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Preface

Why embark on this PhD so late in life? I have always been passionate about
Computer Science, and I did consider a research career on that subject. But then
life decided otherwise, and I had the privilege of working for ECMWF, first as a
software developer and then as a software architect, designing and implementing
systems that would serve the meteorological community. One of this system is
called MARS, and is the largest archive of weather data in the world, holding
several hundreds of petabytes, and delivering data to thousands of users every day.
Such developments were very fulfilling, but I still had research in the back of my
mind. Then came a moment when all my children had left home, and I suddenly
had a lot more time. I therefore decided to do this PhD, with the idea of combining
my work experience with everything I would learn. And here I am.
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Abstract

The European Centre for Medium-Range Weather Forecasts (ECMWF) manages
the largest archive of meteorological data in the world. At the time of writing,
it holds around 300 petabytes and grows at a rate of 1 petabyte per week. This
archive is now mature, and contains valuable datasets such as several reanalyses,
providing a consistent view of the weather over several decades.

Weather analogue is the term used by meteorologists to refer to similar weather situ-
ations. Looking for analogues in an archive using a brute force approach requires
data to be retrieved from tape and then compared to a user-provided weather
pattern, using a chosen similarity measure. Such an operation would be very long
and costly.

In this work, a wavelet-based fingerprinting scheme is proposed to index all weather
patterns from the archive, over a selected geographical domain. The system an-
swers search queries by computing the fingerprint of the query pattern and looking
for close matched in the index. Searches are fast enough that they are perceived
as being instantaneous.

A web-based application is provided, allowing users to express their queries inter-
actively in a friendly and straightforward manner by sketching weather patterns
directly in their web browser. Matching results are then presented as a series of
weather maps, labelled with the date and time at which they occur.

The system has been deployed as part of the Copernicus Climate Data Store and
allows the retrieval of weather analogues from ERA5, a 40-years hourly reanalysis
dataset.

Some preliminary results of this work have been presented at the International
Conference on Computational Science 2018 (Raoult et al. (2018)).
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Chapter 1

Introduction

1.1 Motivation

The European Centre for Medium-Range Weather Forecasts (ECMWF) has been
collecting meteorological information since 1980, and its archive has recently reached
over 300 petabytes of primary data. These data consist of collected observations,
model outputs from operational runs, research experiments as well as projects
from the World Meteorological Organization (WMO) and projects funded by the
European Commission.

ECMWF’s archive is referred to as the Meteorological Archiving and Retrieval
System (MARS) (Raoult et al. (1995); Raoult (1997, 2002); Woods (2006)). This
archive is now mature and provides datasets that cover several decades at hourly
temporal resolutions.

The primary motivation for this research is to identify and implement a novel
way to exploit this wealth of information: the fast retrieval of weather analogues,
i.e. given a weather situation, find efficiently all the past weather situations that
exhibit the same pattern.

Weather analogue is the term used by meteorologists to refer to similar weather
situations. Before computer simulations were available, weather analogues were
one of the main tools available to forecasters. Nowadays, finding analogues in
an archive still requires performing a brute force search: this entails retrieving
data from the archive and compare them to a user-provided input, using a chosen
similarity measure such as the Euclidean distance. Such an operation is time-
consuming and costly on large archive systems as data will typically have to be
recalled from a tape system.
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With the advent of the Internet and commercial search engines such as Google
or Bing, users are now expecting their queries to be answered immediately, or at
least at a speed that allows interactive use without any delay (Nielsen (2009)).
Furthermore, as these search engines automatically correct spelling mistakes and
consider synonyms in their algorithms, users also expect results from approximate
queries. The purpose of this work is to implement a system that can, given a user
query describing a specific weather pattern, return the list of dates at which a
similar weather situation happened.

Typical queries would be, for example:

• a cold spell or a heatwave;

• heavy precipitations over a given location;

• strong winds;

• a low pressure system.

Queries should therefore consist of which meteorological phenomenon to consider,
its intensity and location. There are many use cases for which such a system would
be useful:

• a forecaster would like to know, given today’s meteorological situation, when
did similar weather occur, and how did it evolve;

• a researcher would extract from the archive all the wind storms as input to
their research;

• a model developer studying model errors would be interested in knowing if
their model exhibits the same behaviour for similar weather regimes (e.g.
systematic biases);

• a journalist would like the list of past heatwaves for an article that they are
writing.

1.2 Aim of the research

This research aims to implement an efficient system to identify weather analogues
in ECMWF’s archive, with the following requirements:

• the system should be queryable: given a user-provided query, the system
should return the most similar weather situation from the archive;
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• the system should be fast: replies should be perceived by users as instantan-
eous, allowing interactive use;

• newly archived data should be added to the index, without the need to
retune/retrain the system.

To achieve this aim, we will be defining a fingerprinting-based algorithm to index
weather patterns. Queries would be done by computing the fingerprint of the query
pattern, then comparing them to the index. The fingerprinting scheme should be
such that:

• fingerprints are several orders of magnitude smaller than the original data,
so it can be stored in an efficient data structure in memory and/or disk;

• similar weather patterns must have similar fingerprints: queries will be run
by comparing fingerprints, and distance between fingerprints must reflect
distances between weather situations.

This process is similar to what the popular music identification program “Shazam”
is doing (Wang (2003)). This program uses the microphone of a mobile device
to captures a few seconds of the music being played in a room, then computes a
fingerprint from this sample, which is in turn used to look up the song name in a
database.

For this to work, the fingerprint must be small, so that the index can be kept on
disk, and the fingerprints must capture the broad features of the pattern while
being insensitive to small changes. Preferably, there should be a similarity metric
(distance) between the fingerprints that preserves the distance between the weather
patterns. As for “Shazam”, it should be possible to query the system by providing
examples.

The objectives of this project are therefore the following:

• Find an efficient fingerprinting system. Efficiency here means that the com-
putation of fingerprints is fast, the resulting fingerprints are small, they can
be compared quickly and they can be stored in an efficient data structure.

• Define a measure of the effectiveness of the fingerprinting method. Part of
the research is to find a fingerprinting method that is as accurate as possible,
i.e. that returns the “closest” matching weather according to some agreed
similarity measure. An objective metric must be defined that can be used to
compare various fingerprinting schemes and their parametrisation. This met-
ric must consider, for each fingerprinting scheme, how the distance between
two fingerprints relates to the distance between two weather situations ac-
cording to the agreed similarity measure.
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• Implement an interactive query system. Users should be able to query the
system interactively. This poses the challenge as to how users can effectively
and easily describe a weather pattern. This query system should be a web-
based graphical user interface allowing users to “paint” meteorological fields
and visualise resulting matches.

1.3 Goals

The work described in this report is two-fold: first the definition of an efficient
fingerprinting scheme, then the implementation of a query by example user interface
allowing users to interact with the system.

The term field is used to describe a state of a meteorological variable (e.g. wind or
temperature) at a given date and time, over a geographical domain. This concept
is described in details in section 2.1.2. It is introduced here as the term is used in
the following subsections.

1.3.1 Fingerprinting

The first part of this work consists of defining a fingerprinting method that fulfils
the requirements introduced in section 1.2. This research will be looking for a
scheme that can extract some information (a fingerprint) from each meteorological
fields. This fingerprint should be small but should carry enough information about
the original field so that when compared to other fingerprints, it preserves the
relative order of the respective fields.

We will then define a measure of the effectiveness of the fingerprinting scheme.
Such a measure will represent the average retrieval error. We use this measure to
compare various schemes and how they can be parametrised so that the error is
minimised.

Most of the meteorological fields are the results of multi-scale waves patterns, and
their binary representation, when written to a file, compresses well when encoded
in JPEG-2000, a wavelet-based compression scheme. Intuitively, wavelets seem to
be able to capture the main features of fields. This work will therefore be based
on the results presented by Jacobs et al. (1995) and Baluja and Covell (2008),
who use multi-resolution wavelet-based algorithms for image querying and audio
fingerprinting respectively.
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1.3.2 Query by example

The second part of this research will study how users can query the system to
retrieve analogues from the archive.

The fingerprinting method previously described can be tested using existing fields,
for example, today’s weather according to the most recent output of a numerical
model. The fingerprint of the field is computed and matched against the finger-
prints of the fields in the archive.

Although this use case is useful in itself, it is more likely that users of the system
will want to provide their own fields as queries. This can be done by allowing
them to upload the query field, and then having the system returning the nearest
matching analogues. If a user wants to know what are the days in the archive
with a given type of weather, a heatwave or a famous storm, for example, they will
have to know of a date with such a weather situation, retrieve the corresponding
field from an archive and upload it as a query. There are limits to this method, as
it requires that the user has prior knowledge of a date at which a similar type of
weather occurred to the one he or she is interested in.

As part of this work, a method that allows users to describe types of weather in an
interactive fashion will be considered. Users will be provided with a tool to “paint”
the field they are looking for. The painted pattern will be used as a query to the
system, and similar fields will be returned. One of the main challenges of this
method will be to ensure that the user’s input is realistic from a meteorological
point of view, while allowing for sketchy inputs.

Other input methods, such as selecting patterns from a predefined set, or the
provision of a catalogue of weather regimes, will also be discussed.

1.4 Preliminary work

Finding weather analogues in an archive is akin to solving the nearest neighbour
problem in a high-dimensional space. We started our work by looking at how to
address that matter, avoiding a brute force approach.

1.4.1 Space partitioning

We first studied space-partitioning trees (Vaněček Jr (1991), Aref and Ilyas (2001)),
which are data structures that recursively split a multi-dimensional space, usually
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using hyper-planes of that space. The trees are often binary trees, where each
node points to two subtrees, one containing the points that are on one side of an
hyperplane, and the other containing the points in space that are on the other side
of that hyperplane. The root node of the tree represents the whole space.

There are several flavours of such trees, depending on the algorithm used to se-
lect the hyperplanes. We studied amongst others, kd-trees (Bentley (1975)) and
bisecting k-mean (Leskovec et al. (2014)) and PCA-based trees (McNames (2001)).

Searching the nearest neighbours of a point q within a radius r in a space-partitioning
tree consists of visiting the tree starting from the root node and following the nodes
that correspond to the side of the hyperplanes q belongs. When the ball centred
on q of radius r intersects the hyperplane, both subtrees are visited. Searches are
very fast and the number of comparisons is of the order of the dimensionality of
the space considered.

The partitioning algorithms studied varied in complexity and time to build, the
speeds of the lookups, and how balanced and deep the resulting trees are. Although
kd-trees are often deeper than the other trees, but they are the fastest, especially
at high dimensions.

PCA based algorithms are computationally very expensive, especially at creation
time, but create shallow trees.

1.4.2 Space-filling curves

We also considered space-filling curves (e.g. Hilbert curve) as a means to measure
the similarity between two fields. The advantage of these curves is that they
offer a mapping between high dimensional spaces and a 1D number line, therefore
providing a total ordering of the high-dimensional objects, as well as providing a
very simple and fast metric for comparisons (Wang and Shan (2005), Lawder and
King (2000), Liao et al. (2001), Hungershöfer and Wierum (2002)).

The main shortcomings of both space-partitioning trees and space-filling curves
is that they are often expensive to build and contain all the points of the search
space considered, and thus can be very large data structures.

Furthermore, both approaches suffer from the curse of dimensionality (Marimont
and Shapiro (1979)). One way to overcome that curse is to reduce the dimension-
ality of the data considered.
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1.4.3 Dimensionality reduction

There are many techniques to reduce the dimensions of a dataset (Sorzano et al.
(2014),Van Der Maaten et al. (2009)) such as Principal Component Analysis (Pear-
son (1901)), Singular Value Decomposition (Golub and Reinsch (1971)) or Locally
Sensitive Hashing (Indyk (2000)) to name a few, to which we can add autoencoder
neural networks (DeMers and Cottrell (1993), Hinton and Salakhutdinov (2006)).

Wavelets are also used to reduce the dimensionality of data (Bruce et al. (2002),
Gupta and Jacobson (2006), Bruce et al. (2002)).

All these methods introduce a mapping between a high dimensional space into a
much smaller one, by retraining the most important information and discarding
the less important one. This is the property we are looking for when computing
fingerprints and the target space of the mapping can be considered to be the set
of fingerprints of the elements of the original space. Consequently, any of the di-
mensionality reduction techniques can be considered to implement a fingerprinting
scheme.

1.5 Related work

This research spans several disciplines: wavelet-based retrieval systems and query
by example on the one hand, weather analogues and input of meteorological fields
on the other. The amount of literature available for these topics varies a lot.

1.5.1 Weather analogues

Before computer simulations were available, weather analogues were the main tool
available to forecasters. The chaotic nature of the atmosphere made this technique
unreliable, as small differences between two similar weather patterns may lead
to large differences in the following days (Lorenz (1969)). Furthermore, it was
estimated that at a hemispheric scale, similar states of the atmosphere would be
observed every 1030 years (Van den Dool (1994)). Nevertheless, analogues can be
useful on a smaller scale (≈ 900 km in radius, Van den Dool (1989)).

Weather analogues have many usages. They are used for downscaling model out-
puts (Zorita and Von Storch (1999)). Grenier et al. (2013) assess various dissimil-
arity metrics to select climate analogues at geographically distant point locations
(spatial analogues). Delle Monache et al. (2013) complement a current forecast
with past analogues to create probabilistic weather prediction. Evans and Murphy
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(2014) propose a tool to assess the risks of severe weather based on historical ana-
logues. Most of these tools are considering single location analogues, and are based
on climate time-series (e.g. past weather) at that location.

1.5.2 Wavelet-based retrieval systems

As the world is generating more and more data, efficient information retrieval
has become a major challenge, and is therefore a very active field of research.
Information is not only limited to text, but also comprises of images, movies and
sounds. In this research, we will focus on wavelet-based retrieval system.

Walker (2005) provides an in-depth primer on the use of wavelets for scientific
applications. He first introduces the mathematics of wavelets and multi-resolution
analysis. He then presents the use of wavelets for audio and image compression
and denoising, as well as other image processing techniques such as edge detection
and pattern recognition.

Stollnitz et al. (1995a,b, 1996) also present a comprehensive primer of the use
of wavelets for computer graphics. They also introduce the mathematics behind
wavelets and their use for image compression. They then define b-spline based
wavelets that can be used to capture the details of objects such as 2D curves and
3D surfaces. These objects can then be manipulated at a given level of detail
without affecting details at other resolutions: a user could change the general
sweep of a 2D curve while preserving smaller variations.

Shapiro (1993) explains how wavelets can be used to compress and encode images
so that they can be reconstructed incrementally from a stream of bits, e.g. decode
and uncompress on the fly as the image is received from a network.

Do and Vetterli (2002) show how to compute a generalised Gaussian distribution
of the wavelets coefficients of an image. Image registration is then performed by
comparing distributions with the Kullback–Leibler distance. Patrikalakis et al.
(2006) use that work for the retrieval of seafloor sonar images.

Regentova et al. (2000) decompose images into sub-images from which edge and
texture information are extracted using wavelet analysis. Similarities between sub-
images are done by comparing edge and texture for each matching sub-images,
resulting in a bit vector (0 if sub-images do not match, 1 if they match). Images
are considered similar if the Hamming distance between these vectors is above a
given threshold.

Wavelets have been used to retrieve medical images: Traina et al. (2003) ap-
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ply multi-resolution wavelet decomposition to magnetic resonance medical images
(MRI) to extract a feature vector, composed of the various wavelet coefficients; a
database of MRI images can then be queried for similarities by comparing these
feature vectors, using a normalised Euclidean distance. Pauly et al. (2009) also
consider using multi-resolution wavelet decomposition for image registration of
medical images, their purpose being to align images coming from different sources.
Wavelet decomposition is used to extract a wavelet energy map from each image,
which is then compared when performing the registration, and is robust to noise.

Marsolo et al. (2006) propose a wavelet-based system to find similar proteins. For
each protein, they compute a distance matrix between every atom composing
it, thus reducing a 3D structure to a 2D one. They then apply a 2D wavelet
decomposition on the distance matrix, which can be considered as a greyscale
image. From this decomposition, they only retain the top coefficients. They name
the resulting vector global descriptor of the protein. Queries are then performed
on these vectors. They show that this system outperforms a traditional kd-tree
lookup by two orders of magnitude and around 90% accuracy, and also allows the
matching of sub-structures.

Jacobs et al. (1995) propose a system that extracts a small signature from images
before storing them into a database. This signature is computed using multi-
resolution wavelet analysis. To search for an image, a user will provide an approx-
imate sketch of it by “painting” a rough example of the requested image. The
system will extract the signature from the user input and compare it with the
stored signatures. This study shows that this scheme is more performant, both in
speed and success rate, than traditional image retrieval systems based on the Euc-
lidean distance on colour histograms. The work presented in this thesis is strongly
inspired by this paper, as it introduces a system that fulfils all of the requirements
outlined in section 1.2.

Baluja and Covell (2008) use wavelets to extract fingerprints from audio data, to
identify songs of music pieces from short snippets of recordings. Spectrograms
are then extracted from the audio data, at regular time intervals and for different
bandwidths, and then converted into images. Multi-resolution wavelet analysis
is then performed on the images, to extract the top coefficients, which are then
encoded in bit-strings signatures as proposed by Jacobs et al. (1995). These sig-
natures are hashed using a Locality-Sensitive-Hashing (Slaney and Casey (2008)),
for fast retrievals.
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1.5.3 Query by example

As previously mentioned, Jacobs et al. (1995) implement a query by example
system in which users can “paint” a rough outline of the queried image, but this
aspect is secondary to their paper.

