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Abstract
Numerical simulations are carried out using the Weather Research and Fore-
cast (WRF) model to calculate explicitly the ratio of orographic gravity-wave
drag (GWD) in the presence of a stable boundary layer (BL) to the inviscid
drag in its absence, either obtained from inviscid WRF simulations or esti-
mated using an analytical linear model. This ratio is represented as a function
of three scaling variables, defined as ratios of the BL depth to the orography
width, height, and stability height scale of the atmosphere. All results sug-
gest that the GWD affected by the stable BL, DBL, is inversely proportional to
the BL depth hBL, roughly following DBL ∝ h−2

BL. The scaling relations are cali-
brated and tested using a multilinear regression applied to data from the WRF
simulations, for idealised orography and inflow atmospheric profiles derived
from reanalysis, representative of Antarctica in austral winter, where GWD is
expected to be especially strong. These comparisons show that the scaling rela-
tions where the drag is normalised by the analytical inviscid estimate work best.
This happens because stable BL effects reduce the amplitude of the waves above
the BL, making their dynamics more linear. Knowledge of the BL depth and
orography parameters is sufficient to obtain a reasonable correction to the invis-
cid drag without needing additional information about the wind and stability
profiles. Since the drag currently available from numerical weather prediction
model parametrizations comes from linear theory uncorrected for BL effects,
the results reported here may be applied straightforwardly to improve those
parametrizations.

K E Y W O R D S

gravity-wave drag, linear wave theory, mountain waves, parametrization, stable boundary layer

1 INTRODUCTION

The drag exerted on the atmosphere by orographic gravity
waves must be parametrized in many Global Circulation
Models (GCMs) and other numerical weather prediction

(NWP) models, since it is a subgrid-scale process. An
initial attempt was made by Wallace et al. (1983) to
represent the missing drag in the European Centre for
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Medium-Range Weather Forecasts (ECMWF) GCM by
using an envelope orography, which increases the mean
orography height to account for subgrid-scale variability,
but the success of this approach was limited, as it is insen-
sitive to the horizontal scale of the orography. The first
orographic gravity-wave drag (GWD) parametrization was
formulated by Palmer et al. (1986), to reduce a system-
atic westerly bias in the midlatitude circulation in the
ECMWF GCM. Current drag parametrizations (e.g., Lott
and Miller, 1997) still do not include the effects of the
boundary layer (BL), although interaction between GWD
processes and the BL has been shown to have an important
impact on the representation of GWD in models (Ólafsson
and Bougeault, 1997).

A number of studies have investigated the ways in
which gravity waves and the BL can interact. Using
gravity-wave-resolving 3D numerical simulations, Ólaf-
sson and Bougeault (1997) found that the BL reduces
GWD magnitude and delays the onset of wave break-
ing. Peng and Thompson (2003) hypothesised, based on
wave-resolving 2D numerical simulations, that GWD is
reduced because the top of the BL acts as an attenuated
effective orography, forcing weaker waves, which exert less
drag than would exist in inviscid conditions.

In a theoretical article, Smith et al. (2006) investigated
how gravity waves are absorbed by the BL, and developed a
2D linear model of that process, where the free atmosphere
is coupled to the ground using a bulk BL representation,
with Rayleigh damping coefficients acting on the differ-
ences between the wind speed within the BL and both the
ground and the free atmosphere. They first applied this
model to understand the absorption of trapped lee waves
by the BL. Subsequently, Smith (2007) used a 3D version
of the same model to study BL effects on vertically prop-
agating mountain waves, finding that the flow divergence
associated with upstream shift of the wave pattern within
the BL shifts the wind maximum from the downwind slope
towards the mountain top and modulates the depth of the
BL so that incident gravity waves are partially absorbed,
reducing the GWD.

Using high-resolution numerical simulations and the
theory of Smith et al. (2006), Jiang et al. (2008) evaluated in
more detail the impact of the BL on gravity waves excited
by flow over 2D ridges and 3D axisymmetric mountains.
They found that the upstream shift of the wave pattern
and weakening of the wave aloft caused by the BL lead
to a reduction in GWD (by up to 60%) and momentum
flux (by up to 80%). These changes were found to be gov-
erned by the nondimensional BL height (H̃) and the BL
shape factor (�̃�), defined as the ratio of the displacement
thickness to the momentum thickness (Schlichting et al.,
2000). Phase shift and drag reduction were found to be
greater over rough surfaces, which correspond to larger H̃

and smaller �̃� . BL effects were additionally seen to decrease
with increasing nonlinearity; nevertheless, the inclusion
of the BL was found to shrink the linear flow regime, at
least within the BL itself (Jiang et al., 2008).

Based on their numerical simulations, Jiang and Doyle
(2008) found a substantial variation in GWD caused by
changes in the characteristics of the BL over a diurnal
cycle, which was consistent with their estimates from
linear theory. In the daytime, a convective BL develops,
with a shallow layer of shear near the surface and a deep
well-mixed layer above. Both of these features tend to
reduce GWD, therefore it was found that the daytime
BL can weaken mountain waves significantly and reduce
momentum flux by up to 90% (Jiang and Doyle, 2008). At
night-time, a shallow stable BL develops, whose alteration
of GWD is governed by the Froude number (F =U/(Nh),
where U is the wind speed, N is the Brunt–Väisälä fre-
quency, and h is the mountain height). If the BL flow is
supercritical (F > 1), the drag increases as F → 1 to reach
a maximum at F ∼ 1, where the drag may be several times
its inviscid value. If the BL flow is subcritical (F < 1) due
to excessive cooling, the drag decreases with decreasing F
(Jiang and Doyle, 2008).

Although guided by the theoretical framework of
Smith et al. (2006) and Smith (2007), the studies of Jiang
et al. (2008) and Jiang and Doyle (2008) convey a com-
plex yet incomplete picture of BL effects on drag. Possible
empirical drag scaling laws presented in table 4 of Jiang
et al. (2008) apply to very specific orography types and
parameters (e.g., 2D ridges or 3D axisymmetric moun-
tains with 10 km half-width), and the drag reduction is
expressed in terms of parameters that are perhaps not
the most convenient or physically significant, such as the
Rayleigh damping coefficient CB used in Smith’s bulk BL
model.

The work presented here extends Jiang et al. (2008) by
investigating the effects of a stable BL on GWD over orog-
raphy with an elliptical horizontal cross-section, which
is the idealised form assumed in a number of GCM
orographic drag parametrizations (Lott and Miller, 1997;
Elvidge et al., 2019), but takes a different scaling approach.
We hypothesise that the height of the stable BL is the key
parameter determining surface GWD reduction. Clearly,
the GWD would not be reduced if the BL was absent
(i.e., had zero thickness), and must necessarily approach
zero as the BL thickness increases indefinitely (although
other types of drag, e.g., frictional drag, remain). The BL
height is a readily available quantity (from its correspond-
ing parametrization) in the NWP models where the GWD
needs to be parametrized. The aim here is to develop a
scaling for the drag reduction as a function of a nondimen-
sional BL depth (to be defined) that could correct the invis-
cid drag currently used in NWP model parametrizations.
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To develop this scaling, high-resolution numerical simu-
lations are run using vertical profiles of wind and poten-
tial temperature, either from reanalysis or adapted from
reanalysis above four locations around Antarctica during
austral winter. This complements the study of Turner et al.
(2019), which showed that at those locations and times
GWD is especially strong and effects of vertical wind shear
on GWD are likely to be important.

Section 2 of this article describes the numerical model
setup and methods used for processing the model output,
as well as a theoretical model based on Smith et al. (2006)
that is used to help interpret the results. In Section 3, the
results of numerical simulations with idealised and more
realistic wind profiles, assuming an elliptical orography,
are presented. In Section 4, simple scaling laws are inferred
from the results obtained in Section 3. Section 5 presents
the main conclusions of this study.

2 METHODOLOGY

The Weather Research and Forecast (WRF) numerical
atmospheric model is used to simulate idealised flows over
elliptical orography and to calculate explicitly the GWD
and its dependence on the parameters of the inflow, orog-
raphy, and the BL that is parametrized in the model. The
numerical results are interpreted in the framework sug-
gested by a linear wave model including the effects of
a bulk BL, building on Smith (2007). These models are
described in turn below.

