the I-35W Bridge in United States in 

2007 occurred only three months after its most recent inspection has strongly 

supported this argument. However, implementing such a system in practice is not 

always feasible due to many obstacles such as the large scale of civil structures, tight 

budget, uncertainties of new sensing technologies and ineffective applications. To 

tackle these problems altogether, this research program aims to develop a practical 

and reliable synthetic Structural Health Monitoring (SHM) system with two core 

subsystems namely vibration sensing system and data-based safety evaluation system 

for use in large-scale civil infrastructure. Two popular vibration sensing platforms 

considered for the first subsystem are SHM-oriented Wireless Sensor Network 

(SHM-oriented WSN) and Ethernet distributed Data Acquisition (Ethernet 

distributed DAQ) system as they can provide flexibility in selection for different (e.g. 

continuous/non-continuous) measurement purposes. To enable a frequent safety 

evaluation basis, the feature extraction function is built upon the convenient Output-

only Modal Analysis (OMA) techniques particularly those of the powerful data-

driven Stochastic Subspace Identification (SSI-data) family whilst the damage 

identification function is constructed from the computationally efficient Mahalanobis 

Squared Distance (MSD) based unsupervised learning algorithm. A number of 

evaluations, improvements and new developments are then made in all the 

components in both subsystems to select the most suitable candidates as well as to 

enhance their robustness and practicalities. First, a flexible semi-complete data 

synchronization scheme is explored for SHM-oriented WSNs as a relaxing 

synchronization solution for more efficient usage in large-scale civil structures.  

Realizing its desired cost-effective and flexible features, an extension of this scheme 

is then made for use with the TCP/IP communication medium before being used, 

along with other novel sensor and peripheral DAQ hardware solutions, to realize an 

actual Ethernet distributed DAQ system. On the side of safety evaluation 

components, intensive investigations are first carried out to assess the possible 
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impact of remaining synchronization uncertainties as well as the robustness of the 

SSI-data techniques and their auxiliary processing tools. To overcome the inherent 

impact of variable Environmental and Operational (E&O) factors when evaluating 

random Data Synchronization Error (DSE) of the Ethernet distributed DAQ system, a 

novel daisy chain data selection scheme is derived in order to effectively assist 

statistical assessment tasks. For damage identification function, what is uncovered is 

that the weakness of the MSD-based method is associated to the difficulty in 

satisfying this method requirement of data distribution at an early monitoring stage or 

during short-lived SHM programs. A so-called Controlled Monte Carlo Data 

Generation (CMCDG) scheme is then proposed as a prescription for such an illness. 

The results from intensive evaluations in this research program show that the semi-

complete data synchronization approach is feasible not only for SHM-oriented WSNs 

but also for the Ethernet distributed DAQ system platform. In fact, the efficacy of the 

data synchronization scheme derived for the latter platform is experimentally verified 

thereby not only successfully establishing a real-world SHM testbed but also 

providing a promising alternative for use in the other SHM projects with tight budget 

and/or sparse measurement coverage where conventional cable-based 

synchronization solution may be too costly. Besides, the evaluation results also 

confirm the robustness of the primary SSI-data technique and the post-processing 

data merging method in coping with DSE; and highlight the efficacy of the channel 

projection option in assisting the SSI-data techniques in such adverse circumstances. 

Finally, it is shown that the ultimate assistance from the proposed CMCDG scheme 

is well able to assist the MSD-based damage identification method to overcome the 

problems of experimental data shortage and distributional insufficiency, attain 

sufficient computational stability and achieve satisfactory damage identification 

outcome. Applications onto both laboratory and full-scale vibration data highlight the 

advantages of CMCDG not only in helping to provide optimal synthetic data for 

adequate MSD-based learning processes but also at the dynamic structure of this 

scheme making it well adaptive to any input data with any primary distributional 

condition. With these validated developments and enhancements, it is evident that 

the developed synthetic SHM system will function reliably from very early 

operational stages thereby enabling prompt protection for both valuable civil 

infrastructure and the user community involved. 
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Chapter 1: Introduction 1 

Chapter 1: Introduction 

1.1 OVERVIEW AND MOTIVATIONS 

Structural Health Monitoring (SHM) is emerging as a very active research area 

beginning from the fact that civil infrastructure around the world is experiencing 

degradation due to their aging and improper usage. Further, introduction of 

innovative structures with bold concepts, use of new materials, excessively increased 

maintenance costs and the need for effective post disaster condition evaluations have 

also caused infrastructure to become more reliant on SHM technologies (Ansari, 

2005).  In short, SHM can be defined as the use of on-structure, non-destructive 

sensing systems to collect data in order to evaluate the  health state of a structure and 

monitor its performance for decision making and advancing the current practice of 

structural design, maintenance and rehabilitation (Chan et al., 2011). Therefore, a 

practical SHM system should essentially consist of two main subsystems namely (i) 

sensing system, and (ii) structural (performance and/or safety) evaluation system. 

Over the past two decades, there have been numerous advances in development in 

these two subsystems in order to make them more applicable to actual civil structures 

with high degrees of scale and complexity. Various types of sensors such as 

accelerometers, optical fibers, and global positioning systems have been developed 

and successfully integrated into sophisticated wired sensing systems with hundreds to 

thousands channels for the purpose of long-term and frequent monitoring of long-

span bridges and high-rise building structures (Karbhari and Ansari, 2009; Ni et al., 

2009). Ethernet has been employed to replace conventional communication buses 

(such as RS-232 or GPIB) to spread out measurement to remote locations and form 

distributed Data Acquisition (DAQ) systems (Eren, 2011). As an emerging opponent 

of the Ethernet distributed DAQ platform, wireless sensor networks (WSNs) have 

recently drawn significant attention from the SHM community. Significantly 

enhanced from generic versions, SHM-oriented WSNs have been transitioned from 

structural laboratories to full-scale structures with the expectation that they would be 

an inexpensive and a more flexible substitute to the wired sensing system. On the 
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side of structural evaluation aspect, the most studied problems are unsurprisingly 

concerning structural damage identification (Doebling et al., 1996; Sohn et al., 2003; 

Farrar and Worden, 2013). Numerous types of damage-sensitive (or health-

representative) features and the corresponding techniques to extract them from 

vibration data have been investigated. Due to their applicability to in-service civil 

structures, there has recently been an increasing trend of using dynamic properties 

obtained by means of output-only modal analysis (OMA) techniques (Brincker et al., 

2001; Brincker et al., 2003; Karbhari and Ansari, 2009). Popular OMA techniques 

such as those of Frequency Domain Decomposition (FDD) and data-driven 

Stochastic Subspace Identification (SSI-data) families have seen their applications in 

many SHM projects and have been incorporated in several commercial software 

packages such as ARTeMIS (www.svibs.com) and MACEC 

(http://bwk.kuleuven.be/bwm/macec). To cope with inherent impact of changing 

Environmental and Operational (E&O) conditions on the feature, a number of studies 

have been conducted towards the use of machine learning algorithms and their 

pattern recognition aspects in assisting the structural damage identification process 

(Sohn et al., 2003; Gul and Catbas, 2009; Figueiredo et al., 2011; Farrar and 

Worden, 2013). Through these studies, several promising learning algorithms have 

been shown and demonstrated by numerical and experimental data. As it is mainly 

based on the measured data, this evaluation approach is often known as the data-

based approach as opposed to the model-based evaluation counterpart which is 

generally based on a physical model of the investigated structure such as the Finite 

Element (FE) model. 

Even though prior studies have accomplished significant achievements, there have 

still been limited deployments of SHM systems onto real civil infrastructure due to a 

number of key limitations in both aforementioned subsystems that could hinder the 

widespread practice. With regards to structural safety evaluation, the first limitation 

is that most feature extraction and damage identification methods have been 

experimentally validated in well-controlled environment such as laboratories. The 

robustness of most feature extraction techniques has also not been thoroughly 

assessed against realistic measurement uncertainties particularly those recently 

emerged from the use of new sensing technologies or measurement strategies to suit 
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the needs in SHM of actual civil infrastructure. In a similar fashion, most damage 

identification methodologies proposed earlier have not thoroughly considered the 

impact of variable E&O factors and practical circumstances for long-term and 

frequent monitoring purposes. Although machine learning based damage 

identification has been shown to be a promising approach, most prior studies in this 

trend have often overlooked the prerequisite knowledge concerning validity of data 

condition and learning system architecture. If data condition is unstable or system 

architecture is invalid, it can induce ill-conditioned or invalid learning system 

realizations and subsequently erroneous results of structural evaluation. Such 

overlooking may be the cause for the false indications of structural states in prior 

studies (Worden et al., 2003; Figueiredo et al., 2011). In the sensing system aspect, 

most wired sensing systems for global vibration monitoring in general and those 

employing the Ethernet distributed DAQ architecture in particular though reliable 

and durable have still been too costly for most structures especially from the return 

on investment viewpoint (Ansari, 2005; Karbhari and Ansari, 2009). SHM-oriented 

WSNs though potentially being an inexpensive sensing substitute are still not 

efficient for use in full global vibration monitoring programs for actual civil 

structures due to inherent technical difficulties such as those related to data 

synchronization and system latency (Chintalapudi et al., 2006; Karbhari and Ansari, 

2009; Xu and Xia, 2012; Farrar and Worden, 2013). Such problems are partially due 

to the implementation of very precise synchronization solutions which are either 

expensive in the Ethernet distributed DAQ systems or computationally costly as well 

as causing additional system latency in the SHM-oriented WSNs. Besides, the large 

scale of critical civil structures also further complicates system deployment work and 

increases the cost. More cost-effective and flexible sensing solutions; as well as more 

robust structural evaluation paradigms are therefore in need to enhance the efficiency, 

flexibility and reliability of SHM systems. Naturally, these problems and the 

corresponding needs have become the main motivations for the research presented 

herein.   
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1.2 AIM AND OBJECTIVES 

The overall aim of this thesis is to develop a practical synthetic SHM system that is 

cost-effective and flexible in sensing and DAQ; as well as robust in the structural 

safety evaluation aspect for the purpose of long-term and frequent monitoring of 

large-scale civil infrastructure during their service lives. The two types of sensing 

systems to be considered are the SHM-oriented WSNs and the Ethernet distributed 

DAQ systems due to their own merits and applicability. While the former sensing 

platform is more applicable for the case when continuous sensing is not required 

and/or a mobile motoring system is sought, the latter sensing platform is more suited 

to serve as a continuous sensing system that is often desirable for critical civil 

structures. Based upon the data-based approach, the structural safety evaluation 

system should be robust in both feature extraction and damage identification phases 

while usable from very early monitoring stages in order to safeguard the unfortunate 

short-lived structures.   

This research can be achieved upon completing the following research tasks 

     Task 1: Evaluate the feasibility of using the semi-complete data 

synchronization approach in global vibration sensing of large-scale civil 

structures. The main target in this task will be a relaxing data 

synchronization scheme that is computationally effective for SHM-

oriented WSNs when being used in large-scale structures. Included in the 

research task will also be a thorough understanding of the impact of such a 

synchronization scheme as well as the (corresponding) robustness of the 

most popular global feature extraction techniques to facilitate reliable 

applications in subsequent stages of this research.    

     Task 2: Develop a cost-effective and flexible wired sensing system 

employing the Ethernet distributed DAQ architecture and the semi-

complete data synchronization approach to overcome the difficulties of 

having large or sparse measurement coverage while the budget is tight. 

Budget constraint is often encountered in practice and tends to hinder the 

use of high-end signal acquisition devices to cope with such coverage 

problems.  
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     Task 3: (a) Develop a robust data-based damage identification method for 

the purpose of frequent or continuous structural safety evaluation with 

time. The method should be well usable even with limited observations 

such as at an early monitoring stage; (b) Validate the developed damage 

identification method by well-established laboratory experimental datasets. 

     Task 4: Validate the damage identification method by measured data 

collected by the wired sensing system (developed in Task 2) as well as by 

other real-world vibration measurement systems.  

1.3 SCOPE AND RESEARCH SIGNIFICANCE 

As discussed earlier, this research addresses two main (i.e. sensing and structural 

safety evaluation) problems associated with the development of a practical SHM 

system for civil infrastructure. In the aspect of sensing issues, the sensing systems 

herein are only intended for the global vibration-based SHM approach with the main 

measurand being acceleration. The merit for this type of system is first that it often 

allows long-term and frequent (or even continuous) monitoring by utilizing ambient 

and operational loadings as excitation sources and output-only vibration analysis 

(such as OMA) for feature extraction while the tested structure remains in normal 

operation. This is crucial for achieving a timely decision-making process concerning 

the structural health with time including the emergency cases such as possible 

structural failures. Compared to most other types of measurements, acceleration 

measurement is more reliable while the sensor (i.e. accelerometer) is more durable 

over a long period of time. Further, as a global monitoring approach, acceleration 

measurement allows the monitoring of the entire structure, rather than just each 

structural component, by a relatively small set of sensors and equipment. However, 

as a global monitoring approach, vibration measurement has been often believed to 

be associated with very precise data synchronization. This tends to lead to the 

dependence on either precise data synchronization methods (causing additional 

burden of computation and latency for SHM-oriented WSNs); or turnkey (but costly) 

synchronization hardware solutions in Ethernet distributed DAQ systems particularly 

when these two sensing platforms are used in large-scale structures. Besides, the 

(large) scale of actual civil infrastructure often requires large or sparse system 



 

6 Chapter 1: Introduction 

coverage making wired system deployment in general and synchronization hardware 

solutions in particular very costly. More cost-effective and flexible solutions for 

synchronization and other DAQ issues are therefore in need to provide more effective 

operational schemes for SHM-oriented WSNs as well as more affordable Ethernet 

distributed DAQ systems.  

On the other hand, the structural safety evaluation problem considered herein is 

mainly restricted to following the model-based approach and within level 1 of the 

damage identification process that is to identify the presence of structural change 

such as damage or degradation. The data-based approach is adopted because this 

approach first can avoid challenging tasks in the counterpart (i.e. model-based) 

approach such as modelling accurately material (e.g. concrete or composite) and 

structural joints; and updating satisfactorily the model (Farrar and Worden, 2013). As 

it could bypass the time-consuming model updating process, the data-based approach 

also tends to be more capable of real-time or near real-time diagnostics which are 

desirable for the aforementioned timely decision-making goal. For the level-1 scope, 

although a great deal of studies have been carried out in this level, most of them were 

based on numerical or laboratory data and therefore have not taken into account the 

inherent influence of E&O factors in practical SHM programs (Doebling et al., 1996; 

Sohn et al., 2003; Farrar and Worden, 2013). Further, in the limited research that has 

coped with such influence, the problem has not been thoroughly addressed and the 

false detection rate has still been significant (Gul and Catbas, 2009; Figueiredo et al., 

2011). Finally, although OMA is among the most popular feature extraction 

approaches, commonly-used powerful parametric OMA techniques such as SSI-data 

techniques have not been thoroughly assessed against distributed measurement 

uncertainties such as Data Synchronization Error (DSE). Hence, it is believed by the 

author of this thesis that enhancing the reliability and efficacy in this phase is still 

very crucial besides addressing the damage identification problems at higher levels. 

Such enhancements are truly necessary to ensure that the data collected from any 

sensing system (including those considered herein) will be used in a reliable and 

effective manner and the whole SHM system will be able to safeguard civil 

infrastructure for society. 
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1.4 ACCOUNT OF SCIENTIFIC PROGRESS LINKING THE RESEARCH 

PAPERS 

This research is presented in the format of thesis by published papers in accordance 

with the PhD regulations at QUT. As the primary contribution of the research project, 

five thesis chapters (Chapters 37) are made of five research papers that have been 

published or accepted or under review in peer-reviewed journals. For reference 

purposes, a list of these papers in the same order as numbered hereafter is provided in 

section 1.6. Three of the papers which are published (Papers No. 1 & 2) or in-press 

(Paper No. 4) are listed with their URLs included. For the other two papers, the proof 

of manuscript submission of Paper No. 3 and the proof of full acceptance (for 

publication) of Paper No. 5 are provided in Appendices A and B, respectively. In 

addition, the statement of joint authorship for each paper can be viewed in each 

chapter right before the paper content. The remaining three chapters of this thesis are 

the introduction (Chapter 1), the literature review (Chapter 2) and the conclusion 

(Chapter 8). The following subsections are to provide the linkages between the five 

research papers themselves (with illustrations in Figure 1-1) and with the other 

chapters. More detailed contributions and linkages of each paper with the others are 

provided in the opening section of each chapter.  

This thesis starts with the introduction chapter for the provision of the background, 

rationale and outline of the research. As the ultimate target of this study is a practical 

synthetic SHM system in the data-based approach, Chapter 2 is to provide critical 

reviews of prior research related to the two main subsystems viz. vibration sensing 

and data-based structural safety evaluation. From these reviews, promising 

approaches as well as remaining problems associated are identified for both 

subsystems. First of all, it was found that synchronization has still been a grand 

problem particularly in ambient vibration monitoring of large-scale civil structures. 

For the SHM-oriented WSN platform, some software-based enhancement solutions 

such as the resampling-based DSE correction method tend to cause costly 

computation effort and additional system latency when this sensing platform is used 

for large-scale structures. On the side of Ethernet distributed DAQ systems, the 

traditional dependence to turnkey synchronization hardware solution can make this 

type of sensing system very costly for use in large-scale infrastructure which is often 
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associated with large or sparse measurement coverage. Besides, such coverage also 

often leads to the use of more sophisticated DAQ equipment thereby further 

increasing the system development cost while general sensor solutions may not work 

effectively in demanding ambient excitation conditions. Moreover, the robustness of 

such popular OMA techniques as those of the SSI-data family with respect to DSE 

and uncertainties from the data merging process has not been thoroughly investigated. 

In these regards, Papers No. 1 and 2 (Chapters 3 and 4, respectively) are intended to 

cope with the main problems of SHM-oriented WSNs and SSI-data techniques (i.e. 

Research Task 1, as listed in section 1.2) whilst Paper No. 3 (Chapter 5) is to deal 

with those associated mostly with the Ethernet distributed DAQ platform (Research 

Task 2). In more detail, Paper No. 1 is to provide (i) a feasibility study towards the 

use of the semi-complete data synchronization approach in SHM-oriented WSNs for 

application onto large-scale civil structures; and (ii) more thorough understandings 

towards the effects of different DSE levels on the widely-used OMA (or equivalently 

level-1 output-only modal-based damage identification) techniques in general and on 

the popular primary SSI-data technique (i.e. employing the UPC estimator) in 

particular. As a continuation study in this trend, Paper No. 2 provides similar 

evaluations to those presented in Paper No. 1, that is, towards the feasibility of the 

targeted synchronization scheme and the robustness of the primary SSI-data but for 

other types of sensor setup and test structure. Specifically, this paper focusses on the 

problem related to the use of the multi-test setup scheme which is also popular in 

practice for measuring large-scale structures with a limited number of sensors; as 

well as the employment of a test structure with a higher range of vibration 

frequencies to facilitate comparisons amongst different frequency ranges. This 

assessment task undoubtedly faciliates the recognition of the most robust data 

merging method and the efficacy of the channel projection scheme in assisting the 

primary SSI-data to cope with synchronization and data merging uncertainties. Based 

upon evaluation results of the semi-complete data synchronization approach and the 

primary SSI-data technique from Papers No. 1 and 2, Paper No. 3 (Chapter 5) 

proceeds with the development of a wired sensing system solution based on the 

Ethernet distributed DAQ architecture for the purpose of continuous monitoring of 

large-scale civil structures. While common measurement and system development 

issues such as low-level ambient vibration, sparse sensing coverage and budget 
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constraint as previously mentioned have called for innovations in this research work, 

the feasibility confirmation for the semi-complete data synchronization approach has 

provided the basis for the synchronization solution derived in this development. 

Utilizing the TCP/IP communication technology, this data synchronization solution 

can not only help to reduce the total cost but also provide greater flexibility for 

system development work in demanding circumstances such as large or sparse 

measurement coverage. Using this synchronization solution as well as other effective 

sensor and peripheral DAQ solutions, a cost-effective and flexible Ethernet 

distributed DAQ system is developed and implemented onto an actual building at 

QUT which has a (rather low) frequency range of interest similar to the majority of 

real-world civil structures. By means of the primary SSI-data technique coupled with 

the channel projection scheme (as suggested in Paper No. 2), general assessment as 

well as statistical analysis incorporated daisy data selection, the reliability of this 

sensing system is thoroughly verified. The vibration data acquired by the system is 

then used for the purpose of validating the damage identification method and related 

data generation scheme presented in Paper No. 5.      



 

10 Chapter 1: Introduction 

 

Figure 1-1 Main connections amongst the papers included in the thesis 

Besides coping with the issues in sensing systems and the main output-only feature 

extraction (i.e. OMA) approach, it is also important to develop a robust level-1 data-

based damage identification method to overcome the impact of E&O factors on 

actual vibration monitoring data. In this regard, the outcome of Chapter 2 shows that 

Mahalanobis Squared Distance (MSD) based method in the statistical damage 

identification approach is among the most promising candidates for long-term and 

frequent monitoring purposes due to its architectural simplicity and computational 

efficiency. Such features make the MSD-based method advantageous when dealing 
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with large volume of data resulted from frequent or continuous monitoring manners. 

However, it is also pointed out that this method has an “Achilles heel” that is the 

requirement of data under a multivariate normal (multinormal) distribution. This 

tends to become problematic in an early monitoring stage or during short-term SHM 

programs when only limited actual observations are available. To tackle this problem 

in a systematic manner, Paper No. 4 (Chapter 6) proposes a so-called Controlled 

Monte Carlo Data Generation (CMCDG) scheme to assist the MSD-based method in 

such adverse circumstances and initially validates this scheme with some Auto-

Regressive (AR) time-series feature data extracted from a sophisticated SHM 

benchmark dataset of a laboratory structural model with multiple damage scenarios 

(Research Task 3, see section 1.2). The theoretical bases of this scheme and its key 

components are uncovered to consolidate their scientific validity. Two premature 

datasets with limited observation are extracted to represent an early monitoring stage 

for two different cases of the feature dimension. To achieve the most desirable goal 

towards the field validation (Research Task 4), Paper No. 5 (Chapter 7) further 

applies the CMCDG scheme onto real ambient vibration data of the building studied 

in Paper No. 3 as well as from an actual bridge with a naturally damaged state. While 

the shortage of the building vibration data truly represents the problem at an early 

monitoring stage, the data shortage occurred with the bridge is due to that this bridge 

was damaged shortly after the introduction of the SHM program making the 

monitoring (time) span too short.  

In correlation with the aim of this research (in section 1.2), the cost-effectiveness and 

flexibility of the two targeted vibration sensing platforms will be enhanced through 

novel inexpensive and flexible data synchronization schemes and effective solutions 

of sensor type, sensor placement and peripheral DAQ presented in Papers No. 1, 2 

and 3. On the other hand, the robustness of the safety evaluation paradigm developed 

herein will be improved by reliable feature extraction by means of robust primary 

SSI-data configurations (derived in Papers No. 1 and 2) and enhanced MSD-based 

damage identification (by means of the CMCDG scheme as presented in Papers No. 

4 and 5) in every monitoring stage in general and in the challenging early monitoring 

stages in particular. These enhancements and new developments will be 

progressively detailed throughout Chapters 37 whereas the most significant findings 
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of the five papers as well as the other achievements of this research program will be 

summarized in Chapter 8 before recommendations for future work are made. 

1.5 RESEARCH INNOVATION 

This research includes several main innovations. First of all, it provides two effective 

semi-complete data synchronization schemes for two most popular vibration sensing 

platforms (SHM-oriented WSNs and Ethernet distributed DAQ systems) when they 

are used to monitor large-scale civil structures. Specifically, the first scheme assists 

SHM-oriented WSNs in more efficient and energy-saving operation through 

bypassing a computationally costly processing step at leaf nodes whilst retaining 

sufficiently accurate vibration analysis outcome. On the side of Ethernet distributed 

DAQ systems, the second scheme provides a cost-effective and flexible data 

synchronization solution which can be used to replace the costly traditional 

hardware-based synchronization methods in cases of large or sparse measurement 

coverage as often encountered with large-scale infrastructure. Besides providing 

optimal solutions for sensor selection and sensor placement for ambient vibration 

monitoring, this research is also innovative in the way it evaluates the data 

synchronization scheme directly on an in-service structure by means of robust 

statistical assessment and particularly a novel daisy chain data selection scheme so as 

to overcome the inherent impact of variable E&O. In addition to effectively 

addressing vibration sensing issues, this research also focuses on the improvement of 

applicability and reliability of the safety evaluation system so that it can make 

effective use of vibration data acquired by the investigated sensing platforms. 

Besides thoroughly evaluating the primary SSI-data technique for the purpose of 

rapid and reliable OMA, this research also critically selects the computationally 

efficient MSD-based damage identification method for effectively coping with large 

volume of data commonly encountered in practical long-term and frequent SHM 

programs. Realizing the weakness of the MSD-based method, a novel data generation 

scheme termed CMCDG is then derived so as to truly assist the MSD-based method 

in overcoming its most vulnerable phases such as those occurring at the early 

monitoring stages. Not only is CMCDG able to detect such a computational 

weakness and to provide optimal synthetic data for quality MSD-based learning 
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processes but the dynamic structure of this scheme also makes it well adaptive to any 

input data with any primary distributional condition. The strengths and versatilities of 

both the CMCDG scheme and the MSD-based damage identification method ensure 

that the safety evaluation system will function reliably from very early operational 

stages thereby enabling prompt protection for both valuable civil infrastructure and 

the user community involved. 
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Chapter 2: Literature Review 

This chapter begins with the review (section 2.1) of the most critical concepts of 

SHM, vibration-based SHM, damage identification and issues that should be noted in 

applications of vibration-based SHM methods onto actual civil structures. Then, 

detailed reviews of vibration sensing and data-based structural safety evaluation (two 

main vibration-based SHM problems to be considered in this research) are presented 

in sections 2.2 and 2.3
*
. Finally, section 2.4 summarizes the core literature review 

results as well as the research gaps that are identified. 

2.1 GENERAL CONCEPTS  

2.1.1 SHM      

Most SHM experts agree that SHM can be defined as the use of on-structure, non-

destructive sensing systems to collect data for the purpose of safety and performance 

evaluations (Chan et al., 2011; Karbhari and Ansari, 2009). Compared to 

performance evaluation, safety evaluation through damage assessment has drawn 

much more attention from SHM researchers as evidenced by the large amount of 

published literature on the topic as summarized in several comprehensive reviews 

(Doebling et al., 1996; Sohn et al., 2003; Yan et al., 2007). One possible reason for 

this interest symptom is that safety evaluation in general and damage identification in 

particular are often considered as more immediate problems than performance 

evaluation. This is supported by the fact that many real civil structures are now 

approaching or even exceeding their designated service life; and/or being classified 

as structurally deficient but are still being used due to economic reasons (Farrar and 

Worden, 2013; Karbhari and Ansari, 2009).     

The benefits of SHM are widely envisioned in many textbooks and can be 

summarized as follows (Chan et al., 2011; Karbhari and Ansari, 2009) 

                                                 

 
*
 Parts of these contents are also presented in the “Introduction” sections of Chapters 37 
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 Enhancing the current practice of structural inspection and maintenance from 

local and subjective condition to global and objective condition. 

 Enabling the cost-effective, timely and proactive processes of safety assurance 

and structural intervention. 

 Enabling timely evaluation of structural integrity immediately after extreme 

events such as typhoons, earthquakes and vehicle/vessel collisions. 

 Enabling cumulative and more comprehensive understanding of performance, 

reliability and risk associated with individual structures thereby enabling more 

cost-effective and refined methods of structural design as well as linking better 

design, construction, maintenance and rehabilitation processes together. 

2.1.2 VIBRATION-BASED SHM  

In order to achieve the above benefits, it is apparent that the structure needs to be 

monitored and evaluated in a long-term and frequent, or more desirably continuous, 

basis. The fact that the tragic collapse of the I-35W Bridge in United States in 2007 

occurred only three months after its most recent visual inspection has strongly 

supported this argument (Reid, 2008; Hilkevitch, 2010). In this regard, vibration 

monitoring offers one of the most effective SHM approaches through utilization of 

ambient and operational loadings (e.g. traffic, wind and other human related activities) 

as excitation sources for many civil structures (Karbhari and Ansari, 2009).  The 

merits of this approach is that ambient and operational excitations are essentially at 

no cost thus are very effective particularly in the long-term and/or frequent 

monitoring basis while there is no requirement for closure of the structure (the 

structure remains in normal operation during the testing time). Also, corresponding 

vibration data reflects actual behavior of the monitored structure. Finally, utilization 

of global vibration signatures facilitates the monitoring of the entire structure, instead 

of a structural component, by a relatively small set of sensors and equipment 

(Karbhari and Ansari, 2009). However, it should be noted that global vibration 

monitoring requires data streams from different DAQ units to be synchronized with 

each other for the purpose of accurate mode shape estimation (Aktan et al., 2003; 

Chintalapudi et al., 2006). Besides, ambient vibration monitoring often requires more 



 

Chapter 2: Literature Review 17 

thorough selection of sensor type (than forced vibration testing) for overcoming 

inherent problems of low-frequency and low-level response measurement (Jo et al., 

2012; Karbhari and Ansari, 2009; Xu and Xia, 2012). 

The basic premise of vibration-based SHM is that changes in structural properties 

such as stiffness and boundary conditions will result in changes in vibration 

characteristics such as modal parameters. When these changes become significant 

such that they could adversely affect the performance of the structure, the changes 

can be considered as damage (Karbhari and Ansari, 2009; Farrar and Worden, 2013). 

By studying the changes in measured vibration features, the presence and the other 

information (such as location) of damage can be identified.   

2.1.3 HIERARCHY AND APPROACHES OF DAMAGE INDENTIFICATION  

 

Figure 2-1 Hierarchy of damage identification process [adapted from (Farrar and 

Worden, 2013)] 

The damage identification process is often considered as consisting of five steps 

which can be formulated as five questions as illustrated in Figure 2-1 (Farrar and 

Worden, 2013). Answering these questions in the presented steps represents 

increasing knowledge about structural damage and one can do so by means of one (or 

combination) of two main approaches commonly known as model-based and data-

based approaches. In the former approach, a physical model of the structure of 

interest is used such as its FE model formulated from detailed physical description of 



 

18 Chapter 2: Literature Review 

the structure and updated on the basis of measured data recorded in the normal 

condition to create a “baseline” model. When data from a subsequent monitoring 

phase become available with significant deviations (e.g. in modal parameters) 

compared to the normal condition, a further update of the model will be employed to 

indicate the location and extent of the structural changes or damage. Theoretically, 

the model-based approach can be used to provide solutions for problems at levels 

25. However, as pointed out in Farrar and Worden (Farrar and Worden, 2013), there 

are several challenging tasks in the model-based approach such as accurate modelling 

of the material (e.g. concrete or composite), bonds and joints; and updating the model 

satisfactorily. 

On the other hand, the data-based approach does not directly proceed from a physical 

model. In this approach, one constructs training data from all the possible normal and 

damaged states and then utilizes pattern recognition (via machine learning) to assign 

a diagnostic class label to measured data each time it is available from the testing 

phase (Farrar and Worden, 2013). Theoretically, the data-based approach can be used 

to answer questions corresponding to levels 14. Finally, even though not directly 

based on the physical model of the structure, data-based methods can still make use 

of this type of models as a means of investigating effective features or augmenting 

data of a specific structural state when necessary. 