Chang and Fu (1980) propose a query by pictorial example: before being indexed
in a database, features such as roads or rivers are extracted from satellite images
using a series of pattern recognition functions. These patterns are then stored in
the database as a series of polygons. Users will then express queries by describing
polygons, using a query language, which will be matched with the stored polygons.

1.5.4 Input of meteorological fields

The literature is very sparse concerning the interactive systems allowing the input
or modification of meteorological fields. This is not due to such systems being rare:
most forecasters’ workstations provide tools to adjust model outputs interactively.
It is mostly because no publications were made describing these systems.

Ruth (1993) proposes such a system for the Advanced Weather Interactive Pro-
cessing System (AWIPS), the forecaster’s workstation of the National Weather
Service, in the USA. The paper describes software that allows forecasters to inter-
actively edit contour lines of an underlying gridded field, before this field is used
as input to a text generation software. The author introduces a method called the
Systematic Interpolative Radial Search (SIRS) to reconstruct a field, i.e. a matrix
of values, from isolines, by radially scanning for the nearest isolines from a given
grid point, and then interpolating. Such a system is used by forecasters to adjust
gridded fields produced by a numerical weather prediction model, in order to take
into account sub-grid features missed by the model, such as the effect of a local
valley.

Carroll (1997); Carroll and Hewson (2005) propose a method to interactively
modify meteorological fields such as surface pressure, geopotential or precipita-
tions. Users can draw an arrow on the screen to indicate how meteorological
features must be adjusted. The system will modify the underlying data in such
a way that the physical consistency between several fields is preserved, e.g. it
will adjust the wind fields in response to changes in the pressure fields, and the
humidity field according to modifications done on the location of precipitations.
It considers how changes affect the fields in three dimensions, as well as in time.
This system is at the heart of the forecaster’s workstation at the MetOffice.
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1.6 Contributions

In the first part of this research, we show that wavelet-based fingerprints which
have been successfully used for image and audio retrieval, can be used to find
weather analogues in a meteorological archive containing hourly fields for a 40
years period, over a predefined geographical domain.

In the process, we introduce a method to estimate the significant distance between
two meteorological fields using hierarchical clustering. We also show that fingerprint-
based distances can themselves be used to perform some clustering on the under-
lying fields.

We show that the distributions of distances between fingerprint are qualitatively
the same as the distributions of distances between fields according to the Euclidian
distance.

In the second part of this work, we propose ways for a user to interactively search
for weather analogues in the archive, using the fingerprints. We introduce a web-
based query by example user interface and discuss various input methods.

We propose a system by which users can “paint” meteorological fields on the screen,
and be presented with matching results. A series of constraints can be applied to
ensure that the user input represents climatologically realistic fields, in a fashion
that does not affect the responsiveness of the user interface. We show that cluster-
ing of results can be used to ensure that results are spread throughout the whole
archive.

Finally, we described the system that had been implemented, its software compon-
ents and its deployment in a cloud infrastructure. The web page developed in the
course of this research will be made available to expert users, such as forecasters
and researchers.
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Chapter 2

Meteorological data

Meteorological data are very varied in type, format, precision, etc. These data
represent a particular weather phenomenon, at a given time (past or future), at a
given location.

Handling this variety is difficult, and processes have been put in place over the
years by the World Meteorological Organization to encode, annotate, exchange and
archive these data. In this study, we will consider data that are already archived
and can be retrieved by attributes, such as date or location. This is the case of all
data available in ECMWF’s MARS archive.

In this chapter, we will introduce the notion of meteorological variable as well
as the notion of meteorological field, and how they are traditionally represented
graphically.

2.1 Nature of archived data

The MARS archive contains two main types of data: observations and model
outputs. Although each of them represents similar information, they are very
different in the way they are created and in their structure.

2.1.1 Observations

The state of the atmosphere is described using several variables that represent
physical quantities or dynamical properties, such as air temperature, air pressure,
wind speed, precipitations, cloud cover, etc. Observations are collected in real-time
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from different instruments (i.e. wind gauges, thermometers, barometers, etc.),
located on different platforms (ships, drifting buoys, satellites, aircraft, balloons…).
Observations are always given within a spatiotemporal reference system (date,
time, location and height).

Every day, hundreds of millions of observations are captured, amounting to hun-
dreds of GB of data. They are exchanged globally for use by numerical weather
prediction systems (NWP), which are models running on supercomputers that
forecast future weather. Observations are also stored in archives for later use, for
example, to study the climatologies of given locations.

Observations are very varied in type, quality, frequency, etc. The unstructured
nature of observations (uneven spatiotemporal distribution), as well as their er-
roneous nature (accuracy of the captor, measurement errors, instrument failures,
etc.), make them difficult to use.

2.1.2 Model outputs

The second type of data is the output of NWP models; they are collections of
fields, one for each variable represented, for a given time and horizontal layer. At
large scales (greater than 10 km), the interactions between the different layers of
the atmosphere are small compared to the effects of large structures and can be
ignored. This is why traditionally meteorologists tend to consider fields as being
2D, their vertical coordinate being an attribute of the field, as is time.

Fields are matrices of floating-point values geographically distributed according
to a mesh (called grid), either global or regional. The grids are sets of regularly
distributed points (e.g. one grid point every 5 km) over a given area. These grids
can be very large, several millions of points per field. The number of fields produced
by an NWP system is also considerable: hundreds of different variables, hundreds
of vertical levels and time steps.

Furthermore, in order to capture the predictability of the weather, these models
are often run as ensembles (Molteni et al. (1996)), which means that the same
model is run many times with slightly different initial conditions, and then the
results are considered in a probabilistic fashion.

As a consequence, meteorological models produce a massive amount of outputs
(many TB per day), much larger than the volume of corresponding observations.
On the other hand, the structured nature of the fields makes it easier to use in
computer programs.
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2.1.3 Analyses

The process that links observations and fields is called data assimilation (Bengtsson
et al. (1981); Ghil and Malanotte-Rizzoli (1991)): starting from a set of fields
representing a “first guess” of the state of the atmosphere (usually a previous
forecast), the process of data assimilation consists in adjusting the values at every
grid point of these fields, to take into account the observed values within a given
spatial and temporal window, as well as possible errors in the observations; this
is done by minimising a cost function, and requires vast amounts of computing
resources.

The output of the data assimilation is then considered the best approximation of
the “truth”, i.e. the best description of the state of the atmosphere based on the
values provided by the observations. This output is called analysis and is used as
the initial step of a weather forecast.

2.1.4 Reanalyses

The data assimilation described previously can be seen as a process that transforms
observations, which are difficult to use in computer programs, into analysis fields,
which are much easier to work with.

Reprocessing past observations in this way will produce a dataset which is known
as a reanalysis. Observations are retrieved from the archives, then put through a
data assimilation system, and the resulting fields are added back to the archive.
Such datasets are very well structured and can be easily processed.

Because the data assimilation software used is unchanged during the creation of
the reanalysis it produces a consistent set of fields representing the state of the
atmosphere over long periods. This is used for studies linked to climate change
(Santer et al. (2004); Frauenfeld et al. (2005)).

Several reanalyses have been produced by ECMWF, including ERA15 (Gibson
et al. (1997)), ERA40 (Uppala et al. (2005)), ERA-Interim (Dee et al. (2011, 2014);
Berrisford et al. (2011)), and now ERA5 (Hersbach and Dee (2016); Hersbach et al.
(2019)).
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Figure 2.1: Grid and area considered in this research.

2.2 Data used in this research

This research is based on ECMWF’s reanalyses. As described above, reanalyses
provide an easy to use, consistent view of the weather over a very long period.

The data used in this work were originally daily data selected from the ERA-
Interim dataset, a reanalysis covering the period 1979 to 2014, at 00 UTC (13 149
fields per variable). ERA-Interim is a global dataset on an N128 gaussian grid (≈
80 km horizontal resolution).

During the course of this research, ECMWF produced a newer reanalysis, ERA5,
covering 1979 to present. Fields are available hourly, the dataset considered (1979-
2018) contains therefore 349 176 fields per variable. ERA5 is a global dataset on
an N320 gaussian grid (≈ 30 km horizontal resolution). We decided to use this
dataset instead of ERA-Interim as it is available at higher spatial and temporal
resolutions.

The work presented focuses on a regular latitude/longitude grid of 0.5°×0.5°(≈
55 km×55 km) on the domain 60°N 14°W 44.5°N 1.5°E that covers the British
Isles (≈ 1700 km×1700 km, see figure 2.1), which agrees with the radius of 900 km
presented in Van den Dool (1989) within which analogues can be considered. The
size of the domain will capture synoptic scales weather patterns.

A typical NWP system will produce hundreds of meteorological variables. In this
study, we will focus on surface air temperature, snow depth, snowfall, 10m zonal
wind, 10m meridional wind, 10m wind speed, mean sea level pressure, total cloud
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cover, total precipitations, geopotential at 500 hPa, geopotential at 850 hPa and
significant wave height. They have been selected because most of them relate to
attributes of weather that a user is likely to look for when searching for analogues.

The 10m zonal wind is the west-east component of the wind vector at a height of
10m, while the 10m meridional wind is its south-north component. The mean sea
level pressure is the pressure as it would be at sea level if the effect of altitude was
removed (as the altitude increases, the pressure of the atmosphere decreases). Total
precipitations are the amount of water falling from the sky in all its forms: rain,
snow, hail, sleet, etc. The geopotential represents the height of a given pressure
level, multiplied by the constant of gravity g. For example, a value of 54 000

for geopotential at 500 hPa means that the isobar 500 hPa is at around 5504m

of altitude; this variable is one of the most important for the meteorologist as it
captures the large scale weather patterns. Other variables are self-explanatory.

This report will contain many tables, maps and graphs. In order to keep it concise
and readable, their number has been kept to a minimum, and not all tables, maps
and graphs are shown for every selected meteorological variable, but only for one
or two of them, for the purpose of illustrating the discussion.

2.3 Portrayal of fields

It is essential for the reader to understand the difference between the fields and
their pictorial representation, as searching for analogues considers the former, while
queries and results are presented to users according to the latter.

Meteorological fields are vectors of floating-point values, each value representing
the intensity of that field at a corresponding grid point. The mapping between the
index of the value in the vector to its corresponding grid point is called a projection.
In this work, we are considering fields on a regular latitude-longitude grid, with an
equidistant cylindrical projection (also known as plate carrée projection); in this
case, it is customary to represent the values as a 2D matrix:

F =

 f11 f12 . . .
... . . .
fK1 fKK

 (2.1)

The action of representing a meteorological field graphically is called portrayal
(Papathomas et al. (1988)). Usually, this is done by contouring the data at pre-
defined regular intervals and then drawing the resulting isolines, labelling them
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with the value they represent. Sometimes the space between isolines is filled with
a uniform colour, according to a given palette mapping ranges of values (this is
called shading).

Traditionally parameters such as geopotential and pressure are portrayed with
contour lines, while fields like precipitations or temperature are portrayed using
shading. In the case of temperature, a palette ranging from blue (cold values) to
red (warm values) is used. Figure 2.2 on the next page shows a field of precipitation
and its usual portrayal using shaded contours following a logarithmic scale.

The figure demonstrates that a given portrayal (e.g. contouring and shading) can
hide a lot of details of the underlying field. This will affect the perception users
will have when visually comparing two fields. Other fields are shown in figure 2.3
on page 20.

In this report, all mean sea level pressure fields are plotted with the fixed set of
contouring intervals (one isoline every 5 hPa). Geopotential at 850 hPa fields and
geopotential at 500 hPa fields are plotted with one isoline every 50m. Other vari-
ables are plotted using colour palettes representing ranges of values. The mappings
between colours and field values are shown in figures 2.4 and 2.5 on page 22.
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(a) Values of the field of one hour total precipitations for 24 October 1998, at 12UTC,

in mm. The zero values have been substituted with a dot for the sake of clarity.
.

(b) The matrix above plotted as a grey
map. The values are first normalised
to the interval [0, 255].

(c) The precipitation field is plotted with
contours and shading. The contours
values follow a logarithmic scale.

Figure 2.2: This figure shows the grid point values of a total precipitation field
(2.2a), a grey map representation of the same field (2.2b) and the traditional por-
trayal of such a field with contours and shading (2.2c). The figure clearly shows
that contouring and shading may hide a lot of details, visible in the grey scale image.
This will affect the perception a user may have when visually comparing two fields.
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(a) Snow depth. (b) Mean sea level pressure. (c) Surface air temperature.

Figure 2.3: This figure shows some of the traditional portrayals of some meteor-
ological fields (top row). They can use shading, contours or a mixture. In the
case of the snow depth field, the shading is only present when there is snow on the
ground. The bottom row shows the corresponding fields as a grey map, with their
values normalised to the interval [0, 255]. 0 (white) represents the minimum value,
while 1 (black) represents the maximum value
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Figure 2.4: Colour palettes used for the portrayal of meteorological variables.
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Figure 2.5: Colour palettes used for the portrayal of meteorological variables.
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Chapter 3

Wavelets

The aim of this chapter is to provide the reader with an insight on how wavelet
decompositions will compress the information contained in meteorological fields
while preserving some of their spatial structure.

Wavelets and wavelet transformations are introduced in the literature in many
fashions, depending on the indented audience (Daubechies (1988); Stollnitz et al.
(1996); Mallat (1989); Keinert (2003); Walker (2005); Eckley (2001)). We do not
intend to present here the mathematics behind wavelets and multi-resolution ana-
lysis, but instead, introduce them following an intuitive and algorithmic approach.

We will start by introducing how a 1D signal can be decomposed into a series
of coefficients representing details at various resolutions, and the original signal
can be retrieved from these coefficients. 2D wavelet decomposition is also touched
upon.

3.1 An intuitive approach to wavelets

Considering the following discrete signal shown in figure 3.1 on the following page.
The signal can be represented by the vector:

V = [10, 8, 9, 12, 7, 4, 3, 7, 5, 8, 12, 11, 10, 13, 14, 17]
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Figure 3.1: Sample signal.
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3.1.1 Decomposition

Such a vector can be decomposed using the following procedure:

• values are averaged pairwise, and the averages are accumulated in a new
vector A;

• the differences between averages and the original values are accumulated in
a vector D. Because the difference between an average and the two values
used to compute it are simply opposite of each other, only one difference is
added to D.

The corresponding algorithm is:

Procedure decompose(V)
A← [ ]

D ← [ ]

for i← 1 to length(V ) by 2 do
average← (V [i] + V [i+ 1])/2

A.append(average)

D.append(V [i]− average)
end
return (A,D)

end

Algorithm 3.1: Decomposition of vector, first version.

Which can be rewritten more elegantly as:

Procedure decompose(V)
A← [ ]

D ← [ ]

for i← 1 to length(V ) by 2 do
A.append((V [i] + V [i+ 1])/2)

D.append((V [i]− V [i+ 1])/2)
end
return (A,D)

end

Algorithm 3.2: Decomposition of vector, second version.

Calling the procedure decompose with V as defined above leads to:

A = [9, 10.5, 5.5, 5, 6.5, 11.5, 11.5, 15.5]

D = [1,−1.5, 1.5,−2,−1.5, 0.5,−1.5,−1.5]
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Figure 3.2: Plot of the approximation A of the vector V (blue). The dotted black
line illustrates the details that have been smoothed out.

The vector A is an approximation of the vector V , which has been smoothed by
removing the details found in D. The values of A and D are therefore called the
approximation coefficients and detail coefficients respectively (see figure 3.2).

The number of values of A and D is half the number of values of V . The total
number of values is therefore unchanged. As a consequence, authors often describe
a version of the decomposition algorithm that modifies the input vector in place,
setting the first half to the approximations and the second half to the details.

It should be noted that no information has been lost and the following procedure
can be used to rebuild V from A and D:

Procedure recompose(A, D)
V ← [ ]

for i← 1 to length(A) do
V.append(A[i] +D[i])

V.append(A[i]−D[i])
end
return V

end

Algorithm 3.3: Recomposition.
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The decomposition can then be applied recursively to approximation coefficients.
A1 = [9, 10.5, 5.5, 5, 6.5, 11.5, 11.5, 15.5]

D1 = [1,−1.5, 1.5,−2,−1.5, 0.5,−1.5,−1.5]
A2 = [9.75, 5.25, 9.0, 13.5]

D2 = [−0.75, 0.25,−2.5,−2.0]
A3 = [7.5, 11.25]

D3 = [2.25,−2.25]
A4 = [9.375]

D4 = [−1.875]

This process is called multilevel decomposition, and assuming that the number of
level is n, its output is written as:

(An, Dn, Dn−1, . . . , D2, D1) (3.1)

Using the example above, the full multilevel decomposition of V gives the following
set of coefficients:

([9.375], [−1.875], [2.25,−2.25], [−0.75, 0.25,−2.5,−2.0],
[1,−1.5, 1.5,−2,−1.5, 0.5,−1.5,−1.5])

3.1.2 Compression

Once the vector has been decomposed into approximation and detail coefficients,
it can be compressed by zeroing some details and then performing recomposition
(see figure 3.3 on the following page).

Zeroing the first level of details (the one computed by the first decomposition)
gives:

([9.375], [−1.875], [2.25,−2.25], [−0.75, 0.25,−2.5,−2.0], [0, 0, 0, 0, 0, 0, 0, 0][0, 0, 0, 0, 0, 0, 0, 0][0, 0, 0, 0, 0, 0, 0, 0])

which is recomposed into the curve shown in figure 3.3a on the next page.