2.1 WRF model

Version 3.8.1 of the WRF model is used to perform the
idealised numerical simulations presented in this article.
WRF is a fully compressible, nonhydrostatic, nonlinear
model (Watson and Lane, 2012), based on discretisation
using an Arakawa-C grid and an explicit time-stepping
scheme (Chen and Lin, 2004). For the simulations pre-
sented here, a horizontal grid of 100× 100 points with 200
vertical levels is used. The horizontal grid spacing is 2 km
and the vertical level spacing is ∼100 m at the surface
and stretched aloft to values ∼170 m. This relatively high
resolution allows a good representation of gravity waves,
which is especially important in the case of structured
atmospheric profiles (with directional critical levels; Guar-
ino et al., 2016), and is sufficient to resolve the stable BL
in the present simulations. For example, the equilibrium
thickness of the BL in the simulations using realistic atmo-
spheric profiles from reanalysis (in the range 430–630 m)
only spans 5–7 grid levels, but is consistent with corre-
sponding values extracted directly from reanalysis (in the

range 320–500 m). The top of the domain is at a height
of 20 km, and a dampening layer is applied over the top
5 km of the computational domain to prevent wave reflec-
tions. Open boundary conditions are applied to the lat-
eral boundaries. An elliptical mountain with prescribed
parameters (similar to those adopted by Phillips, 1984;
Teixeira and Miranda, 2006), expressed by

h(x, y) = h0(
1 + x2

a2 +
y2

b2

)3∕2 , (1)

where h0 is the mountain height and a and b are the
lengths of the main axes of the ellipse, is placed in the
centre of the domain.

Two simulations are run for each of the atmo-
spheric profiles specified below using the dry dynamical
core of the WRF model, one with a BL scheme
and one without. The BL scheme chosen is the
Mellor–Yamada–Nakanishi–Niino (MYNN) third-level
turbulent kinetic energy (TKE) scheme. The reason for
this selection is described below in Section 3.1. This is a
TKE scheme with third-level closure, requiring additional
prognostic equations for the TKE and temperature vari-
ance, and determining the fluxes of momentum and heat
diagnostically via flux-gradient relationships (Nakanishi
and Niino, 2004). The eddy viscosity and diffusivity are
commonly expressed as Kc = Scl

√
e, where l is the mixing

length, e is the TKE, and Sc is a proportionality coefficient
(Shin and Hong, 2011) dependent on the TKE, the mix-
ing length, and vertical gradients of the mean wind and
temperature (Nakanishi and Niino, 2004). TKE schemes
differ in how they define these variables. In the case of
MYNN, the mixing length is determined by the surface
layer length, turbulent length (i.e., the typical length-scale
of the turbulent eddies), and the buoyancy length (Zhang
et al., 2011). Simulations are run for 48 hr to allow the
flow and BL to adjust to an approximate equilibrium and
the drag to stabilise. All simulations neglect rotation of
the Earth (i.e., the Coriolis parameter is set to f = 0). This
approximation will be shown to be reasonable below. The
integration time-step is 10 s, giving a Courant number
typically far below the CFL stability criterion for the flows
simulated.

2.2 WRF simulations

Each WRF simulation is initialised with an input atmo-
spheric profile and in this instance these are taken
from four different points around Antarctica in the
ERA-Interim reanalysis dataset (cf. Turner et al., 2019).
Antarctica is chosen because GWD is strong and because
the cold temperatures occurring there mean that the BL is
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F I G U R E 1 Locations of atmospheric profiles taken from
ERA-Interim over Antarctica. The coordinates of these locations are
as follows: A (77◦ S, 210◦E), B (79◦S, 214◦E), C (64◦S, 302◦E), and
D (68.577◦S, 77.968◦E). Spacing between consecutive meridians is
30◦(with 0◦marked at the top) and spacing between consecutive
parallels is 10◦ (with the outermost parallel corresponding to 60◦S)

usually shallow and stable. These conditions are ideal for
studying the effect of the stable BL in the situations that
are most relevant for global atmospheric GWD (Gregory
et al., 1998; Scinocca and McFarlane, 2000). The locations
and dates used are as follows (all dates at 1200 UTC):

• (77◦S, 210◦E) on July 9, 2015 (location A);
• (79◦S, 214◦E) on July 10, 2015 (location B);
• (64◦S, 302◦E) on June 17, 2015 (location C); and
• (68.577◦S, 77.968◦E) on June 24, 2015 (location D).

The dates chosen are all in austral winter to ensure
stronger gravity-wave activity and hence greater GWD. On
the selected dates, the GWD enhancement by wind shear
we calculated in Turner et al. (2019) was expected to be rel-
atively strong in the corresponding location at that time.
Although relevant, this effect is likely to be weaker than
that of the BL, on which we are focusing here. Note that
location D corresponds to Davis station, which is located
on Princess Elizabeth Land and is maintained by the Aus-
tralian Antarctic Division. Although the coordinates listed
for location D are exact, the profile data used are from the
nearest grid point in the ERA-Interim one-degree dataset.
Figure 1 shows the four locations on a polar stereographic
map. Table 1 details the mountain height, axis half-widths
and orientation of the subgrid-scale orography, and the
Coriolis parameter at each location. The height of the
subgrid-scale orography is defined as twice the standard
deviation 𝜇 of the subgrid-scale orography elevation, that
is, h0 = 2𝜇. The two axis lengths (a and b) are calculated in

terms of other subgrid-scale orography parameters. They
are defined as a = 𝜇∕𝜎 and b = 𝜇∕(𝜎𝛾), where 𝜎 is the
slope and 𝛾 the aspect ratio (𝛾 = a∕b; see Lott and Miller,
1997). The orientation is defined as the angle the major
axis of the ellipse makes with north. An angle of 0◦ (i.e.,
aligned with north) denotes meridional orography, whilst
an angle of ±90◦ denotes zonal orography.

At each location, simulations are run with an ellipti-
cal mountain corresponding to the orography parameters
specified in Table 1, with the following setups (based on
ERA-Interim data):

• Constant wind (U, V) and Brunt–Väisälä frequency N
profiles based on the values of wind velocity and poten-
tial temperature at the first five pressure levels above
the surface (with a spacing of 25 hPa, corresponding
roughly to 200 m). These levels are chosen in order to
cover the full depth of the stable BL in all cases.

• Real wind and Brunt–Väisälä frequency profiles. These
are linearly interpolated from the ERA-Interim grid to
the WRF model grid.

As it is convenient that the axes of the orography are
aligned with the WRF model grid, the winds specified
in the input sounding are rotated so that they are given
in the frame of reference aligned with the axes of the
subgrid-scale orography. Two simulations are run for each
input profile, one with a BL scheme and one without. The
BL scheme to be used is selected below using preliminary
idealised simulations.

The surface drag is calculated from the WRF model
output as the integral of the pressure perturbation induced
by the wave multiplied by the terrain slope over the
whole computational domain. This is defined (Teixeira,
2014) as

(Dx,Dy) = ∫
+∞

−∞ ∫
+∞

−∞
p(z = h)

(
𝜕h
𝜕x
,
𝜕h
𝜕y

)
dx dy, (2)

where p is the pressure perturbation and h(x, y) is the ter-
rain elevation. To evaluate Equation 2 numerically, we use
finite differencing to approximate the derivatives of the
terrain elevation, and estimate the pressure perturbation
at each time-step by subtracting the mean pressure over
the horizontal domain at that time-step from the pres-
sure at each grid point. The pressure perturbation and
terrain slope are then multiplied together and summed
over the whole domain. The magnitude of the drag vector
in Equation 2 is given as Dnum =

√
D2

x + D2
y . Note that this

definition accounts for all possible types of drag, including
frictional drag (when a BL scheme is used), but for orogra-
phy with the characteristics of that addressed here (tens of
km wide) GWD is expected to dominate.
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Location h0 (m) a (km) b (km) 𝜸 = a∕b 𝜽(◦) f (s−1)

A 336.0 10.99 40.98 0.268 46.3 −1.42 ×10−4

B 114.0 24.53 86.12 0.250 −5.9 −1.43 ×10−4

C 535.5 9.02 28.70 0.314 −53.2 −1.31 ×10−4

D 272.3 16.35 71.89 0.227 −31.7 −1.35 ×10−4

Note: The corresponding Coriolis parameter f is shown in the last column.

T A B L E 1 Equivalent
height h0, equivalent main axis
half-widths a and b, aspect ratio
𝛾 = a∕b, and orientation 𝜃 of the
elliptical mountains used in the
WRF simulations, from
ERA-Interim reanalysis data for
the subgrid-scale orography at
each location

2.3 Effect of the boundary layer

To test the effect of the stable BL on the drag, initially
the output of simulations run using the constant profiles
described above, both with and without a BL scheme, is
compared. The use of constant profiles enables the effect
of the BL to be isolated from other atmospheric profile
effects, which would complicate the derivation of scaling
laws from the drag behaviour. However, the plausibility of
the scalings will then be confirmed in Section 4.2 using the
real atmospheric profiles.