2.1.4 COPING WITH IMPACT OF VARIABLE E&O FACTORS 

Even though many prior damage assessment studies have been successful with 

numerical and laboratory data, implementation of damage identification in actual 

civil engineering structures is not a trivial task. Vibration characteristics can be 

sensitive to a certain level of damage but they are also sensitive to changing E&O 

conditions. This is not a problem of vibration-based SHM alone but tends to be a 

grand problem of other SHM approaches leading to one of the fundamental axioms 

of SHM (Farrar and Worden, 2013). In vibration-based SHM (as well as SHM in 

general), the most notable E&O factors are temperature and operational loading 

which can cause up to 5-10% deviation on the magnitude of fundamental modal 

frequencies (Kim et al., 2003; Soyoz and Feng, 2009). Temperature impact was also 

believed to be the cause of (1) why two lightly damaged cases introduced in the I-40 
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Bridge did not induce decrease in measured frequencies; and (2) asymmetrical 

variation, as illustrated in Figure 2-2, in the first-mode shape that changed throughout 

the day (Farrar and Worden, 2013). It can therefore be seen that such changes in the 

vibration characteristics can, if not properly accounted for, potentially result in false 

indications of damage.  

 
 

Figure 2-2 Temperature impact on the first-mode shape of one bridge span during 

two distinct times of the day: (a) in the morning (7.75 Hz); (b) in the afternoon (7.42 

Hz) (Figueiredo et al., 2011). 

There are two main approaches for coping with the impact of variable E&O factors. 

Based upon strict measurement of these factors, the first approach tracks the 

influence of E&O factors on the feature of interest typically by developing predictive 

model by means of regression techniques (Farrar and Worden, 2013). In the testing 

phase, this model will be used to predict the feature for a particular E&O factor; and 

the predicted value and the measured one can be compared to infer if a damaged state 

has occurred. It is apparent that, the first approach is more applicable to the case 

when as few as possible number of E&O factors is prevailing (and completely 

recorded as discussed earlier) which will be difficult to be satisfied in many practical 

monitoring circumstances of civil structures. Also, it is often impossible to accurately 

measure such E&O factors as occupant-induced loading in buildings or traffic-

induced loading in major bridges. In contrast, the second approach does not require 

measurement of E&O factors but utilizes (unsupervised) machine learning algorithms 

(or more simply look-up tables) to “learn” the underlying trends (caused by E&O 

factors) present in the training data (Farrar and Worden, 2013). This way, these 

trends can be separated from the influence of any damage present in the testing data. 

Compared to the look-up tables, machine learning algorithms are generally more 

reliable for high-dimensional features (as often encountered in SHM) and more 

applicable for being operated in an autonomous manner. Finally, since they are also 

frequently used to implement pattern recognition in the data-based approach (as 
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reviewed in section 2.1.3), the popularity of employing machine learning algorithms 

in recent damage identification studies can be naturally explained (Sohn et al., 2003; 

Gul and Catbas, 2009; Figueiredo et al., 2011; Farrar and Worden, 2013). 

2.2 VIBRATION SENSING TECHNOLOGIES  

From the perspective of data transmission and system communication, there are two 

main types of vibration sensing systems namely wired and wireless DAQ systems. In 

spite of being the conventional approach for vibration measurement for many years, 

the former is still very popular due to its ruggedness and reliability particularly over 

long periods of time. On the other hand, the wireless DAQ system commonly known 

as Wireless Sensor Network (WSN) has been recently employed for SHM purposes 

due to several promising factors such as cost-effectiveness; and rapid and flexible 

deployment. This section reviews critical global characteristics and remaining issues 

for each type of systems mainly from global SHM application viewpoints. 

2.2.1 WSN  

 System topologies 

A sensor network is considered to be wireless if the communication between its 

nodes is based on radio frequency (RF) transmission. Most of WSNs for SHM have 

been operated on the frequency band of 2.4 GHz specified by several IEEE standards 

such as 802.11b (Wi-Fi), 802.15.1 (Bluetooth) and 802.15.4 (Zig Bee). The main 

differences between these protocols such as bandwidth, transmission range and 

power consumption, are needed to be considered depending on specific applications. 

Among these standards, 802.15.4 has been mainly used on recent WSNs for SHM 

due to its distinct features including lower energy consumption and longer 

communication range.   
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Figure 2-3 Typical diagram of a star WSN topology (Libelium, 2010) 

Generally, there are two main basic WSN topologies, namely star and peer-to-peer, 

the latter is only available in the 802.15.4 standard. In star topology (Figure 1-1), 

wireless communication is merely established between leaf nodes (or end devices) 

and the cluster head node (or the coordinator) for one cluster. This topology may be 

expanded to a three-layer tree topology by employing several clusters and a 

coordination node at a higher administration level and so on. In contrast, the peer-to-

peer protocol (Figure 2-4) supports communication between leaf nodes resulting in 

more sophisticated architectures such as mesh and multi-hop. For actual WSN 

deployments so far, the star topology has been preferred due to its simplicity and 

convenience for the purpose of system debugging and uncertainty assessment.  

 

Figure 2-4 Typical diagram of a peer-to-peer WSN topology (Libelium, 2010) 
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 Data aggregation   

There are two primary approaches for data aggregation in WSN, namely centralized 

and decentralized approaches. In the first one, time histories from each sensor node 

are transmitted to the base station for data processing and aggregation (Nagayama 

and Spencer Jr., 2007). This approach has advantages of using simpler algorithms in 

leaf nodes, providing more intensive vibration analysis, and storing time series data 

for various post-processing, data mining and structural control purposes (Whelan, 

2009; Linderman et al., 2013). On the other hand, the decentralized approach is 

based on the distributed computing strategy initially proposed by Gao and Spencer 

(2005). Using this approach, local sensor communities can be established with 

overlapping nodes and only the data collected by sensors within each community 

needs to be shared and processed. This way, the amount of data to be transmitted can 

be reduced and power preservation or system scalability may be better achieved. 

However, there are several limitations in this approach. First, since feature data is 

processed directly on the leaf node with limited processing capacity, only limited 

types of features can be obtained and this limits the number of features as well the 

methods that can be implemented. Second, since the accuracy of some important 

decentralized SHM techniques (such as mode shape estimation) depends significantly 

on (limited) overlapping nodes and the quality of their signals (Sim, 2011), failure or 

malfunction at any of these nodes can potentially make the feature data useless while 

the original time histories may be no longer available (Linderman et al., 2013). These 

limitations could help explain for the popularity of centrally logging and storing data 

in the format of time histories in most of full-scale WSN deployments so far.  

 Other advances in WSNs for SHM and remaining issues 
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Figure 2-5 A SHM-oriented wireless sensor node based on Imote2 control and 

communication platform [adapted from (Rice and Spencer, 2009)] 

The use of WSNs for SHM has posed a large number of technical challenges 

(Spencer et al., 2004; Lynch and Loh, 2006). Most commercial WSNs have been 

initially designed for generic purposes rather than SHM leading to such immediate 

limitations as low-sensitivity sensors with high noise floor, poor resolution of analog-

digital converters, large Data Synchronization Error (DSE) and data loss. Realizing 

such problems, SHM researchers have begun enhancing capacity of selective WSN 

models in order to align them with requirements of SHM applications. This can be 

well illustrated in the case of SHM-oriented WSNs employing MicaZ or particularly 

Imote2 (Figure 2-5) control and communication platforms (Pakzad et al., 2008; Rice 

and Spencer, 2009).  High-fidelity sensor boards have been customized to enhance 

the sensing sensitivity and ADCs. External antennas have been applied and reliable 

communication protocols have been written to achieve longer and more reliable 

wireless communication (Pakzad et al., 2008; Nagayama et al., 2009; Rice and 

Spencer, 2009). With such efforts, wireless data transmission without loss is 

currently achievable though it has not been available in a real-time manner. In the 

data synchronization aspect, DSE varies significantly from model to model in the 

generic WSN platform (Lynch and Loh, 2006; Rice and Spencer, 2009). In the SHM-

oriented WSN platform, there are several solutions in both hardware and software 

customization efforts to cope with DSE. Along with customized sensor boards, clock 

drift estimation and compensation features have also been added into the middleware 

service in order to combat the timing drift and fluctuation in each node and to 
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mitigate the timing difference across multiple nodes (Rice and Spencer, 2009; 

Nagayama et al., 2009). Nagayama et al. (2009) proposed a resampling algorithm to 

provide tight DSE correction and claimed that it can achieve synchronized sensing 

with accuracy of 30 µs. However, as it is directly executed at the leaf node, this 

algorithm can cost more computation effort and increase the data transmission 

latency. In the regard of DSE impact evaluations, one notable point is that most prior 

evaluations of DSE employed large DSE values and/or rather high vibration 

frequencies (of laboratory structural models) to highlight the impact of DSE. 

Krishnamurthy et al. (2008) showed large DSE effects at the modes of 56 and 93 Hz, 

respectively. Nagayama et al. (2007) showed large impact at the DSE of several tens 

of millisecond. Since the remaining DSE in SHM-oriented WSNs operating without 

resampling-based DSE correction has been significantly reduced and the measurable 

vibration frequency range of actual civil structures is much lower (in many cases less 

than 10 Hz), it is necessary to reassess the DSE impact with these updated/realistic 

circumstances. 

Besides the above data synchronization problems, some general concerns towards 

effective long-term application of WSNs to actual civil structures still persist. First, 

continuous sensing is still impossible in SHM-oriented WSNs due to the nature of 

time-division multiple access protocol in wireless sensors that permits only one node 

to send data at a time (Linderman et al., 2013). Power supply by normal batteries 

requires frequent replacement while alternative energy harvesting solutions such as 

solar rechargeable batteries may still be expensive when considering the possible 

replacement period such as one year (Jang et al., 2010a). The low reliability of each 

node and of the whole system particularly operated on the bases of demanding 

sleeping/waking cycles and shared transmission bandwidth makes the long-term 

autonomous operation of SHM-oriented WSNs still very challenging.    

2.2.2 WIRED SENSING SYSTEM 

 System topologies  

From the signal acquisition perspective, there are two main types of wired sensing 

system topologies viz. centralized and distributed DAQ systems. While the former 

has been the traditional measurement approach and mostly suited to small-scale 
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structures, the latter has been more recently employed for SHM to deal with large-

scale structures (Aktan et al., 2003; Van Der Auweraer and Peeters, 2003). Typically, 

each centralized system consists of a single internal DAQ device or external DAQ 

chassis housing a number of signal acquisition modules. The sensors are then cabled 

to these modules via their connectors in a parallel manner which can cause problems 

for analog signals and installation works if the cable is too long. In contrast, the 

distributed DAQ is transformed into a network of multiple peripheral DAQ units 

each of which only needs to be in charge of a group of adjacent sensors. The DAQ 

units are linked with each other and to the host device by Ethernet cables for the 

purpose of delivering the digital data (Eren, 2011). As the main signal acquisition 

tasks take place immediately at each DAQ device, this type of system greatly 

mitigates the burden of wiring directly from every sensor to the host device and 

avoids the problem of signal noise induced by lengthy cabling. 

 Data aggregation   

As wired sensing systems are not subject to limited bandwidth of communication and 

data transmission as seen in the case of WSNs, data aggregation is often 

implemented in the centralized scheme. As previously mentioned, this type of data 

aggregation allows higher versatility of data mining and better efficacy for SHM 

methods.    

 Other advances in wired sensing systems for SHM and remaining issues 
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Figure 2-6 Tsing Ma bridge with 1377 m main span (Chan et al., 2011) 

Recent deployments of long-term sensing systems for critical civil structures have 

shown the increasing popularity of the Ethernet distributed DAQ platform. Due to 

their scale (see Figure 2-6 for such an example), most long-span bridges have 

employed this type of systems for their permanent SHM systems in the past two 

decades (Ko and Ni, 2005; Li et al., 2008; Karbhari and Ansari, 2009; Yang and 

Kranjc, 2010). Multiple sensory and DAQ units are placed along the bridge to ensure 

the fidelity of the acquired data (Figure 2-7). With similar problems, tall building-

type structures have also been equipped with such systems in order to have adequate 

quality coverage along their height (Ni et al., 2009; Su et al., 2013). 



 

Chapter 2: Literature Review 27 

 

Figure 2-7 Schematic diagram of a typical Ethernet distributed DAQ system used in 

long-span bridges [adapted from (Xu and Xia, 2012)] 

In recent years, the use of off-the-shelf programmable automation controllers such as 

the popular CRIO (also known as CompactRIO, see Figure 2-8 for an example) as 

autonomous and rugged Ethernet distributed DAQ systems has become increasingly 

popular. Initially, these types of systems were mainly designed for high-performance 

control purposes (Hristu-Varsakelis and Levine, 2005). However, their versatility; 

and ruggedness and reliability in harsh environments as well as in autonomous 

continuous acquisition make them suitable for SHM particularly for long-term and 

permanent deployment purposes. In practice, the CRIO-based systems have seen their 

applications in a number of SHM projects including both of the main 2008 Summer 

Olympic venues in Beijing, China namely the National Stadium and the National 

Aquatics Center (Cigada et al., 2010; Li et al., 2010; McDonald, 2012; Moser and 

Moaveni, 2013).   
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Figure 2-8 Example of CRIO peripheral DAQ model (National Instruments, 2012a) 

Although the Ethernet distributed DAQ architecture has been seen applicable to real-

world civil infrastructure, actual deployments of such systems have still been rather 

limited. One main problem for this is the development cost has still been expensive 

for most of SHM projects especially from the return on investment viewpoint 

(Ansari, 2005; Karbhari and Ansari, 2009). This is particularly true for vibration 

sensing systems as this type of system is often believed to require, besides normal 

expenses for individual sensors and DAQ units, very precise synchronization which 

often becomes costly particularly in applications onto large-scale structures. Typical 

examples for this are the adoption of a digital I/O module in each DAQ unit in order 

to form a dedicated synchronization bus; or the use of Global Positioning System 

(GPS) in bridges or large-scale building-type structures (Li et al., 2010; Xu and Xia, 

2012; McDonald, 2012; National Instruments, 2012c). Besides these prime 

(hardware-based) methods, there has been a software-based synchronization 

approach based on TCP/IP command communication (national instrument, 2009). 

Analogous to what are often used in WSNs, utilizing this approach can provide initial 

synchronization as well as control the DSE with time through starts and stops 

processes. However, DSE encountered in this approach if not strictly controlled may 

be large. In practice, some researchers have attempted to apply this software-based 

synchronization approach (Cigada et al., 2010; Devriendt et al., 2013). However, 

since implementation and/or evaluation of the derived synchronization solution were 

not thoroughly reported, the feature and efficacy of the solutions have not been clear. 

Overall, it can be concluded that software-based synchronization approach is rather 
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promising for use with the Ethernet connection since quality timing coordination is 

feasible with this type of connection (Semancik, 2004). However, more intensive 

realization and evaluations are in need to make it truly compatible with Ethernet-

based DAQ systems in general and CRIO-based systems in particular. 

2.3 DATA-BASED SAFETY EVALUATION 

As discussed earlier, the structural evaluation paradigm developed herein belongs to 

the data-based approach with the main scope being at level 1 as clearly defined and 

explained in section 1.3. As feature extraction and level-1 damage identification are 

two main consecutive steps in this paradigm, the features, extraction techniques and 

damage identification methods commonly used in each step will be briefly reviewed 

in the following.  

2.3.1 FEATURES AND FEATURE EXTRACTION TECHNIQUES 

In this section, much attention will be given for the features that can be extracted by 

the output-only extraction approach as these features are more suited for the purpose 

of long-term and frequent SHM utilizing ambient excitation conditions. 

Nevertheless, any input-output extraction counterpart related to such a feature will 

also be reviewed for the purpose of comparison. Besides, robustness of the features 

and extraction techniques as well as remaining issues with respect to the main 

sensing uncertainty of interest herein (i.e. DSE) will also be discussed. 

 Modal parameters  

Modal parameters such as modal frequencies and mode shapes are amongst the most 

popular vibration features. The basis for this is that damage is assumed to alter 

stiffness, mass or energy dissipation characteristics (of the structure) which have 

some relationship with these parameters (Farrar and Worden, 2013). Of the two types 

of modal parameters, modal frequencies can be estimated more rapidly and more 

accurately than mode shapes (Salawu, 1997; Dilena and Morassi, 2009). This is 

particularly true in long-term ambient vibration monitoring where mode shape 

estimation is often more challenging. Comparing the results from the Z24 highway 

bridge, Brincker et al. (2001) believed that modal frequencies can be an effective 
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damage index if the impact from temperature can be tackled. However, if a higher 

damage identification level (e.g. level 2 to identify damage location) is desired, mode 

shapes or modal derivatives are generally more effective. It might be worth noting in 

this regard that modal derivatives should be used with care as some numerical 

processes (such as differentiation or polynomial fitting) may either amplify high-

frequency noise or smooth out the small local impact caused by damage (Farrar and 

Worden, 2013). 

There are two main modal parameter extraction approaches of which OMA is newer 

than its traditional counterpart named input-output modal analysis. For long-term 

SHM of civil structures, OMA has often been preferred since this approach does not 

require expensive excitation resources and can be applied to the structures when they 

are in operation (Brincker et al., 2003; Karbhari and Ansari, 2009). Amongst 

numerous OMA techniques, two most popular families are FDD and SSI-data. FDD 

techniques are well-known for their simplicity and therefore more suited to general 

users. On the other hand, SSI-data techniques in general and the primary SSI-data 

technique (i.e. employing UPC estimator) in particular are among the most powerful 

OMA techniques and therefore often preferred by experienced modal analysts to deal 

with complicated vibration tests such as those of actual large-scale civil infrastructure 

(Brincker et al., 2001; Peeters and Ventura, 2003). Besides their original advantages 

of automated modal identification and coping with closely-spaced or repeated modes, 

the strength of SSI-data techniques has been significantly improved by the recent 

employment of the fast multi-order least squares algorithm as a replacement for the 

traditional least squares solution (Dohler et al., 2012).   

Of vibration-based SHM applications, impact of DSE has often been studied on 

OMA and Output-only Modal-based Damage Identification (OMDI) though the total 

number of actual studies is still rather limited. In such limited studies, the main 

finding is that DSE tends to affect modal phase the most and the induced phase shift 

tends to be proportional to the DSE magnitude and the modal frequency value 

(Krishnamurthy et al., 2008; Nagayama et al., 2009; Yan and Dyke, 2010). However, 

the impact of DSE has mainly been examined (i) against the OMA techniques in the 

non-parametric approach (e.g. FDD) and two-stage parametric approach (e.g. Natural 

Excitation TechniqueEigensystem Realization Algorithm or NExTERA); (ii) 
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against excessively large DSE values and for simple structural models; and (iii) 

employing the single test setup scheme. Hence, equivalent investigation problems 

should be formulated for (1) one-stage parametric OMA techniques (i.e. the SSI-data 

techniques) due to their popularity as previously discussed; (2) updated DSE values 

(after recent enhancements in SHM-oriented WSNs) and large-scale civil structures; 

and (3) sophisticated testing setup schemes such as the multiple test setup strategy 

that are used for achieving a large number of measurement points with limited 

sensors.   

 Time series model properties 

Properties of time series models (such as model coefficients or model residuals) are 

another popular type of features that has been used more recently for damage 

identification purposes (Sohn et al., 2001; Carden and Brownjohn, 2008; Gul and 

Catbas, 2009; Figueiredo et al., 2011). Commonly-used models include AR, ARX 

(Auto-Regressive with Exogenous Inputs) and ARMA (Auto-Regressive with 

Moving Average) models. Of these three types of models, ARX model requires both 

input and output data to be measured therefore tends to be more applicable for 

controlled force vibration tests such as those using shakers. In contrast, AR and 

ARMA models are advantageous for the case when only output vibration data is 

available. With a simpler architecture, AR model has a more straightforward 

estimation process and more frequently witnesses its applications in the SHM 

context. However, the direct use of AR model fitted to measured data tends to be 

more suited to stationary data such as those collected during Gaussian-type forced 

vibration tests (Farrar and Worden, 2013). As ambient vibration data is often non-

stationary, some forms of data normalization such as random decrement (Gul and 

Catbas, 2009) tend to be in need for this type of data prior to the process of AR 

model fitting. However, effects of using different normalization input parameters on 

AR modelling and subsequent damage identification processes need to be thoroughly 

assessed in order to quantify the associated uncertainties and achieve the most 

satisfactory normalization outcome. 

Depending on the type of the models, the model coefficients can be estimated by 

means of several popular techniques such as Burg and Yule-Walker (Ljung, 2011). 
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The rationale of using time series model properties for structural health and damage 

evaluation is that AR coefficients are directly related to modal frequencies and 

damping ratios (Carden and Brownjohn, 2008). Also, this employment has several 

advantages. First, these properties can be used as a signal-based feature and therefore 

can provide certain local information in a similar manner as from mode shapes. 

Further, as the feature is computed directly from the time series sequence of each 

sensing channel, data synchronization across channels is not required (Sohn and 

Farrar, 2001). Finally, AR coefficients tend to achieve high sensitivity towards 

nonlinear-type damage such as fatigue cracks that open and close under dynamic 

loads (Figueiredo et al., 2009).  

 Other potential features  

Besides, modal parameters and time series model coefficients, properties of wavelet 

transforms may also be used as damage-sensitive features in general and signal-based 

features in particular (Reda Taha et al., 2006). However, the fact that there are many 

types of wavelets, wavelet transforms and the uncertainties involved in the selection 

processes tends to hinder systematic application of this type of feature. More in-depth 

comparative studies are in need in order to find the most effective types of wavelets 

and transforms for safety evaluation purposes. 

2.3.2 LEVEL-1 DAMAGE IDENTIFICATION   

As discussed earlier, the level-1 damage identification approach adopted herein is 

constructed in the pattern recognition framework by means of unsupervised learning 

algorithms. As mentioned in section 2.1.4, the rationale of this adoption is related to 

the adverse impact of variable E&O factors such as temperature and operational 

loading; as well as the difficulty in tracking and measuring accurately each of these 

factors. As they are equivalent to novelty detection methods, methods of damage 

identification employing unsupervised learning can be classified in the same fashion 

as for novelty detection methods, that is, conforming to either statistical approach or 

neural network based approach (Markou and Singh, 2003a, 2003b). Hence, the 

following section will review the most commonly-used damage identification 

methods in these two approaches.   
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 MSD-based method  

MSD-based method is one of the most popular methods in the statistical approach of 

level-1 damage identification. MSD is actually a well-known distance measure in 

statistics for the purposes of cluster analysis and classification. In damage 

identification context, MSD is directly employed as the damage (or novelty) index 

and the underlying trends of E&O factors are taken into account mainly through the 

sample covariance matrix (see Appendix 5.A or in Chapters 6 and 7). MSD-based 

method is well-known for its architectural simplicity making it very robust (if not 

immune) to the uncertainties of architectural assumptions. Further, such system 

simplicity results in the feature of computational efficiency which make it a potential 

candidate for embedded sensing systems such as wireless sensors (Worden et al., 

2000b; Figueiredo et al., 2011). Also known as outlier analysis based damage 

detection, MSD-based method has often seen its success in a large number of 

experimental studies (Worden et al., 2000a; Sohn et al., 2003; Gul and Catbas, 2009; 

Figueiredo et al., 2011; Farrar and Worden, 2013). However, one notable difficulty in 

implementing MSD-based method is that it assumes the learning data under a 

multinormal distribution. In the SHM context, the shortage of measured data due to 

testing constraints has often been mitigated by means of a basic data generation 

scheme based on the Monte Carlo simulation methodology (Worden et al., 2000a; 

Worden et al., 2002; Farrar and Worden, 2013). However, the fact that this scheme is 

implemented in an uncontrolled simulation manner can be seen as a significant 

limitation in this data generation approach. More systematic schemes are therefore in 

need to cope with such realistic problems. 

 Auto-Associative Neural Network (AANN) based method  

AANN-based method is probably the most popular method in the neural network 

based approach of damage identification. AANN is actually a multilayer feed-

forward perceptron network which is trained to produce, at the output layer, the 

patterns that are presented at the input layer (Chan et al., 2011; Farrar and Worden, 

2013). The network contains three hidden layers: the mapping layer, the bottleneck 

layer and the demapping layer. By employing fewer nodes than the other two layers, 

the bottleneck layer can discard trivial variations and extract the predominant trends 
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such as those induced by E&O factors. Similar to MSD-based method, AANN-based 

method has often had high rate of success in level-1 damage identification (Worden 

et al., 2000a; Sohn et al., 2003; Figueiredo et al., 2011; Farrar and Worden, 2013). 

Advantages of AANN-based method include the capacities of dealing with data that 

may not have a multinormal distribution and recognizing nonlinear underlying trends. 

However, AANN-based method has significantly more complicated analyzing 

architecture than the MSD-based method therefore costs more computational effort 

in training and testing processes and often requires certain amount of user judgment 

in setting up the layers (e.g. determining number of nodes) for the network. More 

details of AANN-based damage identification method are presented in Appendix 

5.B. 

 Other potential methods and other issues 

Besides the above two methods, the other unsupervised damage identification 

methods include those based on kernel density estimation, factor analysis and 

principal component analysis (Worden et al., 2000b; Figueiredo et al., 2009; Yan et 

al., 2005). However, the first method may suffer from the problem of absolute 

density estimation particularly when the training data is sparse while the other two 

methods may encounter difficulty in determining number of common factors or 

principal components (with a similar role as the bottleneck layer in AANN). Finally, 

it appears that the impact of observation size on all the damage identification 

methods reviewed herein has not been thoroughly investigated.  

2.4 CONCLUDING REMARKS 

From the above literature review, the following remarks can be made 

 On vibration sensing technologies  

 SHM-oriented WSNs and Ethernet distributed DAQ systems are currently 

two increasingly popular sensing system platforms for vibration monitoring of 

real civil engineering structures. Although it is advantageous in the aspects of 

easier installation and lower cost, the former platform is still not capable of 

continuous sensing whereas its long-term stability and reliability are still 
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uncertain and require more intensive full-scale evaluations. On the other hand, 

the Ethernet distributed DAQ platform tends to still be more applicable for 

long-term monitoring whilst it is the sole option (of these two platforms) for 

continuous monitoring which is often desirable for critical infrastructure.  

 Most of the recent enhancements at the sensor-board and middleware levels 

have worked well towards realization of more effective WSNs for SHM 

purposes. However, some software-based solutions such as resampling-based 

DSE correction tend to cause costly computation effort and additional system 

latency particularly for large-scale civil structures. This is because these types 

of structures generally require more lengthy signal sequences (than small-

scale structures) in ambient vibration tests for quality implementation of 

OMA while it is known that the longer the signal sequence is, the higher 

computational effort the resampling task costs. Under these circumstances, 

more flexible and effective solutions are in need in order to avoid 

unnecessarily excessive computation and latency burden.  

 As the main impact of DSE tends to be proportional to the DSE magnitude 

and the modal frequency value, it may be possible to have a relaxing (semi-

complete) data synchronization scheme for use in ambient vibration 

monitoring of large-scale structures by means of SHM-oriented WSNs. This 

is because the large-scale structures often have relatively low-value 

frequencies for the measurable modes while SHM-oriented WSNs can 

currently attain such rather small DSE as mostly within a single sampling 

period without the use of the resampling-based DSE correction algorithm 

(Linderman et al., 2011; Linderman et al., 2013). In addition, ambient 

monitoring often uses rather high sampling rate (such as around 100 Hz) to 

achieve better quality of data (e.g. via data decimation process for noise 

reduction). Hence, it is anticipated that the correspondingly induced DSE 

impact would be reasonable such that it might be accepted for demanding 

vibration analysis such as OMA. This can be evaluated by means of vibration 

data of large-scale civil structures and simulated DSE.   
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 Ethernet distributed DAQ systems though rugged and reliable are still 

expensive as there is yet a lack of cost-effective and flexible solutions at both 

sensor and DAQ levels particularly for coping with large or sparse 

measurement coverage problems in large-scale structures. In this regard, using 

CRIO models especially from the cost-optimized series can provide budget 

solutions for peripheral DAQ device. Vibration sensor solution though 

possibly adequate with a relatively small quantity should be carefully chosen 

to overcome the adversities related to ambient vibration of large-scale 

structures such as low-frequency and low-level response measurement. 

Further, using software-based synchronization approach is cost-effective as 

the corresponding solution itself is essentially at no cost. In this regard, it 

might be possible to extend the semi-complete data synchronization approach 

(used earlier in the SHM-oriented WSN platform) for applications to the 

Ethernet connection since quality timing coordination is feasible with this 

type of network connection. 

 On structural safety evaluation  

 Modal parameters in general and modal frequencies in particular are among 

the most popular and robust damage-sensitive features for level-1 damage 

identification. OMA techniques are more applicable than input-output 

techniques for the purpose of long-term and frequent monitoring of on-

operation civil structures such as existing buildings and bridges. However, the 

impact of common DSE levels on commonly-used one-stage parametric 

OMA techniques such as the popular primary SSI-data technique as well as 

associated practical sensing setup schemes need to be thoroughly investigated 

to facilitate derivation of appropriate actions. It is necessary because even 

though one-stage parametric OMA techniques are amongst the most powerful 

OMA techniques, they can be more susceptible to direct data disturbances 

such as DSE or from the data merging process when employing the multi-test 

setup strategy. 

 Features based on AR coefficients are interesting for provision of spatial 

information and immunity to DSE impact. However, the direct employment 
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of this type of features is more applicable to stationary vibration data. Often 

contaminated with certain amount of non-stationarity and high level of 

measurement noise, ambient vibration data tends to require some forms of 

data normalization or signal transformation prior the AR modelling process. 

This should also be taken into account when considering other types of signal-

based features besides AR coefficients. 

 Due to their popularity and high rate of success in level-1 damage 

identification, MSD-based and AANN-based can be considered as 

representative methods in statistical and neural approaches, respectively. 

AANN-based method tends to be more applicable to non-Gaussian 

multivariate data but generally requires more computational effort and user 

experience for setting up the network. With a simple computational 

architecture, MSD-based is among the most computationally efficient 

methods and therefore more suited to frequent or continuous SHM programs 

which are apparently data-intensive. However, MSD-based has one “Achilles 

heel” that is the requirement of the learning data to be multinormal distributed 

which tends to be problematic at an early monitoring stage or during short 

SHM programs when only limited experimental observations are available. 

To enable the effective and reliable use of MSD-based method in such 

circumstances, the problem of multinormality insufficiency must be properly 

addressed. With its applicability to multidimensional problems, the Monte 

Carlo data generation approach if properly systematized can be seen as very 

suitable tool for assisting the MSD-based method to cope with the 

aforementioned adversities.  

The desire for addressing the above problems altogether has become the motivation 

for this research program aiming for the development of a practical and reliable 

synthetic SHM system of which vibration sensing and safety evaluation will naturally 

become the two subsystems. Due to their own merits that can complement each other 

in catering for different deployment purposes, SHM-oriented WSN and Ethernet 

distributed DAQ system are adopted as the two sensing platform subjects of study. 