It should be noted that for the maximum compression level, only the mean value
remains (figure 3.3d on the following page).

3.1.3 Conservation of energy

The energy of a signal f is defined as (Walker (2005)):

E = f 2
1 + f 2

2 + . . .+ f 2
n (3.2)
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(b) Compression level 2.
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(c) Compression level 3.
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(d) Compression level 4.

Figure 3.3: Effect on various compression levels on vector V .
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The energy of the signal V is therefore:

E = 102 + 82 + 92 + 122 + 72 + 42 + 32 + 72 + 52 + 82 + 122 + 112 + 102

+ 132 + 142 + 172

= 1620

Computing the energy using the approximation and detail coefficients will give

EA = 92 + 10.52 + 5.52 + 52 + 6.52 + 11.52 + 11.52 + 15.52

= 793.50

ED = 12 + (−1.5)2 + 1.52 + (−2)2 + (1.5)2 + 0.52 + (1.5)2 + (1.5)2

= 16.50

EA + ED = 810

The energy is now half of its original value. In order to conserve energy, a factor√
2 is introduced during the decomposition. By simplifying

√
2/2 as 1/

√
2, the

decomposition algorithm becomes:

Procedure decompose(V)
A← [ ]

D ← [ ]

for i← 1 to length(V ) by 2 do
A.append((V [i] + V [i+ 1])/

√
2)

D.append((V [i]− V [i+ 1])/
√
2)

end
return (A,D)

end

Algorithm 3.4: Decomposition of vector with conservation of energy.

And the recomposition algorithm becomes:

Procedure recompose(A, D)
V ← [ ]

for i← 1 to length(A) do
V.append((A[i] +D[i])/

√
2)

V.append((A[i]−D[i])/
√
2)

end
return V

end

Algorithm 3.5: Recomposition.
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Using the new energy conserving decomposition:

A = [10
√
2, 21
√
2, 11
√
2, 10
√
2, 13
√
2, 23
√
2, 23
√
2, 31
√
2]

D = [2
√
2,−3

√
2, 3
√
2,−4

√
2,−3

√
2,
√
2,−3

√
2,−3

√
3]

and

EA = 1587

ED = 33

EA + ED = 1620

It should be noted that the approximation coefficients are half the size of the
original signal but represent 98% of the original signal energy, while the detail
coefficients only represent 2%.

3.1.4 Discrete wavelet transform

The process that has been illustrated in the preceding section is called the Dis-
crete Wavelet Transform (DWT). The function decompose introduced previously
is called recursively until a desired level of detail is reached:

Procedure DWT(V, level)
if level = 0 then

return V

end
(A,D)← decompose(V )

R.append(DWT (A, level − 1))

R.append(D))

return R
end

Algorithm 3.6: Discrete wavelet transform.

The level maximum is log2(length(V )) as the number of approximation coefficient
is halved at each iteration. The reverse process is called the Inverse Discrete
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Wavelet Transform (IDWT).

Procedure IDWT(V, level)
if level = 0 then

return V

end
L← length(V )

A← V [1 . . . L/2]

D ← V [L/2 + 1 . . . L]

return recompose(IDWT (A, level − 1), D)
end

Algorithm 3.7: Inverse discrete wavelet transform.

3.1.5 2D wavelets decomposition

DWT can easily be extended to 2 dimensions (Eckley (2001)), by performing the
DWT on the first dimension, then on the second. If V is a 2D matrix, we will
denote V [i, ∗] the 1D vector representing the row i and V [∗, j] the 1D vector
representing the column j. With this notation, the per-row wavelet decomposition
can be written as:

Procedure decompose-rows(V)
R← V

L←
√
(length(V ))

for i← 1 to L do
(A,D) ← decompose(V [i, ∗])
R[1 . . . L/2, ∗] ← A

R[L/2 + 1 . . . L, ∗] ← D

end
return R

end

Algorithm 3.8: Rows-wise decomposition of a 2D signal.
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and the per-column wavelet decomposition can be written as:

Procedure decompose-columns(V)
R← V

L←
√
(length(V ))

for i← 1 to L do
(A,D) ← decompose(V [∗, i])
R[∗, 1 . . . L/2] ← A

R[∗, L/2 + 1 . . . L] ← D

end
return R

end

Algorithm 3.9: Column-wise decomposition of a 2D signal.

and a 2D decomposition simply becomes:

Procedure decompose-matrix(V)
return decompose-columns(decompose-rows(V ))

end

Algorithm 3.10: Wavelet decomposition of a 2D signal.

There are two algorithms to decompose a 2D signal at multiple levels (Stollnitz
et al. (1995a)):

• standard decomposition: first decompose each row to the desired level, then
decompose each column to the same level;

• non-standard decomposition: alternatively decompose each row and column
to the desired level (see figure 3.5 on page 34).

The standard decomposition is given by the following algorithm, and is illustrated
in figure 3.4 on the facing page:

Procedure standard-2D-DWT(V, level)
for i← 1 to level do

V ← decompose-rows(V )

end
for i← 1 to level do

V ← decompose-columns(V )

end
return V

end

Algorithm 3.11: Standard 2D decomposition.
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Figure 3.4: 2D wavelet decomposition of the University of Reading crest, using
the standard method: decompose first by rows to the desired level, then decompose
by columns to the same level. The colourmap used has been selected so that small
details are visible.
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Figure 3.5: 2D wavelet decomposition of the University of Reading crest, using
the non-standard method: decompose by row and by column alternatively.

The non-standard decomposition is illustrated in figure 3.5, and can be written as:

Procedure non-standard-2D-DWT(V, level)
for i← 1 to level do

V ← decompose-rows(V )

V ← decompose-columns(V )
end
return V

end

Algorithm 3.12: Non-standard 2D decomposition.

The algorithm for the inverse 2D transform would be identical, and is omitted for
the sake of conciseness.

3.2 Wavelets and multi-resolution analysis

There is ample literature about the mathematical foundations of wavelets (Keinert
(2003); Jawerth and Sweldens (1994); Walker (2005)). Multi-resolution analysis
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(MRA) provides the mathematical foundations for wavelet transforms. Intuitively,
MRA considers how functions from L2(R), the space of square integrable functions,
can be expressed as a linear combination of functions ψi that represent different
scales of L2(R), and provides some constraints on how wavelets function can be
defined.

Wavelet transforms is the process by which a function f(t) ∈ L2(R) can be ex-
pressed as a linear combination of wavelets functions ψi(t):

f(t) =
∑
i

aiψi(t) (3.3)

The wavelets functions are chosen so that they form a orthonormal basis of L2(R):

⟨ψi(t), ψj(t)⟩ = 0 i ̸= j (3.4)
and

⟨ψi(t), ψi(t)⟩ = 1 ∀i (3.5)
with ⟨g, h⟩ =

∫
g(x)h(x)dx being the inner product of functions g and h. If ψi

form an orthonormal basis, the coefficients ak can be calculated as:

ai = ⟨f(t), ψi(i)⟩ =
∫
f(t)ψi(t)dt (3.6)

There are many wavelets that satisfy the definition given above, and they have
been extensively studied (Daubechies (1988)).

The process described in the previous section is called the discrete wavelet decom-
position of the signal V , using Haar wavelets. Haar wavelets are named after the
Hungarian mathematician Alfréd Haar which introduced such a decomposition in
1909, which was then called Haar sequence. The term wavelet was introduced later.
The decomposition given in section 3.1 implicitly uses the Haar wavelet. The Haar
wavelet (figure 3.6 on the next page) defined by its scaling function:

ϕ(x) =

{
1 0 ≤ t < 1,

0 otherwise.
(3.7)

and its mother wavelet:

ψ(x) =


1 0 ≤ t < 1

2
,

−1 1
2
≤ t < 1,

0 otherwise.
(3.8)

Figure 3.7 on the following page shows how various values of ϕi,j and ψi,j covers
L2(R) as the i and j vary.
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Figure 3.6: Haar wavelets: left is the scaling function, right is the mother wavelet.
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Figure 3.7: Haar wavelets: how different values of ϕi,j and ψi,j covers part of
L2(R) at various resolutions.
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So the signal:
V = [8, 6, 5, 7] (3.9)

can be written as:
V = 8ϕ0,0 + 6ϕ0,1 + 5ϕ0,2 + 7ϕ0,3 (3.10)

The summation is illustrated graphically in figure 3.8a on the next page, showing
how V can be represented by the scaling functions ϕi,j.

It can be decomposed once as (taking into account the scaling of
√
2):

V = 7
√
2ϕ1,0 + 6

√
2ϕ1,1 +

√
2ψ1,0 −

√
2ψ1,1 (3.11)

The factor
√
2 that was introduced to preserve the energy of the signal during its

decomposition is also used to ensure that the norms of the ϕi,j and ψi,j are 1.

Figures 3.8a and 3.8b show the respective contributions of the scaling functions
ϕi,j and the wavelet functions ψi,j. The resulting sum is shown in figure 3.8c.

The signal can be further decomposed as:

V = 13ϕ2,0 + ψ2,0 +
√
2ψ1,0 −

√
2ψ1,1 (3.12)

Figure 3.9 on page 39 shows that decomposition. The scaling function ϕ now
captures the average value of the signal, while the first wavelet captures the first
level of details. The second level of details is represented by the second level of
wavelets.
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Figure 3.8: Decomposition of the signal [8, 6, 5, 7]. Figure 3.8a represents the
original signal as a linear combination of the Haar scaling functions ϕi,j. Figure 3.8b
is the first level approximation of the signal, as a linear combination of the Haar
scaling functions. Figure 3.8c is the first level details of the signal as a linear
combination of the Haar wavelets ψ1,j. Although the wavelet functions ϕi,j are
periodic and should therefore be around y = 0, they are vertically positioned on
the plot in relation to the corresponding scaling functions, for illustration purposes.
Figure 3.8d shows that the sum of the approximation and details captures fully the
original signal.
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Figure 3.9: Further decomposition of the signal [8, 6, 5, 7]. As for figure 3.8,
the supporting scaling function ϕ (black) is plotted in figure 3.9a. It is a constant
function that captures the average value of the signal. Figure 3.9b shows the wavelet
function that represents the first level of details (blue). Figure 3.9c shows the
wavelets representing the second level of details (red). Figure 3.9d show that the
original signal can be fully reconstructed from the scaling function and the wavelet
functions.
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Chapter 4

Fingerprinting

One of the primary goals of this research is to find a method to construct fin-
gerprints from meteorological fields such that these fingerprints can be used as
proxies to the original fields when looking for nearest neighbours. This means
that distances between fingerprints should reflect the distance between the fields
from which they were extracted.

Wavelets have been used successfully to implement fingerprint-based image or au-
dio retrieval systems (see section 1.5.2). We will consider how this can be applied
to meteorological fields.

We will first define the problem, then study the distances between the meteoro-
logical fields, in order to define a working set and establish a minimum distance
threshold below which fields are considered to be “close enough” to be considered
similar.

4.1 Problem definition

The problem we are trying to address can be formalised as:

• let v be a meteorological variable (e.g. mean sea level pressure, 10m wind
speed…);

• let Av be the set of all meteorological fields in the archive for this variable.
Assuming that all the fields are defined over the same grid (same geographical
coverage, same resolution), Av can be considered a subset of Rn, with n being
the number of grid points;
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• let D be a distance function between the elements of Av (typically the Euc-
lidean distance, also known as the L2-norm);

• let Fv be the set of fingerprints for the variable v;

• let δ be a distance function between the elements of Fv.

We are looking for a mapping Fv : Av 7→ Fv such that:

D(f1, f2) ≤ D(f1, f3)⇔ δ(Fv(f1), Fv(f2)) ≤ δ(Fv(f1), Fv(f3))

∀f1, f2, f3 ∈ Av .
(4.1)

Intuitively, this means that Fv “preserves distances”, i.e. if fields are close ac-
cording to the distance D, their fingerprints must also be close according to the
distance δ. Similarly, fields that are far apart must have fingerprints that are far
apart. A study of distance preserving embeddings can be found in Indyk and Naor
(2007).

The aim of this work is to find a mapping that mostly satisfies relation 4.1, i.e. a
mapping for which the relation is true for most elements of Av.

4.2 Effectiveness of the mapping

As we are considering various fingerprinting schemes, we will compare how effective
they are. We define the error εD of a mapping as a measure of the number of
elements of Av for which relation 4.1 does not hold.

A scheme is perfectly effective if, for every query q, we always find the field which
is closest to q according to the distance D.

In order to measure the error of a fingerprinting scheme, we will define the εD(q) =
0 as the error of a single query q with respect to the distance D as:

εD(q) = D(NND(q), NNδ(q)) (4.2)

where NND(q) is q’s nearest neighbour according to the distance D, and NNδ(q) is
q’s nearest neighbour according to the distance between fingerprints δ. The error
εD(q) is therefore the distance between both nearest neighbours, and will be zero
if they are the same. This is illustrated in figure 4.1 on the next page.

We consider a scheme to be valid if εD(q) is negligibly small for a large number of
values of q over a given working set. In the following sections, we will establish for
which value εD(q) is considered small.
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Figure 4.1: This figure illustrates the computation of εD(q). Each coloured cross
shows a different field. The fields are organised from left to right according to their
distance to the field q (green). Let us assume that when comparing the distances
between fingerprints, the closest match is the field m (blue). This is not the closest
match according to the distance D (it should have been the purple field). The error
is proportional to distance d = D(b,m).

4.3 Study of distances between fields

Traditionally, distances between meteorological fields are computed using the root
mean square deviation (RMSD), which is equivalent to the Euclidean distance.
Other distances such, as the Pearson correlation coefficient (PCC) are also used.
Mo et al. (2014) show the limitations of such metrics.

Since the fields that we are studying can be considered as vectors of R1024 (1024
being the number of grid points), we are affected by the curse of dimensionality:
as the number of dimensions increases, the difference between the distance to the
closest neighbours and the furthest neighbours tends to zero (Beyer et al. (1999)).

This means that even traditional metrics like the Euclidian distance are not always
effective when comparing fields, especially when the weather patterns are slightly
shifted in time or space. Nevertheless, as the Euclidean distance is the most
commonly used metric in meteorology, we use it as the reference distance to which
we will compare the distances between fingerprints.

4.3.1 Working set

The dataset we are considering is composed of hourly fields for the period 1979-
2018 (see section 2.2 on page 16). This amount to over 350 thousand fields per
variable. Because computing distances between every field would be prohibitive,
we select a subset, called thereafter the working set, composed of one field per
day over the chosen period. This lowers the total number of fields per variable
to 14 610, which is much more manageable. All data from the working set are
retrieved from the MARS archive and then interpolated to the desired grid and
area.
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4.3.2 Distance matrix

In order to study the distances between fields, we will first precompute the distance
between every pair of fields in the working set, using Euclidean distance. This
amounts to around 106 million distances per variable (14610× (14610+1)/2). On
the hardware used for the project (see section 7.3 on page 122), we compute around
500 distances per second, including loading the fields in memory and decoding
them, as well as persisting the results to disk. Computing all distances would last
in the order of two and a half days to compute, using a single computation thread.

The results are collected in a distance matrix D. For efficiency, this matrix is
stored in a memory-mapped file.

Given a date date, the index of that date in the matrix D is:

index(date) = julian(date)− julian(1979-01-01) + 1 (4.3)

where julian() is a function returning the Julian day (Hatcher (1984)). Lookups
in the distance matrix are then simply done using the index two dates:

distance(datem, daten) = Di,j with i = index(datem) and j = index(daten)

(4.4)

The distances from a daten can be looked up efficiently by reading the values of
column j = index(daten):

0 D1,2 . . . D1,j . . . D1,n

D2,1 0 . . . D2,j . . . D2,n
... ... ... ...
Di,1 Di,2 . . . Di,j . . . Di,n

... ... ... ...
Dn,1 Dn,2 . . . Dn,j . . . 0


(4.5)

The distance matrix D can then be used to compute the nearest neighbour of a
field with index j:

NN(j) = min({Di,j : i ∈ [1 . . n], i ̸= j}) (4.6)

4.3.3 Distribution of distances

Using the distance matrix D defined previously, we plot the distributions of dis-
tances in figures 4.2 on page 46 and 4.3 on page 47.
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With the exception of two fields (snow depth and snowfall), the distributions of
distances have bell-shape that agrees with the findings of Thirey and Hickman
(2015) on the study of distributions of distances in high dimensions.

We continue our study by looking at fields similarities, by clustering the data
using the k-means algorithm. We arbitrarily set the number of clusters to nine,
in order to get a feeling of the distribution of types of weather in the archive for
each variable. The aim of this clustering is to assess if the weather patterns are
evenly distributed, and therefore the clusters are of comparable sizes, or if some
weather types are more frequent than others, and the clustering show unevenly
sized clusters. For that purpose, the results of the clustering are plotted on a
silhouettes graph (Rousseeuw (1987)).

The silhouettes are a measure of the quality of the clustering: assuming that an
element i has been clustered in cluster Ci, we define a(i) as the average distance
between i and the other members of the same cluster:

a(i) =
1

|Ci| − 1

∑
j∈Ci, i ̸=j

D(i, j) (4.7)

with D(i, j) being the distance between i and j and |Ci| being the number of
elements in cluster Ci. The term |Ci|−1 means that we exclude i when computing
the average.

