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A B S T R A C T

The automated detection of curvilinear structures, e.g., blood vessels or nerve fibers, in
medical images is becoming a paramount step in facilitating the management of many
diseases. Precise measurement of the morphological changes of these curvilinear struc-
tures provides indicative information to clinicians for understanding the mechanism,
diagnosis, and treatment of many diseases. In this work, we propose a general uni-
fied convolutionary neural network for curvilinear structure segmentation of images in
various 2D/3D medical imaging modalities. We introduce a novel curvilinear structure
segmentation network (CS2-Net) based on Dual Attention Network, which includes a
self-attention mechanism in the encoder and decoder to learn rich hierarchical repre-
sentations of curvilinear structures. Two types of attention modules - spatial attention
and channel attention - are utilized to enhance the inter-class discriminating power and
intra-class responsiveness, so as to further integrate local features with their global de-
pendencies and normalization, adaptively. To further facilitate the curvilinear structure
segmentation in medical images, we employ a 1×3 and a 3×1 convolutional kernel to
capture more boundary feature. In addition, we extend the 2D attention to the 3D field
to enhance the network’s ability to aggregate depth information of different layers. The
proposed curvilinear structure segmentation network is rigorously validated using both
2D and 3D images in six different imaging modalities. Experimental results on nine
datasets show that the proposed method outperforms on the whole state-of-the-art algo-
rithms in different metrics.
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1. Introduction

Curvilinear structures are objects with thin, long, and tree-
like shapes, and different intensities compared with their sur-
rounding pixels (Bibiloni et al., 2016). In the biomedical field,
many studies (Kim and Markoulli, 2018a; Rieber et al., 2006)
suggest that geometrical and morphological changes in numer-
ous anatomical curvilinear structures - e.g., retinal blood ves-
sels, cerebral vasculature, or nerve fibers - are closely correlated
to the presence of diseases, including diabetes, risk of stroke,
hypertension and keratitis.

Acquiring images of the aforementioned anatomical curvi-
linear structures involves two-dimensional (2D) and three-
dimensional (3D) imaging techniques, such as color fundus
imaging, optical coherence tomography angiography (OCTA),
fluorescence angiogram (FA), confocal microscopy (CM), mag-
netic resonance angiography (MRA), computed tomography
angiography (CTA), etc. The top row of Fig. 1 demonstrates
five examples of different medical image types, which include
both 2D (Fig. 1(a-d)) and 3D (Fig. 1(e)) images.

As one type of curvilinear structure, retinal blood vessels
are an important component of the retina, and the morphol-
ogy change of their retinal vasculature is closely related to
many systemic, metabolic, and hematologic diseases (Annun-
ziata et al., 2016; Ding et al., 2014). Retinal blood vessels are
usually observed by color fundus images (Franklin and Rajan,
2014) and OCTA images (de Carlo et al., 2015). Color fun-
dus imaging is only able to reveal the superficial vascular net-
work, while OCTA is a new, non-invasive imaging technique
that generates volumetric angiography images, and is capable of
visualizing the radial peripapillary and deep capillary networks
that are not well-distinguished in color fundus images. Corneal
nerve fiber properties such as branching, density, and tortuosity
are linked to eye and systemic diseases such as herpes, sim-
plex keratitis and dry eye diseases (Eladawi et al., 2017; Kim
and Markoulli, 2018a). In vivo corneal confocal microscopy
(CCM) is a common technique for the imaging and inspection
of corneal nerve fibers. Early detection of their geometrical and
topological changes often helps to reduce the incidence of vi-
sion loss and blindness. MRA is an MRI examination of the
human brain vessels (cerebral vasculature), which is important
for the diagnosis of many serious diseases such as strokes (Liao
et al., 2012). Cerebral small vessel deformation plays an in-
dicative role in lacunar strokes and brain hemorrhages and are a
leading cause of cognitive decline and functional loss in elderly
patients (Cuadrado-Godia et al., 2018).

In consequence, accurate extraction of these curvilinear
structures from medical images is often an essential step
in quantitative image analysis and computer-aided diagnostic
pipelines. The bottom row of Fig. 1 illustrates the manual
annotations of five types of medical images. However, man-
ual annotation of these curvilinear structures is an exhaustive
time-consuming task for graders, and subject to human error,
and thus impractical in high-throughput analysis settings like
screening programs or microscopy (Zhao et al., 2018b). In ad-

dition, the commercial software available (e.g. ImageJ1and Tu-
beTK2) still rely heavily on manual refinement. This calls for
fast, accurate, and fully automated curvilinear structure extrac-
tion methods.

Over the last two decades, we have witnessed the rapid devel-
opment of curvilinear structure detection methods, especially
for blood vessel segmentation, as evidenced by general re-
views of 2D vessel segmentation (Fraz et al., 2012; Zhao et al.,
2018b), and 3D vessel segmentation (Lesage et al., 2009). Most
existing segmentation methods suffer from issues posed by the
high degree of anatomical variation across populations, and the
varying scales of curvilinear structures within an image. On one
hand, noise, poor contrast and low resolution exacerbate these
problems. As such, standard image segmentation methods are
usually not able to robustly detect all the curvilinear structures
of interest. On the other hand, deep learning-based methods
have yet to be used to segment retinal vessels in OCTA and
most of them are designed for the segmentation of vessels or
fibers from one specific biomedical imaging modality. More-
over, most of them are designed specifically for 2D images, and
cannot easily be extended to 3D ones. In fact, it has been proven
very challenging to design a single curvilinear structure detec-
tion method that works well across a variety of medical imaging
modalities.

In this paper we introduce a novel Channel and Spatial Atten-
tion Network (CS2-Net) to extract curvilinear structures from
images in different imaging modalities. Our work was inspired
by Dual Attention Network (DANet) (Fu et al., 2019) that were
designed for the segmentation of natural images. While med-
ical images contain more unique features, such as simpler se-
mantics and unitary patterns, we first construct a network back-
bone based on encoder-decoder framework, and then introduce
a 1× 3 and a 3× 1 convolutional kernel to capture more bound-
ary feature to assist the segmentation of curvilinear structures,
rather than only up-sampling the attention features in the last
layer of DANet. Such approach is more attractive to the re-
searchers and practitioners, since they do not have to choose
a particular method for each imaging modality and it is more
applicable to various imaging modalities. It is worth noting
that the proposed method is a substantial extension of our pre-
vious work (Mou et al., 2019), which focused on 2D curvilinear
structure segmentation in medical images only. In this work, we
have improved it so that it is applicable to segment the curvilin-
ear structure from both 2D and 3D imaging modalities. We
also expand our data pool for evaluation from three biomedical
imaging modalities to six with a total of nine different datasets.
Overall, this work makes the following contributions:

1) A new curvilinear structure segmentation network is pro-
posed based on dual self-attention modules, which can
deal with both 2D and 3D imaging modalities in an uni-
fied manner;

2) Two self-attention mechanisms are employed in the chan-
nel and spatial spaces to generate attention-aware expres-
sive features. They can enhance the network to capture

1https://imagej.nih.gov/ij/
2http://tubetk.org/

https://imagej.nih.gov/ij/
http://tubetk.org/
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(a) (b) (c) (d) (e)

Fig. 1. Images (tow row) and their manual annotations of curvilinear structures (bottom row) in different medical imaging modalities. From the left
to right column: Retinal color fundus image; Retinal optical coherence tomography angiogram (OCTA); Corneal confocal microscopy (CCM) image;
Optical coherence tomography (OCT) and Brain MRA. Note that the manual annotations of OCTA and CCM are made at a centerline level, and the
cerebral vasculatures are visualized in 3D by maximum intensity projection.

long-range dependencies of features at different spatial lo-
cations and make full use of the space available for the
representation and normalization of the features in differ-
ent channels, so as to enable the network to classify the
curvilinear structure from background more effectively;

3) Experimental results on nine datasets (six 2D datasets and
three 3D datasets) demonstrate that our proposed CS2-
Net achieves on the whole state-of-the-art performances in
detecting curvilinear structures from different biomedical
imaging modalities both quantitatively and qualitatively.