To examine the impact of the stable BL on GWD mag-
nitude, the ratio of the drags obtained at the end of simu-
lations with and without the BL is calculated. The ratios
of the depth of the BL to various relevant length-scales
in the problem are also evaluated, as we hypothesise that
these control the drag ratio. The BL depth is diagnosed
by the WRF model and has a value at each grid point.
The BL depth is diagnosed based on a hybrid method that
takes into account both a potential temperature thresh-
old exceedance relative to its minimum in the BL, and
a TKE threshold (especially for stable BLs; Olson et al.,
2019). This latter criterion is likely to be the relevant one in
the situations addressed here. A default roughness length
value of z0 = 0.1 m is adopted, which reflects a compro-
mise between the expected smooth icy surface and the
terrain roughness associated with small-scale topographic
features in a mountainous area. We expect that the drag
will be reduced by the stable BL, as seen by Jiang et al.
(2008) for simpler (i.e., axisymmetric) orography, and that
this reduction will be more significant when the depth
of the BL is large compared with either the height or
width of the orography, or the stability length-scale in the
atmosphere.

An important aspect of this investigation is the impact
that the stable BL has on the amplitude of the gravity
waves. To examine this, the amplitude of each horizontal
wind component over the peak of the mountain (AU and
AV ) is calculated by subtracting its minimum value from
its maximum value (both above the top of the BL) and
calculating the magnitude, that is, A =

√
A2

U + A2
V . The

reduction in this quantity caused by the introduction of
the BL is evaluated by taking the ratio between the values

ABL with and Ainv without the BL. The relationship
between this ratio and the drag will be examined.

2.4 Theoretical model for orographic
gravity-wave drag

Comparisons are also made with drag values calculated
using a simple model based on the linear theory of Smith
et al. (2006). The model is both linear and nonhydrostatic,
and does not account for the effects of the Earth’s rota-
tion (consistent with the WRF runs). The drag associated
with vertically propagating and evanescent waves is given,
respectively, by

(Dx1,Dy1) = 4𝜋2𝜌0

× ∫ ∫
𝜔2<N2

(k, l)m𝜔2|ĥ|2 {1 + HBIm(R)𝜔
𝜔B

m
}

(k2 + l2)
[{

1 + HBIm(R)𝜔
𝜔B

m
}2

+
{

HBRe(R)𝜔
𝜔B

m
}2

]dkdl, (3)

(Dx2,Dy2) = 4𝜋2𝜌0

× ∫ ∫
𝜔2>N2

(k, l)n𝜔2|ĥ|2 HBIm(R)𝜔
𝜔B

n

(k2 + l2)
[{

1 + HBRe(R)𝜔
𝜔B

n
}2

+
{

HBIm(R)𝜔
𝜔B

n
}2

]dkdl, (4)

where 𝜌0 is a reference (constant) density, (k, l) is the hori-
zontal wavenumber vector, ĥ(k, l) is the Fourier transform
of the (3D) orography and HB is the BL depth. N is the
Brunt–Väisälä frequency of the incoming flow and

m = (k2 + l2)1∕2
(

N2

𝜔2 − 1
)1∕2

sgn(𝜔), (5)

n = (k2 + l2)1∕2
(

1 − N2

𝜔2

)1∕2

, (6)

𝜔 = Uk + Vl, 𝜔B = UBk + VBl, R = i𝜔 + CT

i𝜔B + CB + CT
,

(UB,VB) =
(U,V)

1 + CB∕CT
, (7)

where (U, V) is the (constant) incoming wind velocity out-
side the BL, and CB and CT are the Rayleigh damping
coefficients (inverse time-scales) coupling the BL flow to
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the ground and to the free atmosphere, respectively, in
Smith (2007). The total drag is the sum of that due to verti-
cally propagating and evanescent waves, and its magnitude
is Dtheo = {(Dx1 + Dx2)2 + (Dy1 + Dy2)2}1∕2. To obtain the
inviscid drag, it is sufficient to set the BL height (HB) to
zero, which yields

(Dx0,Dy0) = 4𝜋2𝜌0 ∫ ∫
𝜔2<N2

(k, l)m𝜔2|ĥ|2
k2 + l2 dk dl. (8)

For an elliptical mountain, described by Equation 1, this
can be evaluated analytically to yield the expressions orig-
inally derived by Phillips (1984). In the inviscid approxi-
mation, there is no drag associated with evanescent waves.
The magnitude of the inviscid drag is given by D0 =
(D2

x0 + D2
y0)

1∕2. The integrals in Equations 3, 4 and 8 are
evaluated numerically using a Gauss-Legendre quadrature
algorithm.

If the drag given by Equations 3 and 4 is
made nondimensional by dividing Dtheo by D00 =
𝜌0N(U2 + V 2)1∕2(ab)1∕2h2

0, it becomes a function of six
independent nondimensional flow parameters (an aspect
that appears not to have been noted explicitly before): the
angle between the incoming wind and the main axes of
the orography 𝜓 , the orography aspect ratio 𝛾 , a measure
of how nonhydrostatic the flow is N(ab)1/2/(U2 +V 2)1/2,
a nondimensional height of the BL HB/(ab)1/2, the ratio
of the two Rayleigh damping coefficients in the bulk BL
model of Smith (2007) CB/CT, and a nondimensional
Rayleigh damping coefficient CT(ab)1/2/(U2 +V 2)1/2. All
these parameters have been made nondimensional using
the wind speed (U2 +V 2)1/2 and a weighted mountain
half-width (ab)1/2, so that they are as general as possible
for all wind directions and all orography anisotropies.

3 RESULTS

3.1 Preliminary tests of WRF
simulations

We firstly consider flow over an axisymmetric bell-shaped
mountain, defined by Equation 1 for the case b= a (Smith,
1980). In our test case, h0 = 10 m and a= 10 km. The input
profile is specified by a uniform wind velocity U = 10 m/s
and V = 0, and a potential temperature increasing lin-
early from 293 K at the surface up to the model top at
20 km, with a Brunt–Väisälä frequency N = 0.01 s−1. The
flow is approximately hydrostatic, since Na/U = 10, and
also highly linear, since the flow nonlinearity parameter is
Nh0/U = 0.01. The purpose of these test simulations is to
determine whether the model gives an accurate value of
the drag and to select an appropriate BL scheme to use in
the subsequent simulations.
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F I G U R E 2 Drag as a function of time calculated from WRF
simulations initialised with a unidirectional profile (U = 10 m ⋅ s −1),
Brunt–Väisälä frequency N = 0.01 s−1, and an axisymmetric
bell-shaped mountain with half-width a= 10 km and height
h0 = 10 m. Red solid line: no BL, blue dashed line: MYNN
third-level TKE scheme (MYNN), magenta dotted line: MYNN
2.5-level TKE scheme (MYNN2), green dash–dotted line:
Bougeault–Lacarrere scheme (BouLac)

A large number of BL schemes exist within the WRF
model and it is important to select one that behaves realis-
tically. Hu et al. (2010) compared the performance of three
WRF BL schemes and found that the differences between
them were largely due to differences in the strength of the
vertical mixing and entrainment of air from outside the BL.
Shin and Hong (2011) compared five BL schemes. They
found that in unstable conditions nonlocal BL schemes in
which the entrainment flux is proportional to the surface
flux performed best, whilst in stable conditions local TKE
closure schemes performed better (Shin and Hong, 2011).
Since under Antarctic conditions the BL is expected to be
stable, all the schemes considered below are TKE closure
schemes.

The simulation is first run with no BL. The drag grows
initially before stabilising in the first few hours of the
simulation, to attain a final value of 89,179 N (Figure 2),
which is approximated reasonably by the value of 93,399 N
expected from linear theory (given by (𝜋∕4)𝜌0NUah2

0: see
Teixeira, 2014). This corresponds to an error of less than
5% (probably attributable to the fact that the flow is not
perfectly hydrostatic, which reduces the drag), indicating
that WRF simulates the behaviour of low-amplitude waves
adequately (Smith, 1980).