We then define b(i) as the average distance between i and the members of the
closest other cluster (the closest here meaning the cluster for which the average
distance between i and every cluster members is the minimum):

b(i) = min
i ̸=j

1

|Cj|
∑
j∈Cj

D(i, j) (4.8)

We can now define the silhouette s(i) of i as:

s(i) =


1− a(i)/b(i), if a(i) < b(i)

0, if a(i) = b(i)

b(i)/a(i)− 1, if a(i) > b(i)

(4.9)

For elements that are the single member of a cluster, s(i) = 0 by convention.

If s(i) is close to 1, this means member i is clustered well; s(i) is close to −1, this
means that the i should have been clustered in another cluster (the closest one).
The results of the clustering are shown in figures 4.4 on page 48 and 4.5 on page 49.
The vertical dotted red line is the average value of the silhouette over all members.
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Figure 4.2: Distribution of the distances between fields for each meteorological
variable, with a number of bins set to 100. The number of fields considered is
14 610, which leads to approximately 106 million inter-field distances.
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Figure 4.3: Distribution of the distances between fields for each meteorological
variable, with a number of bins set to 100.
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Figure 4.4: Silhouettes plots. The horizontal axis represents the silhouette coeffi-
cient.
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Figure 4.5: Silhouettes plots. The horizontal axis represents the silhouette coeffi-
cient.
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The widths of the silhouettes represent the number of elements in each cluster.
Plots showing silhouettes of approximately the same shape, such as for geopotential
at 500 hPa, indicate that the variable can be clustered in evenly sized clusters and
that its values are evenly distributed. When a plot shows a silhouette much wider
than the others, this means that one cluster is much larger than the others and
that the values represented by the variable are not evenly distributed. This is the
case for total precipitations.

What these figure show is that they are two categories of meteorological variable:
those like 10m wind speed, mean sea level pressure or surface air temperature that
can take a wide range of values, and therefore can be clustered in cluster of similar
size, and those like snowfall, snow depth or total precipitations that have one cluster
that is much larger than the other.

For snowfall and snow depth (figure 4.6 on the facing page), the large cluster
represents days without snow, which is most of the days of the year. For total
precipitations (figure 4.7 on page 52), these are the day with very little rain. For
significant wave height these are the days with small waves. For total cloud cover
these are the days that are overcast.

In order to ensure that the working set is composed of fields that are actually dif-
ferent from each other and that are representative of all kinds of weather pattern,
we need to identify and remove the fields that are too similar to each other. For
this, we will redo the clustering, this time using DBSCAN (Ester et al. (1996)),
as this algorithm will automatically select the number of clusters given a max-
imum distance between cluster members: all members within that distance will
be clustered together.

The algorithm is run with the smallest non-zero distance found in the distance
matrix. A random member will then be selected from each cluster, to form the
working set. This will ensure that the large ranges of constant fields, such as
snowfall during summer days, are represented by a single instance in the working
set.

The effect of this process is to remove all constant fields but one from the working
set. It does not affect fields such as mean sea level pressure or surface air temper-
ature, but reduces greatly the number of fields for snowfall, snow depth and for a
lesser extent, total precipitations. Figure 4.8 on page 53 shows the new distribu-
tion of distances between members of the working set for snowfall. Although the
shape of the distribution is unchanged, the number of fields in the largest bin is
greatly reduced.
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Figure 4.6: K-Means centroids for snow depth. Cluster (2) corresponds to days
without snow.
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Figure 4.7: K-Means centroids for total precipitations. Cluster (6) corresponds
to days of no or little rain.
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Figure 4.8: Distribution of distances for the working set for the snowfall variable.
On the left, the original distribution; on the right the distribution of the working set
after selecting one member from each cluster. The number of bins is set to 100.

4.3.4 Minimum distance threshold

In section 4.2, we have introduced the error εD as the distance between the field
returned when searching for the nearest neighbour using the distance between
fingerprints and the field returned when searching for the nearest neighbour using
a distance D.

εD is therefore of the same nature as the output of D, i.e. has the same unit. As
this study considers the Euclidean distance as D, εD is expressed in the same units
as the fields themselves: for 10m wind speed, the units will be ms−1.

We need to define a threshold, by which we consider the error εD to be “small
enough”, which means that a result of a query using the fingerprint distance is
“close enough” to the actual nearest neighbour using Euclidean distance. To find
this value, we use hierarchical clustering. In section 4.3.3 we performed k-means
clustering with nine clusters to get a feel of how various types of weather were
distributed in the working set. Using hierarchical clustering will allow us to find
out the relationship between the number of clusters and the closeness of their
members.

Hierarchical clustering (Lance and Williams (1967); Müllner (2011)) consists of
starting with a set of single value clusters each containing a single element. Then
the closest clusters are merged to form a new cluster. The newly created cluster is
added to the set, and the merged clusters are discarded. The distance between the
new cluster and the remaining clusters is computed according to a chosen linkage
method.

The process is repeated iteratively until there is only one cluster left. Each cluster
keeps track of the list of clusters that were combined to create it, thus creating
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Figure 4.9: Example of a dendrogram, showing the first few clustering levels of
clusters for the surface air temperature variable, for the period 1979-2018. The
horizontal lines represent the clusters. The vertical lines represent the link between
a cluster and its children in the hierarchy. The y-axis represents the distance between
child clusters. In that example, the root cluster is shown at y = 746, which means
that the distance between its two children is 746. The two dashed lines illustrate two
possible “cuts” of the tree. The black line is at y = 215, and crosses 10 vertical lines;
this means that 10 clusters within which the inter-element distance is less than 215.
The magenta line is at y = 135, and crosses 50 vertical lines. The clustering shown
in this figure is done using the complete-linkage method, for the sake of clarity, as
it produced a well-balanced tree.
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Figure 4.10: Plot of the number of clusters against the dendrogram cutting distance
for surface air temperature, using the complete linkage method. The red dot shows
the position of the elbow found by the algorithm 4.1 on the following page. d is the
cutting distance, k is the number of clusters.

a hierarchy. Cluster hierarchies are plotted using a tree representation called a
dendrogram (see figure 4.9 on the preceding page). One property of each cluster
is the distance between its child clusters, which is shown on the y-axis of the
dendrogram.

By “cutting” the dendrogram at a given y = y0, i.e. a given distance, we define
a number of clusters that have the characteristic that every element within each
cluster have a distance between each other less than y0. This is again illustrated
in figure 4.9 on the facing page.

We then plot the number of clusters against the value of the “cut”. This produces
an L-shaped curve as shown in figure 4.10.

The curve shows that as the number of clusters increases, the distance between
elements within the clusters decreases. Furthermore, the distance between cluster
members drops rapidly and then the curve becomes flatter. After that, adding
more clusters does not change the inter-member distance by a lot.

This is akin to the curve that is used to select the number of clusters when using the
k-means clustering method, which plots the number of clusters against the total
variance covered by the clusters. In that case, the “elbow method” (Thorndike
(1953)) is used to choose the optimal number of clusters, as the point on the curve
at which the curvature changes (the “elbow”).
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We will apply the same method to establish the number of clusters above which
the distance between elements stops decreasing notably. We use the value of the
distance at the cut as a minimum distance threshold, below which we will consider
fields to be “close enough”.

There are several algorithms to find the bend in the curve, such as checking the
maximum curvature or checking the angle between points, amongst others (Sato-
paa et al. (2011)). We use the method described by Castellanos et al. (2002)
which consists of finding the point that will generate the smallest angle (but not
smaller than 7π

8
) between the last point on the curve and a third point that takes

every position on the curve, as long as the points form a triangle with a clockwise
orientation (see algorithm 4.1).

Procedure find-elbow-in-curve(x, y)
n← length(x)

C ← (xn, yn)

best← cos(7π
8
)

for i← 1 to n− 2 do
B ← (xi, yi)

for j ← i+ 1 to n− 2 do
A← (xj, yj)

area← det(
−→
BA,

−→
AC)

2

cosA←
−→
CA·

−→
BA

∥−→CA∥∥−→BA∥

if area < 0 and cosA > best then
k ← j + 1

end
end

end
return k

end

Algorithm 4.1: Triangle-based elbow finding algorithm as proposed by Castel-
lanos et al. (2002).

We then compute the cut distances using the different linkage methods described
in Müllner (2011): average, centroid, complete, median, single, Ward and weighted.
The resulting curves are plotted for each meteorological variables. See figure 4.11
on page 58 and figure 4.12 on page 59 for an example based on the single linkage
method.
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The results are listed in table 4.1. Each of the linkage methods leads to different
values. As we are searching for a minimum distance threshold, we will select the
values for the single linkage, as it gives the smallest values.

Variable Average Centroid Complete Median Single Ward Weighted

10m meridional wind 157.1 132.2 197 134.5 107.7 498.1 161.2
10m wind speed 110.5 94.1 145.4 103.6 85.4 335.8 116.3
10m zonal wind 156.3 140 210.3 129.4 113.1 583.5 159.6
Geopotential at 500 hPa 22193 17516 34539 17532 12148 139245 22582
Geopotential at 850 hPa 14642 13135 21945 13273 9067 74760 16878
Mean sea level pressure 20742 15724 30223 15872 12059 81239 21106
Significant wave height 30.4 27 39.2 26.8 20.6 97.3 32.1
Snow depth 0.05 0.05 0.06 0.04 0.03 0.14 0.05
Snowfall 0.002 0.002 0.003 0.002 0.002 0.004 0.002
Surface air temperature 66 55.7 99.4 56.8 45.6 267.7 66.7
Total cloud cover 13.4 11.5 15.3 11 10.8 31.6 13.2
Total precipitations 0.02 0.02 0.02 0.02 0.02 0.03 0.02

Table 4.1: Value of the cutting distance for the “elbow” point, for various linkage
methods. The smallest values are highlighted.

For surface air temperature for example, the minimum distance between two fields
to be considered “close enough” would be 45.6K. Please note that this value is
computed using the Euclidean distance, e.g. the Euclidean distance, and the order
of magnitude of the value depends on the number of dimensions, or grid points in
the fields. We could consider normalising the value by dividing by the number of
dimensions (1024) and obtain 0.044K. We will continue by using the unnormalised
values for the sake of readability of the various figures.

4.4 Wavelet-based fingerprinting

The first step is to look at how 2D Discrete Wavelet Transform (DWT) (see sec-
tion 3.1.5) can be applied to meteorological fields. For that, we will consider a
meteorological field as a 2D matrix (see section 2.3) and perform a DWT on it.
The transform produces approximation and detail coefficients.

Figure 4.13 on page 60 illustrates the full decomposition process: 4.13b shows the
original field to be transformed. After one transformation, the resulting approx-
imation is half the size of the original field (top left of 4.13b) and three details
coefficients are created: horizontal (top right of 4.13b), vertical (bottom left of
4.13b) and diagonal (bottom right of 4.13b). Further transformations are done
by iteratively decomposing each resulting approximation until a single value is
reached (4.13c, 4.13d, etc.).
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Figure 4.11: Position of “elbow” points for each variable for single linkage method.
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Figure 4.12: Position of “elbow” points for each variable for single linkage method.
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(a) Input field (level 0) (b) Decomposition level 1 (c) Decomposition level 2

(d) Decomposition level 3 (e) Decomposition level 4 (f) Decomposition level 5

Figure 4.13: Discrete Wavelet Transform for several levels. In each case, the
top left image is the approximation coefficients, the other images are the details
coefficients.

As described in chapter 3, the approximation is a smoothing of the signal, and
captures large scale features, while details represent smaller variations around
the approximation. The original signal can we reconstructed from all coefficients.
Wavelet compression is performed by selecting the approximation coefficient of a
given stage of the DWT and discarding the detail coefficients.

We will define the compression factor C as the level of the DWT. As C increases,
the number of values in the compressed field is divided by 4 (figure 4.14 on the
next page).

For this work, we need to understand how much compression we can apply to a
field in order to retain enough information so that we can still compare two fields,
and how can we encode the compressed data so that we create a fingerprint as
small as possible.
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(a) Total precipitations (b) C = 0, N = 322 = 1024 (c) C = 1, N = 162 = 256

(d) C = 2, N = 82 = 64 (e) C = 3, N = 42 = 16 (f) C = 4, N = 22 = 4

Figure 4.14: Greyscale images showing the result of wavelet compression of a field
of total precipitations. C is the compression factor, N is the number of data values
remaining after compression.
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Figure 4.15: Plot of the values of εL2(q) for total cloud cover, for the compression
factor C varying between 1 and 4.

4.5 Choice of the compression factor C

The second step is to asses to which level the transform can be applied without
too much loss of information. For that, we will consider a fingerprinting scheme
that simply consists of retaining the approximation coefficient for various values
of the compression factor C.

We then compute the error of each fingerprint as described in section 4.2. For each
selected meteorological variable, εL2(q) is computed for every field q in the working
set, and for each value of C. The results are then sorted and plotted on a graph.
The error is compared to the minimum distance threshold defined in section 4.3.4
and listed in table 4.1 on page 57.

Considering figure 4.15, we see that for C = 3, the value of εL2 is 91% for the min-
imum distance threshold found earlier. This means that for only 9% of the queries,
the field returned when querying the system is further away from the closest field
according to the Euclidean distance than the minimum distance threshold. For
C = 4 the value is just above 60% while for C = 1 and C = 2 it is close to 100%. It
should also be noted that the portion of the curves that have value zero represents
the proportion of queries when the nearest neighbour according to the fingerprint-
ing distance and the nearest neighbour according to the Euclidean distance are
the same.

Figure 4.16 on the facing page and figure 4.17 on page 64 show the same curves
for all the selected meteorological variables. We can clearly see that the resulting
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Figure 4.16: Plot of the values of εL2(q) for a subset of the selected meteorological
variables, for various values of the compression factor C.
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Figure 4.17: Plot of the values of εL2(q) for a subset of the selected meteorological
variables, for various values of the compression factor C.
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graphs are similar, with the exception of snow depth, snowfall and, to a lesser
extent, total precipitations, as it was the case for the distribution of distances in
figure 4.2 on page 46 and figure 4.3 on page 47.

It is clear from the plots that various levels of compression affect the meteorological
variables differently:

• fields that represent extensive properties, such as total precipitations, snow
depth or snowfall, and that often noisy, lose a lot of their details with com-
pression, and have higher values of εL2;

• other fields that represent intensive properties, such as 10m wind speed, sig-
nificant wave height and surface air temperature are less compressible, but
still show very low values of εL2;

• fields that are “wave-like”, i.e. pressure fields (geopotential at 850 hPa, geo-
potential at 500 hPa and mean sea level pressure), have a multi-resolution
nature and are very smooth, are compressible without too much loss of in-
formation, and have very low values of εL2 even for C = 4.

We will select C = 3 as the compression factor to use for the remainder of this
work, as this provides enough information reduction so that generated fingerprints
are small, while having a high effectiveness so that matching of fingerprints will
provide good results.

4.6 Definition of a fingerprinting scheme

The third step is to define the fingerprinting scheme. We will do this by encoding
the compressed field, which will reduce the size of the fingerprint even further.

The method proposed is to define the fingerprint F of a meteorological field f as:

F (f) = ⟨s, r⟩ (4.10)

where:

• s is a bit vector, representing the shape of f , and

• r is a reference value, capturing the intensity of the field f .

The fingerprinting method proposed is as follows:

1. the meteorological field is considered as a 2D grayscale image;
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Figure 4.18: Algorithm: field fingerprints are computed using wavelet compression
and thresholding. In this example, 0.001 is the average value of the field.

2. a reference value is selected (for example the mean, or the median of the
field);

3. the field is compressed using wavelet compression;

4. the reference value is used as a threshold to convert the compressed image
into a bitmap;

5. the bits that make the bitmap are extracted and form the shape part of the
fingerprint.

Step 1 is described to stress that the algorithm expects the actual values of the field
as input, and not a graphical representation (fields are not images, see section 2.3).
In the case of this research, fields are already available in a binary form, so the
first step is not necessary. In this example, the fingerprint is a tuple consisting of
a 16 bits vector and a floating-point value. In a modern computer, this would use
48 bits of memory if the reference is in single precision. The method is illustrated
in figure 4.18.
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Chapter 5

Experimental validation

In the previous chapter, we proposed a scheme to extract small fingerprints from
meteorological fields, so that they can be used as proxies when searching for ana-
logues.

In order to validate that scheme, we will first define a distance, or metric, between
fingerprints and find its optimal parametrisation.

We will then look at the distribution of distances between fingerprints and how
they relate to the distribution of distances between fields. We will check if using
distances between fingerprints to perform hierarchal clustering leads to meaningful
results: showing that clustering fields and clustering fingerprints give comparable
results would validate the effectiveness of the fingerprinting scheme.

Finally, we will have a look at cases for which the nearest neighbour according to
fingerprints distances are very different from the nearest neighbour according to
the Euclidean distance.

5.1 Choice of the distance between fingerprints

Querying the system will be done by comparing the fingerprint of a query field
to the fingerprints of the fields in the archive. This entails solving the nearest-
neighbour problem on a set of fingerprints, thus the need to have a distance between
them.

In section 4.6, we define the fingerprint of f as F (f) = ⟨s, r⟩ where:

• s is a bit vector representing the shape of f , and
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• r is a reference value, capturing the intensity of the field f .

We use the mean of the field for r, normalised to the interval [0, 1]:

r =
F − Fmin

Fmax − Fmin

(5.1)

where Fmin and Fmax are respectively the minimum and maximum values for a
field of that kind. Fmin and Fmax are computed once from the archive.

We then define the distance between the fingerprints ⟨s1, r1⟩ and ⟨s2, r2⟩ as a
function of a distance Ds between s1 and s2, and a distance Dr between r1 and r2.