The synchronization problems in both sensing platforms are intended to be addressed 

by the semi-complete data synchronization approach for more effective applications 
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onto large-scale structures. The adversities from the (large) scale of actual 

infrastructure and nature of ambient vibration monitoring will also be addressed by 

means of optimal sensor selection and placement schemes and cost-optimized 

peripheral DAQ solution with the convenient Ethernet connection. For the purpose of 

ultimate validation of these solutions altogether at one place, the development for a 

wired sensing system will be carried out in an actual building structure right at the 

institutional campus where this research program is carried out. On the side of safety 

evaluation system, multiple tasks need to be conducted. With their robustness and 

applicability in tackling large volume of data generally encountered in long-term 

ambient vibration monitoring programs, the primary SSI-data technique and the 

MSD-based method are selected as the main feature extraction and damage 

identification functions, respectively, in the safety evaluation system. As it works 

directly with time history vibration data, it will be necessary that the primary SSI-

data be thoroughly evaluated against dominant uncertainties from both sensing 

platforms such as those related to synchronization issues. To systematically cope 

with the problem of multinormality insufficiency associated with the MSD-based 

method, a fully controlled data generation scheme will be developed by adding on 

top of the basic Monte Carlo scheme the most necessary advanced tools for 

determining appropriate simulation configurations so that optimal synthetic data can 

be obtained. Experimental data not only from laboratories but also from field full-

scale vibration tests are always desirable for validation purposes. All these issues will 

be detailed in subsequent chapters as well as in the two appendices
†
 of the thesis.  

                                                 

 
†
 Appendix A provides connections between the main safety evalution system components (MSD-based 

method, CMCDG, etc…) whereas appendix B provides fundamentals of the base Monte Carlo methods 
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Chapter 3: Effects of WSN Uncertainties on 

Output-only Modal-based Damage 

Identification 

This chapter is made of the following published journal paper 

 Nguyen, T., Chan, T. H. T. and Thambiratnam, D. P. 2014. Effects of 

wireless sensor network uncertainties on output-only modal-based damage 

identification. Australian Journal of Structural Engineering 15 (1):15-25. 

URL: http://dx.doi.org/10.7158/S12-041.2014.15.1 

The main contributions of this chapter to the overall research program are (1) a 

feasibility study towards the use of the semi-complete data synchronization approach 

in SHM-oriented WSNs for application to large-scale civil structures; and (2) more 

thorough understandings towards the impact of different DSE levels on the 

commonly-used OMA (or equivalently level-1 OMDI) techniques in general and on 

the popular primary SSI-data technique (i.e. employing the UPC estimator) in 

particular. In this chapter, a realization of this (semi-complete) data synchronization 

approach, the relaxing data synchronization scheme, is made by simply deactivating 

the resampling process in every leaf node and permitting a controllably relaxed DSE 

level. The feasibility of the data synchronization scheme is then confirmed by the 

remarkable robustness of modal frequencies as well as the very small and predictable 

impact of the permitted DSE on MAC values from the mode shapes estimated by 

both FDD and primary SSI-data techniques employing the single sensor setup 

strategy. One experimental dataset recorded by a wired DAQ system on a frequently-

studied benchmark structure (Ni et al., 2012; Niu et al., 2012) is first selected to act 

as uncertainty-free data before being numerically contaminated with different levels 

of DSE in random manners. Since the chosen structure is very flexible, the impact 

predictability is well evaluated via a fairly large number of vibration modes 

conveniently available from this type of structure. It should be noted that, even 

though only synthesized (rather than real) wireless signal data is used, the data 

http://dx.doi.org/10.7158/S12-041.2014.15.1
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synthesis process has been thoroughly designed and implemented by taking into 

account the frequently reported DSE levels for both generic as well as SHM-oriented 

WSN platforms and using one of the most accurate DSE simulation techniques. The 

random nature of DSE across the sensor nodes has also been taken into account as 

well. It can therefore be seen that the synthesized wireless signal data used herein can 

well represent the actual WSN data particularly in terms of network synchronization 

uncertainties which is the main focus of this research task. Readers interested in the 

DSE simulation process can refer to Section 4.5.2 for details of this simulation. 

The evaluation results from this chapter and from Chapter 4 are to act as bases for 

another semi-complete data synchronization scheme developed for use in an actual 

Ethernet distributed DAQ system (see Chapter 5). Finally, the robustness of the 

primary SSI-data technique is confirmed to be more or less the same as the robust 

FDD technique. The robustness confirmation for primary SSI-data from this chapter 

as well as from Chapter 4 is also very important to facilitate rapid while reliable 

implementation of feature extraction by means of this powerful OMA technique in 

Chapters 5 and 7 of this thesis.    
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ABSTRACT 

The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health 

Monitoring (SHM) has become a promising approach due to many advantages such 

as low cost, fast and flexible deployment. However, inherent technical issues such as 

data synchronization error and data loss have prevented these distinct systems from 

being extensively used. Recently, several SHM-oriented WSNs have been proposed 

and believed to be able to overcome a large number of technical uncertainties. 

Nevertheless, there is limited research examining effects of uncertainties of generic 

WSN platform and verifying the capability of SHM-oriented WSNs, particularly on 

demanding SHM applications like modal analysis and damage identification of real 

civil structures. This article first reviews the major technical uncertainties of both 

generic and SHM-oriented WSN platforms and efforts of SHM research community 

to cope with them. Then, effects of the most inherent WSN uncertainty on the first 

level of a common Output-only Modal-based Damage Identification (OMDI) 

approach are intensively investigated. Experimental accelerations collected by a 

wired sensory system on a benchmark civil structure are initially used as clean data 

before being contaminated with different levels of data pollutants to simulate 

practical uncertainties in both WSN platforms. Statistical analyses are 

comprehensively employed in order to uncover the distribution pattern of the 

uncertainty influence on the OMDI approach. The result of this research shows that 

uncertainties of generic WSNs can cause serious impact for level 1 OMDI methods 

utilizing mode shapes. It also proves that SHM-WSN can substantially lessen the 

impact and obtain truly structural information without having used costly 

computation solutions. 

KEYWORDS 

Wireless Sensor Networks (WSNs), Structural Health Monitoring (SHM), 

Uncertainties, Generic, SHM-oriented, Data Synchronization Error (DSE), Output-

only Modal Analysis (OMA), Output-only Modal-based Damage Identification 

(OMDI) 
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3.1 INTRODUCTION 

The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health 

Monitoring (SHM) has increasingly become popular due to many features such as 

low cost, fast and flexible deployment. Moreover, this sensing technology is capable 

of processing data at individual nodes and therefore enabling each measurement 

point to be a mini intelligent monitoring station (Lynch and Loh, 2006). As a result, 

many WSNs have been proposed for SHM applications and their capacity and 

features can be found in several comprehensive reviews (Lynch and Loh, 2006; Rice 

and Spencer, 2009). In more recent time, SHM research community has paid more 

attention on commercial WSN platforms as they offer modular hardware and open 

software which can be further customized with ease to meet requirements of SHM 

applications.  

However, the use of WSNs for SHM poses a number of technical challenges. Most 

commercial WSNs have been initially designed for generic purposes rather than 

SHM (Ruiz-Sandoval et al., 2006). As a result, there are many limitations of such a 

generic platform such as low-sensitivity sensors, high noise, poor resolution of 

analog-digital converters, inaccurate synchronization and unreliable data 

transmission (Spencer et al., 2004). Some typical examples can be seen in the cases 

of the generic version of the Mica or Imote2 WSNs, i.e. using their basic sensors and 

sensor boards (Ruiz-Sandoval et al., 2006; Rice and Spencer, 2009). Realizing such 

limitations, a number of research centers have begun enhancing capacity of selective 

WSN models in order to align them with requirements of SHM applications.  High-

fidelity hardware components for SHM have been customized and specific 

middleware algorithms have been written to achieve tighter network synchronization 

and more reliable wireless communication (Pakzad et al., 2008; Nagayama et al., 

2009; Rice and Spencer, 2009). This SHM-oriented WSN platform at present can be 

best illustrated in the combination of Imote2-based control & communication unit 

with SHM-A sensor board and middleware developed by the Illinois Structural 

Health Monitoring Project (ISHMP, see e.g. Rice and Spencer, 2009). With belief of 

having overcome a large number of WSN uncertainties, these SHM-oriented WSN 

have been moved from laboratory applications to be deployed in real large-scale 

infrastructure (Pakzad et al., 2008; Jang et al., 2010b). 
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Although SHM-oriented WSNs have achieved a number of promising results, there 

has been very limited validation research examining the effect of improvement of this 

platform in comparison with its generic counterparts from the SHM application 

aspect. Impact of uncertainties of both platforms has not been studied in depth, 

particularly with respect to very popular but demanding global SHM methods such as 

Output-only Modal Analysis (OMA) and Output-only Modal-based Damage 

Identification (OMDI). It is worth noting that, OMDI and corresponding OMA 

techniques, have gained more popularity in comparison to their input-output 

counterparts in recent years as they are more applicable for monitoring in-service 

civil structures such as bridges under normal traffic operation (Brincker et al., 2003).   

To address this need, this article first presents a review of major uncertainties of both 

generic and SHM-oriented WSN platforms and their effects on the most popular 

OMA and OMDI techniques from prior studies. Then, effects of the most inherent 

uncertainty are investigated with respect to the outcome of a common level 1  OMDI 

approach, i.e. detecting the presence of structural damage based on the deviation of 

modal parameters estimated by two most popular OMA techniques. The OMA 

techniques adopted herein are Frequency Domain Decomposition (FDD) and data-

driven Stochastic Subspace Identification (SSI-data) based on the fact that they have 

been considered as the most robust technique in either frequency domain or time 

domain and they can well complement each other. For the sake of completeness, 

FDD, SSI-data and their corresponding level 1 OMDI approach are also described in 

brief in one of the following sections. Effect of WSN uncertainties on higher levels 

of the OMDI approach will be addressed in future work. As being the most advanced 

WSN, Imote2 and its customized hardware and software as previously mentioned are 

selected as the representative for the SHM-oriented WSN platform in this study. 

3.2 MAJOR UNCERTAINTIES OF GENERIC AND SHM-ORIENTED WSNS 

There are a number of technical uncertainties or challenges that have been identified 

by prior studies (Spencer et al., 2004; Lynch and Loh, 2006). However, from a 

perspective of the most popular SHM methods, two major and distinct WSN 

uncertainties that can directly degrade data quality are data synchronization error and 

data loss (Nagayama et al., 2007). A brief review regarding these two factors in both 
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generic and SHM-oriented WSN platforms and the effort of the SHM research 

community to address the associated issues are presented below. 

Data loss is one intrinsic uncertainty in the generic WSN platform due to two main 

factors, viz. poor radio signal and packet collision. Sources of the first factor include 

excessive range of communication (i.e. too far distance between communicating 

nodes) with limited on-board antenna capacity and interference of environmental 

factors that can obstruct or degrade the radio signal. Examples for the latter case are 

the presence of other wireless communication systems or certain building materials 

like steel (Rice and Spencer, 2009). Data loss due to packet collision occurs when 

multiple nodes attempt to send data at the same time leading to inference between 

packets. Prior studies have shown that data loss in generic WSNs can be as large as 

20 to 30 percent. In SHM-oriented WSNs, there are both hardware and software 

solutions to mitigate effects of this uncertainty. External antennas have helped SHM-

oriented Imote2 sensors to increase the communication range three times compared 

to its generic model (Rice and Spencer, 2009). The use of external antennas has also 

proved to exhibit more consistent behavior with different communication distances. 

In the software aspect, several reliable communication protocols have been 

developed in middleware services so that lost data packets can be resent (Mechitov et 

al., 2004; Nagayama et al., 2009). With such efforts, wireless data transmission 

without loss is currently achievable though it has not been available in a real-time 

manner. 

Data Synchronization Error (DSE) is probably the most well-known uncertainty in 

WSNs which consists of two main components, namely initial DSE and jitter-

induced DSE. Major sources of initial DSE include the timing offset among local 

clocks of nodes and the random delay in start time of sensing in each sensor node 

(Nagayama et al., 2009). Jitter-induced DSE is mainly due to (1) clock drift, (2) 

fluctuation in sampling frequency of each sensor node and (3) difference in sampling 

rate among sensor nodes. The combination of the timing offset and clock-drift-

induced DSE has been well known as Time Synchronization Error (TSE) which only 

reflects part of DSE. In the generic WSN platform, DSE varies significantly from 

model to model and previous reviews (Lynch and Loh, 2006; Rice and Spencer, 

2009) have reported fairly large initial DSE values in order of tens to a hundred of 
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milliseconds for relatively limited communication ranges. Lynch et al. (2005) 

commented that initial DSE might become larger when a longer transmission range is 

in use. Clock drift rate difference among nodes can be as large as fifty microseconds 

per second (Nagayama et al., 2009). It might be worth noting that the total DSE of 

one sensing segment can be seen as the initial DSE of the next segment (Yan and 

Dyke, 2010). These mean that DSE could become much larger in practical data 

acquisition for SHM which can be as long as tens of minutes or more. In the SHM-

oriented WSN platform, there are a number of solutions in both hardware and 

software customization efforts to cope with DSE. Rice and Spencer (2009) have 

customized a multi-metric sensor board named SHM-A in order to effectively 

mitigate the second and third source of incremental DSE. The first source of 

incremental DSE, clock drift, can be effectively dealt with using clock drift 

compensation algorithm in the time-stamping process during sensing (Nagayama et 

al., 2009). As a result, the remaining synchronization error for SHM-oriented Imote2 

platform is mainly initial DSE which is random in range of a single sampling period 

(Linderman et al., 2011). Even though a lower initial DSE can be further achieved 

with resampling algorithm (Nagayama et al., 2009), this algorithm can cost more 

computation effort at leaf nodes and increase the data transmission latency. Tolerance 

capacity of SHM applications with respect to relatively small DSE in SHM-oriented 

WSNs needs to be assessed in order to avoid unnecessarily excessive computational 

and latent burden. 

There are limited studies that have investigated effects of DSE on SHM applications 

and almost all of them have focused on effects of DSE on limited aspects of 

outcomes of several OMA and OMDI techniques. The rationale for such studies is, as 

global SHM methods, OMA and OMDI generally require data from different 

measurement points to be well-synchronized with each other (Nagayama et al., 

2007). It is worth noting that this requirement can be easily met in the traditional 

wired sensing system but not in case of WSNs with inherent synchronization errors. 

Nagayama et al. (2007) noted substantial effects of initial DSE on modal phases 

estimated from one time domain on correlation functions of responses. On the other 

hand, Krishnamurthy et al. (2008) observed considerable influence of initial DSE on 

mode shape magnitudes estimated by FDD from experimental data with artificial 
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introduction of DSE. Later, Yan and Dyke (2010) confirmed effects of DSE on both 

components of mode shapes and one OMDI method employing one flexibility-based 

index. All these three investigations have concluded that, DSE has no impact on 

modal frequencies and damping ratios estimated in the adopted OMA techniques. It 

is also notable in the latter investigation (Yan and Dyke, 2010) that DSE was 

randomly contaminated into different sensing nodes within a pre-determined range. 

This type of simulation can be seen to partially reflect the nature of DSE in WSNs, 

i.e. randomly different for different measurement points. However, since no multiple-

round simulations have been made in this work, statistical properties of impact of 

DSE randomness on modal parameters and modal-based damage indices have not 

been derived. In addition to investigations that have been made for nonparametric 

and correlation-driven OMA, influence of DSE on commonly-used data-driven 

techniques such as SSI-data needs to be assessed. Finally, although DSE has been 

greatly reduced in SHM-oriented WSN platform, there appears no comparative study 

which has been made to evaluate effects of this improvement from a perspective of 

one OMDI approach. These issues will be addressed later in this study. 

3.3 OMA AND LEVEL 1 OMDI APPROACH UNDER INVESTIGATION 

Representing for non-parametric OMA is FDD, proposed by Brincker et al. (2000). 

This technique starts with estimation of output power spectral density matrices each 

of which ( yyG ) at a discrete frequency i  is then decomposed by the Singular Value 

Decomposition (SVD) algorithm as below. 

 
H

iiiiyy HSUjG )(    (3-1) 

Here, iU  is a unitary matrix containing singular vectors iju  as columns and iS  is a 

diagonal matrix containing singular values ( ijs ). Next, singular value lines are 

formed by assembling ijs  for all discrete frequencies of interest and plotted for 

implementing peak-picking technique (see Figure 3-2 for illustration). A mode is 

generally estimated as close as possible to the corresponding resonance peak of the 

first singular value line where the influence of the other modes is as small as 

possible. In the case of two orthogonally coupled modes at one frequency, the 
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previous step is for the stronger mode whereas a peak on the second singular value 

line will be “picked” for the weaker mode(Structural Vibration Solutions A/S, 2011) 

Mode shapes are finally derived from singular vectors corresponding to selected 

frequencies.  

There are two variants of this technique, i.e. Enhanced FDD and Curve-fit FDD but 

these techniques work similarly except for the fact that estimation of damping ratios 

is only implemented in the two variants. Similar to traditional input-output non-

parametric techniques, FDD family is said to be fast, simple and user-friendly as well 

immune to computational modes (Zhang et al., 2005). However, difficulties may be 

arisen in the case that dense and close modes are simultaneously present. 

On the other hand, SSI-data has been considered as one of the most robust techniques 

in time domain since it can take into account furious modes from measurement noise; 

cope well with dense and closely spaced modes and avoid spectrum leakage 

(Brincker et al., 2001; Zhang et al., 2005). This method relies on directly fitting 

parametric state space models to the measured responses of a linear and time 

invariant physical system (Overschee and Moor, 1996; Structural Vibration Solutions 

A/S, 2011). 

 ttt wAxx 1 ; ttt vCxy   (3-2) 

Here, tx  and ty  are the state vector and the response vector at time t, respectively. A 

is the system state matrix whereas C is the observation matrix. Amongst two 

stochastic processes,  tw   is the process noise (i.e. the input) that drives the system 

dynamics whilst tv   is measurement noise of the system response. 

In later phase, subspace models are first established for different dimensions up to the 

user-defined maximum value. Among three subspace estimation algorithms, Un-

weighted Principal Component (UPC) has been used most for SSI-data of civil 

structures. Estimates of matrices A and C (i.e.  Â  and Ĉ  respectively) are then 

obtained by the least square solution. By performing the eigenvalue decomposition of 

the system matrix ( Â ), its discrete poles ( i ) and eigenvectors ( ) can be found as 

described in (Brincker and Andersen, 2006). 
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The continuous time poles and subsequently modal frequencies and damping ratios 

are then obtained. 

 
t

i
i




)ln(
   (3-4) 

 ii   ; 




2

i

if   (3-5) 

 
i

i
i






)Re(
   (3-6) 

Where t  is the sampling period, the subscript “i” is the index of modes. Mode 

shape matrix is finally derived from the observation matrix and eigenvectors 

  C


  (3-7) 

By using increasing subspace model orders, multiple sets of modal parameters for 

each mode are obtained and their deviation can be used to examine whether that 

mode is sufficient stable to be from a genuine structural pole. This leads to the 

extensive use of the stabilization diagram not only in SSI-data (see Figure 3-2 for 

illustration) but also in most parametric modal analysis methods. It might be worth 

noting that there is another SSI technique that is based on covariance of data and 

therefore named covariance-driven SSI but this technique is likely to confront higher 

computational errors due to the issue of matrix squared up in its calculation process 

(Zhang et al., 2005). 

In practice, FDD and SSI-data have been often used together to complement each 

other and they are often used for OMA of real civil structures including those being 

sensed by WSNs (see e.g. Weng et al., 2008; Cho et al., 2010). As for other damage 

identification approaches, level 1 of OMDI employing these two OMA techniques 

address the simple but most critical question (i.e. whether the structural damage takes 

place) by examining changes in modal parameters (Brincker et al., 2001). In this 

regard, the frequency change and the deviation (from unity) of Modal Assurance 
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Criterion (MAC, see e.g. Allemang, 2003) are frequently-used damage indices among 

others (Doebling et al., 1998). The increasing use of this approach for SHM 

employing WSNs in recent time has proved that it deserves more thorough 

investigations especially those related to WSN uncertainties as previously reviewed. 

3.4 RESEARCH METHODOLOGY 

To facilitate a comparative study of effects of DSE of generic and SHM-oriented 

WSNs on level 1 OMDI employing FDD and SSI-data, a dataset from a benchmark 

structure was first selected and acts as the DSE-free dataset. This dataset was 

subsequently polluted with random DSE within a specified range to simulate this 

uncertainty of both generic and SHM-oriented WSNs based on the review results of 

each platform. At each DSE range, this pollution process was randomly repeated fifty 

times to generate fifty datasets for subsequent analyses. In the simulations for SHM-

oriented WSNs, DSE range was set to be within one sampling period as previously 

reviewed and as to relax the option of having to use the costly resampling algorithm. 

In those for generic WSNs which generally suffer from much larger errors, three DSE 

ranges selected are five, ten and fifteen times of the sampling period to enable the 

trend of effects to be quantitatively investigated. For the sake of simplicity, impact of 

jitter-induced DSE is excluded in this study but one can conclude that it would cause 

additional adverse influence in SHM applications using generic WSNs. The DSE-

free data and all DSE-corrupted datasets are used as the input, for FDD and SSI-data 

techniques, to identify modal frequencies, mode shapes and corresponding 

comparative indicators. Damping ratios are not considered in this study based on the 

fact that their estimation with acceptable accuracy may still be uncertain in OMA and 

they are not among commonly-used indices for SHM (Brincker et al., 2001). In a 

similar fashion as for damage detection process, relative frequency change and the 

deviation of MAC from unity are selected as two indicators for assessing effects of 

different DSE ranges on level 1 OMDI herein.  Details of the original dataset, 

simulation approach for DSE and the analysis procedure are given the following 

sections. 
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3.5 DESCRIPTION OF DATASETS AND ANALYSIS 

3.5.1 THE BENCHMARK STRUCTURE AND DATASETS 

 

Figure 3-1 Position of the accelerometers and the wired DAQ system on GNTVT 

Even though simpler types of data can be generated through computer simulations or 

laboratory experiments, it is the intention of the authors to use real monitoring data 

from real civil structures in this study. The rationale for this is the pattern of real data 

is likely to be different from that of data generated in numerical simulations or 

laboratory experiments since real civil structures are subjected to influence of 

different operational or environmental factors such as wind and measurement noise. 

The dataset selected to use for this case study is from Guangzhou New TV Tower 

(GNTVT). This 610m super-tall tower has been considered as a benchmark structure 

for SHM and its one-day data as well as the full description of the SHM system are 

freely provided in a website for SHM research community 

(http://www.cse.polyu.edu.hk/benchmark/). Figure 3-1, taken from this website, 

shows the arrangement of 20 uni-axial accelerometers installed at eight levels along 

the height of this tower. Sensors were placed along short-axis and long-axis of the 

inner structure. The sampling rate was set at 50 samples per second which can be 

seen to belong to a common range for SHM of real structures. The provided data 

were split into 24 sets of one hour length and the 7th dataset (i.e. named 

http://www.cse.polyu.edu.hk/benchmark/
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accdata_2010-01-20-00) was chosen as benchmark (or DSE-free) dataset in this 

study. 

3.5.2 SIMULATION OF DSE AND ANALYSES OF DSE IMPACT 

As previously discussed, four DSE ranges were chosen which are within one, five, 

ten and fifteen times of the sampling period (i.e. dt) in which the first range 

represents DSE of SHM-oriented WSNs and the others represent those of generic 

WSNs. For a given DSE range, fifty sets of the time delay vector were randomly 

generated and each set was used to interpolate the corresponding DSE-corrupted 

dataset from the benchmark dataset. It is worth noting that, among various one-

dimensional interpolation techniques, the linear interpolation technique has already 

been utilized in the resampling algorithm for SHM-oriented WSN middleware 

(Nagayama et al., 2009) due to the fact that it requires less computational effort from 

sensor resources. Since the simulations herein are not subjected to such a 

computational constraint, the cubic spline interpolation technique (MathWorks, 

2011) was adopted to achieve more accurate simulation results.  

The DSE-free and DSE-corrupted datasets were used as the input for FDD and SSI-

data techniques. The analyses were conducted using ARTeMIS Extractor software 

ver. 5.3 (Structural Vibration Solutions A/S, 2011). Since number of the sensors was 

rather large, the channel projection was adopted which can help to reduce effects of 

noise and avoid too much redundant cross information. The minimum number of the 

projection channels is generally three. The basis behind this is that, in case of two 

close modes, at least two projection channels are needed to separate the modes plus 

one additional channel to account for the measurement noise (Structural Vibration 

Solutions A/S, 2011). After several trials, the number of projection channels selected 

was four as they provided the most stable stabilization diagram with the least noise 

modes. Also, the dimension for the state space model was set 160 as it was found to 

be sufficient for performing SSI-data. For each DSE range, fifty sets of modal 

parameters (i.e. frequencies and mode shapes) were estimated at each mode, 

compared with the benchmark modal parameter set (i.e. from the DSE-free or 

original dataset) to calculate fifty corresponding sets of relative frequency changes 

and MAC deviations from unity.  
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To evaluate narrow-range changes of modal parameters like frequencies, basic 

statistic figures are sufficient such as Root Mean Square Error (RMSE) of DSE-

corrupted frequencies with respect to the DSE-free frequency and relative difference 

of maximum and minimum DSE-corrupted frequencies with respect also to the DSE-

free frequency. In order to visualize largely different deviations of different variables 

in one plot, box-plot function (MathWorks, 2011) was adopted to visualize some 

useful statistical properties (such as median, quartiles and extremes) of MAC 

deviations under impact of different DSE ranges. 

3.6 RESULT AND DISCUSSIONS 

3.6.1 COMMON RESULTS OF FDD AND SSI-DATA 

The first twelve modes investigated lie on the frequency range of between 0.09 Hz 

and 1.3 Hz. The results of the mode estimation are in excellent agreement between 

both OMA techniques (i.e. FDD and SSI-data) for both DSE-free and DSE-corrupted 

data. MAC values of twelve mode shape vectors estimated by two techniques are 

approximately unity. All these twelve modes vibrate mostly along with either of two 

sensor-placement directions, except modes 6 and 12 which are coupled between the 

two directions. Figure 3-2 shows the singular value plot employed in FDD technique 

and stabilization diagram utilized in SSI-data whereas Figure 3-3 illustrates some 

typical modes vibrating mostly along with the short-axis direction (of the inner 

structure, see also Figure 3-1) for the DSE-free dataset.  The results are also in good 

agreement with prior studies in regards to OMA of this benchmark structure (Chen et 

al., 2011). 

 

Figure 3-2 Singular value plot for FDD (left) and stabilization diagram for SSI-data 

(right) from DSE-free data 
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Figure 3-3 Four typical modes in the short axis estimated by FDD and SSI-data from 

DSE-free data 

3.6.2 EFFECT OF DSE ON LEVEL 1 OF OMDI 

 Frequency change 

There is no change in frequencies estimated by FDD for both DSE-free and DSE-

corrupted data. This once again reinforces prior findings that DSE does not affect 

frequencies estimated by FDD (Krishnamurthy et al., 2008; Yan and Dyke, 2010) 

and highlights the robustness of this technique with respect to DSE impact. 

Frequency estimates by SSI-data are subjected to certain influence from DSE but the 

impact is very small even for the case of the largest DSE considered such as 15dt as 

illustrated in Table 3-1. The maximum RMSE, occurred at the highest mode of 

interest (mode 12) is only 0.392e-3 Hz whereas the maximum relative difference is 

less than 0.5 percent. Therefore, effects of DSE on frequency estimates by SSI- data 

can apparently be considered to be negligible. 
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Table 3-1 Effects of DSE of 15dt on frequency estimates by SSI-data 

Mode DSE-free (Hz) RMSE (mHz) Min (Hz) Max (Hz) RD (%) 

1 0.0938 0.123 0.0938 0.0935 0.367 

2 0.1382 0.079 0.1382 0.1380 0.121 

3 0.3661 0.051 0.3661 0.3660 0.032 

4 0.4241 0.030 0.4241 0.4240 0.023 

5 0.4748 0.036 0.4749 0.4748 0.017 

6 0.5060 0.089 0.5061 0.5058 0.050 

7 0.5228 0.017 0.5228 0.5227 0.015 

8 0.7957 0.266 0.7958 0.7951 0.082 

9 0.9663 0.022 0.9664 0.9663 0.010 

10 1.1509 0.044 1.1510 1.1508 0.013 

11 1.1916 0.034 1.1917 1.1916 0.012 

12 1.2520 0.392 1.2525 1.2509 0.127 

[Note: Relative difference, RD = (Max-Min)/DSE-free] 

 Mode shape change - MAC deviation (from unity) 

At each DSE range for one OMA technique, a 5012 (number of 

simulations/observations  number of modes) matrix of MAC deviations from unity 

was established and visualized by the box-plot function. To facilitate a complete 

comparison across different DSE ranges and with respect to two OMA techniques, a 

total of 8 box-plots are illustrated with the same scale in Figure 3-4 (for generic 

WSNs) and Figure 3-5 (for SHM-oriented WSNs). However, MAC deviations for the 

latter (i.e. SHM-oriented WSNs) case were re-plotted in a zoomed scale in Figure 3-6 

to have a clearer view of their statistical distribution. 
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Figure 3-4 Box-plots of MAC deviation under DSE of generic WSNs 

 

Figure 3-5 Box-plots of MAC deviation under DSE of SHM-oriented WSNs 
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Figure 3-6 Box-plots of MAC deviation under DSE of SHM-oriented WSNs 

(zoomed scale) 

Figure 3-4 and Figure 3-5 clearly show the negative impact of DSE of generic WSNs 

which increases rapidly for higher DSE ranges especially for higher modes. For 

instance of modes 10 and 11, whilst the median of MAC deviations under DSE range 

of 5dt is only about 0.05, those under DSE of 10dt and 15dt are around 0.13 and 

0.28, respectively. Also, the variation of MAC deviations at higher DSE ranges is 

much larger than that at the lower range, again particularly at higher modes. This can 

be obviously seen through the total range (i.e. distance between the lower and upper 

extremes) as well as the Inter-Quartile Range (IQR) which is the difference between 

the 75
th

 and 25
th

 percentile of the presented data. For instance of modes 8 and 9, IQR 

of MAC deviations under DSE range of 5dt is approximately 0.15, those under DSE 

ranges of 10dt and 15dt are around 0.35 and 0.8, respectively. MAC deviations as 

large as from 0.2 to 0.35 or even larger for extreme cases (i.e. almost up to 0.6) 

would cause problems for level-1 OMDI relying on mode shape changes since 0.2 is 

also the MAC deviation (of the highest detectable mode) for the most severe damage 

cases in a real bridge (Brincker et al., 2001). 

In general, DSE impact on statistical features of MAC deviations such as their 

median value and their variation is higher for higher modes. This trend can be seen 

not only on plots for cases of generic-WSN DSE but also on the zoomed plots (i.e. 

Figure 3-6) for the case of SHM-oriented DSE for both OMA techniques. However, 

for the latter case, the actual impact magnitude is drastically reduced with even the 

highest extreme value of MAC deviations being less than 0.005 (i.e. at mode 12). 

Obviously, this impact level can be considered to be marginal in comparison with 



 

58 Chapter 3: Effects of WSN Uncertainties on Output-only Modal-based Damage Identification 

those levels which have been discussed above and it also shows that OMDI is likely 

to tolerate the DSE level of SHM-oriented WSN without having to use costly 

computational algorithm like resampling approach. 

Under adverse influence of DSE, outcomes of FDD and SSI-data are generally rather 

similar though one could see higher impact on SSI-data at the highest mode (i.e. 

mode 12). The robustness of SSI-data herein once again evidences why this 

technique has been believed to be the best choice for accurate OMA in both off-line 

and automate manner (Brincker et al., 2001). 