2. Related Works

2.1. 2D Curvilinear Segmentation
As vasculatures or fibers in 2D medical images are curvi-

linear structures distributed across different orientations and
scales, various filtering methods have been proposed, includ-
ing Hessian matrix-based filters (Frangi et al., 1998a), matched
filters (Zhao et al., 2017b), multi-oriented filters (Soares et al.,
2006; Zhang et al., 2017), symmetry filter (Zhao et al., 2018b),
and tensor-based filter (Cetin and Unal, 2015), active contours-
based methods (Shang et al., 2019; Al-Diri et al., 2009) and
minimal geodesic paths-based approaches (Chen et al., 2019).
These filtering-based methods aim to suppress non-vascular or
non-fiber structures and imaging noise, and enhance the curvi-
linear structures, thereby benefiting the subsequent segmenta-
tion problem. For instances, (Zhao et al., 2015, 2018a) pro-
posed infinite perimeter active contour model with hybrid re-
gion information and a weighted symmetry filter to detect ves-
sels. (Zhang et al., 2016) designed multi-scale rotation invari-
ant filters for retinal vessel and corneal nerve fiber segmentation
based on a locally adaptive framework in the position and orien-
tation spaces. This framework is adaptive to the local changes

of curvilinear structures and is able to deal with typically diffi-
cult cases. (Soares et al., 2006) used a multi-scale Gabor trans-
form to extract texture features of vessels for more accurate ves-
sel detection. There are also several filter-based vessel segmen-
tation methods, including Hessian matrix-based filters (Frangi
et al., 1998a; Zhang et al., 2016), tensor-based filters (Cetin and
Unal, 2015) and symmetry filters (Zhao et al., 2018b). These
approaches aim to remove undesired intensity variations in the
images, and suppress background structures and imaging noise,
thereby facilitating the subsequent segmentation task. However,
these filter-based methods rely heavily on manual parameter ad-
justment during implementation, and usually are designed for a
specific imaging modality, which may not be effective when ap-
plied to other image types.

Recently, deep learning-based methods have made signif-
icant progress in the field of computer vision. These in-
clude classification networks, e.g., ResNet (He et al., 2016)
and Inception series networks (Szegedy et al., 2015; Ioffe
and Szegedy, 2015; Szegedy et al., 2016, 2017); object de-
tection networks, e.g., Faster-RCNN (Ren et al., 2015) and
R-FCN (Dai et al., 2016); segmentation networks, e.g., Seg-
Net (Badrinarayanan et al., 2017), PSPNet (Zhao et al., 2017a);
and networks designed for medical image segmentation, e.g.,
U-Net (Ronneberger et al., 2015) and CE-Net (Gu et al., 2019).
These deep learning based methods have been modified and
applied for blood vessel segmentation (Fu et al., 2016; Alom
et al., 2018) and nerve fiber tracing in color fundus and CCM
images (Colonna et al., 2018; Williams et al., 2020) , respec-
tively. (Maninis et al., 2016) proposed a multi-task structure for
both vessel detection and optic disc segmentation. (Liskowski
and Krawiec, 2016) introduced a retinal vessel segmentation
method based on a convolutional neural network (CNN), and
(Fu et al., 2016) further applied the CNN along with conditional
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random fields for the detection of retinal vessels. (Alom et al.,
2018) embedded a recurrent neural network into the U-shaped
network (R2U-Net) for the segmentation of vessels. (Wang
and Chung, 2019) proposed a novel detector, named Oriented
Cylinder Flux (OCF), for the detection of blood vessel struc-
tures. (Wang et al., 2019a) proposed a new curvilinear structure
segmentation method using context-aware and spatio-recurrent
networks. Instead of directly segmenting the entire image or
densely segmenting fixed-size local patches, it uses a learning
strategy to repeatedly sample the target image with different
proportions. More details on recent vessel segmentation works
can be found in (Shin et al., 2019; Jin et al., 2019; Wang et al.,
2019c). (Colonna et al., 2018) proposed a deep neural network
based on U-Net (Ronneberger et al., 2015) for corneal fiber
tracing in CCM images. (Hosseinaee et al., 2019) developed
a fully automated segmentation method for the segmentation of
corneal nerves on a series of enface UHR-OCT images obtained
from healthy human subjects. (Kim and Markoulli, 2018b) and
(Oakley et al., 2019) systematically summarized the unsuper-
vised and supervised methods for corneal nerve segmentation
and analyzed the role of corneal neuromorphological features
in disease diagnosis. Eladawi et al. proposed a joint Markov-
Gibbs random field (MGRF) model to segment blood vessels
based on different retinal maps from OCTA scans. (Dı́az et al.,
2019) developed a fully automatic system that identifies and
precisely segments the foveal avascular zone (FAZ). (Heisler
et al., 2019) also proposed a novel automated deep learning
method to segment and quantify retinal images from prototype
OCTA machines with larger fields of view. For more automated
vascular segmentation and fiber tracing methods, please refer to
the review by (Fraz et al., 2012). Although these methods have
achieved promising segmentation results, most of these meth-
ods concentrate on the segmentation of curvilinear structure for
single imaging modality. In addition, most of these methods are
hard to be extended for the curvilinear structure segmentation
in 3D volumes.

2.2. 3D Curvilinear Segmentation

Three-dimensional volumes contain richer features with
depth information that is not available in 2D slices/images.
Three-dimensional vascular segmentation is an important prior
step in the characterization of cerebral aneurysms, which has
proven useful for the pre-treatment planning of Guglielmi sep-
arable coils (GDC) (Wilson, 1998). With the development of
imaging devices, more computer vision methods have been
developed to deal with 3D data for biomedical data analysis.
Moreover, most methods perform better on this volumetric data
compared to 2D image counterpart, especially in medical imag-
ing. (Zhao et al., 2018b) proposed a weighted symmetry fil-
ter for automatic 2D vessel enhancement and segmentation,
and further extended it to the 3D case for vascular segmenta-
tion. (Çiçek et al., 2016) extended U-Net to 3D U-Net with a
weighted cross entropy loss to perform Xenopus kidney seg-
mentation, which has been proven an effective method for the
segmentation of tubular structural organs under sparse anno-
tations. (Gibson et al., 2018) used a dense V-Net (Milletari
et al., 2016) to segment multiple 3D tubular organs. (Chung

and Noble, 1999) adopted a Rician distribution to segment 3D
brain vasculatures in order to extract cerebral aneurysm fea-
tures. (Tetteh et al., 2018) proposed DeepVesselNet to segment
vessels, detect vessel centerlines and bifurcate 3D angiographic
volumes. (Liao et al., 2012) proposed to segment human brain
vessels using fast matching with an anisotropic orientation be-
ing a priori. Recently, (Zhang et al., 2019) proposed a novel
method for 3D retinal OCTA microvascular segmentation and
surface reconstruction. Intrinsic shape analysis was performed
to extract useful surface-based 3D geometric and topological
biomarkers. (Wang et al., 2019b) proposed a teacher-student
learning framework for fast neuron segmentation, where the
segmentation inference is performed using a light-weighted stu-
dent network which benefits from knowledge distillation by a
teacher network with a higher capacity. (Zhao et al., 2019) pro-
posed to perform 3D vessel segmentation by utilizing a deep
feature regression (DFR) method based on a convolutional re-
gression network (CRN) and a stable point clustering mecha-
nism. (Poulain et al., 2019) proposed a new method by combin-
ing the information of a tree-spline with a registration algorithm
to perform 3D coronary vessel tree tracking. (Sanchesa et al.,
2019) proposed a Uception network based on Inception mod-
ules and the U-Net-like architecture to segment cerebrovascular
in MRA images. However, many modules that rely heavily on
GPU resources are used in Uception, which makes the method
require huge GPU memory support in the training and inference
stages.