The Hamming distance (Hamming (1986)) between two bit vectors of the same
length is the number of corresponding bits that are different. It will be used to
compute the distance between s1 and s2:

Ds(s1, s2) =
hamming(s1, s2)

nbits
(5.2)

where hamming is the Hamming distance and nbits is the maximum number of
bits used to encode s1 and s2,

The distance between r1 and r2 is simply defined as:

Dr(r1, r2) = |r1 − r2| (5.3)

Both Ds and Dr are in the interval [0, 1]. In order to establish a distance between
fingerprints, they need to be combined into a single value. For this, we will study
several possible combinations; these are listed in table 5.1 on the next page. Al-
though the most obvious choice is to use method 0, i.e. a simple linear combination
between Ds and Dr, we conduct an empirical experiment during which we compare
all methods listed in the table. There is no mathematical motivation to the list of
combinations; this is simply an exploratory work to assess if they would lead to
significantly different results, that will require further investigations.

It should be noted that Ds and Dr are metrics in the mathematical sense of the
terms. The distances listed in the table are linear combinations with positive
coefficients, of monotonically increasing concave functions whose value at zero is
0, applied to either Ds and Dr. This ensures that the distances in the table are
also metrics.

To select which of the methods listed in table 5.1, we then compute, for each of
the selected meteorological variable v, the value of α that minimises:

ξL2 =
∑
q∈Av

εL2(q) (5.4)
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Method Distance

0 (1− α) Ds + α Dr

1 (1− α)2 Ds + α2 Dr

2 (1− α)
√
Ds + α

√
Dr

3 (1− α) Ds + α
√
Dr

4 (1− α)
√
Ds + α Dr

5 (1− α) log(1 +Ds) + α log(1 +Dr)

6 (1− α) Ds + α log(1 +Dr)

7 (1− α) log(1 +Ds) + α Dr

8 (1− α)
√
Ds + α log(1 +Dr)

9 (1− α) log(1 +Ds) + α
√
Dr

Table 5.1: List of methods used to combine Ds and Dr.

Figures 5.1 on page 71 and 5.2 on page 72 show the curves of ξL2 against values of
α for a selected number of methods and meteorological variables. Not all combin-
ations of methods and variables are shown for the benefit of space. The complete
set of results can be seen in table 5.3 on the following page.

All curves exhibit a U-shape. On the left (α = 0), the weight is given to Ds, i.e.
the shape component of the fingerprint, while on the right side (α = 1), the weight
is given to Dr, i.e. the reference value component of the fingerprint.

Nevertheless, there is a caveat to that statement: because we use the minimum
and maximum values of the fields and not the minimum and maximum values of
the averages, in practice Dr does not reach the value 1, nor does Ds for some
variables. Table 5.2 on the next page shows the maximum values for Ds and Dr.
This means that the balance between shape and reference value is not 0.5.

For example, for total precipitations, the maximum value that Dr takes in the
working set is 0.05, while the maximum for Ds is 1. For method 0, the middle
point is the point for which (1−α)×Ds = α×Dr. Substituting Ds with 1 and Dr

with 0.05 and simplifying, the middle point should be at α = 1/(1 + 0.05) = 0.95.
The table shows that for method 0, alpha = 0.9, which means that the weight of
both components is actually balanced.

An interesting finding is that although the value of α is different for each method,
the minimum of the curve is mostly the same (see table 5.3 on the following page).
Not only the various methods have the same minimum value, but figures 5.3 and
5.4 show that the distribution of εL2 is the same for every method.

This is certainly due to the fact that the εL2 is defined as a distance between fields
of the working set and therefore bear no relation to the fingerprints themselves.
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Variable Ds Dr

√
1 +Ds

√
1 +Dr log(1 +Ds) log(1 +Dr)

10m meridional wind 1.0 0.48 1.0 0.69 0.69 0.39
10m wind speed 1.0 0.39 1.0 0.63 0.69 0.33
10m zonal wind 1.0 0.47 1.0 0.69 0.69 0.39
Geopotential at 500 hPa 1.0 0.69 1.0 0.83 0.69 0.53
Geopotential at 850 hPa 1.0 0.63 1.0 0.79 0.69 0.49
Mean sea level pressure 1.0 0.64 1.0 0.8 0.69 0.5
Significant wave height 0.75 0.32 0.87 0.57 0.56 0.28
Snow depth 0.56 0.02 0.75 0.13 0.45 0.02
Snowfall 0.88 0.04 0.94 0.2 0.63 0.04
Surface air temperature 1.0 0.32 1.0 0.56 0.69 0.27
Total cloud cover 1.0 0.92 1.0 0.96 0.69 0.65
Total precipitations 1.0 0.05 1.0 0.22 0.69 0.05

Table 5.2: Maximum values of Ds and Dr for each of the meteorological variables,
over the working set. This illustrates that although both values are in the interval
[0, 1], then do not always reach the value 1.

Variable 0 1 2 3 4 5 6 7 8 9

10m meridional wind (ms−1) 96.0 96.0 96.9 96.3 96.2 96.0 96.0 96.0 96.2 96.3
10m wind speed (ms−1) 77.6 77.6 78.0 77.8 77.7 77.6 77.6 77.6 77.7 77.8
10m zonal wind (ms−1) 102.8 102.8 103.4 103.1 103.0 102.8 102.8 102.8 103.0 103.0
Geopotential at 500 hPa (m2s−2) 15181 15181 15338 15269 15224 15185 15183 15183 15225 15269
Geopotential at 850 hPa (m2s−2) 9423 9429 9520 9464 9450 9425 9425 9430 9451 9469
Mean sea level pressure (Pa) 11648 11649 11780 11724 11681 11646 11648 11646 11680 11721
Significant wave height (m) 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2
Snow depth (m) 0.0283 0.0283 0.0283 0.0282 0.0283 0.0283 0.0283 0.0283 0.0283 0.0283
Snowfall (m) 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
Surface air temperature (K) 48.8 48.8 48.9 48.9 48.9 48.8 48.8 48.8 48.9 48.9
Total cloud cover (%) 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2
Total precipitations (m) 0.0085 0.0085 0.0085 0.0085 0.0086 0.0085 0.0085 0.0085 0.0086 0.0085

Table 5.3: Values of ξL2 per method and per meteorological variable. It should be
noted that this value is mostly the same for all methods.

As a consequence, the sum ξL2 is also not related to the fingerprints, but only to
the fields in the working set, which is the same for all methods considered.

Furthermore, the vertical red dotted line in figures 5.3 on page 73 and 5.4 on
page 74 represents the minimum distance threshold as defined in section 4.3.4.
This shows that the peak of the distributions, i.e. the maximum error, is smaller
than the minimum distance threshold in all the cases.

No real conclusion can be drawn from that empirical study. We will therefore focus
on method 0, as using other methods of combining Ds and Dr makes little to no
difference.
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Figure 5.1: Plots of the value for α that minimise the methods considered in
table 5.1 on page 69. Only a selection of variables and methods are shown for con-
ciseness. A complete set of results is given in table 5.3 on the facing page. It should
be noted that all curves for the same meteorological variable have approximately the
same minimum value.
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Figure 5.2: Plots of the value for α that minimise the methods considered in
table 5.1 on page 69. Only a selection of variables and methods are shown for
conciseness. A complete set of results is given in table 5.3 on page 70. It should
be noted that all curves for the same meteorological variable have approximately the
same minimum value.
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Figure 5.3: Distribution of εL2 for each of the ten methods. The vertical dotted
line marks the minimum distance threshold as defined in section 4.3.4.

.

73



0 20 40 60 80 100 120

score

0

1

2

3

4

5

×10−2 Significant wave height

0

1

2

3

4

5

6

7

8

9

0.0 0.1 0.2 0.3 0.4

score

0.0

0.5

1.0

1.5

2.0

2.5

×101 Snow depth

0

1

2

3

4

5

6

7

8

9

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175

score

0

1

2

3

4

5

6

7

8
×102 Snowfall

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140

score

0.0

0.5

1.0

1.5

2.0

2.5

3.0

×10−2 Surface air temperature

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20

score

0.0

0.5

1.0

1.5

2.0

×10−1 Total cloud cover

0

1

2

3

4

5

6

7

8

9

0.00 0.01 0.02 0.03 0.04

score

0

1

2

3

4

5

6

7

8
×101 Total precipitations

0

1

2

3

4

5

6

7

8

9

Figure 5.4: Distribution of εL2 for each of the ten methods. The vertical dotted
line marks the minimum distance threshold as defined in section 4.3.4.
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5.2 Fingerprint-based distances

We now take a closer look at the fingerprint-based distance defined in this chapter,
to check if they present the qualities of distances. For that, we compare the
distribution of fingerprint distance with those of inter-field distances. We will also
use the fingerprint distances to perform some clustering.

5.2.1 Distribution of fingerprint distances

Figures 5.5 and 5.6 show the distribution of fingerprint distances. Comparing it to
the original distribution of distances based on the Euclidean distance (figures 4.2
on page 46 and 4.3 on page 47), we can see that with the exception of snow depth
and snowfall, the shape of the bell-like curves are preserved.

Figures 5.7 and 5.8 show the distributions of distances for fingerprints that would
only consist of a shape part (i.e. method 0 with α = 0). The plots show clearly
that the fingerprint can only take 16 different values, which is consistent with a
choice of C = 3.

Figures 5.9 and 5.10 show the distributions of distances for fingerprints that would
only consist of a reference value part (i.e. method 0 with α = 1).

The distances in figures 5.5 and 5.6 are a combination of the two previous, and
the “spikes” are the contribution of the shape component.

5.2.2 Clusters

We can build a distance matrix using the fingerprint distances between every pair of
fields in the archive. We can then use this distance matrix as input to a hierarchical
clustering algorithm, using the complete linkage method. We select that linkage
method because it creates the most balanced clusters. We stop the clustering at
nine clusters so that we can visually compare the results with the ones obtained
using k-means clustering in section 4.3, such as figure 4.6 on page 51 and figure 5.12
on page 84.

Results are shown in figures 5.11 (surface air temperature), 5.12 (snow depth)
and 5.13 on page 85 (significant wave height). A random member of each cluster
is selected to be plotted in each figure. Of course, the choice of that member will
affect the perception that the reader will have from the clustering, but in the three
examples provided, it is clear that using fingerprint-based distances produces a
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Figure 5.5: Distribution of the fingerprint-bases distances between fields for each
meteorological variable, with a number of bins set to 100. The shape of histograms
are identical to the ones showing the distribution of distances between using the
Euclidean distance (compare to figure 4.2 on page 46), albeit for their jagged edges.
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Figure 5.6: Distribution of the fingerprint-bases distances between fields for each
meteorological variable, with a number of bins set to 100. The shape of histograms
are identical to the ones showing the distribution of distances between using the
Euclidean distance (compare to figure 4.3 on page 47), albeit for their jagged edges.
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Figure 5.7: Distribution of fingerprint-bases distances between fields using only
the shape component of the fingerprint (number of bins set to 100).
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Figure 5.8: Distribution of fingerprint-bases distances between fields using only
the shape component of the fingerprint (number of bins set to 100).
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Figure 5.9: Distribution of fingerprint-bases distances between fields using only
the reference value component of the fingerprint (number of bins set to 100). The
curves shown are half-normal distributions.
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Figure 5.10: Distribution of fingerprint-bases distances between fields using only
the reference value component of the fingerprint (number of bins set to 100). The
curves shown are half-normal distributions.
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satisfactory clustering.

The main advantage is that the hierarchical clustering is done without accessing
the original data. This is possible because the algorithm only requires a distance
matrix as input. In the case of an algorithm such as k-means, this needs to
generate new data that are not in the starting set, i.e. the centroids, there is a
need to produce fingerprints for these new data, by combining existing fingerprints.
This could be considered as future work.

5.2.3 Worst cases

In the interest of completeness, we take a closer look at the worst cases, that is
the queries for which εL2 is maximum.

The results vary: in some cases, such as snow depth (figure 5.14 on page 86),
snowfall (figure 5.15) and 10m wind speed (figure 5.16), the worst cases can be per-
ceived as more satisfactory than the actual closest fields according to the Euclidean
distance (user perception is discussed later in section 8.1.1).

For total precipitations (figures 5.17 on page 87), mean sea level pressure (fig-
ure 5.18), geopotential at 850 hPa (figure 5.20) and geopotential at 500 hPa (fig-
ure 5.19), the worst cases can still be considered are somewhat similar to the
original query, but are clearly worse than the actual closest fields according to the
Euclidean distance.

For the remaining variables (figures 5.21-5.24) the worst cases are clearly different
from the query field.

5.3 Memory footprint of fingerprints

The fingerprints are several orders of magnitude smaller than the original field: in
our study, the fields have 1024 grid points, and therefore 1024 floating-point values.
With the selected compression factor of C = 3, the fingerprints are composed of
a 16 bits shape s and a reference value r which is a floating-point. Most of the
meteorological fields are stored in the WMO GRIB format (World Meteorological
Organization (2009)) using a 16 bits lossy packing method. This method can be
used for the reference value r:

r16bits =

⌊
216

(r −minv)

(maxv −minv)

⌋
(5.5)
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(1) 1% of members. (2) 10% of members. (3) 12% of members.

(4) 5% of members. (5) 12% of members. (6) 10% of members.

(7) 28% of members. (8) 3% of members. (9) 20% of members.

Figure 5.11: Hierarchical clustering of surface air temperature using the complete
linkage method. A random member of each cluster is shown.
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(1) 3% of members. (2) 54% of members. (3) 29% of members.

(4) 2% of members. (5) 4% of members. (6) 2% of members.

(7) 4% of members. (8) 1% of members. (9) 1% of members.

Figure 5.12: Hierarchical clustering of snow depth using the complete linkage
method. A random member of each cluster is shown.
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(1) 18% of members. (2) 28% of members. (3) 25% of members.

(4) 14% of members. (5) 9% of members. (6) 3% of members.

(7) 3% of members. (8) 0.1% of members. (9) 0.5% of members.

Figure 5.13: Hierarchical clustering of significant wave height using the complete
linkage method. A random member of each cluster is shown.
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(a) 1979-03-16 (b) 1987-01-20 (c) 1979-03-15

Figure 5.14: Match with the highest error for Snow depth. (a) is the query field,
(b) is the closest field according to the fingerprint distance, (c) is the closest field
according to the Euclidean distance.

(a) 1981-01-16 (b) 2002-01-25 (c) 1987-03-07

Figure 5.15: Match with the highest error for Snowfall. (a) is the query field,
(b) is the closest field according to the fingerprint distance, (c) is the closest field
according to the Euclidean distance.

(a) 2011-02-06 (b) 2002-03-18 (c) 1980-12-24

Figure 5.16: Match with the highest error for 10m wind speed. (a) is the query
field, (b) is the closest field according to the fingerprint distance, (c) is the closest
field according to the Euclidean distance.
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(a) 1981-12-13 (b) 1996-11-24 (c) 2003-02-28

Figure 5.17: Match with the highest error for Total precipitations. (a) is the
query field, (b) is the closest field according to the fingerprint distance, (c) is the
closest field according to the Euclidean distance.
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Figure 5.18: Match with the highest error for Mean sea level pressure. (a) is the
query field, (b) is the closest field according to the fingerprint distance, (c) is the
closest field according to the Euclidean distance.
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Figure 5.19: Match with the highest error for Geopotential at 500 hPa. (a) is
the query field, (b) is the closest field according to the fingerprint distance, (c) is
the closest field according to the Euclidean distance.
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Figure 5.20: Match with the highest error for Geopotential at 850 hPa. (a) is
the query field, (b) is the closest field according to the fingerprint distance, (c) is
the closest field according to the Euclidean distance.

(a) 1995-12-28 (b) 1983-02-08 (c) 1982-01-07

Figure 5.21: Match with the highest error for Surface air temperature. (a) is the
query field, (b) is the closest field according to the fingerprint distance, (c) is the
closest field according to the Euclidean distance.

(a) 1998-01-04 (b) 1986-12-16 (c) 1990-01-25

Figure 5.22: Match with the highest error for Significant wave height. (a) is the
query field, (b) is the closest field according to the fingerprint distance, (c) is the
closest field according to the Euclidean distance.
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(a) 1982-11-04 (b) 1994-02-03 (c) 2002-09-08

Figure 5.23: Match with the highest error for 10m zonal wind. (a) is the query
field, (b) is the closest field according to the fingerprint distance, (c) is the closest
field according to the Euclidean distance.

(a) 2016-02-20 (b) 2015-01-15 (c) 1983-01-07

Figure 5.24: Match with the highest error for 10m meridional wind. (a) is the
query field, (b) is the closest field according to the fingerprint distance, (c) is the
closest field according to the Euclidean distance.
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where ⌊x⌋ is the nearest smaller integer from x (floor), and minv and maxv is the
minimum and maximum values possible for the meteorological variable v. In this
case, the fingerprint can be as small as 32 bits.

Currently, the dataset considered in this study (see section 2.2) spans 40 years
and has hourly fields. The number of fields for a single meteorological variable is
therefore 14610× 24 = 350640. As a consequence, the memory footprint of all the
fingerprints will be 350640× (32/8) = 1402560 bytes which is about 1.3MiB.