3.7 CONCLUSIONS 

This article has presented a comprehensive investigation of uncertainties of both 

generic and SHM-oriented WSN platform and their effects on a common level 1 

OMDI approach. Based on an intensive review, this study has first revealed that 

whilst data loss can be effectively treated using reliable communication protocols, 

DSE is still unavoidable and can be considered as the most inherent uncertainty. The 

review has also shown that the DSE magnitude has been considerably alleviated in 

the SHM-oriented WSN platform by advanced combination of hardware and 

middleware solutions, and will possibly help avoiding the use of costly 

computational methods for compensation of DSE impact. To evaluate such 

improvements in SHM-oriented WSNs as well as highlight the limitation of the 

generic WSN platform, a comparative study was carried out with focus on 

applications on real civil structures. One experimental dataset from a benchmark 

structure was first selected to act as uncertainty-free data before being contaminated 

with different levels of DSE in random manners to practically simulate this 

uncertainty in both WSN platforms. In order to gain a more thorough understanding 

of DSE impact, statistical analyses, for the first time, were employed to derive critical 

distributions and variation patterns of two common level-1 OMDI indices i.e. 

frequency changes and MAC deviations from unity. The results have first shown that, 

the robustness of SSI-data with respect to DSE impact can be more or less the same 

as that of FDD. In terms of damage indices, the frequency-based index is the most 

robust one since DSE causes no (or almost no) change for frequency estimates. 

However, the second index (i.e. MAC deviation which is commonly used for 
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assessing mode shape change) has subjected to rather significant influence from 

DSE, particularly with large DSE ranges of generic WSNs. Likewise; this impact has 

been shown to be increased with the order of modes, proving that higher modes are 

more sensitive to DSE. In the same regard, capacity of SHM-oriented WSN platform 

has been assessed and shown that its improvement has greatly lessen the adverse 

impact of DSE and that OMDI is likely to perform well with data from SHM-

oriented WSNs. It is also worth noting that although the effects of uncertainties like 

DSE on OMDI have just been investigated for level 1, the outcomes of this study can 

act as basis for further investigations on higher levels of OMDI. As the final finding 

from this study, statistical approach is ultimately recommended for investigations of 

WSN uncertainties particularly for data synchronization errors of generic WSNs. 

Beside basic statistical feature such as RMSE or relative difference, box-plots have 

been proved to be useful in presenting, in one plot, different variables with variations 

in rather different scales. 
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Chapter 4: Effects of WSN Uncertainties on 

Output-only Modal Analysis 

Employing Merged Data of Multiple 

Tests 

This chapter is made up of the following published journal paper 

 Nguyen, T., Chan, T. H. T. and Thambiratnam, D. P. 2014. Effects of 

wireless sensor network uncertainties on output-only modal analysis 

employing merged data of multiple tests. Advances in Structural Engineering 

17 (3):219-230. URL: http://dx.doi.org/10.1260/1369-4332.17.3.319 

As a continuation of the study in Chapter 3, this chapter has similar contributions to 

those presented in Chapter 3 but for other types of sensor setups and test structures. 

Specifically, this chapter focuses on the problem related to the use of the multiple test 

setup strategy which is also popular in practice for measuring large-scale structures 

with a limited number of sensors. In this regard, there are two methods for merging 

data from multiple tests leading to another SSI-data variant (termed UPC-PreGER in 

the chapter) besides the primary SSI-data technique (termed UPC-PoSER herein for 

this particular sensor setup scheme). On the other hand, the feasibility of the relaxing 

data synchronization scheme is assessed by means of vibration data from a structure 

with a lower degree of flexibility than the one used in Chapter 3. The rationale 

behind this is to examine the impact at a frequency range that is higher than the range 

investigated in Chapter 3. In a similar fashion as those used in Chapter 3, synthesized 

wireless signal datasets are thoroughly created so that they can represent the actual 

WSN data particularly in the aspect of network synchronization uncertainties. Once 

again, the feasibility of the (semi-complete) data synchronization scheme is 

reconfirmed by the undeniable robustness of modal frequencies as well as the 

relatively small and predictable impact of the permitted DSE level on MAC values 

particularly for those modes estimated by primary SSI-data or in the low vibration 

frequency range (e.g. 010 Hz) of civil structures. The DSE impact is also 

reconfirmed to be analogous to the influence of measurement noise, that is, generally 

http://dx.doi.org/10.1260/1369-4332.17.3.319
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being more severe for modes of higher order. Besides facilitating such confirmations, 

the data synchronization evaluation results from this chapter and from Chapter 3 are 

to act as bases for the cost-effective and flexible data synchronization solution 

presented in Chapter 5. Finally, besides the anticipated robustness of FDD against 

noise-type uncertainties, the chapter also highlights the necessity of using channel 

projection in helping in general the SSI-data family to cope with such adversities as 

well as in assisting in particular the primary SSI-data technique to attain a robustness 

level analogous to that of FDD. Along with related results from Chapter 3, these 

findings contribute further to the reliable implementation of this SSI-data technique 

on subsequent applications in Chapters 5 and 7. 
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ABSTRACT 

The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health 

Monitoring (SHM) has become a promising approach due to many advantages such 

as low cost, fast and flexible deployment. However, inherent technical issues such as 

data asynchronicity and data loss have prevented these distinct systems from being 

extensively used. Recently, several SHM-oriented WSNs have been proposed and 

believed to be able to overcome a large number of technical uncertainties. 

Nevertheless, there is limited research verifying the applicability of those WSNs with 

respect to demanding SHM applications like modal analysis and damage 

identification. Based on a brief review, this paper first reveals that Data 

Synchronization Error (DSE) is the most inherent factor amongst uncertainties of 

SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and 

performance of the most robust Output-only Modal Analysis (OMA) techniques 

when merging data from multiple sensor setups. The two OMA families selected for 

this investigation are Frequency Domain Decomposition (FDD) and data-driven 

Stochastic Subspace Identification (SSI-data) due to the fact that they both have been 

widely applied in the past decade. Accelerations collected by a wired sensory system 

on a large-scale laboratory bridge model are initially used as benchmark data after 

being added with a certain level of noise to account for the higher presence of this 

factor in SHM-oriented WSNs. From this source, a large number of simulations have 

been made to generate multiple DSE-corrupted datasets to facilitate statistical 

analyses. The results of this study show the robustness of FDD and the precautions 

needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the 

combination of preferred OMA techniques and the use of the channel projection for 

the time-domain OMA technique to cope with DSE are recommended. 

KEYWORDS 

Wireless Sensor Networks (WSNs), Data Synchronization Error (DSE), Output-only 

Modal Analysis (OMA), Multi-setup, Frequency Domain Decomposition (FDD), 

data-driven Stochastic Subspace Identification (SSI-data) 
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4.1 INTRODUCTION 

The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health 

Monitoring (SHM) has increasingly become popular due to many features such as 

low cost, fast and flexible deployment. Moreover, this sensing technology is capable 

of processing data at individual nodes and therefore enabling each measurement 

point to be a mini intelligent monitoring station (Lynch and Loh, 2006). As a result, 

many WSNs have been proposed for SHM applications and their capacity and 

features can be found in several comprehensive reviews (Lynch and Loh, 2006; Rice 

and Spencer, 2009). In more recent time, SHM research community has paid more 

attention on commercial WSN platforms as they offer modular hardware and open 

software which can be further customized with ease to meet requirements of SHM 

applications.  

However, the use of WSNs for SHM poses a number of technical challenges. Most 

WSNs have been initially designed for generic purposes rather than SHM (Ruiz-

Sandoval et al., 2006). As a result, there are many limitations of such a generic 

platform such as low-sensitivity sensors, high noise, poor resolution of analog-digital 

converters, inaccurate synchronization and unreliable data transmission (Spencer et 

al., 2004). Typical example can be seen in the case of the generic version of the 

Imote2 WSN, i.e. using basic sensors and sensor board ITS400 (Rice and Spencer, 

2009). Realizing such limitations, a number of research centers have begun 

enhancing capacity of selective WSN models in order to align them with 

requirements of SHM applications.  High-fidelity sensor boards for SHM have been 

customized and specific middleware algorithms have been written to achieve tighter 

network synchronization and reliable wireless communication (Rice and Spencer, 

2009; Pakzad et al., 2008; Nagayama et al., 2009). This SHM-oriented WSN 

platform can be best illustrated in the combination of Imote2-based control & 

communication unit with SHM-A sensor board and middleware developed in the 

Illinois Structural Health Monitoring Project (Rice and Spencer, 2009). Since they 

are the most popular WSNs which have been used for SHM applications, the generic 

and SHM-oriented platforms of Imote2 are selected as representatives for this study 

hereafter. 
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Although SHM-oriented WSNs have achieved initial promising results, uncertainties 

of this platform have not been completely removed. Effects of SHM-oriented WSN 

uncertainties have not been studied in depth, particularly with respect to popular but 

demanding global SHM applications such as output-only modal analysis (OMA) and 

output-only modal-based damage identification (OMDI). It is worth noting that, 

OMA and OMDI have gained more popularity in comparison to their input-output 

counterparts in recent years as they are more applicable for monitoring in-service 

civil structures such as bridges under normal traffic operation (Brincker et al., 2003).   

To address this need, this paper first presents a brief review of major uncertainties of 

the SHM-oriented WSN platform and their effects on OMA techniques from prior 

studies. Then, effects of the most inherent uncertainty are investigated with respect to 

one of the frequent OMA applications, i.e. OMA employing merged data from 

multiple tests (Dohler et al., 2010). Frequency Domain Decomposition (FDD) and 

data-driven Stochastic Subspace Identification (SSI-data) are selected for this 

investigation as each of them has been considered as the most robust technique for 

either frequency domain or time domain. 

4.2 MAJOR UNCERTAINTIES OF SHM-ORIENTED WSNS 

There are a number of technical uncertainties or challenges that have been identified 

by prior studies (Lynch and Loh, 2006; Spencer et al., 2004). However, from a 

perspective of SHM applications, two major and distinct WSN uncertainties that can 

directly degrade data quality are data loss and data synchronization error (Nagayama 

et al., 2007). Brief review and discussion regarding these two factors are presented 

below. 

Data loss has been seen as a serious problem for the generic WSN platform and 

resulted from unreliable wireless communications between sensor nodes (Nagayama 

et al., 2007). In SHM-oriented WSNs, reliable communication protocol based on 

acknowledgement approach have been developed in middleware services so that lost 

data packets can be resent (Nagayama et al., 2009).  Wireless data transmission 

without loss is currently achievable though it has not been available in a real-time 

manner.  
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Data Synchronization Error (DSE) is another well-known uncertainty in WSNs 

which consists of two main components, namely initial DSE and jitter-induced DSE. 

Major sources of initial DSE include the timing offset among local clocks and the 

random delay in start time of sensing in sensor nodes (Nagayama et al., 2009). Jitter-

induced DSE is mainly due to (1) clock drift, (2) fluctuation in sampling frequency of 

each sensor node and (3) difference in sampling rate among sensor nodes. In the 

SHM-oriented WSN platform, there are a number of solutions in both hardware and 

software customization efforts to cope with DSE. Rice and Spencer (2009) 

customized a multi-metric sensor board named SHM-A in order to effectively 

mitigate the second and third sources of jitter-induced DSE. The first source of jitter-

induced DSE, clock drift, can be effectively dealt with using clock drift 

compensation algorithm (Nagayama et al., 2009). As a result, the remaining 

synchronization error for SHM-oriented Imote2 platform is mainly initial DSE which 

is random in range of a single sampling period (Linderman et al., 2011). Even though 

a lower initial DSE can be further achieved with resampling algorithm (Nagayama et 

al., 2009), this algorithm costs more computation effort at leaf nodes. Tolerance 

capacity of SHM applications with respect to relatively small DSE in SHM-oriented 

WSNs needs to be assessed in order to avoid unnecessarily computational burden. 

There are limited studies that have investigated effects of DSE on SHM applications 

and almost all of them focused on effect of DSE on OMA techniques. The rationale 

for that is, as a global SHM approach, OMA generally requires data from different 

measurement points to be well-synchronized with each other (Nagayama et al., 

2007). It is worth noting that this requirement can be easily met in the traditional 

wired sensing system but not in case of WSNs with inherent synchronization errors. 

Nagayama et al. (2007) noted substantial effects of initial DSE on modal phases 

detected from simulation model by one parametric OMA method, whereas 

Krishnamurthy et al. (2008) observed considerable influence of initial DSE on mode 

shape magnitudes estimated by FDD in an experiment. Yan and Dyke (2010) 

confirmed effects of DSE on mode shapes in both simulation and experimental 

studies. Nguyen et al. (2014b) compared effects of different DSE levels on data 

collected from one real tower structure using the single sensor setup. Since previous 

research has mostly focused on simple structures such as cantilever and simply 
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supported beams or on the use of the single sensor setup, effects of initial DSE on 

OMA of civil structures in larger scales, which in many cases need to employ multi-

setup tests, need to be further studied. Such effects on the most popular (but in 

different domains) OMA techniques (i.e. FDD and SSI-data) definitely deserve a 

comparative investigation in order to uncover their strength and weakness. For sake 

of completeness, FDD, SSI-data and associated strategies of data merging are briefly 

described in the next section. 

4.3 OMA AND DATA MERGING METHODS  

Representing non-parametric OMA is FDD, proposed by Brincker et al. (2000). This 

technique starts with estimation of output power spectral density matrices each of 

which ( yyG ) corresponds to one of the discrete frequencies ( i ) in the frequency 

range of interest. These matrices are then decomposed by the Singular Value 

Decomposition (SVD) algorithm as follows 

 
H

iiiiyy HSUjG )(    (4-1) 

Where ],...,,[ 11 imiii uuuU   is a unitary matrix containing the singular vectors iju ; iS  

is a diagonal matrix containing singular values is ; j and m are the index and total 

number of measured responses, respectively. Next, singular value lines are formed by 

assembling is  for all discrete frequencies ( i ) and plotted for implementing the 

peak-picking of modes. A mode is generally estimated as close as possible to the 

corresponding resonance peak of the first singular value line where the influence of 

the other modes is as small as possible. In the case of two orthogonally coupled 

modes occurring at one frequency, the previous step is carried out for the stronger 

mode whereas the peak on the second singular value line will be “picked” for the 

weaker mode (Structural Vibration Solutions A/S, 2011). Mode shapes are finally 

derived from singular vectors ( iju ) corresponding to selected frequencies. Besides 

FDD, there are two variants of this technique, i.e. Enhanced FDD and Curve-fit FDD 

but three techniques work similarly except the fact that estimation of damping ratios 

is only implemented in the two later ones. Similar to traditional input-output non-

parametric techniques, FDD family is said to be fast, simple and user-friendly as well 
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as immune to computational modes (Zhang et al., 2005). However, difficulties may 

arise in the case that dense and close modes are simultaneously present. 

On the other hand, SSI-data has been considered as one of the most robust families of 

OMA time domain techniques since it can take into account furious modes from 

measurement noise; cope well with dense and closely spaced modes and avoid 

spectrum leakage (Zhang et al., 2005; Brincker et al., 2001). This OMA family relies 

on directly fitting parametric state space models to the measured responses of a linear 

and time invariant physical system (Overschee and Moor, 1996; Structural Vibration 

Solutions A/S, 2011) as follows. 

 ttt wAxx 1 ; ttt vCxy   (4-2) 

Here, tx  and ty  are the state vector and the response vector at time t, respectively. A 

is the system state matrix whereas C is the observation matrix. Amongst two 

stochastic processes,  tw  is the process noise (i.e. the input) that drives the system 

dynamics whilst tv  is measurement noise of the system response. 

In later phase, subspace models are first established for different dimensions up to the 

user-defined maximum value. Estimates of matrices A and C (i.e. Â and Ĉ , 

respectively) are then obtained by the least square solution. By performing the 

eigenvalue decomposition of the system matrix estimate ( Â ), its discrete poles ( i ) 

and eigenvectors ( ) can be found as follows (Brincker and Andersen, 2006): 

 
1][ˆ  iA    (4-3) 

The continuous time poles and subsequently modal frequencies and damping ratios 

are then obtained. 
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Where t  is the sampling period. Mode shape matrix is finally derived from the 

observation matrix and eigenvectors. 

  C


  (4-7) 

By using increasing subspace model orders, multiple sets of modal parameters for 

each pole are obtained and their deviation can be used to examine whether the pole is 

as stable as a genuine structural mode. This leads to the extensive use of the 

stabilization diagram not only in SSI-data (see Figure 4-5 or Figure 4-6 for 

illustration) but also in most parametric modal analysis methods. It might be worth 

noting that there is another SSI family that is based on covariance of data and 

therefore named covariance-driven SSI (SSI-cov) but this OMA approach is likely to 

confront higher computational errors due to the issue of matrix squared up in its 

calculation process (Zhang et al., 2005). Among different estimation algorithms for 

SSI-data (Structural Vibration Solutions A/S, 2011), Un-weighted Principal 

Component (UPC), has been used most for OMA of civil structures. Another 

advantage of the SSI-data techniques over the FDD family is that they have potential 

to be operated in the automate manner. 

Besides the use of a single dataset, it is not unusual in practice, to merge data from 

multiple setups in both input-output and output-only modal analysis (Reynders et al., 

2009). Such a usage is able to cover a large number of measurement points using a 

limited number of sensors for the denser measurement which is always desirable in 

modal analysis, particularly for mode shape estimation. Multiple successive test 

setups are employed with a few sensors (known as reference sensors) being kept 

fixed while the others are being roved along the structure. A common problem with 

this usage is the inconsistency and non-stationary amongst different datasets (for 

instance, due to different operational and environmental conditions) which may cause 

estimation errors in the OMA process (Reynders et al., 2009). Since DSE is a newer 

type of measurement uncertainty as previously mentioned, it is necessary that its 

impact be thoroughly investigated.    
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There are two most common ways of merging data in both SSI approaches in general 

and SSI-data family in particular from multiple tests, namely Post Separate 

Estimation Re-scaling (PoSER) and Pre Global Estimation Re-scaling (PreGER). By 

means of data of reference sensors, the former merges secondary data (i.e. mode 

shapes) estimated by SSI of all individual tests whilst the latter relies on merging the 

correlation of all primary sub-datasets (i.e. time series) into a unified set before 

performing SSI techniques (Dohler et al., 2010). Compared to PoSER, the advantage 

of PreGER is that only one stabilization diagram needs to be dealt with in the 

identification phase regardless of number of the setups while the user of PoSER may 

need to work with every single diagram of each setup. However, PreGER is likely to 

be less robust with respect to small non-stationarities (Reynders et al., 2009) which 

may be the case of DSE. The robustness of both methods and particularly PreGER 

with respect to DSE obviously deserves further investigation. For the sake of 

simplicity, SSI-data-UPC-PoSER and SSI-data-UPC-PreGER are hereafter shortened 

as UPC-PoSER and UPC-PreGER, respectively.   

4.4 RESEARCH METHODOLOGY 

As previously discussed, effects of common initial DSE on OMA approach 

especially on two most popular OMA techniques (i.e. FDD and SSI-data-UPC) need 

to be investigated more thoroughly on more complex structures with another realistic 

sensor arrangement strategy (i.e. employing multiple sensor setups). To realize this 

aim, a sophisticated and large-scale laboratory bridge model is selected for data 

acquisition with multiple successive tests using limited number of sensors. In order 

to have DSE-free data, the original data herein was collected by a precisely 

synchronized wired sensing system, before being contaminated with an additional 

amount of measurement noise to account for the higher presence of this factor on 

WSNs in comparison with the wired sensing system employed herein. Serving as 

benchmark (or DSE-free) data, the noise-added accelerations are then introduced 

with a relaxed level of initial DSE for SHM-oriented WSN platform in a random 

manner. To investigate impact of DSE randomness, this pollution process was 

repeated fifty times to generate fifty sets of DSE-corrupted data for subsequent 

analyses. Both DSE-free and DSE-corrupted data are used for OMA utilizing FDD 
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and two variants of SSI-data-UPC techniques, to identify modal frequencies, mode 

shapes and their changes with respect to DSE. Damping ratios are not under 

consideration of this study based as their estimation can be inaccurate in OMA 

approach and they are not among commonly-used damage indices for SHM (Brincker 

et al., 2001). The use of projection channels is also explored to see whether it can 

mitigate DSE impact. The basis for this is that the impact of DSE is generally higher 

for higher modes (see section 6.3) which is similar to the impact of conventional 

measurement uncertainties such as measurement noise which can be handled by the 

use of the projection option. Figure 4-1 presents the flowchart of the investigation 

approach and further details can be found in section 5.   

 

Figure 4-1 Flowchart of the investigation approach 

4.5 BRIEF DESCRIPTION OF TESTS AND ANALYSIS 

4.5.1 THE BRIDGE MODEL AND WIRED SENSING SYSTEM 

Object for data acquisition is the through-truss bridge model at the Queensland 

University of Technology (Figure 4-2). With almost 600 degrees of freedom and 

dimensions of 8550mm by 900mm for its foot print and the height of 1800mm at the 

two towers, this bridge model can be one of the largest laboratory through-truss 
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bridge models for SHM purposes. To simulate ambient excitation, three large 

industrial fans were used at three different positions along the structure. Fan speed 

and direction were altered from one test to another to take into account changes of 

wind speed and wind direction in reality. 

 

Figure 4-2 Physical bridge model and its wired sensing system  

The bridge model was instrumented with nine high-quality uni-axial seismic ICP® 

accelerometers (www.pcb.com) with the sensitivity of 10 V/g. In each test, the 

sensors were divided into three groups each of which covers one cross section. This 

is based on the assumption of the cross section moving as a rigid body, the 

movement of one rectangular cross section can be described by three uni-axial 

accelerometers (Structural Vibration Solutions A/S, 2011). In each group, two 

accelerometers were used for vertical measurement and the other was to measure the 

lateral response. Of three groups, one was kept as the reference (i.e. near mid-span) 

and the other two were roved along the bridge model. Figure 4-3 illustrates two 

examples of the sensor setups. The total number of successive sensor setups was set 

at seven. 
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Figure 4-3 Two examples of the sensor setups  

The sensing system was controlled by a National Instruments (NI) data acquisition 

system including NI cDAQ 9172 chassis, NI 9234 dynamic signal acquisition 

modules and LabVIEW Signal Express software (www.ni.com). To achieve precise 

synchronization, the internal timebase of one module is selected to be shared with the 

other modules so that all modules can use the same timebase in the sampling process. 

Sampling rate was set at relatively high value, i.e. 1766 Hz which allows the use of 

different decimation factors to achieve different lower sampling rates. For illustration 

purpose, the data used hereafter was obtained by decimating ten times the original 

data, therefore resulting in 176.6 Hz as the effective sampling rate. This effective rate 

can be considered belonging to a common range for practical SHM applications. 

4.5.2 SIMULATION OF NOISE AND INITIAL DSE 

All seven-subset data were added with relatively high level of Gaussian noise (i.e. 20 

percent in root-mean-square sense) to account for the presence of higher noise in 

WSNs in comparison with the wired sensing system used herein. In this step, the 

MATLAB function named “randn” was utilized to create sequences of Gaussian 

distributed numbers with the specified root-mean-square values (MathWorks, 2011). 

Acting as the DSE-free source, each noise-added acceleration sequence is then 

contaminated with an initial DSE which was randomly assigned between zero and the 

effective sampling period in the simulation process. To do so, the DSE value was 

first added to the initial time vector of each time series to obtain the (DSE-induced) 

delayed time vector and based on these two time vectors, the DSE-corrupted data was 
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then derived from the DSE-free acceleration sequence by means of the MATLAB 

one-dimensional interpolation function named “interp1”. The “interp1” function has 

a number of options which are actually the methods of interpolation including 

popular ones such as linear or cubic spline interpolation methods. It is worth noting 

that the linear interpolation method has already been utilized in the re-sampling 

algorithm for SHM-oriented WSN middleware (Nagayama et al., 2009) due to the 

fact that it requires less computational effort from sensor resources. Since the 

simulations herein are not subjected to such a computational constraint, the cubic 

spline interpolation method in the “interp1” function was adopted to achieve more 

accurate simulation results (MathWorks, 2011). This process was run fifty times to 

generate fifty DSE-corrupted datasets to facilitate statistical analyses. 

4.5.3 OMA AND ANALYSES OF EFFECTS OF DSE 

The DSE-free and fifty DSE-corrupted datasets were used as the input for FDD, 

UPC-PoSER and UPC-PreGER techniques. The analysis was conducted using 

ARTeMIS Extractor software (Structural Vibration Solutions A/S, 2011) with two 

options for channel projection as previously mentioned (i.e. enable and disable). It is 

worth noting that the use of channel projection is mainly recommended to the case 

that has many sensors. After several trials, the number of projection channels selected 

was four as they provided the best results. Also, the dimension for the state space 

model (i.e. the maximum model order) was set 180 as it was found to be sufficient 

for both UPC-PoSER and UPC-PreGER. In ARTeMIS Extractor software, UPC-

PoSER is simply called UPC or Unweighted Principal Component whilst UPC-

PreGER is known as UPC Merged Test Setups.  

For each OMA technique, fifty sets of modal parameters (i.e. frequencies and mode 

shapes) were estimated at each mode and can be used to compare with the benchmark 

modal parameter set (i.e. from the DSE-free data). As this direct comparison is the 

same as level 1 of modal-based damage identification process (Brincker et al., 2001), 

popular damage indices such as frequency changes and the deviation from unity of 

Modal Assurance Criterion (MAC) of mode shape pairs can be used as primary 

indicators for assessment of DSE impact. Interested readers could refer to Allemang 

(2003) for more details of the MAC index. 
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To evaluate changes of modal parameters with different bases like frequencies under 

DSE impact, basic statistical measures are employed including root-mean-square 

error (RMSE) of DSE-corrupted frequencies (with respect to the DSE-free frequency) 

and relative difference of DSE-corrupted frequency estimates. With MAC deviations 

which share the same base (i.e. zero), box-plot function (MathWorks, 2011) was 

adopted to visualize some useful statistical properties (such as median, quartiles and 

extremes) of MAC deviations at a number of first modes. 

4.6 RESULTS AND DISCUSSIONS 

4.6.1 COMMON RESULTS OF OMA FOR DSE-FREE DATA 

 

Figure 4-4 Typical mode shapes estimated from DSE-free data  

The first four modes detected are purely (or almost purely) lateral modes, at around 

6.5, 7.7, 13.2 and 14.2 Hz, respectively (Figure 4-4) whilst three higher modes 

detected (at around 18.2, 22.2 and 23.4 Hz) are mostly coupled ones between lateral 

and vertical responses. Figure 4-4 shows such a coupled mode (mode 7). 
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4.6.2 THE USE OF CHANNEL PROJECTION 

 

Figure 4-5 Stabilization diagram of UPC-PreGER with projection: 

(a) disabled and (b) enabled 

Of the three techniques, the channel projection has the most substantial influence on 

robustness of UPC-PreGER with respect to DSE presence. While the projection-

disabled version of UPC-PreGER works properly with DSE-free data estimating all 

aforementioned modes, it completely fails detecting modes 3 and 4 from most of the 

fifty sets of DSE-corrupted data [Figure 4-5(a)] even though higher dimensions of the 

state space model were tried. However, the use of channel projection has enhanced 

UPC-PreGER so that these two modes can be estimated again in the projection-

enabled version [Figure 4-5(b)]. Besides, the channel projection has also certain 

effect on the way UPC-PoSER copes with DSE. Some noise modes are mistakenly 

detected at locations of true modes [see Figure 4-6(a) for the case of mode 2] if the 

channel projection is not used. This problem is also resolved once the projection 

option is enabled [Figure 4-6(b)]. Obviously, channel projection is needed for two 

SSI-data-UPC techniques in order to effectively detect genuine modes under the 

presence of DSE. Impact of the projection option on performance of FDD technique 

is presented in the next section. 

 

Figure 4-6 Stabilization diagram of UPC-PoSER with projection: 

(a) disabled & (b) enabled 
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4.6.3 EFFECTS OF DSE ON OUTCOMES OF THREE OMA TECHNIQUES 

The previous section has proven the necessity of applying the channel projection for 

UPC-PreGER and UPC-PoSER when DSE is present in the sensing system. Besides, 

it is necessary to examine whether FDD is under the same impact of the projection. 

Therefore, in each OMA round, the projection method was applied for two UPC-

PreGER and UPC-PoSER whilst the robustness of FDD was also examined for both 

cases i.e. with the channel projection being enabled and disabled.  The remaining of 

this section will present and discuss the results of DSE impact on estimates of 

frequencies and mode shapes. 

There is no change in frequencies estimated by FDD for both DSE-free and DSE-

corrupted data. This once again reinforces the prior findings that DSE does not affect 

frequencies estimated by FDD (Krishnamurthy et al., 2008; Yan and Dyke, 2010) 

and highlights the robustness of this technique with respect to DSE impact on 

frequency estimation. 

Table 4-1 Effects of DSE on frequency estimates by UPC-PoSER and UPC-PreGER 

Technique Mode DSE-free (Hz) RMSE (mHz) Min (Hz) Max (Hz) RD (%) 

UPC-

PoSER 

1 6.550 0.04 6.550 6.550 0.00 

2 7.700 0.15 7.700 7.701 0.01 

3 13.187 6.36 13.167 13.183 0.13 

4 14.271 2.32 14.272 14.278 0.04 

5 18.171 7.41 18.158 18.180 0.12 

6 22.207 1.29 22.203 22.208 0.02 

7 23.425 6.23 23.426 23.447 0.09 

UPC-

PreGER 

1 6.547 19.33 6.573 6.616 0.66 

2 7.705 3.05 7.706 7.718 0.15 

3 13.215 89.66 13.290 13.643 2.67 

4 14.288 65.04 14.348 14.540 1.35 

5 18.210 70.63 18.304 18.601 1.63 

6 22.094 109.89 21.913 22.273 1.63 

7 23.433 101.45 23.339 23.676 1.44 

[Note: Relative difference, RD = (Max-Min)/DSE-free] 

Frequency estimates by SSI family are subjected to certain influence from DSE but 

the effects are fairly different for two SSI-data-UPC sub-techniques as illustrated in 

Table 4-1. Whilst UPC-PoSER experiences the maximum frequency RMSE of less 

than 0.01 Hz, that figure of UPC-PreGER can be as large as 0.1 Hz. Similarly, the 
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upper bound for relative frequency difference of the former technique is only 0.13 

percent whereas that of the latter is up to 20 times larger.   

Figure 4-7 shows the distribution of MAC deviations (from unity) of mode shapes 

estimated by FDD (with two options for the channel projection), UPC-PoSER and 

UPC-PreGER. Obviously, the results of these four cases can be seen to be classified 

into two groups. MAC indices of mode shapes estimated by FDD with two cases and 

UPC-PoSER mainly experience drops of less than 0.1 and their trend clearly show 

that DSE impact increases along with the increase in the mode order. However, those 

from UPC-PreGER can be as large as 0.3 or even higher for extreme cases and their 

trend is somewhat non-stationary at transitions between certain modes. These trends 

are reflected not only via median value of MAC deviations but also in general 

through the dispersion statistics such as the inter-quartile range (i.e. the height of the 

box in Figure 4-7). 

 

Figure 4-7 Box-plots of MAC deviations (from unity) of mode shapes for four cases  

The results above show that FDD is the most robust technique among those studied 

herein with respect to DSE effects. Its frequency estimates stay unchanged under the 

impact of DSE regardless of whether the channel projection is applied or not. The 
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mode shape magnitudes estimated by this technique have also changed the least. It 

appears, with reasonable number of sensors like those used in this research, that FDD 

does not necessarily require the assistance from projection method even though a 

slight improvement in MAC values can be seen if the projection option is enabled. 

Amongst three techniques, UPC-PreGER is the worst possibly due to the fact that 

this technique merges the correlation of data before performing SSI and errors may 

be exaggerated during this merging phase. With the help of the channel projection, 

UPC-PoSER also overcomes negative impact of DSE on local sets of data and 

achieves considerable robustness to cope with this uncertainty. 