The simulation is then repeated with several BL
schemes applied. The reduction of the GWD due to the top
of the BL acting as an attenuated effective orography, as
expected from Peng and Thompson (2003), occurs here, as
was previously seen by Jiang et al. (2008). Using the MYNN
third-level TKE scheme (MYNN), the drag produced at the
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end of the simulation is 11,585 N. For the MYNN 2.5-level
TKE scheme (MYNN2: Nakanishi and Niino, 2004), the
final drag is 27,204 N. For the Bougeault–Lacarrere scheme
(BouLac: Bougeault and Lacarrere, 1989), the final drag is
9,737 N. This wide range of variation (by a factor of ∼3)
is presumably due to differences in the way in which the
schemes represent various BL parameters, for example dif-
ferent definitions of the turbulence length-scale. The drag
stabilises within the time period of the simulations when
the MYNN and MYNN2 schemes are used, but when the
BouLac scheme is used the drag appears to be relatively
stable at 30 hr before its value spikes up (see Figure 2).
This may be due to some numerical instability, as similar
behaviour is detected in the wind field for this scheme (not
shown). The substantial noise in the drag signal near the
end of the simulations with other schemes is due largely to
the fact that we are dealing with small drag values (because
the orography has low amplitude). The MYNN scheme
is used in all subsequent experiments, as the drag value
appears most stable in this case. Additionally, the higher
order of the closure of this scheme makes it preferable,
as higher-order closures are generally more accurate (Holt
and Sethu, 1988), because they incorporate the transport
of turbulent second-order moments, such as the TKE. The
wide range of variation between schemes is not an obstacle
to obtaining meaningful scalings from one of them, as the
overall predicted effect of the BL on GWD is qualitatively
similar.

3.2 Representative orography

Now the simulations that utilise representative orog-
raphy, with an elliptical horizontal cross-section from
ERA-Interim at each selected location, are discussed.
This corresponds to the subgrid-scale orography that was
adopted in the GWD parametrization scheme of the
ECMWF model runs used to create the ERA-Interim
dataset. Information about the subgrid-scale orography
is given in Table 1, whilst information about the input
profiles is provided in Table 2. Relevant nondimensional
flow parameters are listed in Table 3. As can be seen,
the inverse Rossby numbers in all situations are relatively
small (< 0.3), for which linear theory predicts a drag not
lower than between 80% (for 2D flow: Smith, 1979, his
Figure 1) and 88% of its nonrotating value (for 3D flow:
equation A15 of Miranda and James, 1992). This justi-
fies neglecting the Coriolis parameter in the WRF sim-
ulations and analytical drag model, for simplicity. It is
especially meaningful to use constant atmospheric profiles
coming from the lowest levels in reanalysis in our tests,
as orographic GWD is also parametrized using formulas
that assume constant atmospheric parameters extracted

from the lowest model levels (Lott and Miller, 1997;
2020).

Figure 3 shows the temporal evolution of the drag over
the course of all simulations. These include simulations
at location A (Figure 3a,b), location B (Figure 3c,d), loca-
tion C (Figure 3e,f) and location D (Figure 3g,h), both
with and without a BL. The thick black lines in Figure 3
denote simulations with real atmospheric profiles, while
the simulations with constant atmospheric profiles taken
at pressure levels 1, 2, 3, 4, and 5 nearest to the surface
are denoted by the solid red, dashed blue, dotted magenta,
dash–dotted green, and dash–double-dotted orange lines,
respectively. We can see that, in general, the drag has sta-
bilised by the end of the simulations in cases both without
and with a BL. Exceptions to this are location C with-
out a BL (Figure 3e), where the drag for the real atmo-
spheric profile oscillates, and especially location A with a
BL (Figure 3b), which seems to be subject to some form
of numerical instability from hour 26 onwards. Detailed
analysis of the flow field suggests that this is due to inter-
action of the BL scheme with the open lateral boundary
condition in this case, producing an amplifying monochro-
matic plane wave that appears first at the northeast corner
of the domain (the inflow side—see Figure 5c) and extends
inwards. However, we checked that the orographic wave
structure is well-established after t = 24 hr, and differs little
from that of the other cases shown in Figure 3. Addition-
ally, the instability only starts to affect the flow over the
hill (which determines the GWD) at around t = 32 hr. For
this reason, the results before the drag diverges will be
considered valid and used later on.

The drag increases very fast (in about 2 hr) to near
its final value in most simulations without a BL. How-
ever, in simulations with a BL, while increasing equally
fast initially, it then decreases much more slowly over a
period of about 24 hr. This is a consequence of not only
the deepening of the stable BL, but also the flow devel-
opment within it (as will be seen in more detail below),
over a period much longer than it typically takes for the
inviscid wave field to be established. The drag given by
the simulations with constant atmospheric profiles using
the lowest reanalysis levels brackets the drag given by
the simulations with real atmospheric profiles, with the
exception of the simulation for location D without a BL
(Figure 3g) and the corresponding one with a BL during
the first 12 hr (Figure 3h), and of the simulation for loca-
tion A with a BL after hour 34 (Figure 3b), because of the
above-mentioned numerical instability. The level from the
constant-profile simulations that provides the best fit to
the drag for the real-profile simulations at the final time
varies between locations and between simulations with
and without a BL. Nevertheless, a slight predominance of
levels 3 and 4 can be detected, especially in cases with a
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T A B L E 2 Input profile data for each location

Location Level z agl (m) U (m⋅s−1) V (m⋅s−1) 𝜽0 (K) N (s−1)

A 1 267.9 −10.36 −7.20 257.8 0.017

2 474.0 −12.76 −10.35 259.6 0.019

3 686.2 −14.38 −12.92 261.9 0.022

4 905.0 −14.99 −15.67 265.1 0.023

5 1,131.2 −14.08 −17.48 268.1 0.022

B 1 271.9 9.11 −27.94 253.6 0.015

2 483.3 10.64 −30.05 255.3 0.021

3 701.6 11.48 −28.19 258.6 0.023

4 927.2 11.05 −24.84 261.6 0.022

5 1,161.2 10.20 −20.60 264.8 0.021

C 1 248.1 −8.10 15.46 260.4 0.009

2 451.7 −9.21 16.03 261.3 0.018

3 661.0 −11.57 15.60 264.2 0.022

4 877.3 −10.77 13.34 267.3 0.022

5 1,100.6 −9.62 11.12 270.0 0.021

D 1 234.9 −9.86 −15.32 265.0 0.013

2 442.2 −10.14 −18.16 266.0 0.015

3 654.8 −9.40 −20.14 267.4 0.015

4 872.9 −7.40 −20.19 268.6 0.014

5 1,096.7 −4.99 −18.50 269.9 0.014

Note: The numbers 1–5 at each location correspond to the lowest five pressure levels from reanalysis, where the variables
are taken. z agl is the height above ground level. The wind components (U, V) are defined in a frame of reference aligned
with the main axes of the subgrid-scale orography. 𝜃0 is the potential temperature at the surface and N is the
Brunt–Väisälä frequency.

BL. From Table 1, this corresponds to heights above the
ground somewhat larger than, but comparable to, the BL
heights displayed in Figure 4 below. It is plausible that
the anomalous behaviour of Figure 3g is caused by some
nontrivial atmospheric profile effect, such as wave reflec-
tion with constructive interference at a sharp atmospheric
interface, which is known to be able to amplify the drag
substantially (Teixeira and Argaín, 2020).

Figure 4 shows the drag normalised by D00 =
𝜌0N(U2 + V 2)1∕2(ab)1∕2h2

0 for a selection of simula-
tions at the four locations. The solid blue and red lines
denote the drags given by WRF, without and with a BL,
respectively. The dashed blue and red lines are the cor-
responding results given by the linear model. The green
dash–dotted line describes the depth of the BL as defined
by WRF, hBL. In the linear model including the stable
BL, the input parameters have been adjusted to provide
an agreement as good as possible with the drag from
WRF near the end of the simulations. It was assumed
that CB/CT = 1 (Smith, 2007), CT(ab)1/2/(U2 +V 2)1/2 = 0.3,

and HB/(ab)1/2 = hBL/(ab)1/2. The first two assumptions
imply that the corresponding dimensionless parame-
ters are constants. This means, in particular, that CT
scales as (U2 +V 2)1/2/(ab)1/2. Alternative scalings, such
as (U2 +V 2)1/2/h0 and (U2 +V 2)1/2/hBL were tested,
showing worse performance. The additional alterna-
tive scaling CT ∼N was not tested, as it does not make
sense physically (it would mean that the effects of BL
friction would increase with static stability). It was
assumed that HB = hBL, which equates the BL height in
the linear model exactly with the BL height averaged
over the whole computational domain hBL as diagnosed
from the WRF model. This last assumption means that
HB/(ab)1/2, unlike the preceding input parameters of
the linear model, is defined totally by the input data
from WRF. All inviscid input parameters (𝜓 , 𝛾 , and
N(ab)1/2/(U2 +V 2)1/2) are also determined from the WRF
input conditions, so no assumptions have to be made
about them. This defines all six input parameters of the
linear model.
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Location Level Nh0