Of course, this does not take into account the data structure needed to hold this
information. Nevertheless, this volume is very small compared to the RAM avail-
able on modern computers and can therefore easily fit in memory, allowing for
very fast lookups.
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Chapter 6

Query by example

The fingerprinting system that has been described so far needs to be queryable. In
this research, we consider how users can describe what they are looking for, in an
interactive fashion. In the chapter we will therefore explore several ways of letting
users perform queries:

• by “painting” a meteorological field directly on the screen;

• by selecting a predefined regime from a list (heatwave, cold-spell, etc);

• by using helper tools to input predefined patterns (high, low, trough, ridge,
etc).

We will discuss the need for inputting physically realistic fields (e.g. no snow cover
over the ocean). We will describe how constraints can be applied to adjust the
user drawn input so it remains realistic (within the climatological values for that
field: minimum, maximum, and possibly reasonable gradients).

We will also discuss the problem of allowing users to specify two fields (wind AND
temperature).

We will also touch on the presentation of the results, and the need to cluster the
results: for example, returning the best 5 matches for a heatwave may return 5
consecutive dates, while it will be better to return 5 dates from different years.

We consider a web-based user interface, with which users interact with the system
using a mouse and a keyboard.
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6.1 A web-based user interface

An experimental web-based user interface has been developed (see figure 6.1 on
the facing page). The top row shows a map representing the current user input,
followed by a canvas displaying a greyscale image of the same field, normalised to
the interval [0, 255], with 0 representing white and 255 representing black, and any
values in between representing a corresponding level of grey. On the top right is a
series of controls and tools that will be described in more details later. Below are
three rows of results, labelled with the date at which the corresponding weather
situation happens.

Both the map at the top left corner of the user interface and the greyscale image
next to it, as well as the underlying matrix of values, are referred to in this chapter
as the query field. The user can interact with the mouse either on the map or the
greyscale image.

The user interface will automatically call the web backend for results 2 s after the
last modification to the query field, allowing the user to perform several actions
before a query is triggered.

6.2 Interactive user input

6.2.1 A canvas for “painting” fields

Unlike the SIRS system introduced by Ruth (1993) (see section 1.5.4) that allows
users to interactively draw isolines in order to modify a meteorological field, in
this research, we propose a way to interactively modify fields by modifying their
values directly, by applying “paint” strokes with the mouse.

We use the term “paint” for the lack of a better word: in the same way that a
physical paintbrush adds paint (i.e. matter) on a canvas, we introduce an analogy,
in which a virtual brush will add some of pressure, precipitation or temperature
to an existing field, according to the user’s brush stroke. The reader is reminded
that the graphical representation of a field does not always represent all details of
the underlying data (see section 2.3 on the portrayal of meteorological data). The
“painting” happens by adjusting the data values and not the chart. The chart is
re-plotted automatically based on the modified values.

Below is an illustration of that concept. F is the current state of a meteorological
field which is display on the user’s screen. The user initiates a brush stroke gesture
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.. . Tool:

Default

Minimum value:

950  hPa

Constaints:

Climatology
L2 0

Value:

1  hPa

Maximum value:

1000  hPa

Climatology (hPa): 
Minimum: 922.13 
Average: 1013.89 
Maximum: 1048.7

WS

Radius:

Pressure:

       

Date:

dd/mm/yyyy

Regimes:

-

Parameters:

Mean sea level pressure

Date clustering:
4 Press shift-key to lower values.

.

1983-12-20 09:00:00 2014-02-14 14:00:00 2003-10-30 15:00:00

2002-11-14 02:00:00 1999-10-24 20:00:00 1986-01-01 21:00:00

1994-02-03 16:00:00 2005-12-02 05:00:00 1996-01-11 18:00:00

Figure 6.1: The web-based user interface. The controls are in the top row. The
results are shown below.
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starting from the bottom left of the canvas, to the top right of the canvas. The
amount of “paint” added to the virtual canvas is recorded as ∆F . The content of
∆F will depend on the type of brush used, as well as the duration of the gesture
(see section 6.2.2). ∆F is added to F to give F ′, the new state of the field displayed
on the screen.

F =


3.1 4.2 5 5.3

2.9 3.5 2 4.2

2.7 2.7 3.5 4.1

1.4 2.8 3.1 3.9

1.5 2.2 2.8 3.2

 ∆F =


. . . 0.2

. . . 0.8

. . 1.2 .

0.1 0.7 . .

. . . .

 F ′ =


3.1 4.2 5 5.5

2.9 3.5 2 6.0

2.7 2.7 4.7 4.1

1.5 3.5 3.1 3.9

1.5 2.2 2.8 3.2



6.2.2 Input tools

Tools are used to interact with the query field. They can be considered as virtual
paint brushes, akin to the brushes of a software like Photoshop.

The tools are selected from a dropdown menu in the user interface. Some tools
rely on the values of other widgets. Three tools have been implemented:

Default tool

The default tool is simulating an airbrush, adding an amount of “paint” at regular
intervals (set to 0.1 s).

The amount of paint added at a grid point (i, j), at each interval, is defined by the
Gaussian function:

∆Fi,j = P × (Fmax − Fmin)× e−di,j/R
2 (6.1)

where di,j is the distance between the mouse cursor and the grid point (i, j), P is
the pressure of the brush and R its radius, both of which can be controlled by the
user using the sliders on the user interface. The effect of changing these values is
shown in figure 6.2 on the next page. The advantage of the Gaussian function is
that it does not create strong gradients, keeping the query field realistic.

The user can decide to “remove paint”, i.e. to change the sign of ∆Fi,j by depress-
ing the shift-key while pressing the mouse button.
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Figure 6.2: Gaussian function for various values of radius and pressure.

Levelling tool

The levelling tool is a variation of the default tool, where the user provides a target
value L (the level to reach, provided by the user in one of the user interface input
fields). The tool uses a slightly modified Gaussian function:

∆Fi,j = P × (L− Fi,j)× e−di,j/R
2 (6.2)

where L is the target value, Fi, j the value of the grid point (i, j) and P and R are
as before. The value of ∆Fi,j is proportional to the difference between the current
grid point value at the target value: if L > Fi,j, ∆Fi,j will be positive, as more
“paint” is needed to reach L. Conversely, if L < Fi,j, ∆Fi,j will be negative, as
“paint” needs to be removed to reach L. Once L = Fi,j, ∆Fi,j becomes zero.

The tool is also applied at regular intervals of 0.1 s. This means that if the user
keeps pressing the mouse button over a given grid point, over time all the grid
points with the selected radius will have the target value.

As for the default tool, using a Gaussian function allows for smooth transitions
and gradients between grid points.
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(a) Query field. (b) Best match.

Figure 6.3: The system is queried for snow depth with a rectangular pattern with
a constant value of 35 cm, and zero elsewhere. A match is returned for 29 January
1979. The green and white shapes surrounding the blue one are artefacts of the
plotting software.

Rectangle tool

This tool functions differently to the previous two: it uses the rubber band paradigm,
where the user clicks at one point, drags the mouse and releases at another point.
The first and last points of that gesture define the two corners of a rectangle. All
grid points within that rectangle are given a user-defined value. Unlike the previ-
ous tools, this will create unrealistic query fields, with very steep gradients. This
is not an issue in itself, as the query can still return results that match the user’s
need (see figure 6.3).

The rectangle tool could easily be complemented with tools also based on the
rubber band concept, which will draw other shapes, such as ovals.

6.2.3 Predefined patterns

Since “painting” on the query field may be difficult and inaccurate, a series of
controls are provided that can applies a predefined pattern onto the canvas. The
first four buttons correspond to the four major patterns that are exhibited by met-
eorological fields, in particular pressure and geopotential fields: Low, High, Ridge
and Through (figure 6.4 on the next page). When users click on the corresponding
button, the current field is replaced with the selected pattern, using the current
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Figure 6.4: Predefined patterns, plotted for fields varying between 0 (Fmin) and
31 (Fmax). In should be noted that that the shape of the ridge and trough are only
valid in the northern hemisphere. For the southern hemisphere, the patterns must
be flipped horizontally.

minimum (Fmin) and maximum (Fmax) values specified by the user.

In addition to the four buttons mentioned above, the following buttons can be
used to control the query field:

Value
sets all values of the query field to a user-specified value.

Minimum
sets all values of the query field to Fmin.

Maximum
sets all values of the query field to Fmax.

Median
sets all values of the query fields to (Fmax + Fmin)/2.

Inverse
applies the transformation: Fi,j ← (Fmax + Fmin) − Fi,j for each value Fi,j in
the query field.
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6.2.4 Predefined regimes

Another possible way to query the system is to provide the user with a series
of predefined queries (i.e. predefined weather regimes), which are described in
a catalogue. These can be based on past events, such as the “Great Storm of
October 1987”, or common weather regimes, such as “heat wave”, “cold spell” or
“overcast”.

Unlike the predefined patterns described in section 6.2.3, which simply modify the
values of the currently selected meteorological variable, this input method consists
of loading in the user interface a field from a predefined catalogue of field, which
may represent a different variable.

Currently, the list of predefined regimes is as follows:

Heatwave:
a constant field of surface air temperature, around 40 ◦C.

Cold spell:
a constant field of surface air temperature, around −15 ◦C.

Great storm of 1987 (msl):
the mean sea level pressure field for 16 October 1987, 0UTC.

Great storm of 1987 (wind speed):
the 10m wind speed field for 16 October 1987, 0UTC.

Clear sky:
a constant field of total cloud cover, set to 0%.

Overcast:
a constant field of total cloud cover, set to 100%.

Low pressure (msl):
a low pressure field of mean sea level pressure, between 950 hPa and 1000 hPa.

High pressure (msl):
a high pressure field of mean sea level pressure, between 1000 hPa and 1020 hPa.

Dry spell:
a constant field of total precipitations at 0mm.

Deluge:
the climatological maximum of total precipitations.

Strong wind:
the climatological maximum of 10m wind speed.
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Anticyclone:
a constant field of mean sea level pressure, set to the variable’s absolute max-
imum for the selected period and domain (around 1048 hPa).

Deep low:
a constant field of mean sea level pressure, set to the variable’s absolute min-
imum for the selected period and domain (around 922 hPa).

Although regimes like “Great storm of October 1987” exist and are retrieved from
the archive, “Heatwave” and “Overcast” are artificial fields. Nevertheless, selecting
them will successfully return the appropriate matches from the system.

6.2.5 User-provided date

The user interface allows users to input a date and a time in a text field widget.
Assuming the date is a valid one and is available in the archive, the corresponding
field is downloaded and used as a query field.

This method of providing a query field is useful when the user knows a memorable
date, such as a date of a specific storm, or heatwave, and wants to extract from
the archive all available analogues.

6.3 Two fields queries

As part of this research, we have considered how to retrieve meteorological situ-
ations by providing two different query fields, for example, a field of precipitations
and a field of temperatures.

There are two issues to consider:

• how to let the user specify the two fields using the web-based user interface;

• how to query the fingerprint database given two different fingerprints as
input.

6.3.1 Selection of two query fields

To address the first point, the user interface offers a button to store the current
query field. To select two query fields, the workflow is therefore as follows:
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1. Select a meteorological variable to work on.

2. Use the tools and controls to define the query field for that variable.

3. Click on the 2nd field button to store that query field.

4. Select a new meteorological variable to work on.

5. Use the tools and controls to define that second query field.

Clicking on the 2nd field button again will revert to a single query field mode.

Figure 6.5 on the facing page shows, in its first row, the result of a query based
on a single query field for the variable mean sea level pressure. The following rows
show two fields queries by combining the mean sea level pressure query field with
surface air temperature, with total precipitations and with snow depth respectively.

6.3.2 Matching of two query fields

To address the second point, the matching of a pair of fingerprints in the finger-
print database, we need to consider the meaning of such a query: we are looking
for meteorological situations for which both queries field match simultaneously.
A matching algorithm that would combine both distances between fingerprints
without taking into account the dates would return matches for situations that
did not occur, by considering the first field at a given date and the second field
at a different date, and could lead to results such as a high snow cover on a hot
summer day.

When performing the matching of two query fields, we are therefore looking for
the dates at which both have matches:

dates = dates1 ∩ dates2 (6.3)

where date1 are the dates returned when using the first query field, and dates2 are
the dates returned when using the second query field.

The resulting set of dates is then sorted according to the position of the dates in
both matching lists:

rank(d) = w rank1(d) + (1− w) rank2(d) (6.4)

where d is a date from the result set, rank1(d) is the position of d in date1 and
rank2(d) is the position of d in date2. w is a coefficient allowing the user to give
more or less weight to one query field over the other. The resulting set dates is
sorted in ascending values of rank(d), with d ∈ dates.
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Figure 6.5: The first row shows a query for mean sea level pressure and the first
three matches returned. The same query is then combined with a constant field of
surface air temperature at 18 ◦C (second row), a drawn field of total precipitations
(third row) and a field of snow depth (fourth row).
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Figure 6.6: Unrealistic user input for the variable snow depth. There cannot be
any snow accumulating on the ocean.

6.4 Realistic inputs

As users are free to paint any pattern on the input canvas, it is likely that they
will provide an unrealistic field, i.e. that cannot be seen in nature. Figure 6.6
shows such an impossible pattern, with snow over the Atlantic ocean. Although
it can snow over the ocean, the snow will not deposit on the surface of the water.
Other unrealistic input could be extreme cold or heat, which are not seen at the
latitudes considered.

6.4.1 Climatologies

The climatology of a meteorological variable for a given location describes how
this variable varies with time (AMS (2012)). In this study, we will consider the
absolute minimum and the absolute maximum of a given variable, at a given grid
point, according to the ERA5 dataset.

Figure 6.7 on page 104 shows the climatological maximum and minimum fields for
snow depth and surface air temperature. The figure shows that the minimum and
maximum values for grid points of the snow depth field are indeed zero over the
seas.

It should be noted that these fields may not have existed, i.e. they may not
have been a day in the past for which every grid points reach their maximum or
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minimum value simultaneously.

6.4.2 Constraints

In section 6.2.1 we explain how the fields can be “painted” by the user, by adding
(or subtracting) “paint” from an original field F to obtain a new field F ′; the
amount of “paint” is represented by ∆F . We then have the following relation:

F ′ = F +∆F (6.5)

Assuming that F is contained by the climatology, we require that F ′ is also con-
strained by the climatology, so that it remains a realistic field. To achieve that,
we will add to extra term δF to the equation above:

F ′ = F +∆F + δF (6.6)

The role of δF is to compensate for values in ∆F that will lead to grid points values
that will be outside the constraints. For example, assuming the climatologies for
the field of temperature are (in ◦C below):

Fmin =

−2.1 −2.2 . . .
... . . .
−0.3 −10.1

 Fmax =

23.4 23.8 . . .
... . . .

24.5 28.8


Given F and ∆F below, we can compute F ′:

F =

18.8 18.9 . . .
... . . .

16.1 26.8

 ∆F =

3.9 3.8 . . .
... . . .
4.0 4.1

 F ′ =

22.7 22.7 . . .
... . . .

20.1 32.9


The highlighted value 32.9 in the lower right corner of F ′ is over the climatological
maximum for that grid point, which is 28.8. In that case, F ′ can remain within
the climatological constraints by adding the term:

δF =

0 0 . . .
... . . .
0 −4.1


Our aim is that the adjustment δF is minimal so that we respect as much as
possible the user’s input. If F ′ was already within the constraints, δF would
simply be zero. We will therefore try to minimise (δF )2, using a penalty method
(Smith et al. (2000)).
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(a) Climatological minimum for snow
depth.

(b) Climatological maximum for snow
depth.

(c) Climatological minimum for surface
air temperature.

(d) Climatological maximum for surface
air temperature.

Figure 6.7: Climatologies of selected meteorological variables over the British Isles,
computed from ERA5 over the period 1979-2018.
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Penalty method

In order to minimise a function f(x) given a set of constraints ci such that ci(x) ≤ 0,
one can minimise a family of functions ϕk:

Φk(x) = f(x) + σk
∑
i

max(0, ci(x))
2 (6.7)

where σk is a penalty coefficient. When x is within the constraint ci, the term
max(0, ci(x))

2 evaluates to 0, when x is outside the constraints, the term evaluates
to a large number. The algorithm consists of iterating through k, minimising ϕk

using the result of the previous iteration as a seed, and increasing σk at each
iteration, putting more and more weight to the constraints.

Procedure minimise-with-constraints(f, constraints, x0, iterations)
σ ← 1

x← x0
for i← 1 to iterations do

Φ← f + σ ∗ constraints
x← minimise(Φ, x)

σ ← increment(σ)
end
return x

end

Algorithm 6.1: Penalty method.

As stated above, we are looking to minimise δF 2 so that F ′ = F + ∆F + δF is
within a set of given constraints. Given then climatological minimum Fmin and the
climatological maximum Fmax, we want to constrain F ′ between Fmin and Fmax.
We can therefore write the constraints in the form expected by the penalty method:

F ′ ≥ Fmin (6.8)
becomes

Fmin − F ′ ≤ 0 (6.9)
and

F ′ ≤ Fmax (6.10)
becomes

F ′ − Fmax ≤ 0 (6.11)

Substituting variables, the function to minimise can be written as:

Φk(δF ) = (δF )2 + σk[max(0, Fmin − F ′)2 +max(0, F ′ − Fmax)
2] (6.12)

= (δF )2 + σk[max(0, Fmin − F −∆F − δF )2 +max(0, F +∆F + δF − Fmax)
2]

(6.13)
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It should be noted that the minimisation above will also work for a user-supplied
field, or an artificial field from a catalogue (see section 6.2.4). In that case, only
F is considered, and the minimisation is applied with ∆F = 0. If the provided
field respects the constraints the minimisation will return δF = 0. If the field
provided does not respect the constraint, the minimisation with return a value of
δF that contains the smallest adjustments to do in the input field to get a field
that is within the constraints. This feature will also be important when applying
constraints while providing a smooth user experience (see section 6.4.4).