It can also be seen from the above results that, impact of DSE on estimates of mode 

shapes generally increases with the order of modes which is similar to effects of 

measurement noise. One simple way to combat this negative influence is to limit 

number of modes of interest and this fact has become a fundamental axiom to 

achieve a feasible modal-based SHM solution in practice. MAC deviation (from 

unity) of around 0.05 at the sixth mode estimated by FDD or UPC-PoSER might be 

considered as an acceptable fluctuation threshold for monitoring of structural damage 

in real civil structures, see for instance (Brincker et al., 2001). 

4.7 CONCLUSIONS 

This paper has presented an intensive investigation of effects of uncertainties of 

SHM-oriented WSNs on performance and outcome of several popular OMA 

techniques considering a frequent realistic application. Based on a brief review, the 

paper has first revealed that whilst data loss can be effectively treated using reliable 

communication protocols, DSE is still unavoidable and can be considered as the most 

inherent uncertainty. Since OMA has been identified as one of the SHM approaches 

possibly suffering the most from negative impact of DSE, effects of the updated DSE 

level on three most frequently-used OMA techniques have been investigated with 

respect to one of the common usages i.e. merging data from multiple tests. A 

combination of precisely synchronized experimental data of a large-scale laboratory 

structure, simulation of SHM-oriented WSN uncertainties including random noise 

and random DSE and commonly-used statistical tools such as the box-plot has been 

adopted to facilitate the assessment process. The results have first shown that the 
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impact of DSE on modal parameters (except frequencies estimated by FDD) tends to 

be more severe for higher-order modes and this trend is similar to conventional 

measurement uncertainties such as measurement noise. Of the three OMA 

techniques, FDD is the most robust technique possibly because it avoids working 

directly with time-domain data like the other two and impact of DSE at spectral 

peaks is the least. Without using channel projection, both variants of SSI-data (i.e. 

UPC-PoSER and UPC-PreGER) have been found to suffer from unreliable 

estimation of modal characteristics under disturbance of DSE. In this regard, the use 

of the channel projection has been proven to be able to enhance the performance of 

the two SSI-data variants to some extent. Nevertheless, the remaining impact of DSE 

on the outcome of UPC-PreGER is still considerable while that of UPC-PoSER is 

reduced to be more or less the same as the impact on the outcome of FDD. Since 

parametric and non-parametric OMA approaches have always been recommended to 

be used together to complement each other, the combination of both FDD and UPC-

PoSER with the channel projection option has been shown to be effective and highly 

recommended for OMA of multi-setup datasets subjected to DSE such as those 

collected by WSN.  
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Chapter 5: Development of a Cost-effective 

and Flexible Sensing System for 

Long-term Continuous Vibration 

Monitoring  

This chapter consists of the following manuscript submitted for review 

 Nguyen, T., Chan, T. H. T., Thambiratnam, D. P. and King, L. Development 

of a cost-effective and flexible sensing system for long-term continuous 

vibration monitoring. (Under review) 

The ultimate contribution of this chapter to the overall research program is a novel 

cost-effective and flexible realization of the Ethernet distributed DAQ platform for 

the purpose of continuous monitoring of large-scale civil structures. While common 

measurement and system development issues such as low-level ambient vibration, 

sparse sensing coverage and budget constraint as previously mentioned have called 

for innovations in this piece of research, the feasibility confirmation for the semi-

complete data synchronization approach has provided the basis for the 

synchronization solution derived in this development. Utilizing the TCP/IP 

communication technology, this data synchronization solution can not only help to 

reduce the total cost but also provide greater flexibility for system development work 

in demanding circumstances such as large or sparse measurement coverage. Using 

this synchronization solution as well as other effective sensor and peripheral DAQ 

solutions, a cost-effective and flexible Ethernet distributed DAQ system is developed 

and implemented onto an actual building at QUT which has a (rather low) frequency 

range of interest similar to the majority of real-world civil structures. By means of the 

primary SSI-data technique coupled with the channel projection scheme (as 

suggested from Chapter 4), general assessment as well as statistical evaluation 

incorporated daisy data selection, the reliability of this sensing system is thoroughly 

verified. The daisy data selection scheme derived herein is to assist the statistical 

evaluation overcome the inherent impact of common E&O factors so that the effect 
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of random DSE on mode shapes can be more precisely evaluated.  The vibration data 

acquired by the system is then used for the purpose of validating the damage 

identification method and related data generation scheme presented in Chapter 7.   
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ABSTRACT 

In the Structural Health Monitoring (SHM) field, long-term continuous monitoring is 

becoming increasingly popular as this could keep track of the health status of 

structures during their service lives. However, implementing such a system is not 

always feasible due to numerous constraints. Of the most common ones, the 

compromise between the cost and the reliability of a system is a significant challenge 

especially when the measurement coverage is large or sparse. To address this issue, 

this paper presents the development of a cost-effective and flexible sensing system 

for continuous vibration monitoring of a newly-built institutional complex with a 

focus on the deployment on its main building. At first, the most appropriate 

accelerometers and their optimal positions are selected in order to overcome 

adversities such as low-frequency and low-level vibration measurement. In order to 

accommodate sparse measurement points, a cost-optimized distributed data 

acquisition model is adopted to provide the skeleton for the sensing system. Instead 

of using rather costly turnkey hardware-based synchronization modules, the 

synchronization task is left open for possible software-based solutions. As one of 

such solutions, a combination of a high-resolution timing coordination method and a 

periodic system resynchronization strategy both based on the TCP/IP communication 

technology is proposed to synchronize data from multiple peripheral data acquisition 

units. The results of both general and statistical evaluations show that the proposed 

sensing and data synchronization solutions work truly well and can provide a 

promising cost-effective and flexible alternative for use in the SHM projects with 

tight budget and/or sparse system coverage in which the conventional 

synchronization method might be unreasonable. Using these solutions, the sensing 

system developed herein is shown to be able to provide stable and useful feature 

databank which can be used to construct unbiased safety evaluation processes for 

civil structures in practice. With such an effective and flexible sensing system, the 

instrumented building can act as a multi-purpose benchmark structure for vibration-

based SHM problems in general as well as for addressing system synchronization 

issues in particular. 
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5.1 INTRODUCTION 

In the Structural Health Monitoring (SHM) field, long-term continuous monitoring of 

structural vibration is becoming more popular in recent years. This is owing to the 

fact that this type of systems will enable to keep track of the genuine health status of 

real structures under the disturbance of Environmental and Operational (E&O) 

factors (Ko and Ni, 2005; Farrar and Worden, 2013). As a result, the SHM 

community has seen an increasing number of bridges and buildings around the world 

equipped with such monitoring systems (Ansari, 2005; Ko and Ni, 2005; Karbhari 

and Ansari, 2009; Chan et al., 2011). Nevertheless, implementing such a monitoring 

system is not always feasible due to numerous difficulties of which the budget 

constraints and the requirement for a reliable system are the most common ones 

among others (Karbhari and Ansari, 2009; Farrar and Worden, 2013). These 

problems often become worse when the measurement coverage is large or sparse. 

This is particularly true for the conventional Data Acquisition (DAQ) system where 

every sensor needs to be cabled to one single centralized DAQ station leading to 

massive cost of the cable itself and the installation labor. To overcome these issues, 

the recent trend in SHM is to use the distributed DAQ system platform in which each 

system consists of a network of peripheral DAQ units and their sensors (Aktan et al., 

2003; Van Der Auweraer and Peeters, 2003). The DAQ units are linked to each other 

and to the base station via either radio signal (wireless system) or Ethernet cable 

(Ethernet-based system). Since each local DAQ unit only needs to be in charge of a 

small group of adjacent sensors, this type of system greatly mitigates the burden of 

wiring directly from every sensor to the host station and avoids the problem of signal 

noise induced by lengthy cabling (Aktan et al., 2003). In this regard, wireless sensor 

networks especially those belonging to the SHM-oriented platform could be 

considered as the first promising candidate. This type of sensors can completely 

eliminate the demand for cabling among units and therefore be more affordable while 

suffice for even demanding global SHM applications (to real civil structures) such as 
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modal analysis (Rice and Spencer, 2009; Nguyen et al., 2014b). However to date, 

successful applications reported for this type of systems have mostly been for short-

term monitoring projects (Rice and Spencer, 2009; Cho et al., 2010). The usage of 

wireless sensor systems for long-term monitoring is still uncertain due to inherent 

difficulties such as constraints of power supply and bandwidth; and lower reliability 

of each node and the whole system particularly over long periods of time (Karbhari 

and Ansari, 2009; Farrar and Worden, 2013; Xu and Xia, 2012). On the other hand, 

the Ethernet-based sensing systems, though well-known for their reliability, 

durability and therefore being more suited for long-term monitoring purposes, may 

still be expensive for most of SHM projects especially from the return on investment 

viewpoint (Ansari, 2005; Karbhari and Ansari, 2009). More reasonable solutions at 

sensor and DAQ levels would make this type of systems more appealing so that they 

can be more widely applied on civil infrastructure particularly in permanent 

monitoring basis to provide higher safety for society. 

To address this issue, this paper presents the development of a cost-effective and 

flexible Ethernet-based sensing system for long-term continuous vibration 

monitoring of a newly constructed complex with a focus on the deployment on the 

main building. The greatest challenges in developing this system are that the budget 

is tight while vibration sensors are distantly located as well as operated in 

challenging ambient vibration conditions. To overcome such difficulties, multi-layer 

solutions are derived and implemented. At the lowest system level, the most 

appropriate accelerometers and their optimal positions are first selected so that they 

could overcome common adversities in ambient vibration monitoring of civil 

infrastructure such as low-frequency and low-level vibration measurement. A cost-

optimized distributed DAQ model is then selected to form the system skeleton so that 

each group of nearby measurement channels can be handled by one local DAQ unit 

within a network. Instead of using costly hardware-based synchronization methods as 

normally seen in the traditional approach, the synchronization task for the building 

vibration sensors is left open for possible inexpensive software-based solutions. As 

one of the first solutions in the proposed direction, a combination of a customized 

timing coordination method and a system resynchronization strategy both based on 

the TCP/IP communication technology is proposed to synchronize data from multiple 
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distributed DAQ units. To facilitate accurate assessments of this initial (as well as 

any future synchronization) solution, both robust general and statistical evaluation 

methods are derived and intensively applied to assess the quality of the data acquired 

by the realized system. The outcomes of these evaluations show that the proposed 

sensing and data synchronization solutions work very well and the corresponding 

system is able to provide stable and useful feature databank to enable unbiased 

pattern recognition processes for evaluating the health status of civil infrastructure.   

The layout of this paper is as follows. The second section first provides an overview 

of the instrumented complex and its monitoring systems before detailing the 

distributed DAQ system solution. The third section presents two solutions - one for 

selection and placement of vibration sensors and the other for synchronization of data 

from multiple DAQ units on the main building. Intensive general and statistical 

validations as well as applications employing the pattern recognition framework are 

provided in section 4 before section 5 summarizes and concludes the research work. 

5.2 OVERVIEW OF THE INSTRUMENTED COMPLEX AND 

MONITORING SYSTEMS 

The instrumented complex is the newly-constructed Science and Engineering Centre 

(SEC) at the Gardens Point campus of Queensland University of Technology (QUT), 

Australia. Costing around AUD 230 million, this complex has achieved 5-star Green 

Star rating from the Green Building Council of Australia making it one of the highest 

rated green buildings in Brisbane City. Besides being a main teaching and research 

facility, SEC is also notable for its giant digital lab named “the Cube” 

(www.thecube.qut.edu.au). With a two-story interactive digital learning and display 

screen and many other digital science spaces, the Cube is dedicated to be a dynamic 

hub of hands-on scientific exploration for the QUT community and the wider public. 

More interestingly, the real-time data from the monitoring systems will be viewed on 

the Cube screens once all the monitoring systems are fully deployed. 
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Figure 5-1 Science and Engineering Centre (SEC) at QUT Gardens Point campus 

In structural details, the SEC complex comprises two 10-level buildings (named Y 

and P, respectively from left to right in Figure 5-1) and various functional spaces 

underneath the atrium connecting these two buildings. As the main building of the 

complex, P block houses the Cube and is the main site for deployment of three major 

monitoring systems namely (1) vibration system; (2) structural system; and (3) 

subsurface system. Besides P block, part of the vibration system is also deployed on 

the reinforced concrete footbridge located in the front corridor linking the main 

entrances of the two buildings. This is also the deployment location of two Acoustic 

Emission (AE) sensors which, due to their proximity, are able to share the DAQ unit 

with all the footbridge vibration sensors. Whilst accelerometers are the sole sensor 

type in the vibration system, the structural and subsurface systems have mostly 

employed dynamic strain transducers, vibrating wire and soil pressure sensors. 

Beside the main vibration system for the global vibration monitoring purpose, there 

are also two minor vibration monitoring points also within the P block. Of these two 

points, the first one targets the local monitoring of a slab underneath a transmission 

electron microscope at level 6 whereas the other is for ground acceleration (seismic) 

monitoring and referencing purpose at the ground floor. Further usage descriptions of 

these two accelerometers as well as the other sensors of the AE, structural and 
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subsurface systems are beyond the scope of the present paper and may be reported 

elsewhere in future. 

 

Figure 5-2 General diagram of the SEC monitoring systems 

With all the sensors in general and the vibration sensors in particular broadly and 

distantly located across structures and levels, the distributed DAQ architecture, as 

illustrated on the left of Figure 5-2, is found the most applicable. Well-known for 

their compact-size, stability and cost-effectiveness, the reconfigurable embedded 

control and acquisition system platform CRIO provided National Instruments 

(www.ni.com/crio) in general and the cost-optimized CRIO-907x series in particular 

is specially considered as a potential candidate for the DAQ skeleton for all the 

sensing systems herein. The finally selected model (CRIO-9074) is one of three 

models (besides CRIO-9072 and CRIO-9073) of the CRIO-907x series available 

during the design phase of this project. The CRIO-9074 is more advantageous than 

the other two models due to its capacity of chassis expansion as it has another 

Ethernet port (beside the one exclusively for network connectivity) that can be used 

for such a purpose. Last but not least, the adoption of the same DAQ model for all 

systems in this instrumentation project ensures that the tasks of system deployment, 

programming, operational management and future maintenance can be all simplified. 
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5.3 VIBRATION SENSOR AND DATA SYNCHRONIZATION SOLUTIONS 

5.3.1 VIBRATION SENSOR SOLUTION 

For the main vibration system, 8 tri-axial and 4 single-axis analog accelerometers has 

been pre-allocated for use to monitor global vibration characteristics of the P block 

and the footbridge. To connect these sensors to the CRIO-9074 chassis, the four-

channel analog input module (NI-9239) is used to provide high-resolution (24-bit) 

analog-digital converter, anti-aliasing filter and peripheral sampling control. As the 

main target for the system is to be serviceable in ambient vibration context, the main 

characteristics of the accelerometers such as sensor type, measurement range and 

sensitivity are the most critical factors among others. Manufactured by Silicon 

Designs, Inc., the accelerometers finalized are all capacitive-type with a reasonable 

measurement range (+/- 2g) and high sensitivity for this sensor type (2000mV/g). The 

capacitive type is selected as this type of sensors is more applicable for low-

frequency (as small as around 1 Hz) and low-level (i.e. as small as 12 mg) vibration 

measurement than other types such as piezoelectric sensors (Jo et al., 2012; Karbhari 

and Ansari, 2009; Xu and Xia, 2012). With the same concern as the latter, selection 

of high-sensitivity accelerometers is also prioritized in order to enhance the quality of 

low-amplitude vibration response data (Jo et al., 2012; Karbhari and Ansari, 2009; 

Xu and Xia, 2012). This low-level vibration measurement issue is very likely to 

occur in the case of the two instrumented structures herein. This is because the P 

block, with a limited height of around 40 m against its typical (upper) floor 

dimensions of 45 m by 63.5 m, is no doubt a non-slender building. Spanning merely 

over a distance of 8.4 m with the slab thickness of 375 mm can make the concrete-

type footbridge herein to be categorized as a relatively inflexible planar structure. 

Such building and footbridge structures tend to be marginally excited by ambient 

excitation and therefore need higher attention in selection of the sensors in order to 

enable their small motions to be properly recorded.  

With such a limited number of sensors available for use, sensor positioning must be 

carefully designed in order to obtain sufficient modal information (of each target 

structure) while being able to keep number of sensors used on each 

component/portion at minimum. First of all, both of these two structures should have 



 

Chapter 5: Development of a Cost-effective and Flexible Sensing System for Long-term Continuous Vibration 

Monitoring 93 

tri-axial sensors so that more types of modes (e.g. in different directions or coupled 

ones) can be measured. Besides, in planar-type structures such as the footbridge 

herein, the tri-axial sensors should be placed in the positions that are the most 

sensitive to the modes that may be undetected by single-axis sensors such as lateral 

or torsional modes. Towards this goal, the footbridge is first allocated two tri-axial 

accelerometers to be positioned on middle of the two unsupported edges as shown in 

Figure 5-3 (left). Additionally, two single-axis sensors are placed to measure the 

vertical motion at a quarters and three-quarters of the span along the longitudinally 

central line of this footbridge. The motion of the middle point of this central line can 

be interpolated from motions captured by the two tri-axial sensors based on the 

assumption of the cross-section moving as a rigid body. 

 

Figure 5-3 Sensor position on the footbridge (left) and the building (right) 

On the other hand, the P block has a rather common level configuration for the 

building structures of its type with a rather wide semi-underground base consisting of 

the lowest four levels (see Figure 5-6 for illustration of the base). It is therefore 

sensible to anticipate this part of the building would not be well excited in the 

horizontal plane under ambient excitation conditions. In this regard, it is apparent 

that the remaining upper six levels are horizontally more sensitive to ambient 

excitation and should be the locations for most of the vibration sensors where the 

signal-to-noise ratio of acceleration data will be enhanced. Note that in global 

vibration monitoring of buildings the vertical vibration measurement is often of little 

interest due to the excitation problem. Further, since each stiff (reinforced concrete) 
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floor of the building can be considered as a rigid body, the horizontal movement of 

each floor level can be described via two horizontal displacements and one 

deformation angle (Structural Vibration Solutions A/S, 2011). Hence, a minimum 

number of two sensors can be used at two adjacent corners of the floor and one of 

these sensors can be in sing-axis type. Consequently, four floor levels can be covered 

with eight remaining accelerometers leading to the building sensor placement 

solution as illustrated in Figure 5-3 (right). Unmeasured horizontal degrees of 

freedom for mode shape animation purposes will be interpolated from measured 

ones. 

5.3.2 DATA SYNCHRONIZATION SOLUTION 

Being located within proximity of each other, all footbridge sensors only required 

one DAQ unit to be shared and consequently, these sensors can be precisely 

synchronized without requiring any additional hardware. This synchronization is 

realized by sharing the master timebase of any input module with the others in the 

same chassis. In contrast, as the building vibration sensors are distant from each 

other, one DAQ node needs to be allocated for each of these sensors to effectively 

reduce the cable length and enhance the data quality as previously discussed. The 

remaining issue is how to properly synchronize multiple peripheral DAQ nodes 

deployed on the building. Large DSE has been shown to negatively affect global 

vibration-based SHM applications such as modal analysis and associated damage 

identification (Nguyen et al., 2014b; Krishnamurthy et al., 2008). The main 

hardware-based multi-chassis synchronization option during the system design phase 

was the use of a digital I/O module in every local DAQ unit in order to form a 

dedicated synchronization bus. A synchronization  trigger pulse can be then 

generated from the master device and passed to each of the slave devices (Semancik, 

2004; National Instruments, 2012c). However, as this option was prohibitively 

expensive for the system coverage required herein, the desire for inexpensive and 

flexible alternatives has triggered the promotion of alternative software-based 

solutions. The main bases for this direction are first that the main impact of DSE 

tends to be proportional to the DSE magnitude and the modal frequency value 

(Krishnamurthy et al., 2008; Nguyen et al., 2014b, 2014c). Second, the frequencies 

of interest for civil structures where the synchronization task often becomes more 
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problematic are rather low and, for many cases (including the case considered 

herein), less than 10 Hz. Third, high-resolution timing coordination is feasible with 

Ethernet connection (Semancik, 2004).  It is therefore feasible in sensing system 

development for such structures to use software-based semi-complete data 

synchronization solutions to achieve a reasonable DSE level so that the impact of this 

level can be negligible (Nguyen et al., 2014b). As one of the first solutions in this 

direction, the combination of a customized timing coordination method and a 

periodic system resynchronization strategy will be presented below. 

The manner in which a distributed DAQ system operates without a conventional 

cable-based synchronization bus is as follows. The peripheral DAQ units start their 

own data sampling process asynchronously based on the sampling command each 

unit receives from the host computer via TCP/IP communication. Upon receiving this 

command, the Field-Programmable Gate Arrays (FPGA) chip in each unit 

immediately initiates its analog input module to acquire data based on the internal 

master timebase of the module. These result in inherent DSE with two main 

components, namely initial DSE and accumulated DSE, similar to those from 

wireless sensors (Nguyen et al., 2014b). Whilst initial DSE is induced from the 

difference in the start (sampling) times of multiple DAQ units, accumulated DSE is 

caused by the inherent difference between multiple local timebases of multiple input 

modules. Besides controlling the starting times of the individual sampling processes, 

it is therefore also necessary to resynchronize the system after certain duration of 

time before the accumulated DSE could become significant to spoil the recorded 

data.  

In order to combat both DSE components, two sub-solutions are derived and 

implemented in the system programming environment (LabVIEW). First, data 

acquired by each DAQ node is timestamped based on the time the sampling 

command is supposed to be received at the FPGA chip of the unit. This command 

delivery time is calculated by the time the sampling command is sent from the host 

computer plus the duration for the command message to travel from the host 

computer to the DAQ node. The latter component is actually half of the ping time 

(obtained in each ping test) which measures the round-trip travel time of the 

command message and can be well estimated by utilizing statistical measures (such 
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as the mean and standard deviation) from a sufficiently large number of ping tests 

(Wikipedia contributors, 2001). To achieve high accuracy, the advanced hrPing 

utility with the time resolution of microseconds is used instead of the basic windows 

ping utility with limited resolution of milliseconds (cFos Software GmbH, 2013). 

This way, the initial DSE has been significantly reduced and has found to be less than 

0.1 millisecond (which is equivalent to one fifth of the sampling period); and now 

mostly due to small fluctuations of the message delivery times at different DAQ 

nodes. In order to cope with DSE accumulation, the system is programmed to 

reinitialize the sampling process after a predetermined duration to cut off the growth 

of DSE. This duration should at least equate the undisrupted data length required by 

intended applications such as modal analysis (see the next section for details). 

Finally, the data streams from different DAQ nodes are aligned with each other by 

matching their timestamps before other pre-processing tasks such as data decimation 

can take place. 

5.4 EXPERIMENTAL EVALUATIONS 

As the main focus of this study, only experimental evaluations of the sensor and data 

synchronization solutions for the P block are reported in this section. Analysis results 

of the footbridge are currently underway to be presented in a separate paper. Besides, 

as the building has experienced some major alterations during the construction phase, 

the finite element model used earlier in the design phase requires an intensive 

revision before it can represent the actual structure. This revision task is expected to 

start shortly and the results of analytical-experimental correlations and model 

updating will be published in a future work. 

5.4.1 GENERAL EVALUATION OF THE SENSING SYSTEM 

Owing to the delta-sigma modulation of the input module, possible sampling rates 

can be derived through the formula of 50/n kilo samples per second (kS/sec) where 

the denominator (n) can be any integer between 1 and 31 (National Instruments, 

2012b). To cater for convenient choices of decimation factors (in post-processing 

phases), the primary sampling rate is selected to be 2 kS/sec (i.e. n = 25) which is 

close to the minimum sampling rate value. Next, the data length for an undisrupted 
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acquisition process between two consecutive synchronization points needs to be 

decided. The commonly-used rule of thumb for this length in ambient modal testing 

is that it should be around 10002000 times the fundamental vibration period 

(Structural Vibration Solutions A/S, 2011; Cantieni, 2005). Based on preliminary 

spectral analyses, the first natural vibration period of P block is shown up to be 

around 0.9 sec and the undisrupted data acquisition length should therefore be 

9001800 sec. Hence, the resynchronization span is set at 30 minutes and the data 

streams acquired by multiple DAQ nodes are timestamped and synchronized as 

previously described. Besides, such a low value of the fundamental frequency (of 

around 1.1 Hz) has confirmed that the assumption of low-frequency measurement in 

the instrumentation design phase has become true. A similar confirmation can also be 

made for the low-level measurement assumption as one thirds of horizontal 

measurement channels have been found to experience the (peak-to peak) amplitudes 

of around 2 mg in normal excitation conditions. For the illustration purpose, Figure 

5-4 shows a 10-minute time history of such a typical channel in level 8. Overall, the 

confirmations for both earlier assumptions mean that the adopted accelerometers are 

appropriate to the vibration characteristics of the intended structure. 

 

Figure 5-4 Typical low-level acceleration time history 

To obtain global vibration characteristics of the P block under ambient excitation 

conditions, the Output-only Modal Analysis (OMA) approach is used (Structural 

Vibration Solutions A/S, 2011). For the purpose of modal animation and validation, 

the building is modelled, as illustrated in Figure 5-6, at measured levels plus its 

lowest (ground floor) level that is deemed to have negligible displacement. Amongst 
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different OMA algorithms, the primary technique of the data-driven Stochastic 

Subspace Identification (SSI-data) family [i.e. SSI-data employing Unweighted 

Principal Component (UPC) estimator] is selected as the main OMA technique 

(Structural Vibration Solutions A/S, 2011). This is because this technique has been 

shown to be as robust against the impact of initial DSE as the well-known Frequency 

Domain Decomposition (FDD) technique (Nguyen et al., 2014b). Further, in 

comparison with FDD, SSI-data techniques are more advantageous in coping with 

closely spaced or repeated modes as well as in the implementation of automated 

modal identification. These can facilitate rapid and accurate OMA which is 

particularly meaningful for continuous monitoring generally with large quantity of 

datasets. Nevertheless, FDD is still utilized as the secondary OMA technique for 

cross-check purposes particularly with the initial configuration setup stage for 

primary SSI-data. 

Theoretically, SSI-data relies on directly fitting parametric state space models to the 

measured responses of the structure with model orders being varied up to a user-

defined maximum dimension (Overschee and Moor, 1996; Structural Vibration 

Solutions A/S, 2011). To reduce computational effort and noise impact associated 

with the use of a large number of measurement channels, channel projection is often 

applied (Herlufsen et al., 2005; Structural Vibration Solutions A/S, 2011). By 

varying the model order, multiple sets of each modal parameter at a pole are obtained 

and their deviations are used to examine whether the pole is as stable as to represent 

a genuine structural mode. This leads to the extensive use of the stabilization diagram 

in SSI-data to facilitate the task of automated modal identification (see Figure 5-5 for 

illustration). It is also worth noting from this figure that, the background wallpaper of 

the diagram consists of the spectral density singular value plots the peaks of which 

can be used to correlate with the pole locations determined by SSI-data for cross-

checking purposes.  

Back to this study, via comparing the results of SSI-data of incremental dimensions 

and  projection channels, the most stable range of maximum dimensions is found to 

be between 120 and 200 whereas that of the projection is from 8 to 10 channels. 

Hence, the maximum state space dimension of 160 and the projection of 9 channels 

are selected as the common SSI-data configuration for all vibration datasets of the P 
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block used in this paper. Using this SSI-data configuration, a total of first seven 

modes can be estimated via the stabilization diagram and validated using mode shape 

animation as typically illustrated in Figure 5-5 and Figure 5-6, respectively. Further 

details of the estimated modes are provided in Table 5-1. Note that the values of 

frequencies and damping ratios in this table are the mean values obtained from a 

number of datasets which are mainly for use for statistical assessment of 

synchronization solutions in the next section. Of the seven modes, most are 

reasonably well excited (i.e. corresponding well to the spectral peaks) with two of 

them (i.e. modes 2 and 3) being rather closely spaced. In addition, the most weakly-

excited one (mode 6) though not always present can still be identified in a certain 

number of datasets. Such capacities and the achievement of clear mode shape 

animation views (Figure 5-6) for all the seven modes can be attributed for the 

suitability of not only the sensors and their positions but also the combined 

synchronization solution in general and the system resynchronization strategy in 

particular. For correlation purposes, it might be worth comparing the OMA results of 

the P block herein with similar cases in literature. Towards this point, the two 15-

story buildings to be cited are an office building in Japan and the well-known 

Heritage Court Tower (HTC) in Canada which has been considered as a benchmark 

structure for ambient vibration testing (Horyna and Venture, 2000; Tamura et al., 

2002). By using popular OMA techniques such as FDD or SSI-data, 9 modes from 

the first building were identified whilst this figure for the HTC building was from 9 

to 11 depending on the OMA technique in use. Since the P block has only 10 stories 

with a high percentage of base levels (35% total height vs. around 25% of the HTC 

building case), the number of estimated modes (i.e. 67) for this building can be seen 

as to be well reasonable against both quoted reference results.    
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Figure 5-5 A typical SSI-data stabilization diagram for OMA of the building 

 

Figure 5-6 Building model and typical animation views of seven estimated modes 

 

Table 5-1 Features of seven estimated modes 

Mode  Description of modes Frequency (Hz) Damping ratio 

1 1
st
 translational – X direction  1.15 2.03 

2 1
st
 translational – Y direction  1.54 3.59 

3 1
st
 torsional 1.65 1.88 

4 2
nd

 translational – X direction  3.99 1.98 

5 2
nd

 torsional 4.25 2.08 

6 2
nd

 translational – Y direction 4.91 5.47 

7 3
rd

 torsional 6.54 2.85 
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5.4.2 STATISTICAL EVALUATION OF THE DATA SYNCHRONIZATION SOLUTION 

To evaluate the actual efficacy of the synchronization solution for long-term 

purposes, repetition checks need to be carried out on multiple datasets to examine the 

impact of remaining initial DSE that is random in its nature. Since mode shapes have 

been shown to be significantly more sensitive than frequencies and damping ratios 

with respect to initial DSE in prior studies (Nguyen et al., 2014b; Nagayama et al., 

2007), it is necessary to assess the impact of initial DSE on the former parameter. 

The most common method for this is to track changes of Modal Assurance Criterion 

[MAC, (Allemang, 2003)] of pairs of mode shape datasets recorded upon different 

synchronization spans. The challenge for this type of assessment on real structures is 

that the modal parameters in general and mode shapes in particular are influenced not 

only by special DAQ uncertainties such as DSE herein but also from common E&O 

factors such as temperature, wind conditions or human-induced activities. The impact 

of the latter factors especially temperature has been considered as one of the most 

significant obstacles against the success of SHM in practice for the purpose of 

detecting critical changes such as structural damage (Farrar and Worden, 2013). To 

overcome this problem, a daisy chain data selection scheme is derived in this study 

for computation of MAC data for the aforementioned tracking purpose. To do so, 

MAC values are strictly calculated from any (two) consecutive datasets in rather 

uniform E&O conditions. Such selections of data and E&O conditions are to ensure 

that the time and meteorological spans are so short that the paired datasets are 

deemed to be subjected to the similar E&O influences. Any unusual shift in MAC 

values could therefore be attributed to the initial DSE. 