(U2+V 2)1∕2
N(ab)1∕2

(U2+V 2)1∕2
|f |(ab)1∕2

(U2+V 2)1∕2 𝝍(◦)

A 1 0.453 28.58 0.238 34.8

2 0.389 24.53 0.183 39.0

3 0.382 24.14 0.156 41.9

4 0.356 22.50 0.139 46.3

5 0.329 20.79 0.134 51.1

B 1 0.058 23.45 0.223 −71.9

2 0.075 30.28 0.206 −70.5

3 0.086 34.73 0.216 −67.8

4 0.092 37.19 0.241 −66.0

5 0.104 41.99 0.286 −63.7

C 1 0.276 8.30 0.120 −62.3

2 0.521 15.67 0.114 −60.1

3 0.607 18.22 0.108 −53.4

4 0.687 20.65 0.123 −51.1

5 0.765 22.98 0.143 −49.1

D 1 0.194 24.46 0.255 57.2

2 0.196 24.73 0.223 60.8

3 0.184 23.14 0.209 65.0

4 0.177 22.32 0.216 70.0

5 0.199 25.05 0.242 74.9

T A B L E 3 Nondimensional mountain
height Nh0/(U2 +V 2)1/2, nonhydrostatic
parameter N(ab)1/2/(U2 +V 2)1/2, inverse Rossby
number |f |(ab)1/2/(U2 +V 2)1/2, and angle
between the wind and the minor axis of the
mountain, at each location, for each selected
reanalysis level

In the inviscid case (blue lines), the agreement between
the linear model and WRF is fairly good for location A with
an atmospheric profile taken from level 5 (Figure 4a) and
even better for location B and levels 1 and 4 (Figure 4b,c),
with some underestimation (of less than 13%) of the GWD
from WRF by the linear model. This is consistent with
the fact that the flow is more nonlinear (higher value of
Nh0/(U2 +V 2)1/2) for location A than for location B (see
Table 3). In Figure 4d, for location B and level 5, the lin-
ear model overestimates the drag given by WRF (by about
40%). It is plausible that this is due to the slightly higher
nonlinearity of the flow and to the fact that the wind
direction is only deviated 26◦ away from the along-ridge
direction. Wells et al. (2008) showed that, while the drag
is increased in nonlinear flow that is across an anisotropic
mountain, it is, on the contrary, decreased for flow along
the mountain. Figure 4e corresponds to location C and
level 5. This is the most nonlinear situation considered (see
Table 3) and, since the flow is 41◦ away from being along
the ridge, a high-drag state is created, which is substan-
tially underestimated by the linear model (by about 30%).
For location D and level 2 (Figure 4f), the drag from WRF
is predicted especially well by the linear model, and for
location D and level 5 (Figure 4g) a situation somewhat

similar to that of Figure 4d, but even more marked, is dis-
played, with substantial overestimation of the WRF drag
by the linear model (by about 80%). The reasons that can
be inferred from Table 3 for this behaviour are that the flow
is moderately nonlinear and the wind direction is only 15◦
away from being parallel to the long axis of the mountain.

When a stable BL is taken into account, it becomes
more complicated to interpret the behaviour of the drag,
because it depends on the chosen BL model parameters.
The initial decrease of the drag in the linear model is
caused directly by the growth of the domain-averaged hBL
(given by the green dash–dotted lines). It is clear from
Figure 4 that this decrease is much faster than the one
that occurs in WRF, the reason being that it is not only the
thickness of the BL that matters for the gravity waves that
produce the drag, but also the characteristics of the flow
within it, which evolve more slowly. The drag from WRF
stabilises by the end of the simulations, except perhaps in
location A and level 5 (Figure 4a). The linear model overes-
timates the final WRF drag in Figure 4a,b,e (by about 31%,
71%, and 75%, respectively), underestimates it in Figure 4g
(by about 27%), and gives roughly a correct estimate in
Figure 4c,d,f. The height of the BL has a somewhat erratic
behaviour in some cases, keeping growing slightly towards
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F I G U R E 3 Drag as a function of
time from WRF simulations for (a,b)
location A, (c,d) location B, (e,f) location
C, and (g,h) location D. (a,c,e,g) Drag Dinv

from inviscid simulations without a BL;
(b,d,f,h) drag DBL from simulations with a
BL. Black thick lines: using real
atmospheric profiles interpolated from
reanalysis; red solid, blue dashed,
magenta dotted, green dash–dotted, and
orange dash–double-dotted lines: uniform
atmospheric profiles based, respectively,
on data from pressure levels 1, 2, 3, 4, and
5 above the ground, from reanalysis
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the end of the simulations in Figure 4e or even start-
ing decreasing in Figure 4d,f. Overall, and with the input
parameters estimated previously, the linear model does a
good job of predicting the decrease of the drag due to the
existence of the stable BL (despite the moderate relative
errors). This will be shown more systematically in Figure 6.

The drag behaviour in two cases presented in Figure 4
can be interpreted in the light of the wind and BL height
maps presented in Figure 5. Figure 5a,b shows wind vec-
tors and wind speed (shading) at the lowest model level
from WRF for the simulations without a BL, for location
A and level 5, and location C and level 5, respectively.
Figure 5c,d shows the same, but for the WRF simulations
with a BL. Finally, Figure 5e,f shows maps of the BL height
for the same cases. In Figure 5a it can be seen that, for

location A and level 5 (weakly nonlinear conditions), the
flow is accelerated downstream of the mountain, as is typi-
cal of gravity waves, but this happens to a moderate degree.
This acceleration is much more pronounced (resembling
a downslope windstorm) in Figure 5b for location C and
level 5, where the flow is considerably more nonlinear
(see Table 3). This is consistent with the GWD amplifi-
cation observed in this case. When a stable BL exists in
the simulations, there is a clear wake of decelerated flow
downstream of the mountain at location A and for level 5
(Figure 5c), which corresponds (via mass conservation) to
a thickening of the BL (Figure 5e). For location C and level
5, apart from the fact that this wake is preceded by a sub-
stantial flow acceleration on the downstream slope of the
mountain, there are incipient recirculation zones either
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F I G U R E 4 Drag from WRF
simulations Dnum and from the linear
model Dtheo normalised by
D00 = 𝜌0N(U2 + V 2)1∕2(ab)1∕2h2

0, and BL
depth hBL as a function of time, for a
number of selected cases using constant
atmospheric profiles (see Table 2). (a)
Location A, data from level 5; (b) location
B, data from level 1; (c) location B, data
from level 4; (d) location B, data from level
5; (e) location C, data from level 5; (f)
location D, data from level 2; (g) location
D, data from level 5. Solid blue lines:
inviscid drag from WRF; dashed blue
lines: inviscid drag from the linear model;
solid red lines: drag with a BL from WRF;
dashed red lines: drag with a BL from
linear model; green dash–dotted lines: BL
depth from WRF

side of the wake (Figure 5d). Both phenomena denounce
the higher nonlinearity of the flow (cf. Miranda and James,
1992). The wake is equally associated with a thicker BL
(see Figure 5f).

Figure 6 compares the final value of the drag from
each WRF simulation with the theoretical drag calcu-
lated using the linear model. The blue symbols denote
the results without a BL and the red symbols the results
with a BL. It is clear that, in the majority of cases, the drag
calculated using the WRF model output is close to the
theoretical value, particularly in cases including a stable
BL. It is interesting that the values calculated using sim-
ulations for location C without a BL are mostly greater
than the theoretical values (shown by the fact that they lie
above the one-to-one line). This indicates some nonlin-
ear drag enhancement, as the orography (and hence the
nonlinear parameter) is larger at this location. Conversely,
some drag values from location D are overestimated by the

linear model (as discussed in the description of Figure 4).
The drag values for the results including a BL are in com-
paratively good (perhaps even better) agreement between
WRF and the linear model (apart from one data point at
location C). This, and the intrinsically lower gravity-wave
amplitude that accompanies these lower values of the drag
(see below), suggests that the flow outside the BL (where
the gravity waves propagate) is closer to linear when the
BL is present, confirming the ideas of Peng and Thompson
(2003).