6.4.3 Other constraints

It can be argued that, from a programming point of view, it will be simpler to
adjust the user input to the climatology by simply computing:

F ′ = min(max(F +∆F, Fmin), Fmax) (6.14)

with min and max being returning the element-wise minimum and maximum
respectively.

The approach taken here is a framework in which additional constraints can be
added. In particular, limiting the constraints to climatological minimum and max-
imum is not sufficient. Figure 6.8 on the next page shows that the climatological
minimum of the mean sea level pressure is itself not realistic: for pressure values
around 900 hPa exist in a deep low such as shown in 6.8b on the facing page and
not a so‐called barometric swamp as shown in 6.8a on the next page.

To ensure that user-provided fields are physically realistic, we should also constrain
their gradients: for example, it is not possible, in the British Isles, to have a
gradient of temperature of 25 ◦C between two adjacent grid points that are 55 km

apart (the maximum gradient over the selected period is 22.1 ◦C, based on the
ERA5 dataset).

Adding constraints on the gradients would simply mean adding an extra term in
the definition of Φk(δF ), with no change to the algorithm.

See section 8.2.3 for more information.

6.4.4 Minimisation in an interactive environment

As part of this work, the algorithm described above has been implemented in
Javascript so that it can be run in the user’s web browser. The minimisation is
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Figure 6.8: 6.8a is the climatological minimum at each grid point, while 6.8b is
one of the closest matches.

based on Newton’s method (Kelley (2003)).

Procedure df(f, x, ε)
return (f(x+ ε)− f(x))/ε

end

Procedure minimise(f, x0, ε)
x← x0
δ ← ∥f(x)∥
while δ > ε do

x← x− f(x)/df(f, x, ε)
δ ← ∥f(x)∥

end
return x

end

Algorithm 6.2: Newton’s method.

One issue with iterative methods is that they may converge slowly. In the case of
an interactive system, it is important that the interface does not become frozen.
According to Nielsen (2009), for a user interface to feel responsive, events should
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be handled below 0.1 s, and certainly not over 1 s.

Procedure expired(start-time, max-elapsed)
return (time()− start-time) > max -elapsed

end

Procedure df(f, x, ε)
return (f(x+ ε)− f(x))/ε

end

Procedure minimise(f, x0, ε, start-time, max-elapsed)
x← x0
δ ← ∥f(x)∥
while δ > ε do

Φ← f + σ ∗ constraints
x← x− f(x)/df(f, x, ε)
δ ← ∥f(x)∥
if expired(start-time, max-elapsed) then

break
end

end
return x

end

Procedure minimise-with-constraints(f, constraints, x0, iterations,
start-time, max-elapsed)

σ ← 1

x← x0
for i← 1 to iterations do

Φ← f + σ ∗ constraints
x← minimise(Φ, x)

σ ← increment(σ)

if expired(start-time, max-elapsed) then
break

end
end
return x

end

Algorithm 6.3: Penalty method using Newton’s minimisation algorithm. The
iterations will stop once a result is found or if a maximum allowed elapsed time is
reached.

When the user “paints” on the canvas, to add an amount ∆F to the current field
F , the F is updated by an amount ∆F + δF , with δd being the result of the
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minimisation described in algorithm 6.3, run for a maximum 0.1 s. This means
that the user interface will be non-responsive for that amount of time, which
according to Nielsen (2009) is perceived as instantaneous. If the algorithm has not
converged in that amount of time, the field F is updated nevertheless, even if it
does not respect the constraints, and a Javascript timeout procedure is posted to
recheck the constraints after a delay of 0.1 s. In that case, the adjustment δF is
computed from the current field F and ∆F = 0. The process is repeated until F
is within constraints, i.e. when δF = 0 (within an epsilon). This is illustrated in
algorithm 6.4 and figure 6.9 on the next page.

Procedure update-field(F, ∆F , constraints, iterations)
δF ← minimise-with-constraints(F +

∆F, constraints, iterations, time(), 0.1)

if δF ̸= 0 then
F ← F + δF

refresh-display(F )

setT imeout(update-field(F, 0, constraints, iterations), 0.1)
end

end

Algorithm 6.4: The penalty method is invoked by chunks of 0.1 s until the field is
within constraints. In Javascript, the function setTimeout(code, delay) will run the
code provided as the first parameter after a delay specified as the second parameter.
In the meantime, the control is given back to the user interface, so the web page is
updated to reflect any changes, and the user is able to interact with various controls
and widgets.

6.5 Presenting results

6.5.1 Presentation of results

Once the user has described a query field using one or more of the input methods
described in the section above, the web-based user interface triggers a request to
the web backend, by sending the matrix of values representing query field.

The backend will generate a fingerprint from that matrix and will perform a query
against the fingerprint database, for a limited number of matches (12 at present).
The results are sorted by their distance to the queried fingerprint and then the
corresponding list of dates and times are returned to the user interface.

The user interface will create, for each resulting date, an HTML image and set its
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(a) Starting pattern. (b) Pattern after 0.1 s. (c) Pattern after 0.2 s.

Figure 6.9: Applying constraints on a constant field of surface air temperature at
−15 ◦C (6.9a). After 0.1 s the minimisation is interrupted, and the user is presented
with the intermediate result (6.9b), as well as the ability to interact with the user
interface. Eventually, the minimisation converges to the climatological minimum
(6.9c)

.

source URL to an end-point in the backend that will return a PGN image for the
current variable for that date.

Upon request of an image for a meteorological variable at a given date, the backend
will retrieve the corresponding field from the archive, produce the plot from it,
and return the resulting image. The output of the retrieval and plotting steps are
cached, for faster future accesses.

See figure 7.1 on page 121 and section 7.2 for more information on the architecture
of the system and how the web frontend and backend communicate.

6.5.2 Issue with persistent weather

One of the issue with presenting the results as described in section 6.5.1 is that
when a type of weather remains the same for a large period of time, it is likely
that all the best matches for a given query relate to a single time interval.

Snow depth is the best parameter to illustrate that problem (see figure 6.10 on the
next page), as the same snow coverage can persist for several days. Given a user
query such as snow cover in Scotland and nowhere else, the 5 best matches, may
all represent the same snow event, e.g. for the same dates. This is exacerbated
with a dataset such as ERA5 where the fields are available hourly, and the matches
may all represent fields from within a five hours interval.

From a user perspective, such results are not useful, as they may be several similar
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(a) 1979-01-29T10:00:00. (b) 1979-01-29T09:00:00. (c) 1979-01-29T08:00:00.

(d) 1979-01-29T11:00:00. (e) 1979-01-29T07:00:00. (f) 1979-01-29T06:00:00.

Figure 6.10: Six first matches when searching for analogues of the snow depth
field from 29 January 1979 at 10 UTC. No result clustering is applied, there for all
results are within hours of each other. Compare with figure 6.12 on page 113.
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Figure 6.11: This figure shows a hypothetical distribution of resulting dates for a
given query. For persistent types of weather, the dates arise in clusters. From a
user perspective, it is more informative to be returned a list of dates representing
each cluster, that a list of dates from a single cluster.

weather patterns which are years apart. Indeed, it will be better for the user to
know that the event snow cover in Scotland and nowhere else happened so many
times during the last forty years, at what dates this event occurred, by returning
a significant date for each occurrence.

This is illustrated in figure 6.11. Starting from the user queries, several analogues
are retrieved, shown in the figure as crosses on a calendar, showing the dates at
which the analogues are found. Assuming that the analogues closest to the user’s
query are marked in red, and assuming that the system is set up to return the 5
best matches, then the dates in red will be returned. But these dates correspond
to a single event, for example, some snow lingering on the ground for several days.
From the figure, it is clear that the usefulness of the system would be greater if
the user was made aware of the other events. The figure also shows that persistent
weather events can be considered a cluster of dates in the time dimension.

A solution to this problem is to cluster the results by date and return to the
user a list of representative dates. The clustering algorithm used is Mean shift
(Comaniciu and Meer (2002)) as it allows fine control of the radius of each cluster,
by controlling the width of the kernel it uses (see figure 6.12 on the next page).

The clustering radius depends on the meteorological parameter considered, and
the location of the area considered. For the British Isles, precipitations will sweep
over the domain in a matter of hours, snow may stay on the ground for over a
week, and a heatwave or a cold spell may last for a few days. In this research,
the slider is added to the web user interface so that the user can experiment with
various settings.
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(a) 1979-01-29T10:00:00. (b) 2010-01-08T01:00:00. (c) 1982-01-15T05:00:00.

(d) 1996-02-07T00:00:00. (e) 2013-01-23T00:00:00. (f) 1983-02-11T12:00:00.

Figure 6.12: Six first matches when searching for analogues of the snow depth
field from 29 January 1979 at 10 UTC. The results are clustered with a 365 days
radius (1 year), a representative date of each cluster is returned. Compare with
figure 6.10 on page 111.
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Chapter 7

Implementation

The software developed in the course of this research is simply called Analogues.
It has two main components: a web frontend and a web backend. It is available
at https://github.com/b8raoult/analogues.

In addition, some code has been developed to experiment with various paramet-
risation of the system, as well as produce maps and graphs for this report.

The prototype of the application can be accessed at https://cds.climate.copernicus.
eu/analogues. As this is a development system, there is no guarantee that it is
functional.

7.1 Software used

In the course of this work, some bespoke software has been developed, that makes
use of many Open Source packages. They are listed below.

The following Javascript-based software packages are used for the frontend:

jQuery
(Bibeault and Kats (2008)) is a general-purpose Javascript framework that
provides a unified, browser independent, interface to simplify DOM1 manipu-
lations and asynchronous programming.

1Document Object Model: the API to query and manipulate HTML documents.
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jQueryUI
(Wellman (2009)) is a Javascript library that extends jQuery with a set of user
interfaces elements (widgets) and themes.

The following Python-based software packages are used for the backend:

NumPy
(Oliphant (2007); Van Der Walt et al. (2011)) is a Python package that provides
support for fast vector and matrix handling. It provides the foundations for
most of the other Python scientific packages.

SciPy
(Oliphant (2007); Jones et al. (2014)) is a set of libraries for scientific comput-
ing. It offers functions for interpolations, statistics, clustering, linear algebra,
optimisations, signal processing, image processing, fast Fourier transforms and
much more.

Scikit-learn
(Pedregosa et al. (2011)) is a machine learning library for Python that interop-
erate with Numpy and SciPy. It provides, amongst others, a range of clustering
algorithms.

PyWavelets
(Wasilewski (2010)) is a package that implements wavelet transform in Python,
which supports n-dimensional wavelet transforms as well as over a hundred
types of wavelets.

Flask
(Grinberg (2018)) is a web micro-framework in Python. It relies on other
libraries such as Werkzeug for the routing of HTTP requests and Jinja 2 for
template rendering. It is used to implement the backend.

SQLAlchemy
(Copeland (2008)) is a Python package that implements an object-relational
mapper (ORM) on top of popular relational databases. In this project, it is
mostly used to abstract away the specifics of the underlying database engine
used (PostgreSQL or SQLite).

Matplotlib
(Hunter (2007)) is a plotting library, supporting all type of scientific graphs.
It is used to produce all the plots in this report, except for maps which are
produced with MAGICS (see below).

Jupyter Notebook
(Pérez and Granger (2007); Kluyver et al. (2016)) previously known as iPy-
thon Notebooks. Notebooks are web-based interactive documents that embed
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Python (or other scripted languages) codes and display their results inline,
directly in the user’s web browser. This is a powerful tool when used in con-
junction with Matplotlib. All plots in this memoir have been developed using
Jupyter Notebook.

ECMWF software is used to handle meteorological data:

MAGICS
(O’Sullivan (1993); Woods (2006)) is a large software library written in C++
that is specialised in plotting meteorological data. It also provides some Py-
thon bindings, so it can be used from within a Python program. In the course
of this work, the Python bindings have been extended to allow for MAGICS
maps to be displayed in Jupyter Notebooks.

MARS
(Raoult et al. (1995); Raoult (1997); Woods (2006)) is the tool used to retrieve
data from the archive. It can also perform on-the-fly sub-area extraction and
re-gridding using MIR (Maciel et al. (2017)), so that only the relevant inform-
ation is returned to the user. MARS can also compute derived fields, such as
computing wind speed from wind components.

ecCodes
(Fucile et al. (2016)) is a library used to encode and decode meteorological
data formats (World Meteorological Organization (2009)), in particular, the
GRIB format which is used to encode meteorological fields. In the course of
this research, some Python bindings were developed, which have since been
integrated into the main ecCodes package.

Other software tools and libraries are also used in the backend:

PostgreSQL
(Drake and Worsley (2002)) is a relational database, that is performant and
feature-complete. It is used to implement the fingerprint database. It has been
extended with a plugin that adds supports for Hamming distance (Rathna
(2011)).

SQLite
(Owens (2006)) is a server-less SQL relational database system. It has been
used during this project as a replacement to PostgreSQL when developing on a
local laptop. During the course of this research, a plugin was implemented that
extends SQLite with a function computing the Hamming distance between two
integers.

uWSGI
(uWSGI (2019)) is a software that implements the Web Server Gateway In-
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terface protocol that allows the running of Python code in response to HTTP
requests. uWSGI also provides support for WebSockets, and relies on the
sendfile(2) system call to efficiently send files back to the user.

nginx
(Reese (2008)) is a web server. It is used as a reverse proxy for HTTP requests
and WebSockets. It communicates with the backend via the uWSGI protocol.

7.2 Software architecture

7.2.1 Frontend

The frontend is a single page web application that is written in Javascript and
makes use of jQuery for most of the event processing and AJAX calls as well as
jQueryUI for some of the most advanced widgets.

The interactive “painting” of the query field relies on the HTML5 canvas element.
There are two canvases on the web page, one representing the field in its traditional
portrayal (see section 6.2.1), the second is a greyscale rendering. The latter is
managed entirely in the user’s browser, updated by the Javascript code as the user
interacts with either of the canvases. The former relies on MAGICS for plotting
the fields.

As it is not possible to run MAGICS in the frontend, it needs to be run in the
backend. The solution envisaged is to use a WebSocket (Wessels et al. (2011)) to
connect both ends efficiently. Unlike traditional HTTP requests that are stateless,
a WebSocket establishes a permanent connection between the user’s browser and
a process running in the backend. In this case, the process invokes the MAGICS
package to plot the field which values have been received over the socket, and
returns the bytes forming a base64 encoded PNG of the resulting plot. The encoded
image is then displayed in the canvas.

With a good Internet connection, the elapsed time between a user updating the
query field, the field values being sent over the socket, MAGICS plotting the res-
ulting map, the map being sent back to the browser and eventually being displayed
in the canvas is fast enough to be perceived as quasi-instantaneous. This step is
marked as 1 in figure 7.1 on page 121.

The interactive tools introduced in section 6.2.2 are responsible for modifying the
query field based on the user’s interaction with one of the two canvases. Tools are
implemented as Javascript objects (in the object-oriented sense), and implement
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methods to react to the mouseDown, mouseMove and mouseUp and update the
query field accordingly.

The code for penalty method minimisation (see section 6.4.2) that applies con-
straints of the query field is also implemented in Javascript. The speed at which
the minimisation converges depends therefore on the performance of the user’s
browser and computer. As any long-running Javascript code would freeze the
browser page and lead to poor user experience, the minimisation is run in chunks
of 0.1 s, yielding the control back to the user interaction between each chunk. This
is described in details in section 6.4.4.

Also implemented in Javascript is the code to generate the predefined patterns
described in section 6.2.3. The predefined regimes (see section 6.2.4) are fetched
from the backend using an AJAX call.

A short delay after the user has finished modifying the query field using one or
more of the available input methods (see section 6.2), the frontend issues an AJAX
call to the backend with the content of the query field and various other options.
The backend returns the list of matching dates (step 2 in figure 7.1 on page 121),
sorted according to their matching score, i.e. the distance between fingerprints, and
filtered according to the clustering radius provided by the user (see section 6.5.2).

For each date returned, the source of one of the resulting HTML images is set to
a URL referring to that date. The browser will then automatically resolve these
URLs and fetch the corresponding maps from the backend (step 3 in figure 7.1
on page 121). The dates are also given as captions to the images.

7.2.2 Backend

The role of the backend is to respond to WebSocket events, AJAX calls and HTTP
requests. The backend is written in Python, using the Flask web micro-framework
that caters for the HTTP protocol. Flask itself is run within uWSGI that takes
care of the management of threads and processes, ensuring that the service is up
and running and uses the right amount of computing resources (CPU, memory).
uWSGI also handles the communication with the nginx reverse proxy that is ex-
posed on the open Internet.

The backend manages one WebSocket connection per user. As the user interacts
with the web pages, changes to the query field are received over the socket. MA-
GICS is invoked to plot the field according to its default portrayal. The resulting
plot is encoded and sent back to the user’s browser via the same socket (step 4
in figure 7.1 on page 121). As the socket stays fully connected, there is an instance
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SELECT valid_date ,
distance(fingerprints.s,

fingerprints.r,
query_s ,
query_r) AS distance

FROM fingerprints
ORDER BY distance ASC
LIMIT 100

Listing 7.1: Pseudo SQL code used to retrieve the dates of the nearest neighbours
of the query fingerprint ⟨querys, queryr⟩.

of MAGICS loaded in memory for each user; this contributes to the performance
and responsiveness of the system.