Like the previous 2D segmentation methods, many filter-
based 3D tubular structure segmentation methods rely heavily
on manual tuning. Moreover, many methods based on learning
strategies do not pay attention to the tubular structure by de-
signing particular network modules, which plays an important
role in their accurate segmentation.

3. Proposed Method

3.1. Network Architecture

The proposed CS2-Net is designed for curvilinear structure
segmentation of both 2D and 3D medical images. It consists
of three modules: the encoder module, the channel and spatial
attention module (CSAM), and the decoder module. Fig. 2 and
Fig. 3 illustrate the architectures for 2D and 3D images, respec-
tively. The encoder module is used to extract the features of
input data. Then, these features are fed into two parallel atten-
tion blocks - the channel attention block (CAB) and a spatial
attention block (SAB) - to generate channel-spatial attention-
aware expressive features. The SAB selectively aggregates the
features in each spatial location through the weighted sum of
the features in all spatial locations, which allows the model to
capture the long-range dependency of the features, and similar
features will be related to each other regardless of their dis-
tance. Meanwhile, the CAB makes sure that the full space is
used to represent and normalize and thus enhance the contrast
of the features in different channels, allowing the model to be
assembled with improved discrimination capabilities. Finally,
the decoder module is employed to reconstruct curvilinear fea-
tures and produce the segmentation result.
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Instead of directly upsampling the features of the CSAM to
the original image dimensions (Fu et al., 2019), we introduce
a feature decoder module that restores the dimensions of the
high-level semantic features layer by layer. The encoder and
decoder modules include four blocks, each of which employs a
residual network (ResNet) as the backbone, and then followed
by a max-pooling layer to increase the receptive field for bet-
ter extraction of global features. Similar to the U-shaped net-
work (Ronneberger et al., 2015; Çiçek et al., 2016), a skip con-
nection between each layer of the encoder and decoder is intro-
duced to combine the features in different levels to compensate
for the loss of information caused by the max-pooling opera-
tions. At the end of the CS2-Net, we apply a 1×1 kernel (1×1×1
kernel in the 3D phase) convolutional layer and a sigmoid layer
on the output of the encoder to obtain the final segmentation
map.

3.2. 2D Attention Network
Several recent works have shown that the local feature rep-

resentations produced by traditional fully convolutional net-
works (FCNs) may lead to object misclassification (Zhao et al.,
2017a; Peng et al., 2017). The CS2-Net, which consists of a
2D encoder, 2D CASM and 2D decoder, is designed to reduce
this limitation and segment curvilinear structures in 2D images
more effectively. The 2D version CSAM is shown in Fig. 2,
which includes a 2D SAB and a 2D CAB. We use 2D convolu-
tional, 2D batch normalization and 2D deconvolutional layers
in all the modules. Their working principles are explained as
follows.

3.2.1. 2D Spatial Attention Module
To model rich contextual dependencies over local feature rep-

resentations, the first step is to generate a spatial attention ma-
trix, which models spatial relationships between the features
of any two pixels. In practice, tree-like structures are always
distributed throughout the biomedical images. Following (Fu
et al., 2019), we modify the SAB to encode a wider range of
contextual information about local features, and increase their
representative capability. However, unlike (Fu et al., 2019), we
introduce a 3 × 1 and a 1 × 3 convolutional layer with batch
normalization and ReLU layers to capture the edge informa-
tion of the tree-like structures in horizontal and vertical orien-
tations, respectively. More importantly, compared with many
complex natural images, medical images contain rare and al-
most fixed structures. Considering this aspect, the curvilinear
structure segmentation network requires skip-connection oper-
ations to fuse low-level information and compensate for the lost
spatial information. Therefore, we transplant the proposed at-
tention module into the encoder-decoder framework, rather than
directly encoding the image and resampling the original one as
in (Fu et al., 2019).

Specifically, we place the two types of layers (3 × 1 and
1 × 3 convolutional layer) after the input features F ∈ RC×H×W

to generate two new feature maps Qy ∈ RC×H×W , and Kx ∈

RC×H×W , respectively, where C denotes the dimensionality of
the input features, and H and W are the height and width of the
input image, Qy and Kx represent the features of the curvilin-
ear structures captured in the vertical and horizontal directions.

These two new feature maps are then reshaped to RC×N , where
N = H×W is the number of features. In consequence, the intra-
class spatial association can be obtained by applying a softmax
layer on the matrix multiplication of the transpose of Q and K,
as:

S(x,y) =
exp

(
QT

y · Kx

)
∑N

x′=1 exp
(
QT

y · Kx′
) , (1)

whereS(x,y) denotes the yth position’s impact on the xth position.
In other words, matrix multiplication computes and outputs the
feature correlation matrix S(x,y) between any two points, that is,
the two similar spatial points promote each other and the two
dissimilar spatial points suppress each other. Through this op-
eration, the network can fully utilize and learn the curvilinear
structure of different spatial locations. Then we apply softmax
on the correlation matrix to obtain the attention map of the sim-
ilarity between each spatial position and the others, in which
the higher the similarity, the greater the response between the
two points. Meanwhile, another new feature V ∈ RC×H×W is
obtained by applying a 1×1 convolutional layer with batch nor-
malization and ReLU layers on the input features and we also
reshape it to RC×N , which is then used to perform a matrix mul-
tiplication with S(x,y) to obtain the attention enhanced features
F′ ∈ RC×N . Finally, we reshape it to RC×H×W , and perform a
pixel-level summation of F and F′ to construct the output of
SAB. Thus, SAB gains a global contextual view and selectively
aggregates context information according to the spatial atten-
tion map to achieve a more accurate segmentation performance
for curvilinear structures.

3.2.2. 2D Channel Attention Module
Since each channel of a high-level feature can be regarded

as a specific-class response, we further exploit the inter-
dependencies of channel maps in this section, and propose
the CAB module to improve the feature representation by us-
ing the space available. A channel-wise attention map is ob-
tained by performing matrix multiplication between the input
feature F (named as Fx ∈ RC×H×W ) and its transpose (named
as FT ∈ RH×W×C). Then, the channel affinity matrix is obtained
by applying a softmax layer on the channel-wise attention map,
as:

C(x,y) =
exp

(
Fx · FT

y

)
∑C

x′=1 exp
(
Fx′ · FT

y

) , (2)

where C(x,y) denotes the similarity between the xth channel and
the yth channel. Therefore, we can obtain the channel depen-
dency matrix (RC×C , where C denotes the number of channels)
by performing a matrix multiplication. In this case, two simi-
lar channels will promote each other, while dissimilar channels
will inhibit each other, which also enhances the discrimination
between the curvilinear structure and the background. The pro-
cess is similar to the spatial attention module. The difference
lies in two aspects: (i) while the former operates the original
features F directly, the latter operates on new derived features
Qy, Kx and V , and (ii) while the former models the attention of
the features in one channel on those in another, the latter models
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Fig. 2. The architecture of the proposed CS2-Net over the 2D images: an encoder, a CSAM module and a decoder, which are designed to extract global
features, enhance the feature expression ability, and reconstruct curvilinear features, respectively.

the attention of one pixel on that of another. After that, a soft-
max is applied on the channel dependency matrix to enhance the
discrimination between curvilinear structures and backgrounds.
Similar to SAB, we then perform a multiplication between C(x,y)
and F to obtain the attention enhanced features F′′. The final
output of CAB is defined as F + F′′ over each pixel. Such op-
erations tend to enhance the contrast between class-dependent
features and help improve their expressiveness.