4 SCALING THE DRAG
REDUCTION AND ITS DEPENDENCE
ON BOUNDARY-LAYER DEPTH

The purpose of this section is to try to assess in as system-
atic a way as possible how the ratio of the drag affected by a
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F I G U R E 5 Horizontal
cross-sections of wind vectors and wind
speed (contours) at the lowest model level
above the surface and BL depth at the end
of the WRF simulations for constant
atmospheric profiles taken from pressure
level 5 at locations A (left column) and
C (right column). (a,b) Results for inviscid
simulations; (c,d) results for the
simulations with a BL. The arrow at the
top of each panel indicates the velocity
magnitude. (Note that the scales for (a,b)
and (c,d) are different. Colour scales have
units of m⋅s−1.) (e,f) The depth of the BL
(the colour scales have units of m).
Arrows indicate the direction of the wind
vector in the input profile

(a) (b)

(c) (d)

(e) (f)

stable BL, DBL, to the inviscid drag, whether given by linear
theory (D0) or WRF simulations (Dinv), varies with mea-
sures of the impact of the BL. Even if we limit ourselves
to the dependence of the GWD on quantities involving
the domain-averaged BL depth hBL (given its obvious rel-
evance), this quantity can be normalised using key flow
parameters in three possible ways: hBL/(ab)1/2, hBL/h0,
or hBLN/(U2 +V 2)1/2. Next, we will develop scalings for
DBL/D0 and DBL/Dinv in terms of all these dimensionless
parameters. The theoretical model of Section 2.4 suggests
that DBL/D0 may also depend on flow parameters such
as the wind angle 𝜓 , the aspect ratio of the mountain 𝛾 ,
and the nonhydrostatic N(ab)1/2/(U2 +V 2)1/2 parameter.
In nonlinear conditions, there is a possible additional
dependence on Nh0/(U2 +V 2)1/2. However, since these are
inviscid parameters they should affect both DBL and D0, or
DBL and Dinv, in a roughly similar way, so when the ratios
DBL/D0 and DBL/Dinv are calculated the influence of those
parameters should factor out, at least partially.

We have seen in Section 3.1 that the existence of a
stable BL decreases the GWD very substantially, so it is

plausible to assume that DBL is inversely proportional to
hBL in some way. Therefore, we propose the following
scaling relation:

DBL

Dref
= 𝛼

{
hBL

(ab)1∕2

}−𝛽(hBL

h0

)−𝛿{ hBLN
(U2 + V 2)1∕2

}−𝜖

, (9)

where 𝛼, 𝛽, 𝛿, and 𝜖 are adjustable coefficients, and Dref
may be either D0 or Dinv. If the logarithm of Equation 9 is
taken, it becomes clear that these coefficients may be fitted
to a given dataset where all the included variables are avail-
able using multilinear regression. This will be done next.

4.1 Atmospheric profiles with constant
parameters
Because the gravity waves have smaller amplitude and
therefore are more linear in the presence of the stable
BL (as shown by the good agreement between the GWD
predicted by the linear model and by WRF in Figure 6), it
makes sense to try to make this fit first for DBL/D0.



TURNER et al. 13

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
D

n
u

m
/D

0
0

D
theo

/D
00

F I G U R E 6 Comparison of the drag from WRF Dnum and the
drag from linear theory Dtheo normalised by D00 for all cases with
constant atmospheric profiles (all locations, and atmospheric
parameters taken from all reanalysis levels). Blue symbols: inviscid
WRF simulations and linear model calculations; red symbols: WRF
simulations and linear model calculations including a BL. Circles:
location A; squares: location B; triangles: location C; diamonds:
location D; dashed line: 1 to 1 relation

Figure 7 shows DBL/D0 as a function of hBL/(ab)1/2

(Figure 7a), as a function of hBL/h0 (Figure 7b), as a
function of hBLN/(U2 +V 2)1/2 (Figure 7c), and as a func-
tion of a combination of these three parameters obtained
by the multilinear regression procedure introduced above
(Figure 7d). The regression was only adjusted to the data
from locations A, B, and D, since location C, because of
its higher nonlinearity, was seen to be an outlier, and to
affect an optimal fit of the data from the other locations
detrimentally. The adjusted coefficients of the multilinear
regression were found to produce the following form for
the scaling relation:

DBL

D0
= 0.0119

{
hBL

(ab)1∕2

}−0.773(hBL

h0

)−0.863

×
{

hBLN
(U2 + V 2)1∕2

}−0.433

. (10)

This corresponds to DBL ∝ h−2.069
BL , which makes sense

physically, as the GWD varies in inverse proportion to hBL.
In the dataset from the WRF simulations, all parameters
hBL/(ab)1/2, hBL/h0, and hBLN/(U2 +V 2)1/2 vary simulta-
neously, which makes interpreting the data complicated
and sometimes misleading. In Figure 7a,b, the scatter in
the data is considerable. Although the expected decreas-
ing trend of DBL with hBL for the data from each location
is found, the behaviour between locations differs between
Figure 7a and 7b, with the trends that can be seen at each
location not aligning between locations and thus failing

to collapse into a single trend. For example, in Figure 7a,
DBL/D0 increases as hBL/(ab)1/2 increases between loca-
tions instead of decreasing, which is a sign that the appro-
priate scaling for DBL/D0 is a combination between the
two variables on the horizontal axes of Figure 7a,b. In
Figure 7c, the scatter is substantially smaller, but the align-
ment of the data cloud is more vertical. This is a conse-
quence of the fact that, in an atmosphere without rotation
or where the effect of stability is dominant, the controlling
factor for BL growth is N. Therefore, hBL would be expected
to scale as (U2 +V 2)1/2/N (corresponding to a vertical line).
In practice, there is some departure from this relation,
shown by the fact that, for the data from each location,
there still seems to be some decreasing trend of DBL/D0 as
hBLN/(U2 +V 2)1/2 increases. Figure 7d shows DBL/D0 as
a function of the scaling variable on the right-hand side
of Equation 10, with the dashed line denoting the corre-
sponding fitting equation. We can see that the fit to data
from locations A, B, and D (which were used to adjust the
parameters) is very good. In particular, all three datasets
now align along a single power-law trend. Data from
location C (which were excluded from the linear regression
procedure) are naturally not as well fitted, except for a sin-
gle data point. It is noteworthy that 16 out of a total number
of 20 data points are very well fitted by Equation 10. This
gives us some confidence in this relationship. In Figure 7e,
the multilinear regression is computed again, but assum-
ing 𝜖 = 0 in Equation 9. This corresponds to ignoring
the scaling variable hBLN/(U2 +V 2)1/2 in the fitting pro-
cedure, given its weak correlation with the drag, found in
Figure 7c. It yields

DBL

D0
= 0.00884

{
hBL

(ab)1∕2

}−0.937(hBL

h0

)−0.870

, (11)

which corresponds to DBL ∝ h−1.807
BL . The advantage of

using only hBL/(ab)1/2 and hBL/h0 as scaling variables is
that only orography characteristics are involved, simplify-
ing the application of Equation 11. However, in order to
estimate D0, N and (U, V) are still necessary. As can be
seen in Figure 7e, the fit provided by Equation 11 is not
noticeably inferior to that provided by Equation 10, which
means that both relations are probably useful.

Figure 8 shows the same as Figure 7, but for DBL/Dinv,
that is, normalising DBL using the inviscid drag from WRF
instead of its linear estimate. One point worth noting
is that, since DBL/Dinv and DBL/D0 differ by the factor
Dinv/D0, which is a purely inviscid quantity, this ratio
should not depend on hBL. Therefore, in the form of the
multilinear fit, Equation 9, that applies to DBL/Dinv, the
constraint 𝛽 + 𝛿 + 𝜖 = 0.773 + 0.863 + 0.433 = 2.069 must
be fulfilled as a consequence of the preceding results for
DBL/D0 expressed by Equation 10. With the enforcement
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F I G U R E 7 Variation of the drag
given by WRF including a stable BL, DBL,
normalised by the inviscid drag given by
the linear model D0 with (a) the ratio of
the BL height to the weighted mountain
half-width, hBL/(ab)1/2, (b) the ratio of the
BL height to the mountain height hBL/h0,
(c) hBLN/(U2 +V 2)1/2, (d) an optimal
combination of hBL/(ab)1/2, hBL/h0, and
hBLN/(U2 +V 2)1/2, and (e) an optimal
combination of hBL/(ab)1/2 and hBL/h0, for
all simulations with constant atmospheric
profiles. Black circles: location A; red
squares: location B; blue triangles:
location C; green diamonds: location D;
dashed line: linear fit to data from
locations A, B, and D
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of this constraint, the multilinear regression now gives

DBL

Dinv
= 0.0181

{
hBL

(ab)1∕2

}−0.391(hBL

h0

)−0.323

×
{

hBLN
(U2 + V 2)1∕2

}−1.355

. (12)

Figure 8a–c shows DBL/Dinv as a function of
hBL/(ab)1/2, hBL/h0, and hBLN/(U2 +V 2)1/2, respectively.
The behaviour is relatively similar to that in Figure 7,
except perhaps that trends for the data from each loca-
tion are more difficult to discern. Figure 8d shows the
variation of DBL/Dinv with the scaling variable on the
right-hand side of Equation 12. Again, the dashed line
corresponds to the corresponding fitting equation. It can
be seen that the scatter is substantially larger than for the
DBL/D0 fit, coming not only from the data for location C
(which was not fitted here, for consistency) but also from
data for location D, which does not follow the predicted
trend at all. Reasons for this could have to do with the
fact that Dinv is unusually low for location D compared
with the linear estimate (as exemplified in Figure 4g), due

to nonlinear processes. This situation is not improved if
𝜖 = 0 is imposed (i.e., if the effect of the stability height
scale is ignored), yielding the scaling

DBL

Dinv
= 0.00150

{
hBL

(ab)1∕2

}−1.309(hBL

h0

)−0.498

. (13)

In this fit, and for similar reasons to those previously,
the constraint 𝛽 + 𝛿 = 0.937 + 0.870 = 1.807 has been
enforced, to ensure that Dinv/D0 does not depend on hBL
(by reference to Equation 11). Figure 8e shows that the
scatter increases substantially, the problem with location
D (which was included in the fit) is not solved, and
one point from location C (not fitted) becomes a distant
outlier.