Applying the above data selection scheme, 50 MAC vectors can be calculated from a 

total number of 64 reasonable datasets obtained in various days during the system 

development phase in late 2013. As it is occasionally under-excited during the testing 

days, mode 6 is excluded from this assessment. Figure 5-7 shows the distribution of 

MAC data for the remaining six (regularly-excited) modes in box-plot, a useful 

graphical tool for presenting robust statistics (Nguyen et al., 2014b). There are a few 

outliers (maximum 3 out of 50 observations) at some modes but this has no 
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significant impact on the overall result. In fact, one can clearly see that most of the 

mode-shape sets are in excellent agreement (with each other) with their MAC values 

above 0.95 and narrow (statistical) dispersion of around 0.02 or less. The lower 

figures of MAC at modes 2 or 7 can be attributed to the nature of these two modes 

i.e. being more damped than the other modes. In contrast, the highest agreement at 

mode 3 is mainly due to the fact that this is the least damped mode in the detected 

range. These are reflected via the magnitudes of the damping ratios in Table 5-1. 

Nevertheless, such overall high and stable MAC values have proved that the 

remaining initial DSE is insignificant and the proposed synchronization solution has 

worked very well.  

 

Figure 5-7 Statistics of mode shape agreement across multiple datasets 

5.4.3 CONTINUOUS STRUCTURAL SAFETY EVALUATION 

Previous statistical evaluation has shown that the vibration monitoring system can 

operate stably and provide useful and reliable vibration data for the long-term 

purpose. This would lead to the establishment of representative databases for every 

definite period of time (e.g. annually) during the structural service life to enable 

continuous (or at least frequent) evaluation of structural safety. In order to deal with 

the inherent impact of E&O factors, the evaluation problem should be formulated in 

the pattern recognition framework by means of machine learning algorithms (Farrar 

and Worden, 2013). The use of such an algorithm is to “learn” the underlying trends 

(caused by E&O factors) present in the training data so that these trends can be 

separated from the symptom of any potential structural anomaly or novelty (such as 
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damage) present in the testing data. The consequence of this is that the testing result 

can accurately inform whether the structure has still been in its normal state or not. 

For illustration purposes, two commonly-used unsupervised learning algorithms, that 

is, based on Mahalanobis Squared Distance (MSD) and Auto-Associative Neural 

Network (AANN) are employed for the purpose of damage identification. While 

MSD-based algorithm obtains the knowledge of E&O impact trends mainly through 

the inclusion of the sample covariance matrix in its computational structure 

(Appendix5.A), AANN mainly does this at the bottleneck layer where the trends 

induced by E&O factors are forced to be prevailing (Appendix5.B). Note that since 

only the unsupervised learning algorithm are used, the damage identification problem 

herein is restricted to level 1 of the identification hierarchy that is to identify the 

presence of a possible damaged state. To implement the damage identification 

process, the training data used in this section is the frequency data corresponding to 

the six frequently-excited modes of the 64 aforementioned datasets. Testing data is 

from 36 datasets collected more recently (in early 2014). The confidence level used 

for both learning algorithms is set at a commonly-used level of 99 % while a simple 

AANN architecture is used with the number of nodes at both outer hidden (i.e. 

mapping and demapping) layers equating to the number of feature variables. At the 

bottleneck layer, two hidden nodes are used as they are assumed to represent two 

most dominant E&O factors namely temperature and structural mass (Farrar and 

Worden, 2013). As P block is a main institutional building for teaching and working 

purposes, the change of the latter factor is supposed to be due to the occupants of this 

block entering or vacating the building.  

 

Figure 5-8 Level-1 damage identification results: MSD-based method (left) and 

AANN-based method (right) 
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After computation, all 64 training distance scores are ranked and the distance 

threshold is chosen among the largest scores using the selected 99 % confidence 

level. The threshold can then be used to compare against the 36 testing distance 

scores to infer the status of the structure. Figure 5-8 shows the level-1 damage 

identification results by MSD-based and AANN-based methods. All AANN scores 

and almost all of MSD ones lie below the threshold meaning that all the testing 

observations are likely to be under normal conditions. This can be confirmed by the 

good agreement between the magnitudes of training and testing data as reflected by 

their box-plots in Figure 5-9. A few extreme MSD scores (slightly larger than the 

threshold) might be related to the problem of insufficient multinormality in the 

training dataset as this set has had rather limited (i.e. 64) observations at the current 

stage. Such a problem has been shown to be able to cause unstable MSD 

computational outcome (Nguyen et al., 2014a). While this problem tends to be 

overcome in later monitoring stages when more measured data is provided by the 

sensing system, one possible immediate solution is the use of the controlled Monte 

Carlo data generation scheme to enhance the training data multinormality degree and 

therefore robust MSD computation (Nguyen et al., 2014a). This will be further 

addressed in the future work of the present authors. 

 

 Figure 5-9 Box-plots of training data (left) and testing data (right) 

5.5 CONCLUSIONS 

This paper has presented the detailed development of a cost-effective and flexible 

sensing system for long-term continuous vibration monitoring of a newly constructed 

complex in general and its main building in particular. Under the challenging 
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characteristics of the monitored structures and the monitoring conditions, 

accelerometers of capacitive type and high sensitivity have first been selected so that 

they could function well under practical difficulties such as low-frequency and low-

level vibration measurement. Sensor positioning has then been optimized to 

overcome the problem of the sensor quantity constraint and maximize the structural 

information acquired. To tackle the challenge of sparse measurement coverage, the 

distributed DAQ architecture has been adopted and a cost-optimized distributed 

DAQ model has been selected to establish the skeleton for the monitoring system. In 

search of inexpensive and flexible alternatives, the synchronization task for the 

building vibration sensors has been left open for possible software-based solutions. 

To prove the feasibility of this direction, a combined solution has been derived by 

means of high-resolution timing coordination and periodic system resynchronization 

both enforced from the host level via TCP/IP communication medium. By applying 

this solution, the initial DSE of the system has been well reduced from uncontrolled 

levels to be very marginal whereas the accumulated DSE can be effectively kept at 

minimum. By means of a robust OMA technique and a novel daisy chain data 

selection scheme, general and statistical evaluation methods have been derived to 

rigorously assess the sensing and data synchronization solutions while continuous 

health evaluation processes have been constructed in light of the pattern recognition 

framework. The evaluation results have showed that the sensing and data 

synchronization solutions work truly well and can provide a promising alternative for 

use in the SHM projects with tight budget and/or sparse measurement coverage 

where conventional hardware-based synchronization may be too costly. Using these 

solutions, the developed sensing system has been shown to be able to provide quality 

feature databases which can be used to combat the impact of practical E&O factors 

and establish unbiased pattern recognition processes for health evaluation of civil 

infrastructure. With such an effective and flexible sensing system, the instrumented 

building herein can be used as a flexible benchmark structure for vibration-based 

SHM problems in general and for addressing system synchronization issues in 

particular. For upcoming future work, building vibration data is being continuously 

collected and analyzed under different E&O conditions to construct representative 

databases for tracking the health status of the building or its deterioration process. 

Other potential synchronization methods can be rapidly applied to examine their 
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efficacy while multiple classes of data with different levels of DSE can be generated 

(by relaxing the synchronization process) for related uncertainty assessment studies. 

APPENDIX 5.A MSD-BASED LEARNING FOR LEVEL-1 DAMAGE 

IDENTIFICATION 

Suppose that the training dataset has p variables and a sufficient multivariate normal 

(multinormal) distribution. This dataset can therefore be represented by its sample mean 

vector ( x ) and sample covariance matrix (S). By means of MSD technique, each p-variate 

observation ( ix ) in either training or testing phases can be transformed into a scalar in the 

form of distance (or novelty) measure as follows. 
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After computing all training distances, the assumption of a multinormal distribution again 

allows the estimation of the novelty threshold from the basis of chi-square distribution for 

the training distances (Farrar and Worden, 2013). It is because under such an assumption, 

one can specify a statistical threshold based on a distribution quantile or a confidence level 

(Farrar and Worden, 2013; Nguyen et al., 2014a). In the testing phase, whenever a new 

feature observation of the structure is recorded, its corresponding distance can then be used 

to compare against the threshold to determine whether it corresponds to a normal condition 

or a novelty (such as a damaged state in the SHM context). In spite of being selective in 

multinormality degree of the input data, MSD-based learning algorithm is well-known for its 

architectural simplicity and computational efficiency which are advantageous for dealing 

with large volume of data (Nguyen et al., 2014a). 

 

APPENDIX 5.B AANN-BASED LEARNING FOR LEVEL-1 DAMAGE 

IDENTIFICATION 

AANN is a multilayer feed-forward perceptron network which is trained to produce, at the 

output layer, the patterns that are presented at the input layer (Chan et al., 2011; Farrar and 

Worden, 2013). The network contains three hidden layers: the mapping layer, the bottleneck 

layer and the demapping layer. The mapping and demapping layers consist of neurons with 

hyperbolic tangent sigmoid transfer functions while the bottleneck and output layers are 

formed by linear neurons. Typically, both mapping and demapping layers often use the same 

number of nodes while the bottleneck layer uses fewer nodes so that this special layer can 
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discard trivial variations and extract the predominant trends such as those induced by E&O 

factors. Also because of this, the number of hidden nodes at the bottleneck layer is often 

selected in order to represent such prevalent trends in the data. 

Again, suppose the training dataset has p variables, after the network is trained, each p-

variate input observation ( ix ) in either training or testing phases is passed into the trained 

network to yield an (p-variate) observation ( ix̂ ) at the network output layer. The 

corresponding observation of the novelty index in form of the Euclidean distance can 

therefore be as follows (Farrar and Worden, 2013). 

 iii xxd ˆ
  ).5( B  

The tasks of threshold determination (based on confidence level) and novelty detection of 

AANN-based algorithm are then similar to those of MSD-based algorithm (Appendix5.A). 

Advantages of AANN-based algorithm include the capacities of dealing with data that may 

not have a multinormal distribution and recognizing nonlinear underlying trends. However, 

AANN-based algorithm has more complicated architecture than the MSD-based counterpart 

and therefore generally requires some user judgment and costs more computational effort in 

training and testing processes. 
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Chapter 6: Controlled Monte Carlo Data 

Generation for Statistical Damage 

Identification Employing MSD 

This chapter is made up of the following published journal paper   

 Nguyen, T., Chan, T. H. T. and Thambiratnam, D. P. 2014. Controlled Monte 

Carlo data generation for statistical damage identification employing 

Mahalanobis squared distance. Structural Health Monitoring 13 (4):461-472; 

URL: http://dx.doi.org/10.1177/1475921714521270 

While the three previous chapters (Chapters 3, 4 and 5) focus on enhancement and 

new development of the vibration sensing and feature extraction issues, the 

contribution of this chapter is associated with the improvement of the reliability of 

the damage identification function in the second subsystem of the targeted synthetic 

SHM system. Specifically, this chapter is to develop a data generation scheme to 

assist the MSD-based damage identification method in such adverse circumstances as 

at an early monitoring stage or during short SHM programs. Realizing the 

disadvantages of the basic Monte Carlo data generation method, an enhanced scheme 

named CMCDG is derived to achieve optimal data generation configurations in a 

systematic way. Not only are theoretical bases of CMCDG uncovered but the efficacy 

of this scheme is also intensively validated with a sophisticated SHM benchmark 

dataset collected from a laboratory structural model with multiple levels of damage. 

Extension of this work for the ultimate purpose of field application and validation is 

presented in Chapter 7.  

Readers interested in implementing MSD-based damage identification employing 

CMCDG in the context of the safety evaluation system proposed in this thesis may 

refer to Appendix A for detailed implementation procedure and Appendix B for 

fundamentals of Monte Carlo simulation and basic data generation methods. 

http://dx.doi.org/10.1177/1475921714521270
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ABSTRACT 

The use of Mahalanobis Squared Distance (MSD) based novelty detection in 

statistical damage identification has become increasingly popular in recent years. The 

merit of the MSD-based method is that it is simple and requires low computational 

effort to enable the use of a higher-dimensional damage sensitive feature which is 

generally more sensitive to structural changes. MSD-based damage identification is 

also believed to be one of the most suitable methods for modern sensing systems 

such as wireless sensors. Although possessing such advantages, this method is rather 

strict with the input requirement as it assumes the training data to be multivariate 

normal which is not always available particularly at an early monitoring stage. As a 

consequence it may result in an ill-conditioned training model with erroneous novelty 

detection and damage identification outcomes. To date, there appears to be no study 

on how to systematically cope with such practical issues especially in the context of a 

statistical damage identification problem. To address this need, this paper proposes a 

controlled data generation scheme which is based upon the Monte Carlo simulation 

methodology with the addition of several controlling and evaluation tools to assess 

the condition of output data. By evaluating the convergence of the data condition 

indices, the proposed scheme is able to determine the optimal setups for the data 

generation process and subsequently avoid unnecessarily excessive data. The efficacy 

of this scheme is demonstrated via applications to a benchmark structure data in the 

field. 

KEYWORDS 

Statistical Damage Identification, Mahalanobis Squared Distance (MSD), Novelty 

Detection, Multivariate Normal (Multinormal), Data Generation, Monte Carlo, Data 

Condition Assessment 

6.1 INTRODUCTION 

It is well-known that Environmental and Operational (E&O) variations can prevent 

genuine structural damage in real civil structures from being identified since their 

effects can be larger than those from the genuine structural damage (Farrar et al., 

2001b; Sohn et al., 2003). One of the most popular approaches to deal with this, 
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especially when measures of E&O variations are not fully available, is based on 

statistical pattern recognition. In this case, machine learning algorithms are 

oftentimes used to learn the underlying trend induced by E&O variations and create a 

robust damage index which can be considered to be invariant under the E&O 

variation presence. Amongst different methods in this approach, Mahalanobis 

Squared Distance (MSD) based damage identification is believed to be one of the 

best in unsupervised learning mode i.e. only using data from undamaged structures 

(Manson et al., 2003; Figueiredo et al., 2011).  In this regard, one will simply turn 

MSD-based (multivariate) outlier analysis into a novelty detection method and 

attempt to identify a potentially damaged observation as an outlier (Farrar and 

Worden, 2013; Worden et al., 2000a). Well-known for its simplicity and 

computational efficiency, MSD-based method has good potential to be cooperated on 

embedded modern sensing systems such as wireless sensors (Figueiredo et al., 2009; 

Figueiredo et al., 2011). However, the proper use of the standard MSD for the 

novelty detection purpose theoretically requires the training data needs to be 

multivariate normal (short as multinormal) or also known as multi-Gaussian (Farrar 

and Worden, 2013; Filzmoser et al., 2005). Due to the unavailability of complete 

multinormal data in many practical applications, one can obtain an approximation by 

increasing the observation-to-variable ratio (Johnson and Wichern, 2002; Rencher, 

2002). In practical structural monitoring, however, this is not always experimentally 

available particularly at an early monitoring stage. To systematically cope with such 

an adverse situation, this paper present a controlled data generation scheme which is 

based upon the Monte Carlo simulation methodology cooperated with several 

controlling and evaluation tools to assess the output data condition. By evaluating the 

convergence of the data condition indices, the proposed data generation scheme is 

able to determine the optimal simulation input parameters that need to be used and 

subsequently avoid improper simulation setups or unnecessarily excessive data. The 

efficacy of this scheme is demonstrated via applications to benchmark experimental 

data in the field. The layout of this paper is as follows. The next section provides 

descriptions of MSD-based damage identification and the Controlled Monte Carlo 

Data Generation (CMCDG) scheme. The benchmarks and their dataset used in this 

study are then briefly described. In the two last sections, detailed analyses and 
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discussions are first provided before the key findings are summarised in the 

conclusion. 

6.2 DAMAGE IDENTIFICATION AND DATA GENERATION METHODS 

6.2.1 MSD-BASED DAMAGE IDENTIFICATION 

There are two main types of data used in statistical damage identification process. In 

general, the primary (or raw) data acquired by sensors is not directly used but is 

transformed into a damage-sensitive feature which then become input data for the 

statistical training model. This secondary data is oftentimes in a much lower 

dimension compared to the primary one so as to alleviate the computational effort 

and to extract the most meaningful structural information. Typical examples for this 

can be found in the case of common features such as modal parameters and Auto-

Regressive (AR) vectors (Farrar et al., 2001a; Worden and Manson, 2007; Zhang, 

2007; Figueiredo et al., 2009; Gul and Catbas, 2009; Worden et al., 2002; Sohn et 

al., 2001).   

Suppose that a training dataset consists of p (i.e. feature dimension) variables and n 

observations. If its shape approximates a multinormal distribution, this dataset can be 

represented by the sample mean vector ( x ) and the sample covariance matrix (S). In 

this case, these two parameters are often referred as “sufficient statistics”. By using 

the standard MSD technique as a multivariate outlier analysis (Worden et al., 2000a), 

each feature vector ( ix ) for either the training or testing purposes will be converted 

into a damage index in terms of distance measure ( id ) as follows. 
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In damage identification context, the mean and covariance should be formulated as 

an exclusive measure, or in other words, consisting of no potential outlier from the 

testing phase (Worden et al., 2000a). After computing all training distances, the 

assumption of a multinormal distribution again allows the estimation of the threshold 

from the basis of chi-square distribution for the training distances (Farrar and 

Worden, 2013). It is because under such an assumption, one can specify a statistical 

threshold for the distances based on a distribution quantile or equivalently a 
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confidence level (Filzmoser et al., 2005; Farrar and Worden, 2013). There might be a 

trade-off in choosing the confidence level: using very high level of confidence level 

might not be able to detect a lightly damaged case that is known as one class of Type 

II errors but the least critical. However, such confidence level can assist in avoiding 

as many as possible false-positive indication of damage (i.e. Type I errors) (Farrar 

and Worden, 2013).   

In the testing phase, whenever a new feature observation comes, its corresponding 

distance can be used to compare against the threshold to determine whether it 

corresponds to a normal or damaged state. In this sense, the anticipation is that the 

more severe a damaged state is, the more significant the difference between its actual 

distance and the threshold becomes. This has been observed in prior studies in this 

area (Worden et al., 2000a; Gul and Catbas, 2009; Figueiredo et al., 2011).  

As seen earlier, even though the MSD-based damage identification possesses a 

simple computational structure, the success of this method depends on whether its 

assumption of data distribution (i.e. multinormal) can be adequately satisfied.  Since 

complete multinormal data is seldom available in practice, the overall remedy, 

stemming from the Central Limit Theorem (CLT) and the Law of Large Numbers 

(LLN), is to increase the observation size (n) relative to number of variables (p) 

(Johnson and Wichern, 2002; Rencher, 2002). One simple and inexpensive approach 

to realize this remedy in the context of measured data shortage is using the CMCDG 

scheme. 

6.2.2 CMCDG 

As previously mentioned, the controlled data generation scheme developed in this 

paper originates from the Monte Carlo simulation methodology. In a broad sense, a 

Monte Carlo method today refers to any simulation method that involves the use of 

random numbers and was termed by Neumann and Ulam in the 1940’s (Martinez and 

Martinez, 2002; Wikipedia contributors, 2002). Being easy and inexpensive, this 

approach is particularly applicable for evaluation of highly multidimensional and 

complex problems (Dunn and Shultis, 2011). To conduct a Monte Carlo simulation, 

one just needs to define a model that represents the population or phenomenon of 

interest and a criterion to generate random numbers for the model. The latter 
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commonly involves the use of a user-selected probability distribution. Once 

completed, the data generated from the model can then be used as though they were 

actual observations.  

In the damage identification context, Monte Carlo data generation has also seen its 

applicability since the features are often in high dimension. However, prior studies in 

the field have mainly applied the Monte Carlo simulation methodology in an ad hoc 

manner. The conventional trend in such studies was to generate large number of 

observations from the data seed of a single or few feature(s) by applying certain 

amount of random Gaussian noise onto each copy (Worden et al., 2000a; Worden et 

al., 2002).
 
Even though the noise was constructed from a Gaussian distribution, its 

magnitude and the sample quantity were generally set in a rather uncontrolled 

manner. Another general suggestion from prior research is that using lower levels of 

noise allows more lightly damaged cases to be detected (Worden et al., 2007). 

However, a possible problem for applying a too low level of noise in data generation 

is that subsequently generated observations might not be sufficiently random with 

respect to initial observations to improve the data condition (and this issue will be 

examined in the application section). Obviously, a more systematic data generation 

scheme is in need particularly when considering real structural monitoring 

circumstances with a certain number of observations initially available to form the 

seed. Such a type of seed apparently reflects more accurately the training conditions 

of structures but also requires a more thorough data generation scheme to be 

cooperated.  

To cater to this need, the present paper proposes an enhanced data generation scheme 

termed as CMCDG. This is realized by adding into the conventional scheme two 

controlling tools that are in fact two data condition assessment methods and a robust 

probability-based evaluation procedure to assist these methods. Of the two condition 

assessment methods, the first one is based on evaluating the condition of the 

generated data through the condition of its sample covariance matrix which is 

represented by a well-known and robust index, i.e. (2-norm) condition number 

(COND) in linear algebra (Golub and Van Loan, 1996; Strang, 2006). On the other 

hand, the second method is based on one of the most popular graphical tools for 

evaluating multinormality of data i.e. the Quantile-Quantile (Q-Q) plot of a beta 
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distribution or, in certain cases, a chi-square distribution (Johnson and Wichern, 

2002; Rencher, 2002; Sharma, 1995). In this study, the beta Q-Q plot is employed 

since it is generally more accurate than the chi-square counterpartner (Rencher, 

2002). To evaluate multinormality of a dataset, the actual plot of data is compared 

with the theoretical one and a significant discrepancy in the plot would indicate that 

the data no longer belongs to a multinormal distribution. Since the number of 

datasets generated by CMCDG for statistical evaluations is large, the Root-Mean-

Square Error (RMSE), one of the most commonly-used discrepancy measures, 

between the theoretical and actual Q-Q plots will be used as another condition index. 

The mathematical expression of this measure will be included in the application 

section. The rationale of employing these two methods to evaluate CMCDG process 

is as follows. First, under the regulation of CLT and LLN, the sample covariance 

matrix (S) converges in probability to the actual population covariance matrix ( ) as 

number of random observations (n) increases (Johnson and Wichern, 2002). It is 

therefore sensible to anticipate that, as n increases, COND (S) also converges in 

probability to COND (  ). Similarity can be seen for the second method. As n 

increases, the Q-Q plot is expected to converge in probability to the theoretical line 

and its RMSE is therefore anticipated to converge in probability to zero. 

Inherent in the way that the two data condition assessment methods is implemented 

in CMCDG is a robust probability-based evaluation procedure with two robust 

measures i.e. the median and Inter-Quartile Range (IQR) (Martinez and Martinez, 

2005) to examine the central tendency and dispersion of COND and beta Q-Q 

RMSE. By tracking the convergence of these measures, CMCDG is able to determine 

the optimal noise level and possibly minimum number of data replications that need 

to be set in the simulation process. Details of CMCDG and its controlling and 

evaluation components are illustrated in the application section. 

6.3 DESCRIPTION OF THE BENCHMARK STRUCTURES AND DATA 

The benchmark dataset used in this study is from Los Alamos National Laboratory 

(LANL), USA and has been intensively used in recent statistical damage 

identification studies (Figueiredo et al., 2009; Figueiredo et al., 2011). This data was 

collected by four accelerometers from a benchmark building model (Figure 6-1) with 
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varied practical conditions (Table 6-1) including stiffness deviation due to 

temperature change and mass difference (e.g. caused by traffic). Nonlinear damage 

was generated by contacting a suspended column with a bumper mounted on the 

floor below to simulating fatigue crack that can open and close under loading 

conditions, or loose connections in structures. Different levels of damage were 

created by adjusting the gap between the column and the bumper. In total, there were 

9 undamaged states and 8 damaged states each of which consists of a number of tests 

performed to take into account excitation variability. In this study, the largest dataset 

available for public use with 50 tests for each state is used (SHMTools Development 

Team, 2010). According to the test description (Figueiredo et al., 2009), state 14 can 

be considered as the most severe one since it corresponds to the smallest gap case 

which induces the highest impact of contact. State 10 is the least severe damaged 

scenario whereas state 11, 12 and 13 can represent mid-level damage scenarios. 

Other states (i.e. 15, 16 and 17) are the variant states of either state 10 or 13 with 

mass added effect. 

 

Figure 6-1 The test structure (left) and damage simulation mechanism (right) 

at LANL (Figueiredo et al., 2009) 
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Table 6-1 Data labels of the structural state conditions 

[adapted from (Figueiredo et al., 2009)] 

Label Feature Description 

State 1 Undamaged Baseline condition 

State 2 Undamaged Mass = 1.2 kg added at the base 

State 3 Undamaged Mass = 1.2 kg added on the 1
st
 floor 

State 4 Undamaged 

State 4-9: 87.5% stiffness reduction at various positions to simulate 

temperature impact [see (Figueiredo et al., 2009) for details] 

State 5 Undamaged 

State 6 Undamaged 

State 7 Undamaged 

State 8 Undamaged 

State 9 Undamaged 

State 10 Damaged Gap = 0.20 mm 

State 11 Damaged Gap = 0.15 mm 

State 12 Damaged Gap = 0.13 mm 

State 13 Damaged Gap = 0.10 mm 

State 14 Damaged Gap = 0.05 mm  

State 15 Damaged Gap = 0.20 mm & mass = 1.2 kg added at the base 

State 16 Damaged Gap = 0.20 mm & mass = 1.2 kg added on the 1
st
 floor 

State 17 Damaged Gap = 0.10 mm & mass = 1.2 kg added on the 1
st
 floor 

6.4 ANALYSES AND DISCUSSION 

The data used in this study is from the second floor sensor which is close to the 

damage location to guarantee the sensitivity of the method when classifying 

different-level damage cases. The testing data, established by taking 20 first tests in 

each of 9 undamaged states and all tests of damaged structure, therefore has 580 (i.e. 

209+508) observations. With 30 remaining tests in each undamaged state for the 

training purpose, differently sized learning data can be formed by varying number of 

training tests (i.e. from as low as 1 up to 30) taken in each learning state. This is to 

illustrate the impact of the observation size reflected through the two data condition 

assessment methods (as previously mentioned) by means of pure experimental data. 

For the sake of simplicity, this number of tests per learning state will be referred 

below as “state observation size”.   

The feature used in this investigation is the Auto-Regressive (AR) vector which has 

also been used in recent studies using this dataset (Figueiredo et al., 2009; Figueiredo 

et al., 2011). Each raw data time series is first standardized to zero mean and unit 
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variance before being transformed into an AR vector with a user-selected model 

order. Even though there are a number of order estimation techniques (Figueiredo et 

al., 2009; Figueiredo et al., 2011), in this study, the heuristic technique, based on 

directly observing RMSE of the AR model, is adopted. The basis for this adoption is 

that it reflects the actual impact of order change on prediction capacity of AR model 

which, in the opinion of the present authors, is the most crucial. For the sake of 

completeness, the following part will present a brief description of AR model and the 

order estimation method based on RMSE. 

The AR (p) model, for a regularly sampled time series process Y with n observations 

can be described by the following formulae 

 iii yy  ˆ   (6-2) 

 ji

p

j

ji yy 




1

ˆ    (6-3) 

where iy , iŷ  and i  are the measured signal the predicted signal and the residual 

error, respectively at the discrete time index i  while j  is the jth AR variable which 

can be estimated by one of a number of techniques such as Burge, least squares and 

Yule-Walker (Ljung, 2011). RMSE of the time series predicted by an AR (p) model 

with respect to the measured signal is therefore as follows 
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To find an appropriate model order, RMSE is plotted as a function of the model order 

which in turn can be estimated by minimizing the RMSE value. Figure 6-2 shows the 

average RMSE of AR models with the orders ranging from 1 to 40 for each of the 9 

undamaged states. One can see that, RMSE becomes significantly steady for all 9 

states from the order of 10 which suggests that one should choose the order at least 

from this value. In the following sections, this suggested starting order (i.e. 10) and 

one rather high (i.e. 30), along with one medium (i.e. 15) at some points when 

necessary will be used in the succeeding sections.  
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   Figure 6-2 RMSE of AR models of increasing order for each undamaged state 

6.4.1 MSD-BASED DAMAGE IDENTIFICATION PERFORMANCE ON PURE EXPERI-

MENTAL DATA 

At the model order p, one feature (i.e. AR vector) for each observation in either 

training or testing data is computed by least squares technique. This leads to 270 by p 

training data and 580 by p testing data. The threshold distance which is used to 

differentiate between the undamaged and damaged states is established based on the 

highest confidence level (i.e. 100%). This can avoid as many as possible the Type I 

error which, in the opinion of the present authors, is more crucial than the ability of 

detecting lightly damaged cases which one might achieve by using a lower 

confidence level. Using this confidence level, the MSD training model is able to 

correctly detect almost all damage cases – only 1 out of 400 Type II error tests is 

occasionally found across the lower-dimensional feature (i.e. AR10 and AR15). The 

high-dimensional feature (AR30) herein has seen no Type II error indicating that it is 

slightly more sensitive to damage than AR10 and AR15. Overall, the results have 

confirmed that the previously selected confidence level is appropriate.  
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   Figure 6-3 Type I error of increasing observation size 

In spite of using the highest confidence level, the result of Type I errors significantly 

differs from that of the Type II errors especially for the smaller range of observations. 

Figure 6-3 plots the number of false positive errors (out of total 180 tests) against the 

state observation size in the range between 5 to the maximum (i.e. 30) as previously 

described. It can be seen that, the Type I error becomes significant for most of the 

feature dimensions when less than a quarter of the maximum training data is 

available and is generally higher for higher dimensions. This is most likely due to the 

fact that, with higher number of variables, higher-order AR models require more 

observations to be as sufficiently trained as lower-order models. It is worth noting 

that this problem is well known as “curse of dimensionality” (Farrar and Worden, 

2013) and the use of CMCDG herein should be seen to mitigate this problem. 

6.4.2 PERFORMANCE OF TWO CONDITION ASSESSMENT METHODS ON PURE 

EXPERIMENTAL DATA 

In Figure 6-4, the condition number of the MSD model is plotted against the state 

observation size across three feature dimensions in normal linear scale as well as 

logarithmic (log) scale to facilitate the comparison at different ranges.  
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   Figure 6-4 COND in linear (left) and log (right) scales 

From this figure, one could see that the condition number tends to converge after 

certain number of observations which is larger for higher feature dimensions. 

Overall, it can be seen that the convergence trend of this condition number is in fairly 

good agreement with the performance result presented in Figure 6-3.  

To construct a beta Q-Q plot, the training distance in formula (6-1) first needs to be 

scaled by a factor related to the sample size (n) as follows 
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If the training data is multinormal, this scaled distance would follow a beta 

distribution. The scaled distance is then ranked in ascending order and plotted with 

the corresponding beta quantiles (Rencher, 2002). For illustration purpose, Figure 6-5 

shows the beta Q-Q plots of AR10 (at the state observation of 5 and 13 tests) and 

AR30 (at the state observation of 8 and 16 tests). These two (one small and one 

medium) datasets are selected to represent two (one unstable and one improved) 

conditions of the data, respectively.  
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Figure 6-5 Beta Q-Q plot of (a) AR10-05 tests, (b) AR10-13 tests, (c) AR30-08 tests 

and (d) AR30-16 tests 

From Figure 6-5, one can see that increasing number of observations generally 

improves the agreement between the actual and theoretical plots for most of the data 

points. This reveals that it is feasible to use a good-of-fitness measure between the 

two plots as another data condition index (besides COND) to evaluate a huge number 

of datasets generated from CMCDG process. As previously mentioned, the measure 

adopted is RMSE which is one of the most commonly-used measures for this type of 

purpose. 