3.2.3. Objective Function
It is worth noting that all datasets contain complete annota-

tions, and curvilinear structure segmentation in a 2D image can
be regarded as a pixel-level binary classification task: curvi-
linear structure or background. In this work, the binary cross-
entropy (BCE) loss is thus adopted as the objective function
for the training of the network, as it is a pixel-wise objective
function that directly evaluates the distance between the ground
truth and prediction. The BCE loss is defined as:

LBCE = −
1
N

N∑
i=1

gi · log(pi) + (1 − gi) · log(1 − pi), (3)

where gi ∈ {0, 1} indicates the ground truth as curvilinear struc-
ture of a pixel, pi ∈ [0, 1] is its predicted probability, and N is
the number of pixels.

3.3. 3D Attention Network
In recent years, many methods based on learning and man-

ual design have been proposed for the detection of curvilinear

structures in 2D images (Staal et al., 2004; Kim and Markoulli,
2018a; Li et al., 2015). However, there are relatively few meth-
ods, especially learning-based methods, for segmenting curvi-
linear structures in 3D images. Moreover, the spatial attention
and the channel attention in (Fu et al., 2019) focus only on the
2D domain. Directly applying a 2D attention on 3D images
lacks feature integration in the depth direction, which is crucial
for improving the results of segmentation of curvilinear struc-
tures. To enable our proposed CS2-Net to extract the 3D tree-
like structures, we extend it from the 2D to the 3D, as shown
in Fig. 3. For the encoder and decoder modules, we replace all
their 2D operations with 3D ones. However, due to changes
in the modality of the dataset, the proposed CSAM in the 3D
mode is quite different from that in the 2D one. We detail the
3D CSAM in the following section.

3.3.1. 3D Spatial Attention Module
Similar to the 2D SAB, we first feed the input features

F ∈ RC×H×W×D into a 1×3×1 and 3×1×1 layer with batch nor-
malization and ReLU activations to generate two feature maps
Qy ∈ RC×H×W×D and Kx ∈ RC×H×W×D to capture the boundary
features of tublar structure along y axis and x axis, where C in-
dicates the number of input channels, and H,W and D indicate
the height, width and depth of the input 3D image , respectively.
However, this operation only encodes the relationship between
features in the width and height directions, lacking feature inte-
gration in the depth direction. To overcome this limitation, we
also feed F into a 1 × 1 × 3 convolutional layer and then opti-
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Fig. 3. The diagram of the 3D CS2-Net. It includes an encoder, a 3D CSAM and a decoder. N is the size of cropped volumes during training.

mize and activate it with batch normalization and ReLU layers.
Consequently, a new feature map Jz ∈ RC×H×W×D is obtained.
Therefore, we use Qy, Kx and Jz to capture the edge information
of tree-like structures in the width, height and depth directions.
In the next step, we reshape these three feature maps to RC×N

to construct three activation matrices, where N = H × W × D.
We first perform matrix multiplication on QT

y and Kx to encode
the feature relationships in the width and height directions, and
then perform the same operation on Kx and JT

z to encode the
feature relationships in the height and depth directions, where
QT

y and JT
z are the transpose of Qy and Jz, respectively. To en-

code the relevance of features in the width and depth directions,
we apply a matrix multiplication between the two outputs from
the previous step. Finally, a softmax layer is applied to obtain
the voxel-level, intra-class affinities:

S(x,y,z) =
exp

[(
QT

y · Kx

)
·
(
JT

z · Kx

)]
∑N

x′=1 exp
[(

QT
y · Kx′

)
·
(
JT

z · Kx′
)] , (4)

where S(x,y,z) denotes the mutual impacts of features at the xth,
yth and zth positions. Similarly, we gain a dimension-reduced
feature map V ∈ RC×H×W×D by applying a 1× 1× 1 kernel con-
volutional layer on the input feature map F, and we reshape
it to RC×N . Then, a matrix multiplication is performed be-
tween V and S(x,y,z) to obtain the voxel-level enhanced features
F′, which is then reshaped to RC×H×W×D. Finally, we perform
voxel-wise addition of F′ + F to get the output of the 3D SAB.
The schematic diagram of CSAM in Fig. 3 shows the details of
this process. Our proposed 3D SAB not only performs feature
mapping in the width and height directions, but also performs

the mutual mapping of the 3D features in the depth direction. In
the end, it is expected to increase the feature expression ability
of the network.

3.3.2. 3D Channel Attention Module

Inspired by the 2D channel attention mechanism, we further
extend it to the 3D domain. Similar to the 2D CAB, we ap-
ply a 1 × 1 × 1 kernel convolutional layer on F ∈ RC×H×W×D

to obtain four channel attention maps Q′y ∈ RC×H×W×D, K′x ∈
RC×H×W×D, J′z ∈ RC×H×W×D and V ′ ∈ RC×H×W×D, respectively.
Then, we reshape Q′y, K′x, J′z and V ′ to RC×N . Then we per-
form the same matrix operations on Q′y, K′x and J′z as in the
3D SAB:

C(x,y,z) =
exp

[(
K′x · Q′Ty

)
·
(
K′x · J′Tz

)]
∑C

x′=1 exp
[(

K′x′ · Q′Ty
)
·
(
K′x′ · J′Tz

)] , (5)

where C(x,y,z) denotes the mutual affinities between the xth,
yth and zth channels. In addition, a matrix multiplication is
performed between the transpose of C and V ′ to obtain the
voxel-level channel-wise attention output F′′ and reshape it to
RC×H×W×D. Similarly, we perform a voxel-wise addition of F′′

and F to obtain the output of the 3D CAB.
To gather the spatial and channel attention maps, a voxel-

level matrix summation is applied as the output of the 3D
CSAM between the outputs of the 3D SAB and the 3D CAB
and the original input feature F.
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3.3.3. Loss Function
In general, the labels for 3D cerebrovascular regions are

sparse, and only a portion of them have high-quality annota-
tions. Thus, we choose as our loss function the weighted cross
entropy loss LWCE (WCE), which is able to adjust learning bias
between a vascularity and background during training. More-
over, we also introduce Dice coefficient loss LDice to ensure the
micro-cerebrovascular segmentation. Finally, we define the 3D
optimization loss function for the training of the proposed CS 2-
Net as:

L = αLWCE + (1 − α)LDice, (6)

where α is the weight balance parameter between LMS E and
LDice, which is empirically set as α = 0.6. For our binary seg-
mentation task, the WCE loss and the Dice coefficient loss are
defined as follows:

LWCE = −
1
N

N∑
i=1

(
ωgi log pi + (1 − gi) log (1 − pi)

)
, (7)

LDice = 1 −
2
∑N

i=1 pigi + ε∑N
i=1 p2

i +
∑K

i=1 g2
i + ε

, (8)

where ω is the class weight of curvilinear structure, and can
be obtained by the class estimation probabilities pi of all the
voxels:

ω =
N −

∑N
i=1 pi∑N

i=1 pi
.