A noteworthy effect is that the fitted exponents in
the power laws are different between Equations 10 and
12, and between Equations 11 and 13. This in princi-
ple reflects (given the imposed consistency constraints in
each pair of equations) how the nonlinearity and nonhy-
drostatic effects differ between the linear model and the
WRF simulations. Indeed, for example from Equations 10



TURNER et al. 15

(a)

0.01 0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7
D

B
L
/D

in
v

h
BL

/(ab)
1/2

(b)

1 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
B

L
/D

in
v

h
BL

/h
0

(c)

0.1 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
B

L
/D

in
v

h
BL

N/(U
2
+V

2
)

1/2

(d)

0.01 0.1 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
B

L
/D

in
v

[h
BL

/(ab)
1/2

]
0.391

(h
BL

/h
0
)

0.323
[h

BL
N/(U

2
+V

2
)

1/2
]
1.355

(e)

1E-3 0.01 0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
B

L
/D

in
v

[h
BL

/(ab)
1/2

]
1.309

(h
BL

/h
0
)

0.498

F I G U R E 8 Similar to Figure 7, but with
the drag DBL normalised by its inviscid value
given by WRF, Dinv, instead of D0, and with the
mixed variables used in (d) and (e) defined
differently (see text for details)

and 12,

Dinv

D0
= 0.657

{
N(ab)1∕2

(U2 + V 2)1∕2

}0.382{ Nh0

(U2 + V 2)1∕2

}0.540

.

(14)
This scaling, which is not supposed to be accurate (actu-
ally Dinv →D0 when Nh0/(U2 +V 2)1/2 → 0, yet Equation 14
predicts instead that Dinv → 0), nevertheless gives a rough
description of this dependence on the flow nonlinearity
(quantified by Nh0/(U2 +V 2)1/2) and on nonhydrostatic
effects (quantified by N(ab)1/2/(U2 +V 2)1/2). That descrip-
tion seems to be at least qualitatively correct, since it
predicts the GWD to increase with increasing nonlinear-
ity and hydrostaticity of the flow (Teixeira, 2014). What the
inaccuracy of this scaling for Dinv/D0 shows is simply that
the forms of the scalings given by Equations 10 and 12 are
too simple to evaluate these effects accurately (although
they may be reasonable for their own purposes).

Analysis of the wind profiles over the mountain in the
WRF simulations with and without a stable BL (examples
shown in Figure 9) reveals marked differences between
the two. The signature of the wave oscillation is obvious in
all cases without a BL, although it is modest for location
B, at which the orography is small (this is expected, as the
amplitude of the orography determines the amplitude of

the wave). The wave oscillation is substantially reduced
in cases with a BL. This large reduction in wave activity is
consistent with the detected reduction in drag magnitude,
and is quantified here by the ratio of the wave amplitudes
in the presence and absence of a BL, ABL/Ainv, defined
previously.

Figure 10 explores the relationship between the reduc-
tion in the wave amplitude ABL/Ainv and the drag DBL/Dinv.
It indicates a strong relationship between DBL/Dinv and
ABL/Ainv. In other words, the reduction in wave amplitude
appears to be a leading factor determining how strongly
the drag is reduced by the stable BL. All of this is not sur-
prising, as the wave amplitude has a very strong link with
the magnitude of the pressure perturbation that gener-
ates the drag. More specifically, DBL/Dinv is proportional to
ABL/Ainv because the GWD is proportional to the pressure
perturbation induced by the waves, and this pressure per-
turbation is proportional to the corresponding horizontal
velocity perturbation, quantified here by A.

4.2 Real atmospheric profiles

Having established scaling relations for DBL/D0 and
DBL/Dinv, we would like to see whether these relations
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F I G U R E 9 U and V wind
components (red and blue lines,
respectively) as a function of height over
the mountain, at different times, for the
constant-profile inflow simulations at
each location, from WRF. Dashed lines
represent profiles at 0, 6, 12, and 18 hr and
solid lines represent those at 24 hr. (a,b)
Location A, data from level 4; (c,d)
location B, data from level 4; (e,f) location
C, data from level 5; (g,h) location D, data
from level 3. (a,c,e,g) Inviscid results
without a BL; (b,d,f,h) results with a BL

(a) (b)

(c) (d)

(e) (f)

(g) (h)

hold for the WRF simulations using the real atmospheric
profiles from ERA-Interim as input. Obviously these pro-
files are more complex than those considered previously,
and different effects will also be important (for example,
changes in stability with height, and possibly critical lev-
els). Of particular note is the fact that these profiles include
wind shear, which has previously been seen to have impor-
tant impacts on the drag (e.g., Miranda et al., 2009; Turner
et al., 2019; Xu et al., 2019). While, in this case, flow
parameters such as a, h0, hBL, DBL, and Dinv are unique for
each simulation, N and (U2 +V 2) are functions of height,
so it is not a priori obvious what values to select when these
parameters are used to normalise hBL or to calculate D0.

For maximum generality, we will next present results with
these variables taken from the five lowest pressure lev-
els adopted in the constant-profile simulations. Another
aspect to keep in mind is that in this case it is impossible
to take DBL, Dinv, and hBL from the WRF simulations at the
final time, because of the nonphysical behaviour displayed
in Figure 3b. For that reason, t = 32 hr is chosen instead,
which is a time simultaneously before the period when
that nonphysical behaviour begins but after DBL and hBL
have approximately stabilised (see Figure 3).

Figure 11 illustrates how various scalings for the drag
work in these real-profile simulations. Figure 11a,b shows
DBL/D0 as a function of the scaling variables included in
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F I G U R E 10 Ratio between the drag with and without a BL,
DBL/Dinv, as a function of the ratio between the wave amplitude in
the WRF simulations with a BL and the wave amplitude in the
corresponding inviscid simulations, ABL/Ainv. Black circles: location
A; red squares: location B; blue triangles: location C; green
diamonds: location D

Equations 10 and 11, respectively, and Figure 11c,d shows
DBL/Dinv as a function of the scaling variables included
in Equations 12 and 13, respectively. The symbols in each
panel correspond to data from the various locations, but
here multiple points from a single location have a dif-
ferent meaning. Namely, in Figure 11a,c the set of five
crosses for each location along the horizontal direction
correspond to the scaling variable hBLN/(U2 +V 2)1/2 cal-
culated using values of N and (U, V) from the lowest five
pressure levels in reanalysis. Conversely, in Figure 11a,b,
the set of five crosses for each location along the verti-
cal direction corresponds to the inviscid drag from lin-
ear theory D0 calculated using values of N and (U, V)
from the lowest five pressure levels. Solid symbols denote
data points taken at the levels which, at each location,
are closest to the domain-averaged BL depth. The dashed
lines in Figure 11a–d correspond to Equations 10–13,
respectively.

In Figure 11a,b, it can be seen that the data roughly
follow the regression line, with both a decrease of DBL/D0
and an increase of the scaled BL depth as one goes from
location A to D to B. If N and (U, V) are taken from the
model just above the BL top, a good fit with the scaling
for the reduction in GWD associated with the stable BL
is obtained. We notice that there is not a substantial dif-
ference in the quality of the fit between Figure 11a and
b, although, for a practical application of the scaling rela-
tion, the issue remains of where to estimate N and (U, V)
to obtain D0 (and normalise hBL in Figure 11a). Although
the circles are not the data points closest to the dashed line,
they are not the most distant either, departing from the
line by a factor of about 1.5 or lower. This suggests that hBL

might be a good reference level to estimate the necessary
parameters.