6.4.3 PERFORMANCE OF CMCDG ON PREMATURE DATA 

Previous results have shown that the condition of the experimental data will require 

certain numbers of observations to reach a stable point. Before that, data can be 

considered as premature and will therefore need a compensation solution such as 

from CMCDG to improve its condition. In this section, CMCDG will be applied on 

two premature training datasets each of which is for each feature type, i.e. at the state 

observation size of 5 tests (for AR10) and 8 tests (for AR30) as preliminarily checked 

by COND and beta Q-Q plot as shown in Figure 6-4 and Figure 6-5. With such 

limited observations, the main problem for these two premature datasets is the Type I 
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errors as previously discussed and presented in Figure 6-3. Out of a total of 180 tests, 

the original Type I errors of these two (AR10 and AR30) training datasets are 13 and 

105 tests (or 7.2% and 58.3% in terms of the error rate), respectively. Under the 

CMCDG scheme, each premature dataset is first employed as the seed to generate a 

(user-specified) number of additional datasets of the same size as the seed (by means 

of random noise) and all the datasets are then tiled one after another to obtain the 

final data.  The random noise herein is generated based on its optimal level in Root-

Mean-Square (RMS) sense with respect to the largest deviation of the training 

features. In this study, the optimal level of noise is determined by the convergence 

basis of median and IQR of COND. As an example, Figure 6-6(a) and (b) shows the 

probability distribution of COND values at different noise levels (from 0.05 to 5%) 

when running 10,000 simulations to evaluate the case of using CMCDG generating 

19 additional data replications. Note that the presented noise levels on Figure 6-6 are 

unequally distributed to accommodate different ranges of noise. From Figure 6-6(a) 

and (b), one can clearly see that the median and IQR of COND are very large if very 

low level of noise is employed such as at 0.05 or 0.1%. This is because when noise 

levels that are too low are applied to the data generation process, subsequently 

generated observations will have inadequate randomness with respect to the initial 

observations in the seed as previously discussed. In this case, the covariance matrix 

becomes more computationally unstable [reflected by larger and more widely 

variable COND values (Statistics Toolbox Development Team, 2011)] than those 

formulated by later ranges of noise levels.  
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Figure 6-6 COND and mean error rate of increasing noise level: 

(a and c) AR10 and (b and d) AR30 

However, when the noise level increases, COND rapidly decreases in both median 

and IQR values. This results in unnoticeable difference in these values from the noise 

level of around 0.4% onward even though the noise increment later is set at 1%. For 

correlation purposes, the corresponding mean Type I and Type II errors are also 

shown in Figure 6-6(c) and (d) in relative sense with respect to a total of 180 Type I 

and 400 Type II tests. One can first see that the Type I error result is generally in 

good agreement with the convergence trend of COND. Note that higher Type I error 

rate for AR30 (in comparison with AR10) at low noise levels should not be seen as 

abnormal since the initial rate of the premature AR30 data is 58.3% (while that of 

AR10 is only 7.2%) as previously mentioned. On the other hand, Figure 6-6(c) and 

(d) appear to show certain impact for the Type II error at high noise levels. However, 

checking the details across multiple noise levels from 0.5% (for AR10) or 1% (for 

AR30) up to 5% has revealed that all the Type II errors for both AR10 and AR30 

merely belong to the most lightly damaged states (i.e. state 10 and its two variants, 

state 15 and 16 as illustrated in Table 6-1). Detecting such a damage state may be 

desirable but not always in the highest priority of damage identification as previously 

discussed in the regard to choosing the confidence level. Nevertheless, using a 
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higher-dimensional feature (such as AR30 that has lower Type II error rate) and/or a 

correct noise level (close to such an optimal level as 0.4% herein) will enhance the 

damage identification outcome. This also reaffirms the need to determine of an 

optimal noise level such as being considered in the CMCDG scheme herein since this 

can lead to a more satisfactory solution. 

To find a possibly minimum number of data replications to be used in CMCDG, the 

same approach used to produce Figure 6-6 will be implemented with a minor swap. 

The noise level is fixed (at 0.3% for AR10 and 0.5% for AR30) while number of data 

replications is varied. Figure 6-7 shows the probability distribution of COND and 

beta Q-Q RMSE along with the mean rate of the Type I error. Again, one can see that 

both COND and RMSE tend to rapidly converge in both median and IQR values after 

a certain number of data replications. The figure also shows that the convergence 

trends of these two indices are in excellent agreement with each other and with that 

of the Type I error. On the other side, the Type II error results can be retained as more 

or less the same as those from pure experimental data as previously presented. Once 

again, there is no single error for AR30 while AR10 only fails to detect one or two 

most lightly damaged cases out of total 400 tests. This is probably mostly due to the 

nature of lower-dimensional features such as AR10 which is less sensitive to damage 

than high-dimensional features like AR30 as previously remarked. This also 

highlights the feasibility of CMCDG in assisting the use of the high-dimensional 

feature that may result in higher capability of detecting structural damage. 
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Figure 6-7 COND, Q-Q RMSE and Type I error rate of increasing replication size: 

(a, c, and e) AR10 and (b, d, and f) AR30
‡

                                                 

 
‡
 As they are (nearly) zero, Type II error rates have been omitted for a better display of Type I errors 

Based on the convergence of these two condition indices, one can adopt 15 as a 

possibly minimum number of additional data replications that need to be generated in 

CMCDG for both feature types of this demonstration example.  At this replication 

size, both post-CMCDG datasets (of both feature types) face no single Type I error 

across 180 total tests. Compared to aforementioned initial error rates (7.2% and 

58.3%) of original datasets, this obviously reflects excellent improvements for the 

Type I testing performance for both feature types in general and for high-dimensional 

feature (AR30) in particular. 
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Figure 6-8 Overlay of one typical seed observation and its 15 variants: 

AR10 (left) and AR30 (right) 

In Figure 6-8 for each feature type, one typical seed (initial) observation and its 15 

variants generated by CMCDG are overlaid together and one can see that they are 

almost identical. This means that the noise addition process in CMCDG does not 

induce significant variations on the amplitude of the observation. Instead, the efficacy 

of CMCDG is mainly from the generation of multiple additional random 

observations to provide a sufficiently large random dataset as directed by CLT and 

LLN. Finally, to illustrate detailed effectiveness of CMCDG on the training data 

multinormality, the beta Q-Q plots of two typical datasets generated by CMCDG 

using aforementioned selected noise levels (0.3% and 0.5%) and replication sizes (15 

blocks for both feature types) are shown in Figure 6-9. Compared to those of original 

(pre-CMCDG) datasets as in Figure 6-5(a) and (c), there are inarguable 

improvements in terms of the agreement between actual and theoretical lines of the 

post-CMCDG datasets of both feature types. This once again confirms the 

effectiveness of the CMCDG scheme. 

 

Figure 6-9 Post-CMCDG beta Q-Q plots: AR10 (left) and AR30 (right) 
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From results presented, it has become apparent that one can conquer the data 

shortage by employing CMCDG without having to suffer from data burden that is 

more likely to be confronted during the application of the uncontrolled data 

generation approach. 

6.5 CONCLUSIONS 

This paper has proposed an enhanced data generation scheme named CMCDG which 

can be used to compensate for the shortage of data such as at an early monitoring 

stage. Targeting a more systematic approach, CMCDG is constructed by adding into 

the conventional data generation approach two condition assessment methods 

cooperated with a robust probability-based evaluation procedure. Stemming from a 

computationally efficient method in linear algebra, COND has been shown to be a 

simple but useful condition index. This indicator can be used for not only assessing 

the data condition but also statistically evaluating the effect of random disturbance at 

different levels such as random noise. Based on the latter usage, the optimal noise 

level and the possibly minimum number of data replications to be used in CMCDG 

can be derived so that the generated data can be used for reliable damage 

identification while being kept reasonable in size. As a different approach, the second 

assessment method can first act as a convenient tool for graphically examining the 

status of any single dataset. To use in CMCDG besides COND to work with huge 

number of simulated datasets, the previous graphical evaluation method is 

transformed into a single condition indicator which is actually one of the most 

common good-of-fitness measures, RMSE, to track the discrepancy between actual 

data and theoretical data. The rationale of utilising the convergence basis of all of 

data condition indices for determining optimal input for CMCDG has been proved 

under the regulation of two well-known theorems i.e. CLT and LLN. These two 

theorems have also been found to be the theoretical bases not only for the CMCDG 

scheme developed herein but also for the traditional data generation approach. The 

implementation and application of CMCDG to a benchmark data have shown that 

CMCDG and its added components can compensate well for the data shortage, 

improve computational stability and therefore the reliability of MSD-based damage 

identification. This has also highlighted an important role of CMCDG in assisting the 
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high-dimensional features such as AR30 that is likely to have higher sensitivity 

towards a lightly damaged case. Finally, as been shown to be able to improve 

multinormality of data, CMCDG can be seen as a promising scheme not only for 

novelty detection based damage identification but also for statistically-based 

structural analysis in a broader field. 
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Chapter 7: Field Validation of Controlled 

Monte Carlo Data Generation 

Scheme for Statistical Damage 

Identification Employing MSD 

This chapter is made up of the following published journal paper   

 Nguyen, T., Chan, T. H. T. and Thambiratnam, D. P. Field validation of 

controlled Monte Carlo data generation for statistical damage identification 

employing Mahalanobis squared distance. Structural Health Monitoring 13 

(4):473-488; URL: http://dx.doi.org/10.1177/1475921714542892 

As it is an extension of Chapter 6, the main contribution of this chapter is 

undoubtedly field application and validation for the data generation scheme named 

CMCDG proposed and initially validated by laboratory data in the previous chapter. 

CMCDG is previously derived to assist the MSD-based damage identification 

method in adverse data shortage circumstances such as at an early monitoring stage 

or during short-lived SHM programs. To illustrate these circumstances in reality, two 

practical case studies are used in which the first one is established by means of the 

building vibration datasets recorded by the sensing system developed in Chapter 5 

while the second case study comes from an actual bridge with a naturally damaged 

state. By using these field vibration databanks, not only the efficacy of CMCDG is 

thoroughly validated but the dynamic structure of this scheme is also highlighted in 

the aspect of making CMCDG itself well adaptive to any input data with any primary 

distributional condition. The results show that the assistance from CMCDG is 

valuable truly enhancing the computational robustness of the MSD-based damage 

identification method and consequently the reliability of the safety evaluation system.  
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ABSTRACT 

This paper presents the field applications and validations for the Controlled Monte 

Carlo Data Generation (CMCDG) scheme. This scheme was previously derived to 

assist the Mahalanobis Squared Distance (MSD) based damage identification method 

to cope with data shortage problems which often cause inadequate data 

multinormality and unreliable identification outcome.  To do so, real vibration 

datasets from two actual civil engineering structures with such data (and 

identification) problems are selected as the test objects which are then shown to be in 

need of enhancement to consolidate their conditions. By utilizing the robust 

probability measures of the data condition indices in CMCDG and statistical 

sensitivity analysis of the MSD computational system, well-conditioned synthetic 

data generated by an optimal CMCDG configurations can be unbiasedly evaluated 

against those generated by other setups and against the original data. The analysis 

results reconfirm that CMCDG is able to overcome the shortage of observations, 

improve the data multinormality and enhance the reliability of the MSD-based 

damage identification method particularly with respect to false positive errors. The 

results also highlight the dynamic structure of CMCDG that makes this scheme well 

adaptive to any type of input data with any (original) distributional condition. 

 

KEYWORDS 

Statistical Damage Identification, Mahalanobis Squared Distance (MSD), Controlled 

Monte Carlo Data Generation (CMCDG), Field Validation, Multinormal, Sensitivity 

Analysis 

7.1 INTRODUCTION 

The use of machine learning algorithms for practical Structural Health Monitoring 

(SHM) in general and structural damage identification in particular has become 

increasingly popular in recent years. This is due to the fact that this approach could 

help overcome the adverse impact from inherent Environmental and Operational 

(E&O) factors that otherwise can prevent the intended objective such as structural 
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damage from being detected (Sohn et al., 2003; Farrar and Worden, 2013). To do so, 

a broad range of measured data collected under different E&O conditions of the 

structure is first used to train the learning algorithm. Once completed, the trained 

algorithm is supposed to understand the internal relationships of the data within each 

class (e.g. undamaged or at a specific level of damage) as well as to account for the 

underlying trend induced by E&O factors. Misjudgement induced from E&O impact 

can therefore be greatly mitigated and the algorithm can be used to identify genuine 

structural damage. In this context, one of the most promising methods particularly in 

the unsupervised learning category is the use of statistical damage identification by 

means of the Mahalanobis Squared Distance (MSD) based learning algorithm. In the 

more general disciplines such as novelty detection, the use of MSD-based learning 

algorithm is also very popular especially in the parametric statistical approach (as 

opposed to the non-parametric statistical approach) (Markou and Singh, 2003a). 

Compared to other popular damage identification methods such as those based on 

neural network, MSD-based method is generally more advantageous towards 

practical SHM systems which are often associated with the long-term and/or frequent 

Data Acquisition (DAQ) strategies. This is due to the architectural simplicity and 

computational efficiency of the MSD-based learning algorithm (Figueiredo et al., 

2011) making it more suited for dealing with large volume of data often encountered 

in such SHM systems in later monitoring stages. In recent experimental evaluations, 

MSD-based damage identification has also been seen among the most effective 

methods (Worden et al., 2000a; Sohn et al., 2003; Figueiredo et al., 2011; Worden et 

al., 2003; Worden et al., 2000b). Besides its own application, MSD is also closely 

related to the popular Hotelling’s T
2
 control chart and indeed equivalent to the T

2
 

statistic when the subgroup size is set at unity for the latter method (Wang and Ong, 

2008; Farrar and Worden, 2013). In spite of having such wide connection and merits, 

MSD-based damage identification method has however had one “Achilles heel”, that 

is, the requirement of the learning data to be multivariate normal (multinormal) 

distributed. This tends to be more problematic for the cases of employing the 

infrequent DAQ mode or at an early monitoring stage when not much measured data 

is available. To cope with this problem, a so-called Controlled Monte Carlo Data 

Generation (CMCDG) scheme has been derived and reported in one of recent 

publications of the present authors (Nguyen et al., 2014a). Using this scheme, 
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additional data can be produced from a limited number of original observations by 

means of an optimised Monte Carlo simulation process. Such an optimised 

simulation is useful not only to estimate an optimal noise level (which is to provide 

optimal randomness for the outcome data) but also to retain the (outcome) data at a 

reasonable size. Even though this scheme has been intensively tested against a 

sophisticated laboratory dataset, one may still be concerned that the success of using 

CMCDG has only been experimentally proved in a well-controlled testing 

environment. Additional applications towards real infrastructure vibration data are 

therefore in need in order to further evaluate and demonstrate the efficacy of this 

scheme. 

To address this need and further extend the study on CMCDG, this paper presents 

applications of this scheme onto real vibration monitoring data from two actual civil 

engineering (one bridge and one building) structures each of which has been 

considered as an SHM benchmark structure. Of these two structures, the bridge can 

represent for the case of having inadequate quality data and/or infrequent 

measurements while the building represents the case where the data shortage issue 

occurs at an early monitoring stage. To overcome such a data shortage problem in 

either case, the CMCDG scheme is applied to the original learning data in order to 

generate well-conditioned synthetic data and therefore numerically stable 

(computational) system realizations. Besides utilizing two existing assessment 

indices in CMCDG, this study also employs statistical sensitivity analysis of the 

testing MSD computation using representative generated datasets to further validate 

the efficacy of CMCDG. The outcome of these applications reconfirms that the 

CMCDG scheme is able to help overcome the data shortage problem and enhance the 

reliability of the MSD-based damage identification method. The layout of this paper 

is as follows. The next section provides concise theoretical descriptions of the MSD-

based damage identification method and the CMCDG scheme. The benchmark 

structures and their datasets used in this study are then briefly described. In the last 

two sections, detailed analyses and discussions are first provided before the key 

issues and findings are summarised in the conclusion. It might be worth noting that 

the scope of this research is currently restricted to level 1 of the damage identification 

hierarchy, that is, to identify the presence of damage. However, as the problem of 



 

136 Chapter 7: Field Validation of Controlled Monte Carlo Data Generation Scheme for Statistical Damage 

Identification Employing MSD 

false indications has persisted fairly significantly at this level in the prior studies 

(Figueiredo et al., 2011; Gul and Catbas, 2009), the present authors believe that 

enhancing the accuracy of this phase is still very crucial besides addressing problems 

of the higher damage identification levels. 

7.2 THEORY 

7.2.1 MSD-BASED DAMAGE IDENTIFICATION 

There are two main types of data used in a statistical damage identification process. 

In general, the primary (or raw) data acquired by sensors is not directly used but is 

transformed into a (damage sensitive) feature which then become the input data for 

the learning algorithm. Since this transformation process is often conducted by means 

of data compression methods such as modal analysis or time series modelling, feature 

data is often in a much lower dimension. The most popular features in SHM include 

the vectors of modal parameters or auto-regressive coefficients amongst others. 

Suppose that a training feature dataset consists of p variables and n observations. If it 

approximates a multinormal distribution, this dataset can be represented by the 

sample mean vector ( x ) and the sample covariance matrix (S). Next, each feature 

observation ( ix ) for either training or testing purposes will be converted into a 

damage index in the form of distance (i.e. MSD) measure ( id ) as follows 

 )(S)( 1 xxxxd i

T

ii  
 (7-1) 

Here, the mean and covariance are also the two representatives for the realization (of 

the MSD computational system) by the given dataset. This point is emphasized as 

there will be a large number of synthetic datasets (and therefore system realizations 

as well as their representatives) generated in the CMCDG process. In the damage 

identification context, the mean and covariance should be formulated as an exclusive 

measure, or in other words, consisting of no potential outlier from the testing phase 

(Worden et al., 2000a). After computing all training distances, the assumption of a 

multinormal distribution again allows the estimation of the threshold from the basis 

of chi-square distribution for the training distances (Farrar and Worden, 2013). It is 

because under such an assumption, one can specify a statistical threshold for the 
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distances based on a distribution quantile or equivalently a confidence level 

(Filzmoser et al., 2005; Farrar and Worden, 2013). In the testing phase, whenever a 

new observation comes, its corresponding distance can then be used to compare 

against the threshold to determine whether it corresponds to a normal or damaged 

state. There might be a trade-off in choosing the confidence level: using a high level 

of confidence might not be able to detect a lightly damaged case that is known as one 

class of Type II errors but the least critical. However, such confidence levels can 

assist in avoiding as many as possible false-positive indication of damage (i.e. Type I 

errors) (Farrar and Worden, 2013). In this study, one of such high levels (i.e. 99%) 

will be used in the application. 

7.2.2 CMCDG 

The CMCDG scheme proposed is an enhanced version of the conventional Monte 

Carlo data generation scheme which has been frequently used in the MSD-based 

damage identification context (Gul and Catbas, 2009; Worden et al., 2002; Worden 

et al., 2000a). In both schemes, the shortage of the data is compensated by the 

provision of statistical replications of each initial observation by means of Gaussian 

noise (Nguyen et al., 2014a). However, the core components of the CMCDG scheme 

that make it more advanced than the conventional scheme are two data condition 

indices and a robust probability based evaluation procedure used to obtain robust 

statistical measures for either index. Of the two indices, the (two-norm) condition 

number (COND) of the covariance matrix is intended to monitor potential 

computational instability associated with the use of the inverse of the matrix 

component in the equation (7-1). On the other hand, the second index is the Root 

Mean Square Error (RMSE) between the theoretical and actual beta Quantile-

Quantile (Q-Q) plots of each dataset generated during CMCDG process. By running 

a sufficiently large number of data generation simulations, the relationships between 

the commonly-used robust probability measures (of either index) such as median and 

Inter-Quartile Range (IQR) and the variable such as the noise level or the replication 

size can be constructed. The user is then able to use the convergence of these 

statistical measures to determine the optimal value for each of the two variables. The 

theoretical bases of the CMCDG scheme and the probability convergences of COND 

and beta Q-Q RMSE have been proved under the regulation of two well-known 
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theorems, i.e. Central Limit Theorem (CLT) and the Law of Large Numbers (LLN). 

Details of these can be found in the first paper of the CMCDG scheme (Nguyen et 

al., 2014a). Since its target is the enhancement of learning data multinormality, 

CMCDG can also be considered as a (multivariate) data normalization scheme with 

the focus on the Gaussian-type prerequisite for the learning process. Although it has 

such desirable features, it should be noted that CMCDG may only be in need for 

novelty detection methods (as well as associated damage identification methods) in 

the parametric statistical approach which are often formulated from the multinormal 

data assumption (Markou and Singh, 2003a). Methods from other approaches such as 

multivariate exponentially weighted moving average have been shown to have higher 

tolerance to non-multinormality and then utilize simpler normalization schemes such 

as data shuffling to overcome the related impact (Wang and Ong, 2010). 

7.3 DESCRIPTION OF BENCHMARK STRUCTURES AND THEIR DATA 

STATUS 

7.3.1 SMC BENCHMARK STRUCTURE AND DATA STATUS 

 

Figure 7-1 SMC benchmark structure (Li et al., 2014) 

The first benchmark structure of interest is an actual cable-stayed bridge monitored 

by the center of Structural Monitoring and Control (SMC) at the Harbin Institute of 

Technology, China (Li et al., 2014). Opened to traffic in December 1987, this is one 

of the first cable-stayed bridges in mainland China. This 11-meter-width bridge 

consists of a main span of 260 m and two side spans of 25.15 + 99.85 m at each end.  

In 2005 after 19 years of operation, the bridge was found in a rather unsafe condition 

with a mid-span girder and a number of stay cables being cracked or corroded. Along 

with major rehabilitation program undertaken to replace the damaged girder segment 
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and all the stay cables, a sophisticated SHM system (see Figure 7-1) was 

implemented in order to monitor the bridge from the time of its rebirth in 2007. From 

monitoring data of this bridge, the SMC research group has been able to develop two 

SHM benchmark problems: one for stay cable condition assessment and the other for 

bridge girder damage identification. The context for the second benchmark problem 

whose data is used in this study is as follows. In August 2008 that is only 8 months 

after the first complete DAQ after its rehabilitation, the bridge was again found in a 

new deficient structural condition with several new damage patterns in the girders. 

Fortunately, this bridge had been frequently monitored during this short period of 

time and certain distinct difference in modal analysis results could be observed over 

this monitoring period. Sampled at 100 Hz, acceleration data of 12 days was split 

into hourly subsets and made available on the SMC website for participants of this 

benchmark study (Li et al., 2014). In the study herein, only acceleration data recorded 

from 14 accelerometers installed on the deck are used. Part of this databank (i.e. of 

several first days) will be employed as the seed data to be input into CMCDG in 

order to achieve enhanced data for MSD-based learning process. Usable sets of the 

remaining data will be used for testing purposes. Details of these datasets are 

presented in the data analysis section. 

7.3.2 QUT-SHM BENCHMARK STRUCTURE AND DATA STATUS 

 

Figure 7-2 QUT-SHM benchmark structure 

The second benchmark structure used in this study is the main building with ten 

stories in the Science and Engineering Centre complex at the Gardens Point campus 



 

140 Chapter 7: Field Validation of Controlled Monte Carlo Data Generation Scheme for Statistical Damage 

Identification Employing MSD 

of Queensland University of Technology (QUT) in Australia. The most notable 

feature of this benchmark structure lies at its vibration sensing solution with a 

software-based synchronization method which can be seen as a promising alternative 

for use in vibration monitoring of civil infrastructure. At the lowest level of the 

system, there are only six analog tri-axial and two single-axis accelerometers 

available for use to capture the vibration responses of this structure. As illustrated in 

Figure 7-2, the sensors are located on the upper part of the building (i.e. at level 4, 6, 

8 and 10) which is globally more sensitive to the ambient excitation sources such as 

human activities and wind loads. Acceleration data is sampled at the initial rate of 

2000 Hz and then split into 30-minute subsets for modal analysis purposes. In spite 

of using such a limited number of sensors, the sensing system could detect at least six 

modes with high confidence even under the challenging ambient excitation 

conditions. However, as the development of this sensing system has recently been 

completed, its databank is still limited with most of the data being collected during 

the system implementation phase in late 2013. Such limited data therefore needs the 

assistance from a data generation scheme like CMCDG to enable the health check 

process from an early stage. Details of the implementations of CMCDG onto the data 

of the two benchmark structures are presented in the next section. 

7.4 ANALYSES AND DISCUSSION 

The feature selected for both benchmark study cases is the vector of modal 

frequencies estimated by means of the primary technique of the data-driven 

Stochastic Subspace Identification (SSI-data) family [i.e. SSI-data employing 

Unweighted Principal Component (UPC) estimator] in Output-only Modal Analysis 

(OMA) approach. This selection is made due to the following reasons. First, modal 

frequencies can be more rapidly estimated with higher confidence than other modal 

parameters such as mode shapes (Salawu, 1997). This is particularly meaningful for 

SHM in ambient excitation conditions where mode shape estimation is more 

challenging and time-consuming. Second, primary SSI-data is one of the most robust 

and advanced OMA techniques which can cope well with large volume of data from 

long-term SHM processes (Nguyen et al., 2014b, 2014c). Third, online automated 

frequency estimation is highly possible in practice with the implementation of the 



 

Chapter 7 : Field Validation of Controlled Monte Carlo Data Generation Scheme for Statistical Damage 

Identification Employing MSD 141 

recursive version of SSI-data (Loh et al., 2011). Finally, the modal frequency has 

been proved to be a main damage index at least for level 1 of damage identification 

of several large-scale infrastructure such as  the well-known Z24 highway bridge 

(Brincker et al., 2001). 

To process vibration data from two benchmark structures, the modal analysis 

software ARTeMIS Extractor Pro version 5.3 developed by Structural Vibration 

Solution A/S is used to implement the primary SSI-data technique. Concise 

descriptions of theory and usage for this technique can be found in several prior 

papers of the present authors (Nguyen et al., 2014b, 2014c). SSI-data configurations 

and analysis results for each structure are presented in the following sub-sections. 

7.4.1 SMC VIBRATION DATA 

 

Figure 7-3 SMC bridge model in ARTeMIS Extractor software 

For the sake of simplicity, the bridge is modelled, as illustrated in Figure 7-3, mainly 

with the main span (260 m) and the two larger side spans (99.85 m each) where 14 

single-axis accelerometers were deployed. Checking across multiple datasets of this 

structure has revealed that one of these accelerometers (as circled in Figure 7-3) was 

out of order but the data from the remaining sensors are still adequate for modal 

validation (see the analyses later). Also as they are found to be either mostly 

collected in poor excitation conditions or lacking in the stability along the 

consecutive sets, data from three days (31 May, 2008; 7 and 16 June, 2008) is 

excluded from the analyses. Besides these days, the problem of excitation has also 
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had certain impact on the other days. Table 7-1 lists number of usable datasets from 

the selected 9 days. Descriptions of data grouping will be detailed later. 

Table 7-1 Selected testing days and usable SMC datasets 

Selected 

testing day 

Date*  Number of usable 

subsets 

Description of feature dataset 

1 01 January 17 Day 1-3: Dataset 1  

(State 1, 52 observations) 2 17 January 19 

3 03 February 16 

4 19 March 12 Day 4-8: Dataset 2  

(State 1, 46 observations) 5 30 March 13 

6 09 April 7 

7 05 May 7 

8 18 May 7 

9 31 July 24 Dataset 3 (State 2, 24 observations) 

[* All within the year of 2008] 

 

The preliminary OMA by SMC group has pointed out certain differences between six 

frequencies (in the range of 0 to around 1.2 Hz) estimated from data collected in one 

of the first DAQ days (17 January, 2008) and those from the data acquired in the last 

DAQ period (31 July, 2008). These differences were assumed to be due to the impact 

of damage discovered in August, 2008 as mentioned by Li et al (2014). With a 

similar assumption, the following analyses in this section are to seek the evidence 

that the usable observations recorded during the first 8 days and the 9
th

 day are likely 

to belong to two separate states hereafter namely states 1 and 2, respectively. To do 

so by means of the primary SSI-data technique, a frequency range of interest and a 

common modal analysis configuration are first required. Owing to small number of 

sensors and unidirectional measurement which hinder the validation of high-order 

modes, a decimation factor of 25 times is applied and the frequency range of interest 

is restricted to between 0 and around 1 Hz to obtain the most accurate modal 

information. By comparing the results of SSI-data of incremental dimensions and  

projection channels, the most stable range of the maximum SSI state space dimension 

is found to be between 120 and 200 whereas that of the projection is from 8 to 11 

channels. Hence, the maximum state space dimension of 160 and the option of 9 

projection channels are first selected as the main SSI-data configuration for the 

vibration data subsets used herein.  
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   Figure 7-4 Detected modes of SMC benchmark structure: (a) State 1 and (b) State 2 

Using the above SSI-data configuration, around six modes may be detected and 

correlated between the two aforementioned states and these can be illustrated in 

Figure 7-4 and Figure 7-5 by using two representative datasets for these two states. 

Of these six modes, four (i.e. modes 1, 2, 5, 6) consistently show up across all 

datasets of two states. The rather low frequency value of mode 5 in Figure 7-4(a) in 

comparison with Figure 7-4(b) is mostly due to the former corresponding to an 

extreme case (see later for detail of frequency comparison). On the other hand, modes 

3 and 4, though consistently well-detected in state 2, are only found weakly excited 

(Figure 7-4) in a limited number of datasets in state 1. This can be seen as the initial 

evidence for the difference between the two states. The corresponding mode shapes 

for the two datasets is presented in Figure 7-5 along with the corresponding Modal 

Assurance Criterion (MAC) for each of the correlated mode shape pairs for the two 

states. It might be worth noting that all of the first five modes which exhibit a 

consistently increasing trend in MAC deviation belong to the vertical bending type 

whilst mode 6 is of a vertical torsion. Compared to the Z24 highway bridge damage 

identification results (Brincker et al., 2001), low MAC values such as 0.83 and 0.62 

(at modes 2 and 5, respectively) can also be seen as truly significant and can therefore 

serve as the second evidence for the difference between the two states. The last 
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evidence for such a difference will be inferred from the statistical screening of 

frequency data in the succeeding paragraph. 

 

   Figure 7-5 Representative correlation between (SMC) mode shapes of two states 

Owing to the absence of modes 3 and 4 in the analysis results from most datasets of 

state 1, the feature data could therefore be established from frequency estimates from 

the other four modes, or in other words, having four variables. For more detailed 

comparisons and validation of CMCDG later, feature data of state 1 is split into two 

sets namely datasets 1 and 2 with 52 and 46 observations, respectively (see Table 7-1 

for more details). Figure 7-6(a), (b), and (c) shows box-plots of these two sets along 

with the third one (of state 2) and one can see that the datasets 1 and 2 are analogous 

to each other. On the other hand, dataset 3 possesses a distinct difference in the 

magnitudes of the first two variables. Even though the third variable experiences 

somewhat opposite change (compared to the other variables), the relative deviation at 

this variable is rather small (only +1.7%) compared to those at the two first variables 
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(both almost 30%) in terms of their median values. A possible reason for the former 

symptom is that the modal frequency of this mode is insensitive to damage but 

slightly more sensitive to some E&O impact in a similar manner as occurred to the 

frequencies of the well-known I-40 bridge at its two first damage levels (Farrar and 

Jauregul, 1998; Farrar and Worden, 2013). Nevertheless, the large reduction in the 

first two modal frequencies and the two prior evidences can be used as the bases to 

confirm the discrepancy between the two aforementioned states. Finally, it might be 

worth noting even though the use of frequencies and MAC values is satisfactory for 

damage occurrence confirmation herein, this type of damage detection methodologies 

is only convenient for the case with limited number of datasets. This is because in 

this approach the analyst would have to check every single feature dataset and 

compare with the others. For the case having many datasets such as in long-term 

and/or frequent SHM systems, this type of examination would become extremely 

time-consuming if not impossible. In this circumstance, the use of MSD-based 

damage identification is advantageous as it can run autonomously computing the 

testing distance whenever a new feature observation is available, comparing with 

threshold and (if larger) giving alarm in a fully automatic manner. Such operation 

and evaluation capacities of the MSD-based method are critical in order to ensure 

timely intervention and decision-making towards civil infrastructure and to 

constantly safeguard the users involved.   
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   Figure 7-6 Characteristics of SMC data and original testing results: (a, b) 

datasets 1 and 2 (State 1); (c) dataset 3 (State 2); (d) beta Q-Q plot of dataset 1; 

and (e) original testing results 

In order to rigorously examine the efficacy of a method in distinguishing any two 

known structural states, the problem should be formulated in the context of 

hypothesis testing with two hypotheses known as the null hypothesis (H0) and the 

alternate hypothesis (H1). In the damage identification context, the null hypothesis is 

often assumed for the case when damage is not present while the alternative 

hypothesis asserts the contrary (Farrar and Worden, 2013). In a probabilistic sense, 

two kinds of errors may be encountered when testing these hypotheses. If the null 

hypothesis is rejected even though it is true, then a Type I (false-positive) error has 

occurred. In contrast, if the null hypothesis is accepted even though it is false, then a 

Type II (false-negative) error has been committed. In a comprehensive hypothesis 

testing program, the probabilities of these two error types can then be estimated 

based on a data distribution under assumption (Montgomery, 2005). However, for the 

purpose of simplicity, no probability computation will be made and the assessment 

process herein will be conducted based merely on direct comparison of the error 

quantities to evaluate the efficacy of CMCDG in assisting the MSD-based damage 
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identification method. Hence, dataset 1 will be used as the original learning data 

while datasets 2 and 3 will be employed for the Type I and Type II error testing 

purposes, respectively.    