Here, N denotes the number of voxels, and pi ∈ [0, 1] and
gi ∈ {0, 1} denote the predicted probability and ground truth
value of the ith voxel as the curvilinear structure, respectively.
The parameter ε is a Laplace smoothing factor used to avoid
numerical instability problems and accelerate the convergence
of the training process (ε = 1.0 in this paper).

Table 1. Details of the datasets used to evaluate the proposed method.

Datasets Number Resolution Data type Public
DRIVE 40 565 × 584 Fundus Public
STARE 20 605 × 700 Fundus Public
IOSTAR 30 1024 × 1024 Fundus Public
CORN-1 1698 384 × 384 CCM Public
OCTA 30 1376 × 968 OCTA Private
OCT RPE 36 384 × 379 OCT Private

4. Experimental Results over 2D Images

In this section, the proposed segmentation network is first
validated over 2D medical images for the extraction of their
curvilinear structures. Many datasets are available online and
aim to train and validate an automatic approach for the segmen-
tation of vessels or nerve fibres from 2D medical images, as
blood vessels or nerve fibers are closely correlated to the pres-
ence of pathology. We refer readers to (Zhao et al., 2018b)
for more detailed introduction and discussions. In this work,
we selected two most commonly-used (DRIVE and STARE),

two newly-released (IOSTAR and CORN-1) publicly available
datasets, as well as two private (OCTA and OCT RPE) datasets
for evaluation of our method and the competitors.

In this work, we selected the most commonly used datasets
in the research community to evaluate the proposed CS2-Net, so
that we can make a direct comparison of segmentation results
with those obtained by the state-of-the-art methods. Regarding
to two private datasets, OCT and OCTA are two new emerg-
ing non-invasive imaging technique, with the ability to produce
high-resolution 3D images of retinal vasculature, and has been
increasingly taken as a valuable imaging tool to observe retinal
vascular. To our best knowledge, there is no publicly available
OCTA or OCT RPE dataset with manually graded vessels for
training and validation. We use these two datasets to test our
model, keep growing in the size of these two datasets, and will
release them online in the future.

4.1. Materials

Six 2D datasets in total are used for evaluation, whose details
are provided as follows.

DRIVE3 contains 40 colored fundus images, which were
originally divided into 20 images for training and 20 images
for testing. The images were acquired using a Canon CR5 non-
mydriatic 3-CCD camera with a field of view (FOV) being 45◦.
Each image in this dataset has dimensions of 565×584. We fol-
low the same partition of the images in our training and testing.

STARE4 comprises 20 colored fundus images. The images
were captured using a Topcon TRV-50 fundus camera with a
FOV being 35◦ . Half of the images contain pathological indi-
cations and the other half come from healthy subjects. Each im-
age has dimensions of 700 × 605. However, unlike the DRIVE
dataset above, there is no fixed partition of training and testing
sets. In this paper, we adopt the k-fold (k=4) cross-validation
method for the training and testing phases, similar to that in (Mo
and Zhang, 2017). Therefore, 15 images are used for training
and the remaining 5 images are used for testing in each fold.
We use the manual annotations from the first observer as the
ground truth for all the images.

IOSTAR5 includes 30 images with a resolution of 1024 ×
1024 pixels. The images were acquired with an EasyScan cam-
era (i-Optics Inc., the Netherlands), which is based on a SLO
technique with a FOV being 45 degrees. For reasonable data di-
vision, we also adopt the k-fold (k=5) cross-validation method
for training and evaluating, that is, 24 images are used for train-
ing and 6 images for testing.

CORN-16 is a publicly available CCM dataset, and contains
a total of 1698 CCM images of corneal subbasal epithelium
using a Heidelberg Retina Tomograph equipped with a Ros-
tock Cornea Module (HRT-III) microscope. All of these images
were acquired by the Peking University Third Hospital, China
and University of Padova, Italy7. Each image has a resolution

3http://www.isi.uu.nl/Research/Databases/DRIVE/
4http://www.ces.clemson.edu/ahoover/stare/
5http://www.retinacheck.org/
6http://imed.nimte.ac.cn/
7http://bioimlab.dei.unipd.it/

http://www.isi.uu.nl/Research/Databases/DRIVE/
http://www.ces.clemson.edu/ ahoover/stare/
http://www.retinacheck.org/
http://imed.nimte.ac.cn/
http://bioimlab.dei.unipd.it/
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Fig. 4. Retinal vessel segmentation results of three randomly selected im-
ages from three different datasets by R2U-Net, DANet and our proposed
CS2-Net respectively.

of 384 × 384 pixels covering a field of view of 400 × 400µm2.
The manual annotations of the nerve fibres in these two datasets
were traced by an ophthalmologist using the open source soft-
ware ImageJ.

OCTA dataset is an in-house data collection with 30 retinal
OCTA scans. All these scans were acquired using a Heidel-
berg Spectralis device (Heidelberg, Germany) and all the ves-
sels within the superficial vascular plexus (SVP) were manually
traced by a clinical expert using an in-house program written in
Matlab (Mathworks R2018, Natwick) as the ground truth. In
this paper, we use a k-fold (k=5) cross-validation method to
divide the training and testing datasets.

OCT RPE is also an in-house dataset which consists of 36
images of retina vessel shadows projected on the retinal pig-
ment epithelium (RPE) layers of OCT volumes. These 3D vol-
umes were captured using a Spectralis OCT system (Heidelberg
Engineering GmbH) from 18 healthy volunteers, and have a
size of 379×496×384. The manual annotations of these vessels
were labeled by an image analysis expert using the open source
software ImageJ. This dataset was originally designed for the
task of eliminating retinal vessel shadows in en face choroidal
OCT.

4.2. Experimental Setup

The proposed CS2-Net was implemented in the PyTorch li-
brary with a dual NVIDIA GPU (GeForce GTX Titan Xp). We
use adaptive moment estimation (Adam) as the overall opti-
mizer. The initial learning rate is set to 0.0001 and we use a
weight decay of 0.0005 with a poly learning rate policy, where
the learning rate is multiplied by

(
1 − iter

max iter

)power
with a power

of 0.9 and a maximum number of epochs of 100. Due to the lim-
ited amount of data, data augmentation is used to improve the
performance, which includes random cropping (with a size of
384 × 384), contrast enhancement, random rotation ( from -45◦

to 45◦ ), random flipping, and mirror flipping about the image
centre in the training phase. Note that we do not perform any
augmentation on the test images. In this paper, we set the batch

size to 8 for all the datasets and the proposed method is trained
on each imaging modality separately.

To facilitate the observation and objective evaluation of the
proposed method, the following metrics are adopted, accuracy
(ACC), sensitivity (SE), specificity (SP), and Area under ROC
curve (AUC):

ACC =
T P + T N

T P + FP + T N + FN
, (9)

S E =
T P

T P + FN
, S P =

T N
T N + FP

, (10)

where TP, FN, TN, and FP denote true positive, false nega-
tive, true negative and false positive, respectively. Area un-
der ROC curve (AUC) reflects the trade-offs between sensitiv-
ity and specificity, and thus evaluates the quality of our vessel
segmentation results more reliably. In addition, we compute
the p-values of all the evaluation metrics between the proposed
method and the compared methods on each dataset for statisti-
cal analysis, and p < 0.05 is considered statistically significant.