In Figure 11c,d, where the GWD has been normalised
instead using the inviscid drag from WRF, the behaviour
of the data from the various locations is substantially less
well predicted by the corresponding scaling. The data from
the four locations bracket the theoretical prediction, with
locations A and D especially close to the dashed line and
most of the points from locations B and C being overesti-
mated and underestimated by the line by factors of about 2,
respectively, although in Figure 11c the full set of data for
location C actually brackets the line. Note that, while the
data point closest to the dashed line from location C corre-
sponds to the lowest pressure level, the data point closest
to the dashed line from location B corresponds instead to
the highest level. Again, the solid symbols in Figure 11c,
corresponding to the levels closest to hBL, do not show the
best agreement with the dashed line, but definitely not the
worst either. Although these results show that the order
of magnitude of the drag attenuation is certainly predicted
correctly, the datasets in Figure 11c,d do not follow the
trend suggested by the line. Therefore, it is apparent that
Equations 10 and 11 are more reliable than Equations 12
or 13, at least for the limited datasets that were tested here.
Additional testing of the scaling relations using indepen-
dent datasets would be useful, but is beyond the scope of
this study.

The facts that all the scaling relations found above sat-
isfy approximately DBL ∝ h−2

BL, and that the exponents 𝛽
and 𝛿 in Equation 11 are close to 1, that is, DBL∕D0 ∝
{hBL∕(ab)1∕2}−1 and DBL/D0 ∝ (hBL/h0)−1, are curious and
should be no coincidence. The linear model (Equation 3)
suggests a dependence of the type DBL ∝ h−2

BL when hBL is
small and DBL ∝ h−1

BL when hBL is large, but a dependence
on hBL/h0 naturally cannot be justified using the linear the-
ory framework, where the orography height is assumed to
be infinitesimal.

5 CONCLUSIONS

It is evident from the results presented here that inclusion
of a simulated stable BL reduces GWD substantially over
orography with an elliptical horizontal cross-section, con-
firming and extending the findings of Jiang et al. (2008).
The effect is greater when the BL depth is large compared
with other relevant length-scales in the problem, namely
the orography height and width and the stability height
scale of the atmosphere. The existence of this relation-
ship corroborates and quantifies the findings of Peng and
Thompson (2003) in the stably stratified flow regime, and
suggests that there is a need to apply a correction to drag
parametrizations in order to include this effect.
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F I G U R E 11 Drag from the
WRF simulations with real
atmospheric profiles as a function
of scaled BL depth variables similar
to those used in (a) Figure 7d, (b)
Figure 7e, (c) Figure 8d, and (d)
Figure 8e. Black circles: location A;
red squares: location B; blue
triangles: location C; green
diamonds: location D. In (a,c), the
set of crosses along the horizontal
axis corresponds to
hBLN/(U2 +V 2)1/2 using values of
N and (U, V) from the five lowest
pressure levels, and in (a,b) the set
of crosses along the vertical axis
corresponds to D/D0 with D0

calculated using values of N and
(U, V) from the five lowest pressure
levels. Solid symbols denote results
for the level closest to hBL in the
WRF simulations (2 for locations A
and C and 3 for locations B and D)
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In highly idealised conditions inspired by atmospheric
profiles for locations in Antarctica from reanalysis, a
power-law relationship was found to exist between the
ratio of the drag with a stable BL to that without one
and the corresponding scaled BL depth. The drag varies
in inverse proportion to the BL depth, as would intu-
itively be expected, approximately as DBL ∝ h−2

BL. It scales
inversely (via relations found using a multilinear regres-
sion) with three measures of the BL depth, normalised
using the mountain width, height, and the static stability
and wind speed evaluated at a representative level in the
atmosphere. This dependence implies, in particular, in
agreement with the findings of Jiang et al. (2008), that BL
effects decrease with increasing nonlinearity, but also as
the flow becomes more hydrostatic. This behaviour seems
logical, since a greater depth of the BL relative to the orog-
raphy height and width necessarily causes greater attenua-
tion of the effective orography ‘felt’ by the free atmosphere
aloft, forcing weaker waves.

The drag reduction due to stable BL effects poten-
tially depends on other flow parameters, and its power-law
dependence on the scaled BL depth, adopted here, is nec-
essarily only approximate. Nevertheless, this dependence
appears intuitively (and also by reference to the BL model
of Smith et al., 2006) to be the dominant one. The rela-
tion between the drag reduction and the scaled BL height,
established herein, could in principle be used to represent
this effect in parametrizations under stable BL conditions.
Even if current inviscid drag parametrizations could be cal-
ibrated to account implicitly for this effect by a judicious

choice of adjustable coefficients, it would not be possible
to obtain a physically based scaling of the drag with BL
depth by such a procedure, and it is certainly preferable to
represent separate physical processes more accurately.

The effect of the stable BL is naturally felt not only in
the reduction of the drag magnitude, but also in various
other aspects of the flow. The components of horizontal
wind velocity are decelerated throughout the BL, and the
wave activity was found to be reduced significantly above
the BL, as was hypothesised above. It was seen that this
reduction in wave amplitude is strongly related to the ratio
between the drags with and without the BL, more specifi-
cally DBL/Dinv ∝ABL/Ainv. This is expected, given the linear
relation between the wave amplitude and the amplitude of
the pressure perturbation that causes the drag. Although
we have focused on quantification of the surface GWD,
we expect the same amplitude reduction in the vertical
profile of parametrized GWD, since the structure of the
wave response is proportional, but reduced in amplitude.
This has implications for the parametrization of the ver-
tical distribution of the GWD acting on the atmospheric
circulation (Xu et al., 2019).

Comparison between the results derived from the WRF
model output and calculations using a linear model based
on Smith et al. (2006) revealed that the two sets of results
can behave quite similarly, as long as the friction coef-
ficients in the linear model are properly adjusted. The
linear model was found to perform even better in pre-
dicting the drag from WRF in the case where a stable BL
is present than in the inviscid simulations. We speculate
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that this is due to the fact that the amplitude of the
waves is reduced above the BL by BL effects, and there-
fore they are described better by linear theory. Inviscid
waves, in contrast, have higher amplitudes, where nonlin-
earity and the accompanying flow regimes—wave break-
ing, lee vortices—make the drag depart more from its
linear estimate. While it is certainly true that the flow
within the BL is more nonlinear than that in the absence
of a BL (because the flow perturbation becomes a larger
fraction of the mean flow, which is reduced, as noted by
Jiang et al., 2008), the flow outside the BL is definitely
more linear.

The consequence of this fact is that normalising the
GWD affected by a stable BL, DBL, by its inviscid estimate
from linear theory, D0, yields a more universal scaling of its
dependence on BL depth than normalising it by the value
from inviscid WRF numerical simulations, Dinv. Firstly,
the scaling for DBL/D0 fits the data from WRF better, either
from the constant-profile simulations that were used to
calibrate the scaling relation or from the simulations with
a realistic atmospheric profile from reanalysis. Secondly,
D0 is more readily available than Dinv, since the former
is a quantity that inviscid drag parametrizations already
use. When using Equation 10 to estimate DBL, there is still
the issue of the height at which to estimate N and (U, V)
included in the definition of hBLN/(U2 +V 2)1/2. A more
comprehensive justification for this choice is left for future
studies, but our results suggest that a height within the
range of the lowest five pressure levels from ERA-Interim
reanalysis (spanning approximately the lowest 1,000 m of
the atmosphere) is appropriate. More specifically, a height
that is of the order of the BL depth seems to work accept-
ably. An alternative, but almost equally accurate, choice
is to use Equation 11 to account for the effect of the
BL instead. This has the advantage of depending only
on the BL depth and orography parameters in the sim-
ulations, forfeiting the need to specify any atmospheric
parameters.

The scaling relations developed here neglect poten-
tially relevant effects and make many simplifying
assumptions: for example, direct effects of flow nonlin-
earity (through Nh0/(U2 +V 2)1/2), nonhydrostatic effects
(through N(ab)1/2/(U2 +V 2)1/2), effects of orography
anisotropy (through 𝛾), and effects associated with wind
direction (through 𝜓). In relation to this last aspect, note
also that we only scaled the magnitude of the drag, but
did not focus on how its two components are affected. It
is quite plausible that the drag direction could change as
a result of BL effects, not only associated with the Ekman
spiral but also due to more subtle influences. Finally, the
present scaling was developed and tested for strongly sta-
ble BLs. This approach is likely to have limited accuracy
for other types of BL, for example, convective ones, as

mechanisms generating GWD may, in those cases, be quite
different (Jiang and Doyle, 2008). Treatment of nonstable
BLs is left for future studies.
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