To check the degree of multinormality of the original learning data, the beta Q-Q plot 

is employed and the result is shown in Figure 7-6(d). One can see that there is a poor 

agreement between the theoretical and actual lines and this means that this dataset 

needs to be enhanced before it can be used for novelty detection or damage 

identification purposes. As a blind attempt to use this low-quality dataset, the MSD-

based damage identification process is implemented onto the 70 (i.e. 46 for Type I 

and 24 for Type II) testing observations and the testing results are presented in Figure 

7-6(e). A closer look for the (selective) Type I distances in conjunction with the 

threshold can be seen later in Figure 7-9. While no single Type II error is found, Type 

I errors are extremely severe with more than 80% false indications (as shown in 

Figure 7-6(e) with most Type I data points lying above the threshold line). To 

enhance the initial feature data by CMCDG, the optimal Gaussian noise level in the 

Root Mean Square (RMS) sense is first determined by box-plotting COND of the 

datasets generated in each data generation setup and tracking the convergence of the 

median or IQR for multiple setups. Figure 7-7(a) and (b) shows two of such plots of 

COND at different noise levels (from 0.1 to 25%) when running 10,000 simulations 

for the first CMCDG round with two illustrative cases, that is, to generate 9 and 18 

additional blocks of data replication. Note that three different incremental levels of 

noise (i.e. 0.3, 1 and 5 %) are used on Figure 7-7(a) and (b) in order to facilitate 

better displays in different ranges of noise. 
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   Figure 7-7 Results of two simulation rounds in CMCDG for SMC data: 

(a, b) round 1 with COND of 9 and 18 replication blocks; (c, d) round 2 

with COND and beta Q-Q RMSE at noise level of 2% 

As can be seen from Figure 7-7(a) and (b), COND values become significantly small 

and steady after increasing the noise amount by several small steps and become 

essentially unchanged at the noise level of 20%. For ease of the selection of an 

appropriate noise level that corresponds to an essentially small COND (as this level 

might vary significantly from case to case as to be seen later), a so-called 95% 

deviation bounds criterion is established as follows. A COND value is considered as 

essentially small if its deviation from the original COND (i.e. of the original learning 

dataset) is no less than 95% of the COND span. Here, the COND span is the 

difference between the original COND and the COND value that has been considered 

essentially unchanged, that is, corresponding to the noise level of 20% in this case. 

Applying this criterion upon the medians of COND herein, the appropriate noise 

levels are found to be from 2% onward. Therefore, the optimal noise level is set at 

this starting point since the use of higher noise levels tend to reduce the sensitivity in 

detecting lightly damaged states as noted in the initial investigation with CMCDG 

(Nguyen et al., 2014a). Employing this noise level, the second round of simulations 

is operated with the variable being the data replication size and the output being 
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COND and beta Q-Q RMSE. These two results are graphically shown in Figure 

7-7(c) and (d). From this figure, one can find again that COND and beta Q-Q RMSE 

become significantly small and steady from the replication size of around 9 blocks 

onward. This figure is therefore considered optimal replication size to provide quality 

synthetic datasets. 

Using this optimal replication size, well-conditioned synthetic data can be generated 

with the previously selected optimal noise level (2%). Figure 7-8 shows the beta Q-Q 

plot and the hypothesis testing results for a typical one of such datasets when using it 

as a replacement for the low-quality original learning data (i.e. dataset 1). Note that 

the Type I and Type II error testing data are kept the same as earlier (i.e. datasets 2 

and 3 with 46 and 24 observations, respectively). Compared to original results 

reported in Figure 7-6(d, e), substantial improvement in beta multinormality degree is 

undeniable as reflected in Figure 7-8(a) whilst all the testing observations are 

accurately identified with no single error in both testing cases as seen in Figure 

7-8(b). The enhanced learning data has well improved the reliability of MSD-based 

method with respect to the Type I error tests while being able to retain sufficient 

sensitivity to all Type II error testing observations. 

 

   Figure 7-8 (a) beta Q-Q plot and (b) testing results of a typical enhanced (SMC) 

learning dataset 

The earlier problem of having severe Type I errors in the original learning dataset 

(Figure 7-6) is believed to originate from the instability of the realization (of the 

MSD computational system) corresponding to this dataset. This has been actually 

reflected through comparison of COND (in Figure 7-7) since system realizations with 
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larger COND values tend to suffer from more severe computational instability as 

previously mentioned. To illustrate this in a more direct manner in MSD-based 

damage identification process, the robustness of the original computation system 

realization (i.e. by original learning dataset) with respect to the perturbation of the 

Type I error testing observation will be assessed against that of the realization by the 

(typical) enhanced dataset shown in Figure 7-8. Note that this type of assessment is 

commonly known as sensitivity analysis which is often used to test the robustness of 

a mathematical model or system in the presence of input uncertainties (Saltelli et al., 

2008; Pannell, 1997). Projecting this onto the problem herein, the desired realization 

(by an appropriate dataset) of the MSD computation system should be as robust as 

possible against the presence of inherent perturbation (of the testing observation) that 

may be induced from measurement or data compression phases. Based on this fact, 

the aforementioned comparative assessments between the original and enhanced 

datasets are objectively realized by means of the same input (i.e. each of 46 Type I 

error testing observations), the same magnitude of its statistical perturbation and once 

again the Monte Carlo simulation in a similar fashion that is used in CMCDG. 

Specifically, the perturbation level is selected as 2% with respect to the RMS of each 

investigated observation. Then, 10,000 simulation rounds for the perturbation 

application and the MSD computation are operated and the corresponding original 

testing distance and its (10,000) variants are box-plotted in Figure 7-9 for the both 

original and typical enhanced datasets. Note that due to the paper display limitation, 

only 12 selective cases (out of a total of 46 testing observations) are reported in this 

figure for either dataset. Compared to those obtained from the typical enhanced 

dataset, the fluctuations of the Type I distances computed from the original dataset 

are significantly (i.e. 10 to 15 times) larger. Further, compared to the magnitude of 

the threshold, these fluctuations are also truly severe as seen in Figure 7-9(a). Such 

large fluctuations indicate that it is highly likely that the realization of MSD 

computational system by the original dataset is in a significantly ill condition and the 

computational results are unreliable. On the other hand, the marginal fluctuations in 

Figure 7-9(b) show that the robustness of the computational system has been 

considerably enhanced through the use of a dataset generated from an optimal 

CMCDG configuration. Further checks with other datasets generated by succeeding 
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CMCDG configurations have confirmed the robustness convergence for this 

configuration but the detailed results are not shown to save space. 

 

   Figure 7-9 Impact of input perturbation on (SMC) MSD computation: (a) original 

learning dataset and (b) typical enhanced learning dataset  

7.4.2 QUT-SHM VIBRATION DATA 

As mentioned earlier, as the full monitoring program for this benchmark structure has 

recently been started, its databank is still limited with 100 subsets at the time of 

processing data for this paper. Of these subsets, most (64 subsets) were collected 

during the system development phase in late 2013 and the remaining (36 subsets) 

were collected in January, 2014. Using an optimal SSI-data configuration similar to 

the one used for the SMC data, up to seven modes could be estimated as illustrated in 

Figure 7-10 for one representative data subset. Nevertheless, only six of the modes 

(i.e. modes 1-5 and 7 as typically animated in Figure 7-11) are usable for the purpose 

of continuous modal tracking. The exclusion of mode 6 is due to the inconsistency of 

modal estimation at this particular mode across different datasets recorded under 

different E&O conditions. As it is a weakly-excited mode (i.e. not corresponding to 

an obvious peak as seen in Figure 7-10), mode 6 can be only properly estimated when 

the signal quality is in fairly good condition. To implement the hypothesis testing, the 

modal frequency data (of the six usable modes) obtained from the two 

aforementioned portions of the QUT-SHM databank is used to establish the original 

learning and testing datasets with 64 and 32 observations, respectively. The boxplots 

of these two datasets, as presented in Figure 7-12(a) and (b), first show that their 

magnitude distributions are in excellent agreement with each other. Another 

supporting evidence is that the mode shape agreement across the two sets is very high 
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with MAC values being frequently higher than 0.9. It is therefore sensible to assume 

that these two datasets belong to only one structural state. Since no data from another 

structural state is available with this newly-constructed building, the hypothesis 

testing is restricted merely to the Type I error tests. 

 

   Figure 7-10 Detected modes of QUT-SHM benchmark structure 

 

 

   Figure 7-11 Mode shapes of six usable modes of QUT-SHM benchmark structure 
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Using the same investigation procedure that has been done for the SMC data, the beta 

Q-Q plot of the original learning data and the Type I testing are conducted for the 

QUT-SHM data and the results are shown in Figure 7-12(c) and (d). One can see that 

the agreement between the actual beta Q-Q plot and the theoretical line in this case is 

slightly better than that of the SMC data. This is reflected by the fact that most of 

data points in Figure 7-12(c) stay closer to the theoretical line than those data points 

of the SMC case presented in Figure 7-12(d). The Type I error still comes across but 

the rate is significantly smaller (than that of the SMC case) with just over 10% false 

positive detection as illustrated in Figure 7-12(d). To see whether CMCDG could 

further improve this situation, the same simulation process as for the SMC data is 

conducted and the results of two simulation rounds in CMCDG are reported in Figure 

7-13. Applying again the previous criterion of 95% deviation bounds, the optimal 

noise level is found at 0.6% and the convergence trends around this level are 

illustrated in Figure 7-13(a) and (b) the for two replication sizes of 7 and 14 blocks, 

respectively. Employing this noise level and tracking the convergence of both COND 

and beta Q-Q RMSE from Figure 7-13(c) and (d), one can again select the optimal 

replication size at 9 blocks. Compared to the optimal noise level (2%) of the SMC 

data, the optimal level in this case is considerably smaller and a possible reason for 

this symptom is that the original QUT-SHM learning dataset has better 

multinormality than that of the SMC bridge structure. This has in fact been reflected 

through the previous comparison of multinormality degrees (based on the beta Q-Q 

plots) between two original datasets of the two cases.   
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   Figure 7-12 Characteristics of QUT-SHM data and original testing results: (a) original 

learning dataset; (b) testing dataset; (c) beta Q-Q plot of original learning dataset; and 

(d) original testing results 

 

   Figure 7-13 Results of two simulation rounds in CMCDG for QUT-SHM data: 

(a, b) round 1 with COND for 7 and 14 replication block cases; (c, d) round 2 with 

COND and beta Q-Q RMSE at noise level of 0.6% 
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For further checking purposes, well-conditioned synthetic datasets are generated by 

the optimal CMCDG configuration (i.e. noise level of 0.6% and replication size of 9 

blocks) previously estimated. Figure 7-14 shows the beta Q-Q plot and the Type I 

error testing result for a typical one of such datasets whilst Figure 7-15 reports the 

impact of input perturbation on Type I distance computation based on the same 

sensitivity analysis procedure as previously conducted for the SMC data. For the 

latter figure, twelve of the testing observations (i.e. one every three) are selected to fit 

the paper display space. Once again, improvement can be found for both 

multinormality and Type I error testing results while the stability of the 

computational system has been typically improved by 610 times by the data 

optimally enhanced by CMCDG. These results reconfirm the efficacy of the CMCDG 

scheme in enhancing the condition of learning data and the corresponding 

computational system realization so that more reliable damage identification outcome 

can be achieved. Besides, since there is no significant change in the magnitudes of 

the thresholds between the original learning data and the enhanced data in both SMC 

(Figure 7-9) and QUT-SHM (Figure 7-15) cases, it can be concluded again that 

CMCDG does not significantly change the magnitude of feature data as noted in the 

initial study of this scheme (Nguyen et al., 2014a). Instead, its effectiveness has 

mainly come from the provision of synthetic observations which are randomly 

distributed against the original data as led by CLT and LLN theorems and this has 

been reflected through the irrefutable convergence trends of both COND and beta Q-

Q RMSE as previously shown. With the successful applications in two real civil 

engineering structures herein, the CMCDG scheme can be considered to be 

successfully validated by field test data. 
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   Figure 7-14 (a) beta Q-Q plot and (b) testing results of a typical enhanced 

(QUT-SHM) learning dataset 

 

   Figure 7-15 Impact of input perturbation on (QUT-SHM) MSD computation: 

(a) original learning dataset and (b) typical enhanced learning dataset 

7.5 CONCLUSIONS 

This paper has presented the field applications and validations for the CMCDG 

scheme recently derived to assist the MSD-based damage identification method to 

cope with the problem of data shortage which can cause inadequate data 

multinormality and unstable MSD computation. To do so, two benchmark SHM 

structures are used in which the bridge represents for the case of having infrequent 

and/or inadequate quality measurements while the building represents the case where 

the data shortage problem occurs at an early monitoring stage. Owing to limited 

availability of actual observations, the original learning dataset of either case has 

been revealed to be in such poor multinormal distributions that require the data to be 

enhanced before it can be reliably used for the MSD-based damage identification 

process. It has also been shown that a blind attempt to use these low-quality data may 
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result in a significant rate of false positive errors and the severity of this type of errors 

tends to be proportionate to the poorness of the data multinormality. However, with 

the enhancement from CMCDG, these problems have been shown to be effectively 

mitigated. Under optimal data generation configurations derived in CMCDG, well-

conditioned synthetic data for the learning process has been generated with 

remarkable improvements in multinormality degree as well as MSD computational 

stability. The latter has been critically assessed not only with regards to the initial 

condition of computationally unstable dataset via COND as in the original work in 

CMCDG but also with respect to the consequent impact of using such a dataset on 

the testing results. The ultimate outcome of the applications of CMCDG to the field 

data herein has reconfirmed that CMCDG is able to overcome the poor data 

multinormality problem in general and data shortage issues in particular. Under such 

valuable assistance from CMCDG, the MSD-based damage identification method 

can deal more effectively and reliably with SHM data recorded from infrequent 

monitoring mode, right after the completion of the sensing system or even from 

unfortunately short-lived structures.  Finally, since the appropriate noise levels tend 

to vary from case to case depending on the multinormality degree of the seed data as 

illustrated with two examples herein, the dynamic structure of CMCDG has 

apparently made it well adaptive to any data seed with any (original) distributional 

condition. 
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8.1 SUMMARY AND CONCLUSIONS 

Long-term and frequent vibration monitoring has been seen one of the most suitable 

approaches that can achieve a timely decision-making process concerning the health 

status of civil infrastructure including the emergency cases such as possible structural 

failures. The fact that the tragic collapse of the I-35W Bridge in United States in 

2007 occurred in only three months after its most recent inspection has strongly 

supported this argument. However, implementing such a system in practice is not 

always feasible due to many obstacles such as the large scale of actual structures, 

tight budgets, uncertainties of new sensing technologies and ineffective applications. 

To tackle these problems altogether, this research program has devoted itself towards 

the development of a practical and reliable synthetic SHM system with two core 

subsystems namely sensing system and level-1 data-based safety evaluation system. 

Two vibration sensing technologies namely the SHM-oriented WSN and the Ethernet 

distributed DAQ platforms have been considered for further improvement before 

they can be fully accepted into the system. At first, a flexible semi-complete data 

synchronization scheme to enhance the SHM-oriented WSN efficiency has been 

derived and then evaluated by means of simulated DSE applied on measured 

vibration data from two large-scale civil structures. Targeting a cost-effective and 

flexible sensing solution for continuous vibration monitoring of critical civil 

infrastructure, the Ethernet-based sensing development work has been realized with 

multiple cost-effective solutions not only at sensor and DAQ levels but also in the 

synchronization aspect. Instead of using costly conventional synchronization 

hardware modules, another inexpensive software-based data synchronization scheme 

has been derived based on the previous semi-complete data synchronization 

methodology with adaptation to utilize the TCP/IP communication technology 

available in the Ethernet connection. To overcome the inherent influence of variable 

E&O factors, a daisy chain data selection scheme has been derived to assist the 

statistical assessment work in evaluating the impact of remaining initial DSE in this 
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wired sensing system. On the side of safety evaluation components, intensive 

investigations have first been carried out to assess the impact of the remaining DSE 

on the main modal properties as well as the robustness of the primary SSI-data 

technique and its auxiliary tools such as data merging  or channel projection. Also 

uncovered was the weakness of the MSD-based method due to its difficulty in 

satisfying the requirement of data distribution at an early monitoring stage or during 

short-lived SHM programs. A data generation scheme termed as CMCDG has then 

been proposed as a prescription for such an illness. Applications not only onto a 

sophisticated laboratory dataset but also onto ambient structural responses of an 

actual bridge have been used for validation purposes. Based on the outcomes from 

extensive evaluations of the above enhancements and new developments, the main 

findings of this thesis are as follows  

 It is feasible to use flexible semi-complete data synchronization schemes for 

not only SHM-oriented WSNs but also Ethernet-based wired DAQ systems 

when these measurement systems are used for large-scale civil structures. In 

the SHM-oriented WSNs, such a scheme has been demonstrated (in Chapters 

3 and 4) by simply deactivating the resampling process in the every leaf node 

and permitting a controllably relaxed DSE level within a sampling period. In 

the Ethernet distributed DAQ platform, the scheme can be realized by 

utilizing the TCP/IP communication medium to achieve the quality timing 

coordination as well as to effectively cut off the accumulation of jitter-related 

error. In this research, while the feasibility of the former scheme was 

confirmed by negligible modal results for low frequency ranges such as 010 

Hz (Chapters 3 and 4), the latter data synchronization scheme has been well 

developed and fully validated in Chapter 5 thereby providing a promising 

alternative for use in actual large-scale civil infrastructure. 

 Along with the above novel synchronization solution for the Ethernet 

distributed DAQ platform, an actual cost-effective and flexible sensing 

system has been developed in Chapter 5 to further illustrate the practicality of 

the synthetic SHM system targeted in this research. The Ethernet distributed 

DAQ platform has been found rather ideal for overcoming difficulties 

associated with the large or sparse measurement coverage problems which are 
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oftentimes encountered in practice. By carefully selecting the type and 

optimal positioning for the sensors, number of required vibration sensors can 

be kept minimum while. The daisy chain data selection scheme proposed in 

Chapter 5 has also been shown to be a good tool for cooperating with 

statistical assessment for the purpose of in-situ evaluation of data 

synchronization methods in the inherent presence of E&O factors.  

 For the purpose of cost-effective long-term and frequent SHM, ambient 

vibration monitoring should be adopted where possible. In order to do a 

quick-check on whether an ambient loading condition is suitable for such a 

purpose, a pilot vibration test can be easily and economically conducted using 

a portable measurement system (such as a SHM-oriented WSN) before a 

permanent sensing system can be designed. The information obtained from 

such a preliminary test can then be used for selection of suitable sensor type 

(as illustrated in Chapter 5) and optimal sensor positions  

 OMA techniques in general and the FDD and SSI-data families in particular 

have become rather mature convenient technologies for vibration analysis. 

Compared to FDD, SSI-data techniques are more advantageous when dealing 

with closely spaced or repeated modes and when implementing the automated 

modal identification process. The FDD technique is previously known for its 

advantage of working directly with spectral peaks and therefore being very 

robust against noise-type uncertainties including DSE. In this regard, the 

robustness of the primary SSI-data technique can, as reflected in this research, 

be more or less the same as that of FDD when it is assisted by appropriate 

channel projection options and PoSER data merging method. The PoSER 

data merging method, though being more time-consuming in the case of using 

a large number of multiple setups, has been found more robust against DSE 

than the PreGER counterpart particularly with the modes that are not well 

excited. For the channel projection problem, it should be noted that using a 

small number of projected channels may denoise more effectively for some 

modes but the associated risk is that more spurious computational modes may 

arrive. In this issue, using multiple adjacent projection setups as mentioned in 
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Chapters 5 and 7 can assist in finding the most stable projection setup as well 

as to distinguish the spurious modes from the genuine ones. 

 As the outcome of OMA technology, output-only modal parameters are 

convenient health-representative and damage-sensitive features particularly 

for long-term and frequent monitoring purposes. Compared to mode shapes, 

modal frequencies are more robust with respect to DSE as well as to other 

E&O factors and therefore deserve to be one of the main level-1 damage 

indices. On the other hand, the impact of initial DSE on mode shapes is in 

general predictable and can therefore be compensated for the purpose of 

maintaining the accuracy of further applications to this type of features. 

 Owing to its architectural simplicity, MSD-based statistical damage 

identification can be amongst the most computationally efficient methods and 

tends to be immune to the uncertainties of learning architectural assumptions. 

Such advantages make MSD-based method one of the best candidates for the 

purpose of long-term and/or real-time safety evaluations. MSD-based method 

has however had a major weakness associated with its requirement of data 

distribution. If a learning dataset has a low multinormality degree, its 

computational system realization will suffer from severe computational 

instability which can, as reflected in Chapters 6 and 7, lead to unreliable 

damage detection outcome. In this regard, the ultimate assistance from the 

CMCDG scheme proposed in Chapter 6 has been shown to be able to assist 

the MSD-based method to overcome the problem and achieve satisfactory 

damage identification outcome. Not only should COND and beta Q-Q 

plot/RMSE be employed to examine the multinormality degree of the input 

data, but statistical sensitivity analysis should also be frequently used as 

demonstrated in Chapter 7 to evaluate the robustness of the MSD 

computational solution. Such computational checks ensure the SHM system 

will yield reliable outcome of structural health.   

 The dynamic structure of CMCDG has made it well adaptive to any data seed 

with any primary distributional condition. Compared to the traditional Monte 

Carlo data generation approach, the CMCDG scheme has several important 
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advantages. First, the noise level and replication size are determined in a 

controlled manner in which the former can be optimally estimated while the 

latter can be kept at minimum. This way, not only the synthetic database can 

attain the sufficient multinormality degree but it also can have a modest size. 

The database may therefore be capable of being implemented along with the 

MSD-based method in embedded diagnostic systems such as SHM-oriented 

WSNs which generally have very limited computational resources.  

With the above validated developments and enhancements, the developed synthetic 

SHM system is expected to operate efficiently and reliably in every monitoring stage. 

The cost-effectiveness and flexibility of the two targeted vibration sensing platforms 

(SHM-oriented WSNs and Ethernet distributed DAQ systems) have been enhanced 

by not only effective solutions of sensor type, sensor placement and peripheral DAQ 

but also by novel inexpensive and flexible data synchronization schemes. Reliability 

and efficiency of the safety evaluation system have been improved through (i) robust 

and reliable feature extraction by means of powerful primary SSI-data with valued 

cooperation of the PoSER data merging method as well as useful channel projection 

scheme; (ii) computational efficiency of MSD-based damage identification for 

dealing with large volume of data in later monitoring stages; and (iii) the valuable 

optimal assistance from CMCDG and its versatility in enhancing the computational 

reliability of the MSD-based method under adverse circumstances like at an early 

monitoring stage. Using the Ethernet-based sensing system developed in Chapter 5, 

the instrumented building at QUT can serve as a flexible benchmark structure not 

only for vibration-based health monitoring problems but also for more novel 

synchronization solutions. Building vibration data is being continuously collected 

and analyzed under different E&O conditions to construct representative databases 

for tracking the health status of the structure by means of the level-1 safety evaluation 

paradigm developed herein. 

8.2 FUTURE WORK  

Although the present research program has carried out intensive investigations, 

developments and validations in the areas of vibration sensing, feature extraction and 

damage identification technologies; the proposed subsystems have been restricted to 
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on-module timebase, output-only modal properties and within the level-1 assessment 

paradigm employing MSD-based unsupervised damage identification method. In 

order to build more comprehensive damage diagnostic system as well as more 

effective sensing measurement systems, additional research may be extended based 

on the achievements in the present research. Recommendations for future work 

include the following. 

 Employing FPGA timebases for data synchronization in Ethernet distributed 

DAQ system: Besides the input module, each FPGA has its own timebase 

which can be used to provide controlling of peripheral sampling process. This 

option will be investigated in future. 

 Real-time or near real-time output-only frequency estimations: The recursive 

version of SSI-data is capable of conducting online automated frequency 

estimation. This way, the SHM system can work autonomously without user 

interaction. Another way is to use the powerful SSI-data family in the batch 

mode to achieve near real-time manners. 

 Level-2 damage identification: After a damage occurrence is confirmed by 

level-1 methods such as the MSD-based herein, narrowing down the damage 

location is often desirable. In this regard, using signal-based features such as 

those based on AR, ARMA and wavelet coefficients or mode shape related 

features such as the Coordinate Modal Assurance Criterion (COMAC) can do 

the job to some extent. In the case of the latter, as COMAC tends to be 

sensitive to E&O impact present in ambient vibration data, a robust statistical 

program should be developed for the purpose of outlier screening. In the case 

of the former, robust data normalization or transformation schemes are often 

in need to be constructed to eliminate the (instantaneous and/or long-term) 

non-stationarity and measurement noise particularly when they are at severe 

levels. As they are often in the multivariate data type, signal-based features 

would still need statistical unsupervised learning techniques such as MSD-

based or AANN-based techniques to deal with E&O factors. 
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 Damage identification at higher levels: Estimating damage extent, though 

theoretically feasible through the application of supervised learning, is often a 

very challenging task as the data of damage states is often unavailable 

beforehand. One common way to overcome this problem is to use the 

(experimentally) updated FE model of the structure with simulated damage 

scenarios. Even though it is often said that the simulated damage by no means 

can be the same as actual damage, the rapid development in FE modelling 

technologies has continually led to advanced material models that could 

reflect more closely actual damage mechanisms. As for the QUT-SHM team, 

the FE model of the P block after being correlated with the as-built drawings 

will continue to be updated with experimental modal parameters as estimated 

in Chapter 5 before different damage scenarios can be simulated for the 

purpose of supervised damage identification validation. 

 Efficacy of CMCDG towards other unsupervised (and also supervised) 

damage identification methods: Although other unsupervised damage 

identification methods such as AANN and factor analysis do not require 

multinormal data, they still tend to require a sufficiently large number of 

random observations (of what the actually measured data may just be a 

fraction) to reach a stable point in the training process. In this sense, the 

CMCDG can also be used to generate synthetic random data for such a 

purpose. It may therefore be desirable to investigate the efficacy of CMCDG 

or its optimal configuration for each method. One can also see that this issue 

can be extended to the supervised methods as long as they use multivariate 

data. 
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Appendices 

APPENDIX A: FLOWCHART OF MSD-BASED DAMAGE IDENTIFICATION 

EMPLOYING CMCDG 
‡‡

 

 

                                                 

 
‡‡^^ For quality ambient vibration feature extraction, it is suggested that (Structural Vibration Solutions 

A/S, 2011; Cantieni, 2005): 

(1) minimum time history data length be between 1000-2000 times the fundamental period 

(2) sampling rate be at least three times the highest frequency of interest 

(3) data condition be checked in time domain for clipping, spikes and drop-outs; and in frequency 

domain for excitation quality and/or measurement noise impact. Data with good signal/noise ratio 

will often result in sufficiently clear spectral peaks and the detected modes being well 

corresponding to these peaks (see, for instance, Figures 5.5 and 7.4) 
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APPENDIX B: FUNDAMENTALS OF MONTE CARLO SIMULATION AND 

MONTE CARLO DATA GENERATION  

Monte Carlo simulation 

Monte Carlo simulation (or Monte Carlo method) is generally referred to a procedure to 

solve complex mathematical problems that can be very difficult (or impossible) to be solved 

using closed-form techniques. The method is based on running the model many times as in 

random sampling (Thomopoulos, 2012; Dunn and Shultis, 2011). For each sample, random 

variates are generated on each input variable; computations are run through the model 

yielding random outcomes on each output variable. Since each input is random, the 

outcomes are random. In the same way, they generated thousands of such samples and 

achieved thousands of outcomes for each output variable. Such large number of output data 

can be used to obtain an expectation value for the outcome or its probability distribution. 

Although it had been used previously, Monte Carlo simulation was systematically developed 

by Neumann and Ulam. The method was named after the (Monte Carlo) casino in Monaco 

where Ulam’s uncle often gambled and probability of the success might only be estimated in 

the same way. 

To conduct a Monte Carlo simulation, one will need to define a model that represents the 

population or phenomenon of interest and a criterion to generate random numbers for the 

model. In order to obtain satisfactory outcome, a large stream of random numbers is often in 

need and, due to the expensiveness and sometimes the inconvenience of truly random 

numbers, pseudo-random numbers are often used instead. In MATLAB software, two  

popular functions that can be used for this purpose are “rand” and “randn” (MathWorks, 

2011). While the outcome of the former will be drawn from a standard uniform distribution 

on the open (01) interval, that of the latter will be taken from a standard normal 

distribution. 

Monte Carlo data generation 

Monte Carlo data generation in MSD-based damage identification is actually an adaptation 

of Monte Carlo simulation to compensate the lack of actual multinomal data. Synthetic data 

(for the MSD-based training process) is commonly generated by taking multi-copies of the 

seed data (which can be a single or multiple feature vectors) and applying small amount of 

random Gaussian noise onto each copy (Worden et al., 2000a; Worden et al., 2002). The 

data generation process can be illustrated as follows. 
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Without loss of generality, assume that one has the seed data in the form of a single 1 × p 

feature vector ( pxxx ...,, 21 ) and they wish to apply Gaussian noise of, say, 5% RMS on 

copies of the feature vector to generate n × p synthetic (feature) data, the steps shall include: 

(1) Calculate RMS of the feature vector  

)...(
1 22

2

2

1 prms xxx
p

x   

(2) Copying the feature vector n times and concatenating them consecutively into n × p 

matrix X (with all rows now being identical) 

(3) Creating an n × p (noise) matrix of Gaussian data of 5% RMS of the feature vector. 

Using MATLAB sofware, this can be done by using “randn” function 

),(05.005.0 pnrandnxN rmsRMS   

(4) Adding the noise matrix into the data matrix X to create the synthetic data 

05.0RMSNXY   

The outcome data (Y) can then be used as if they are actual observations as seen in a number 

of prior damage identification studies (Worden et al., 2000a; Worden et al., 2002). 