4.3. Results
4.3.1. Vessel Segmentation in Color Fundus Image

To demonstrate the curvilinear structure segmentation per-
formance of the proposed method, we first evaluate it on three
public datasets (DRIVE, STARE and IOSTAR) that are com-
mon and highly recognized in medical imaging. Seven state-
of-the-art segmentation methods were selected for compari-
son, which include two conventional filtering-based vessel seg-
mentation methods (Combination of Shifted Filter Responses
(COSFIRE) (Azzopardi et al., 2015) and Weighted Symmetry
Filter (WSF) (Zhao et al., 2018b)), two specially designed deep
learning-based vessel segmentation methods (DeepVessel (Fu
et al., 2016) and Context Encoder Network (CE-Net) (Gu
et al., 2019)), and three state-of-the-art segmentation networks
(U-Net (Ronneberger et al., 2015), Recurrent Residual U-Net
(R2U-Net) (Alom et al., 2018), and Dual Attention Network
(DANet) (Fu et al., 2019)).

Table 2 shows the segmentation results of different methods
on the retinal fundus datasets, where our proposed CS2-Net out-
performs all the competing methods on ACC and AUC scores.
Thus, it can be confirmed that the spatial and channel attention
modules are beneficial for retinal vessel detection in colored
fundus images. Morevoer, Fig. 4 shows the visual compari-
son between the vessel segmentation results of R2U-Net (Alom
et al., 2018), DANet (Fu et al., 2019) and the proposed CS2-
Net. We can observe that CS2-Net achieves better performance
than R2U-Net and DANet, extracting more vessels in a repre-
sentative patch (green disc) with multiple scales of vessels in
low contrast regions. To better observe the significance of the
proposed method and comparison methods in segmenting reti-
nal vessels, we compute the p-value for statistical analysis. The
results shown that the differences between the proposed method
and competing methods are significant with all p-values <0.05.

4.3.2. Vessel Segmentation in In-house OCTA Images
In order to justify that our proposed method can also seg-

ment the curvilinear structure on other modal medical images,
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Images

OCT-A

Label U-Net Attnetion U-Net DANet

CORN-1

OCT RPE

CS2Net

Fig. 5. Results of different methods for vessel segmentation of different images in different imaging modalities. From the left to right column: the original
images, labels, and segmentation results of U-Net, Attention U-Net, DANet and the proposed CS2-Net method, respectively. From the top to bottom row:
OCTA, CORN-1 and OCT RPE Layer, respectively.

Table 2. Vessel segmentation performances in different metrics of different methods over three retinal fundus datasets.

Datasets Methods ACC AUC SE SP

DRIVE

BCOSFIRE (Azzopardi et al., 2015) 0.9442 0.9614 0.7655 0.9704
WSF (Zhao et al., 2018b) 0.9580 0.9750 0.7740 0.9790
DeepVessel (Fu et al., 2016) 0.9533 0.9789 0.7603 0.9776
U-Net (Ronneberger et al., 2015) 0.9531 0.9601 0.7537 0.9639
R2U-Net (Alom et al., 2018) 0.9556 0.9784 0.7792 0.9813
CE-Net (Gu et al., 2019) 0.9545 0.9779 0.8309 0.9747
DANet (Fu et al., 2019) 0.9615 0.9808 0.8075 0.9841
CS2Net 0.9632 0.9825 0.8218 0.9890

STARE

BCOSFIRE (Azzopardi et al., 2015) 0.9497 0.9563 0.7716 0.9701
WSF (Zhao et al., 2018b) 0.9570 0.9590 0.7880 0.9760
DeepVessel (Fu et al., 2016) 0.9609 0.9790 0.7412 0.9701
U-Net (Ronneberger et al., 2015) 0.9409 0.9705 0.7675 0.9631
R2U-Net (Alom et al., 2018) 0.9712 0.9914 0.8298 0.9862
CE-Net (Gu et al., 2019) 0.9583 0.9787 0.7841 0.9725
DANet (Fu et al., 2019) 0.9679 0.9781 0.7705 0.9873
CS2Net 0.9752 0.9932 0.8816 0.9840

IOSTAR

BCOSFIRE (Azzopardi et al., 2015) 0.9410 0.9550 0.7610 0.9670
WSF (Zhao et al., 2018b) 0.9480 0.9600 0.7720 0.9670
DeepVessel (Fu et al., 2016) - - - -
U-Net (Ronneberger et al., 2015) 0.9675 0.9464 0.8044 0.9793
R2U-Net (Alom et al., 2018) 0.9652 0.9530 0.8042 0.9779
CE-Net (Gu et al., 2019) - - - -
DANet (Fu et al., 2019) 0.9720 0.9504 0.8298 0.9832
CS2Net 0.9722 0.9758 0.8341 0.9831

we perform comparative experiments on our recently released
dataset: In-house OCTA. We compare the proposed network
with five state-of-the-art segmentation networks: U-Net (Ron-
neberger et al., 2015), Deep ResUNet (Zhang et al., 2018),
UNet++ (Zhou et al., 2018), Attention U-Net (Oktay et al.,

2018), and DANet (Fu et al., 2019). The first column of Fig. 5
shows the visual comparison of the vessel segmentation results
of different methods on a typical OCTA en face image. Over-
all, these methods perform well on segmenting major vessels.
Attention U-Net (Oktay et al., 2018) is able to detect most
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large structures, but it also falsely enhances background fea-
tures where elongated intensity inhomogeneities are present. U-
Net (Ronneberger et al., 2015) mis-detects vessels with small
diameters, which leads to a relatively lower sensitivity. In con-
trast, the proposed CS2-Net adaptively integrates local features
with global dependencies and normalization. Hence, it shows
superior performance in detecting small vessels, indicated by
the green arrow in Fig. 5, and provides higher sensitivity. These
findings are also confirmed by the evaluation measures reported
in Table 3, where CS2-Net achieves its highest segmentation
performance in terms of all the metrics, since it employs an at-
tention mechanism to build the powerful representation among
features. In particular, the p values of the proposed method
in the pairwise comparison with the the state-of-the-art meth-
ods are all less than 0.05, revealing that the proposed method
achieves a significant performance improvement over them.

4.3.3. Corneal Nerve Fiber Tracing in the CORN-1 Images
We further evaluate the performance of our CS2-Net for

corneal nerve fiber tracing on the CORN-1 dataset that we
have published. For validation, we compute the sensitivity and
false discovery rate (FDR) (Guimaraes et al., 2016) between
the predicted centerlines of the nerve fibres and groundtruth.
FDR is defined as the fraction of the total pixels incorrectly
detected as nerve segments over the total pixels of the traced
nerves in the ground truth. As is customary in the evalua-
tion process (Guimaraes et al., 2016), if any pixel on the ex-
tracted pixel-wide curves is within the three-pixel tolerance re-
gion around the manually traced nerves, it is considered as a
true positive.

Similar to the evaluation on the OCTA images, we again
employed U-Net (Ronneberger et al., 2015), Deep Re-
sUNet (Zhang et al., 2018), UNet++ (Zhou et al., 2018), At-
tention U-Net (Oktay et al., 2018), and DANet (Fu et al., 2019)
as the baselines for comparison. The second row of Fig. 5
illustrates a sample image from the CORN-1 dataset. Al-
though all methods present visually appealing results, both U-
Net, Attention U-Net and DANet falsely detect parts of the K-
structures (Yokogawa et al., 2008) (indicated by the red arrows)
as nerve fibers, due to the fact that they share similar morpho-
logical characteristics. In contrast, our CS2-Net ensures con-
tinuous fiber tracing (indicated by the yellow arrows). Table 4
shows the performances of different methods for fiber tracing
on the CORN-1 dataset. The challenge of corneal nerve fiber
tracing is to preserve the continuity of the fibers. As a ba-
sic network, U-Net (Ronneberger et al., 2015) performs worse
than the other methods. Deep ResUNet (Zhang et al., 2018) and
DANet (Fu et al., 2019) obtain similar results in SE. In contrast,
our method achieves the best tracing performance in terms of
either the SE or FDR. In addition, the p value of the proposed
method is less than 0.015, which shows that there is a signif-
icant difference in performance between the proposed method
and the state-of-the-art methods.