When the frontend requests the execution of a query, the backend is invoked via an
AJAX call, describing the query fields and other options, such as the date cluster-
ing radius. Upon reception of the message, the backend computes the fingerprint
of the query field. This fingerprint ⟨querys, queryr⟩ is used to build an SQL state-
ment similar to the one given in listing 7.1, where distance() is a function that
implements the distance between fingerprints as described in section 5.1 (step 5
in figure 7.1 on the next page). The limit 100 here is greater than the desired
number of results (e.g. 12) because the resulting list of dates is then clustered
using the MeanShift clustering algorithm (see section 6.5.2). The first date of each
cluster is then collected and the resulting list is sent back to the user’s browser. If
the clustering algorithm does not lead to at least 12 different clusters, the process
is redone by rerunning the SQL query with a larger limit, when possible.

In order to display the maps corresponding to the dates resulting from a query, the
frontend will issue, for each of the dates, a HTTP GET with an URL referencing
that date. On receiving such a request, the backend will first check in its cache if
the plot has already been done for a previous request. If so, the plot is sent back
to the user’s browser using the sendfile(2) system call, for performance. If the
plot was not found in the cache, the backend checks if the field for that date is
present in the cache. If this is the case, the field is plotted, and the plot is added
to the cache (step 7 in figure 7.1 on the facing page) and sent back; otherwise,
the field is first retrieved from the archive and added to the cache (step 6 ) and
then plotted, and finally sent to the user.

120



WebSockets AJAX HTTP

PostgreSQL

Cache

{"
F"

: [
95

0,
 9

52
.1

, …
], 

 "
pa

ra
m

":
 "

m
sl"

,  
"d

om
ai

n"
: "

uk
",

 …
}

Base64 encoded PN
G

970

990

990

990

960

980

980

980

980

980

980

980

970

970

970

990

990

G
ET

 /
pl

ot
/m

sl/
uk

/2
01

0-
11

-0
8T

23
:0

0:
00

PO
ST

 /
m

at
ch

es
 

{"
F"

: [
95

0,
 9

52
.1

, …
], 

 "
pa

ra
m

":
 "

m
sl"

,  
"d

om
ai

n"
: "

uk
",

 "
op

tio
ns

":
 …

}

PN
G

 Im
age

{"m
atches": ["2010-11-08T

23:00:00", "1994-01-06T
07:00:00",…

], …
}

User interactions

SELECT dates 
FROM fingerprints
WHERE …
LIMIT …

2010-11-08T23:00:00 
1994-01-06T07:00:00 
…

1 2 3

5

Browser

uWSGI

Archive

6

7

retrieve
plotplot

lookup clustering

show results

trigger search

apply patterns

apply tools

4

Figure 7.1: Interactions between the user’s web browser (frontend) and the backend.
In the actual deployment, there is a nginx acting as a reverse proxy. It has been
omitted here for clarity.
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7.3 Deployment

The Analogue software is deployed as part of the infrastructure of the Copernicus
Climate Data Store (Raoult et al. (2017)). Copernicus is the European Union’s
Programme for Earth Observation.

One of the components of this programme is the Copernicus Climate Change Ser-
vice (C3S) which aims at providing an authoritative source of knowledge to support
adaptation and mitigation policies. The Climate Data Store (CDS) provides the
technical infrastructure of the C3S.

The CDS is a distributed system, providing access to datasets via a service-oriented
architecture. The datasets cover satellite measurements of Essential Climate Vari-
ables (Bojinski et al. (2014)), climate reanalyses, climate projections, as well as
sectoral information, such as health, energy, transportation or tourism amongst
others.

The CDS provides a unified REST (Fielding (2000)) API to download any data it
serves, by dispatching users’ requests to a broker which in turn will forward them
to the relevant data source via a service implementing the adaptor design pattern
(Gamma et al. (1995)).

The CDS is deployed in a private cloud infrastructure running Open Stack. As the
ERA5 reanalysis is one of the most popular datasets available through the CDS. A
large subset (around 1 Petabyte, 1.6 billion meteorological fields) has been copied
online, indexed by a disk-only MARS server installed on the same cloud.

In order to get efficient access to ERA5, the Analogue software is deployed in its
own virtual machine, running on the same cloud. The software also shares its web
reverse proxy with the CDS, so that the result of this research may become an
integral part of the service, and be open to the public.

The virtual machine is running Centos 7, with the Linux 64 bits kernel 3.10. It
has 64GiB of memory, and 40 single-core virtual CPUs running a 2.2MHz, with
a 32KiB L1 cache, a 4MiB L2 cache and a 16MiB of L3 cache.

Two file systems are mounted on the virtual machine, one to host the fingerprint
database, the other to serve as a cache for retrieved fields and generated maps. For
performances, the underlying disks of both file systems rely on solid-state devices
(SSD).

Figure 7.2 on the next page illustrates that deployment: the Analogue software
is shown in orange. The web layer that is shared with the Climate Data Store is
shown in green, while access to the CDS data is displayed in blue.
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Chapter 8

Conclusion

At the onset of this work, we set ourselves the following objectives:

• Define a scheme to extract a fingerprinting from meteorological fields. The
computation of fingerprints should be fast; the resulting information should
be small and distances between fingerprints should be representative of dis-
tances between fields. Searching for nearest neighbours using fingerprints
should be fast enough to allow interactive queries. Furthermore, fingerprints
can be computed once for each field, so they can be used without the need
to retrieve data from the archive.

• Define an objective measure of the effectiveness of a fingerprinting method,
so different methods can be compared, and their parametrisation tuned to
minimise the error between nearest neighbours between fingerprints and the
nearest neighbours between the fields they represent.

• Implement a web-based, interactive application allowing users to search for
weather analogues by describing weather patterns of interests, and display
the matching results. As for any user-facing interface, usability and respons-
iveness are key.

8.1 Results

During the course of this research, we have shown that we can use wavelet de-
composition to generate fingerprints of fields from a selection of meteorological
variables. The fingerprints retain enough information from the original field, and
can therefore be used as a proxy for the fields, when comparing them. These fin-
gerprints are several orders of magnitude smaller than the original field, and can
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(a) Query (b) Result (Fingerprint) (c) Closests (Euclidean dis-
tance)

Figure 8.1: Query is the field used to query the system (10m wind speed for 24
December 2015). Result is the best match according to the fingerprinting method
(18 January 1999) and Closest is the closest field according to Euclidean distance
(19 November 1997).

easily fit in memory (see section 5.3).

We have proposed a way to measure the performance of a fingerprinting scheme
and used it to tune various methods and select the most effective one. Furthermore,
this will allow any future work to measure if a new proposed scheme improves the
quality of query results.

We have computed fingerprints for a selected number of meteorological variables
from the ERA5 dataset, which provides hourly data for a period of 40 years. The
result has been stored an indexed in SQL database.

We have implemented a web-based application that allows users to perform inter-
active queries and be provided with matching results. We have considered several
ways with which a user could express a query, from sketching patterns onto the
screen to selecting weather regimes from a predefined list. This application will
later be made available to expert users, such as forecasters and researcher, as part
of the Climate Data Store (see section 7.3).

8.1.1 On user perception

We have successfully devised a system that allows users to search for weather
analogues interactively. Nevertheless, the quality or the accuracy of the results is
a matter of perception, and is often more subjective than objective:

• The Euclidean distance that we are comparing to has its own limitations,
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Figure 8.2: Using artificial fields as queries (first row), and the corresponding best
matches (second row).

in particular in very high dimensions, where it is subject to the curse of di-
mensionality. Furthermore, this distance is not a good measure of similarity
between two fields that are slightly shifted in space, for example, two field
showing the same low pressure pattern but positioned a few hundred kilo-
metres from each other. From a user perspective, they should be the same.
From the Euclidian distance perspective, they are not.

• The traditional portrayal of meteorological fields (section 2.3) may be hiding
some details, such as very small amounts of precipitations, that are taken
into account when computing distances, but are not when visually comparing
two maps. This point, and the previous one, are both illustrated by figure 8.1
on the facing page. The figure shows a case where the best match according
to the fingerprinting method is perceived as more “similar” than the best
match according to Euclidean distance.

• Since we cannot expect a user to accurately “draw” a physically realistic
weather situation, the system allows users to sketch a weather pattern. In
that case, the matching field will not be similar to the query, as far as
the Euclidean distance is concerned. So there is this duality in the user’s
expectation that the system should return very close matches when queried
with “real” fields, but also should return satisfactory results when queried
with “artificial” fields (see figure 8.2).
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8.2 Future work

The results presented in this report open the door for many future research op-
portunities, which can be pursued independently: improvement of the fingerprints,
work on the input of query fields or using fingerprint for other applications than
looking for weather analogues.

8.2.1 Refine the fingerprinting method

In this research, we have been focussing on the Haar wavelet. Other wavelets
have been successfully used in other disciplines, such as the Ricker wavelet (also
known as the “Mexican hat wavelet”) which is used in seismology (Ricker (1953)).
JPEG2000 uses the CDF 5/3 wavelet for lossless, and CDF 9/7 wavelet for lossy
compression (Usevitch (2001)), and is used by the WMO GRIB format to encode
meteorological fields. These other wavelets may lead to better results.

To capture the intensity of the fields, we have selected the average value of the field.
Adding other statistics such as the minimum, maximum and standard deviation
may lead to better results, but will generate bigger fingerprints. These values will
have to be factored in when computing distances between the fingerprints.

8.2.2 Implement an efficient data structure to represent
the index

Currently, the index composed of all the fingerprints for the area and period con-
sidered is stored in a PostgreSQL database (see section 7.1). As the Hamming
distance is computed using a bespoke extension, searching for the best match is
done using a brute force linear scan of the whole index. As the index is small
enough to fit in memory, queries can be performed in within a time short enough
to be perceived as instantaneous by users.

Once the number of fingerprints to be managed become very large, efficient index-
ing methods must be used. We will be looking at existing indexing method and
implement the most suitable to our problem, such as of Baluja and Covell (2008)
who base their indexing on a mixture of MinHash (Broder (1998)) and Locally
Sensitive Hashing (Slaney and Casey (2008)).
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8.2.3 Consider climatological gradients in constraints

The concept of constraints was introduced in section 6.4.2, so that users can be
guided to input query fields that are realistic. In this research, we have considered
constraining fields to their climatological minimum and maximum.

In section 6.4.3 we alluded to additional constraints, such as respecting realistic
gradients between grid point values. This can be as simple as constraining gradi-
ents to be lower than a given constant, for example, there cannot be a difference of
more than 25 ◦C between two neighbouring grid point over a selected geographical
area. Again, this constant value can be derived from the climatology based on the
ERA5 dataset.

Given gradient(F ) a function that returns the gradient of F :

G′ = gradient(F ′) (8.1)
= gradient(F +∆F ) (8.2)

(8.3)

and Gmax the maximum gradient possible.

∥G′∥ −Gmax ≤ 0 (8.4)

we just need to add to the definition of the penalty function Φk(δF ) (see sec-
tion 6.4.2) the following term:

max(0, ∥gradient(F +∆F )∥ −Gmax)
2 (8.5)

It is also possible to consider more specific gradient-based constraints, such as
having different constants for north-south and west-east gradients, or even a per-
grid point maximum gradient value.

The gradient represents the first spatial derivative. The concept can be extended
to the second spatial derivative, the third spatial derivative, etc., thus having more
and more realistic query fields.

8.2.4 Extend to the globe

During our initial research, we have been focussing on weather patterns over the
British Isles. The system can trivially be extended to domains of identical size,
and provide acceptable results even with the parametrisation of the fingerprint
method that was selected to be most effective on the original area. Figure 8.3 on
the following page shows queries and their results over Spain, France and Italy.
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Figure 8.3: Artificial queries (top) and their first results (bottom), for other
domains.
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Future research should study how changing the size of the domain would affect
the fingerprint, as well as considering using user-provided areas of interests. One
solution could be to partition the globe and collect fingerprints for each section.

8.2.5 Consider climate projections

The Climate Data Store provides an adaptor to the Earth System Grid Federation,
or ESGF (Williams et al. (2011)). The ESGF is the repository of the climate pro-
jections of the Coupled Model Intercomparison Project, Phase 5 - CMIP5 (Taylor
et al. (2012)). This dataset is the basis for the report of the Intergovernmental
Panel on Climate Change (IPCC), which assesses the effect of climate change
amongst other things.

The CMIP5 dataset is therefore available to the Analogue software, so it is possible
to consider looking for weather analogues to the centuries to come. This will, of
course, require careful consideration: the climate projections are run at a much
lower resolution than ERA5 (1.5° instead of 0.5°)

8.2.6 Add a keyword or textual search

The concept of a catalogue of predefined regimes was introduced in section 6.2.4.
The catalogue associates titles such as “Heatwave” or “Great storm of October
1987” with preset weather situations. This is an opportunity to add a new input
method based in textual search: the user could simply type “overcast”, the system
will perform a free text lookup in the catalogue, and use the corresponding query
field to trigger a search for analogues.

The catalogue could be extended with a set of keywords as well as an abstract for
each entry to facilitate the text search. The system could make use of a popular
search engine such as Solr (Grainger and Potter (2014)) or Elasticsearch (Gormley
and Tong (2015)).

8.2.7 Analogues of well-known events

Extreme weather events often have very strong impacts on society and are studied
for many years. For example, Europe suffered from a major heatwave in August
2003, which killed around 15 000 people in France (Fouillet et al. (2006)). Fig-
ure 8.4 on the next page shows that this well-known event is found by the system
when querying with a field representing the climatological maximum for surface
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Figure 8.4: Finding events: querying the system with the climatological maximum
for surface air temperature (left) will return the date of 8 August 2003 16UTC
(right).

air temperature. The system will also return similar events from the archive. This
will provide researchers with a list of similar events through-out the archive, which
they could study.

Other examples of extreme events would be the great storm of October 1987, that
caused casualties and made consequent damages in the south of England, or storms
Lothar and Martin that crossed Europe in December 1999, which also killed many
people and generated losses of several billion euros.

8.2.8 Consider time evolution

Meteorological situations are evolving in time as shown in figure 8.5 on the facing
page. Further research could consider the use of 3D wavelets, with 2 dimensions
of space as proposed for this work, and one dimension of time; alternatively, this
work could be an extension of the two fields problem described in section 6.3.

Typical queries would be:

• a rapidly evolving wind storm;

• a band of rain crossing the country in 24 hours;

• a long-lasting high pressure situation;

• a heatwave lasting for several days.
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Figure 8.5: Evolution of a field of total precipitations, every six hours, starting
9 February 1989 at 0 UTC.

One of the challenges will be for users to describe such sequences, so that the
system can be queried.

8.2.9 More localised search

Currently, when matching fields using their fingerprints, the whole geographical
domain is considered. So a user cannot search for “heavy precipitations in the
south-east, whatever happens in the rest of the country”: if a user inputs a field
with high values of precipitations over London, only fields with precipitations over
that area are considered. If there are heavy precipitations over London, but also
in Scotland, these fields will not match, although they could be a useful match to
return to the user.

A more concrete example would be a user searching for days of strong Mistral, a
wind that blows from the Rhone valley into the Mediterranean, in the south of
France (assuming this domain is available in the user interface). For that, it is
reasonable to think that the user will simply wish to “paint” strong values of 10m
wind speed around the French Mediterranean coast, ignoring the north of the map.

This could be implemented by only considering where the user has interacted
with the canvas and mask out the rest of the domain. This solution presents two
challenges: how to perform a partial fingerprint match, and how to preserve the
usability of the web page.

8.2.10 Fingerprints as proxies for meteorological fields

We have shown in section 5.2.2 that performing a hierarchical clustering using the
fingerprint was giving encouraging results. A possible research would be to study
to what extent fingerprints can be used in the stead of their corresponding field,
in any algorithm that considers distances between fields.
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8.2.11 A possible application: finding cyclones

A possible application of the proposed fingerprinting scheme is to extend the search
for matching patterns at different a geographical location.

We have conducted the following simple experiment, using total precipitations:

• a query fingerprint is computed for the area 37°N 97°W 21.5°N 81.5°W,
for the 29 August 2005, which is the location of hurricane Katrina for the
corresponding date;

• the northern hemisphere for 24 September 2005 (date of hurricane Rita) is
scanned using a 16°×16° window, and fingerprints are computed for these
windows and compared to the query fingerprint.

• the best 10 matches are plotted of a global map, with their transparency
proportional to their matching rank.

Figures 8.6 on the next page show the query and best matching area of the total
precipitations. The best match corresponds to the location of Hurricane Rita,
which although is also in the Gulf of Mexico, is different from the location of
Hurricane Katrina. Running the same experiment with 10m wind speed gives
similar results.

It should be noted that the parametrisation of the fingerprinting scheme used as
been tuned for the British Isles (see section 2.2), but is nevertheless effective over
other parts of the globe.

This simple result is very encouraging and should be investigated further.
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(a) Query pattern: Total precipitations,
hurricane Katrina.

(b) Best result: Total precipitations, hur-
ricane Rita.

(c) 10 best matches are highlighted, the more opaque the better the match

Figure 8.6: Using the Hurricane Katrina total precipitations field as a query
(2005-08-29 at 00 UTC) will return Hurricane Rita as a best match (2005-09-
24 at 00UTC). This example is using the ERA Interim dataset, in which total
precipitations are accumulated over 6 hours.
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