4.3.4. Vessel Segmentation in the OCT RPE Layers
The proposed method is also validated on another differ-

ent modal dataset for curviliear structure segmnetation: OCT

RPE Layers. The vascular projections in the RPE layers are
not true blood vessels. However, they can be considered im-
portant features to assist artifact removal on the choroid. We
use the same metrics as those for the color fundus vascular
segmentation to evaluate the performance of the RPE vascu-
lar projection segmentation methods. Similarity, we use U-
Net (Ronneberger et al., 2015), Deep ResUNet (Zhang et al.,
2018), UNet++ (Zhou et al., 2018), Attention U-Net (Oktay
et al., 2018), and DANet (Fu et al., 2019) to make compar-
isons with the proposed CS2-Net. Metric scores are shown in
Table 5, which demonstrates the superior vascular projection
performance of our model, and there are also significant dif-
ferences in performance among the comparison methods, indi-
cated by p = 0.041. The last row of Fig. 5 shows a randomly
selected RPE image, in which the proposed method clearly
demonstrates more resistance to the interference caused by the
capturing device. Moreover, the proposed method extracts tiny
blood vessels more effectively than U-Net (Ronneberger et al.,
2015), and it does not produce over-segmentation like Attention
U-Net and DANet, as indicated by the red arrows.

In Fig. 6, we show the ROC curves of our proposed CS2-
Net over different datasets for the segmentation of curvilinear
structures: DRIVE, STARE, IOSTAR, CORN-1, OCT-A, and
OCT RPE, compared with those of the state-of-the-art meth-
ods at particular TP and FP rates for the sake of readability. It
can be seen from the local enlarged view of Fig. 6 that the pro-
posed method outperforms on the whole state-of-the-art meth-
ods for curvilinear structure segmentation, despite the varia-
tion of structure, contrast and imaging noise from one imaging
modality to another.

5. Experimental Results over 3D Volumes

5.1. Materials

To further demonstrate the broad applicability of the pro-
posed method for the segmentation of 3D vasculatures in dif-
ferent modalities, we evaluate our method over 3D volumes
from three public-available datasets: one brain MRA dataset
(i.e., MIDAS) and two synthetic datasets (i.e., Synthetic, and
VascuSynth).

MIDAS8 is a publicly available MRA dataset. This dataset
contains 50 MRA volumes which were acquired from 25 male
and 25 female healthy volunteers, aged from 18 to 60+ years.
Images were captured using a 3T MRI scanner under standard-
ized protocols, with a voxel size of 0.5 × 0.5 × 0.8 mm3. These
were reconstructed as a 448×448×128 matrix. Manual annota-
tions of Circles of Willis (CoW) were provided by Prof. Alejan-
dro Frangi from the University of Leeds, where 3D vasculatures
were generated by tracing the centerlines of the vessels, and the
vessel surfaces were extracted using the geodesic active contour
method (Bogunovic et al., 2011).

Synthetic9 was originally generated using the method pro-
posed in (Schneider et al., 2012), and includes 136 volumes of

8http://hdl.handle.net/1926/594
9https://github.com/giesekow/deepvesselnet/wiki/Datasets

http://hdl.handle.net/1926/594
https://github.com/giesekow/deepvesselnet/wiki/Datasets
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Table 3. Vessel segmentation performances in different metrics of different methods over our private OCTA dataset.

Methods ACC AUC SE SP
U-Net (Ronneberger et al., 2015) 0.8422 0.9108 0.7867 0.8780
Deep ResUNet (Zhang et al., 2018) 0.8659 0.9175 0.8032 0.8863
UNet++ (Zhou et al., 2018) 0.8965 0.9203 0.8309 0.9101
Attention U-Net (Oktay et al., 2018) 0.9125 0.9290 0.8274 0.9007
DANet (Fu et al., 2019) 0.8869 0.9183 0.8427 0.8681
CS2Net 0.9183 0.9453 0.8631 0.9192

Table 4. Nerve fibre tracing performances in different metrics of different methods over the CORN-1 dataset (mean ± standard deviation).

Methods SE ↑ FDR ↓
U-Net (Ronneberger et al., 2015) 0.7757±0.0144 0.3961±0.0208
Deep ResUNet (Zhang et al., 2018) 0.8038±0.0140 0.2911±0.0214
UNet++ (Zhou et al., 2018) 0.8274±0.0127 0.2715±0.0118
Attention U-Net (Oktay et al., 2018) 0.8166±0.0131 0.2761±0.0120
DANet (Fu et al., 2019) 0.8012±0.0043 0.3850±0.0011
CS2Net 0.8398±0.0098 0.2556±0.0028

size 325 × 304 × 600 with their corresponding labels for vessel
segmentation, centerlines and bifurcation detection.

VascuSynth10 aims to provide an abundance of 3D images
for the automated analysis of tree-like structures, which in-
cludes vessel segmentation and detection of bifurcation points
using the VascuSynth Software (Jassi and Hamarneh, 2011). It
simulates volumetric images (a size of 100× 100 × 100 voxels)
of vascular trees and generates the corresponding ground truth
for segmentation, bifurcation locations, branch properties, and
tree hierarchy.

5.2. Experimental Setup
The proposed 3D CS2-Net was implemented in the PyTorch

framework with a dual NVIDIA GPU (Titan Xp). Adam serves
as the optimizer for all comparative experiments. We adopt a
poly learning strategy with an initial learning rate of 0.0001
and a weight decay of 0.0005. Due to the different sizes of 3D
volumes, we have different crop sizes for different datasets, the
experimental details can be found in the following subsections.
In addition, we normalized the volume including training and
test data and set the maximum training iteration to 200.

To better evaluate the binary segmentation performance of
the proposed 3D CS2-Net, we follow (Zhao et al., 2018a) and
adopt the following metrics: true positive rate (TPR), false neg-
ative rate (FNR), and false positive rate (FPR). In order to better
demonstrate that the proposed model can learn more vascular
features in sparsely labeled annotations and has better discrim-
ination ability for non-vascular patterns, we introduce two new
metrics, over-segmentation rate (OR) and under-segmentation
rate (UR), to evaluate the model:

OR =
Os

Rs + Os
, UR =

Us

Rs + Os
, (11)

where Rs denotes all the voxels inside the ground truth, Os de-
notes the voxels inside the predicted volume but not inside the

10http://vascusynth.cs.sfu.ca/Data.html

ground truth, and Us indicates the voxels inside the ground truth
but not in the predicted volume. According to the definition, it
can be seen that OR ∈ [0, 1] and UR ∈ [0, 1]. The lower the val-
ues of these metrics, the better the performance of the method.

5.3. Brain Vessel Segmentation in MRA Volumes

In this section, we evaluate the proposed curvilinear structure
segmentation method on the cerebral MRA images. Since the
manual annotations in the MIDAS dataset are sparse, i.e., many
vascular voxels do not have labels. In this case, the metrics
such as Dice coefficient (DC) and Intersection over Union (IoU)
are not appropriate to validate its performance, since there are
significantly more non-vascular voxels than the vascular ones.
We perform a center crop of the raw data along the axial plane
with a size of 224 × 224 × 64. While the original labels are
triangular polygon surfaces which cannot be directly used as
input for 3D convolutions, we employ the open source medi-
cal image processing toolkit The Visualization Toolkit (VTK)11

to voxelize these surfaces. These operations greatly reduce the
size of the volumes, which allows us to set a larger batch size
of 2 in this paper. To better justify the vessel shape and struc-
ture extraction performance of the proposed 3D CS2-Net in the
real-world scenarios, we finally evaluate it over the MRA im-
ages. Under this setting, we compare the proposed method with
six state-of-the-art models: 3D Multiscale Vessel Enhance-
ment Filtering (MVEF) (Frangi et al., 1998b), 3D Isotropic Un-
decimated Wavelet Filtering (IUWF) (Bankhead et al., 2012),
3D Quadrature Filters across Multiple Scales (QFMS) (Läthén
et al., 2010), 3D Weighted Symmetry Filter (WSF) (Zhao et al.,
2018a), V-Net (Milletari et al., 2016), 3D UNet (Çiçek et al.,
2016), and Uception (Sanchesa et al., 2019). To validate the
cerebrovascular segmentation performance, we compute the
TPR, FNR, FPR, OR and UR between the predicted volume
and ground truth. Note that we obtained the results of TPR,

11https://vtk.org/

http://vascusynth.cs.sfu.ca/Data.html
https://vtk.org/
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Fig. 6. ROC curves of our proposed CS2-Net for curvilinear structure segmentation over different datasets: DRIVE, STARE, IOSTAR, CORN-1, OCT-A,
OCT RPE, MIDAS and VascuSynth3 datasets, compared with those of the state-of-the-art methods at particular TP and FP rates.

Table 5. Vessel segmentation performances in different metrics of different methods over our OCT RPE Layer dataset.

Methods ACC AUC SE SP
U-Net (Ronneberger et al., 2015) 0.9550 0.9370 0.7875 0.9807
Deep ResUNet (Zhang et al., 2018) 0.9601 0.9591 0.8071 0.9838
UNet++ (Zhou et al., 2018) 0.9654 0.9578 0.8138 0.9822
Attention U-Net (Oktay et al., 2018) 0.9664 0.9584 0.8142 0.9813
DANet (Fu et al., 2019) 0.9686 0.9667 0.7849 0.9850
CS2Net 0.9693 0.9686 0.8296 0.9840

FNR and FPR from (Frangi et al., 1998b; Bankhead et al., 2012)
and (Zhao et al., 2018b) and put them into Table 6. We also use
the OpenSource code of 3D UNet to train the model and care-
fully fine-tune it to reach optimality. The evaluation metrics
are computed according to the predicted results. All the results
are shown in Table 6. We can see that the proposed method
achieves better performance in the 3D cerebrovascular segmen-
tation task, surpassing all the other methods in terms of TPR,
FNR and FPR.

In particular, the proposed method reduces the FPR of the
other six methods by 0.0644, 0.0598, 0.0587, 0.0548, 0.0049
and 0.0005, respectively. This means that the proposed 3D
CS2-Net is better at distinguishing cerebrovasculatures from the
complex background artifacts in MRA images. We can con-
clude from the UR metric in Table 6 that the predicted cere-
brovasculatures of both the 3D UNet and the proposed method
achieve the highest similarity with the ground truth, since the
under-segmentation rates are only 0.0393 and 0.0291, respec-
tively. However, the proposed 3D CS2-Net achieves a lower
under-segmentation rate by 0.0102. Based on the TPR metric,
we can see that the proposed method is able to segment the
cerebrovasculatures with the highest segmentation rate (up to
0.9706). The larger OR achieved by 3D UNet indicates that
more unlabeled cerebrovascular vessels are segmented as vas-
cular ones. Overall, the proposed method shows better reliabil-
ity for the segmentation of cerebral blood vessels in terms of

TPR, UR and OR, Moreover, compared with the selected meth-
ods, the proposed method gains a p value of less than 0.001,
which shows that the proposed method is significantly better
than other methods in segmentation performance.

Fig. 7 shows the segmentation results of 3D U-Net and the
proposed 3D CS2-Net on one of the images in the MRA dataset.
Our 3D CS2-Net presents better vascular extraction perfor-
mance than 3D UNet, especially for tiny vessels, as indicated
by the red arrows in Fig. 7. On the other hand, it can be ob-
served from Fig. 7 that the cerebral vessels segmented by 3D
UNet are thinner than the ground truth, while the cerebral ves-
sels segmented by the proposed 3D CS2-Net are more similar.
Therefore, 3D UNet tends to under-segment or miss cerebral
vessels, which can be verified from the OR and UR metrics in
Table 6 respectively.

5.4. Vessel Segmentation in Synthetic Data

In order to further demonstrate the advantage of the proposed
3D CS2-Net, we also report its segmentation performance over
two synthetic datasets: Synthetic and VascuSynth. For both
datasets, we apply k-fold (k = 4) cross validation to divide the
training and testing datasets, i.e. 5 randomly selected volumes
serve as the testing set and the remaining ones are used to train
the model. In addition, Gaussian noise with three standard vari-
ances σ2 is added to the VascuSynth dataset to mimic imaging
artifacts, so as to demonstrate the superiority of the proposed
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Table 6. Vessel segmentation performances in different metrics of different methods over the MRA dataset.
Methods TPR ↑ FNR ↓ FPR ↓ OR ↓ UR ↓
MVEF (Frangi et al., 1998b) 0.9143 ± 0.0287 0.0424 ± 0.0201 0.0648 ± 0.0188 - -
IUWF (Bankhead et al., 2012) 0.9387 ± 0.0193 0.0402 ± 0.0179 0.0602 ± 0.0178 - -
QFMS (Läthén et al., 2010) 0.9512 ± 0.0167 0.0383 ± 0.0154 0.0591 ± 0.0121 - -
WSF (Zhao et al., 2018a) 0.9678 ± 0.0113 0.0342 ± 0.0109 0.0562 ± 0.0128 - -
3D UNet (Çiçek et al., 2016) 0.9521 ± 0.0001 0.0479 ± 0.0011 0.0053 ± 0.0000 0.0833 ± 0.0042 0.0393 ± 0.0001
V-Net (Milletari et al., 2016) 0.9616 ± 0.0637 0.0483 ± 0.0014 0.0009 ± 0.0000 0.1043 ± 0.0417 0.0352 ± 0.0093
Uception (Sanchesa et al., 2019) 0.9567 ± 0.0014 0.0433 ± 0.0177 0.0006 ± 0.0000 0.2005 ± 0.0012 0.0318 ± 0.0001
CS2Net 0.9683 ± 0.0014 0.0285 ± 0.0003 0.0004 ± 0.0000 0.0801 ± 0.0034 0.0291 ± 0.0003

Table 7. Vessel segmentation results in different metrics of different methods over different 3D datasets.

Datasets Methods TPR ↑ FNR ↓ FPR ↓ DC ↑

Synthetic
3D UNet (Çiçek et al., 2016) 0.9965 0.0035 0.0001 0.9106
V-Net (Milletari et al., 2016) 0.9949 0.0051 0.0001 0.9237
Uception (Sanchesa et al., 2019) 0.9984 0.0026 0.0003 0.9785
CS2Net 0.9986 0.0014 0.0000 0.9913

VascuSynth-1

ITM (Cetin et al., 2012) 0.9423 0.0577 0.0471 0.9406
CBS (Cheng et al., 2015) 0.9529 0.0471 0.0563 0.9489
WSF (Zhao et al., 2018a) 0.9678 0.0342 0.0562 0.9601
3D UNet (Çiçek et al., 2016) 0.9704 0.0096 0.0007 0.9552
V-Net (Milletari et al., 2016) 0.9763 0.0088 0.0003 0.9594
Uception (Sanchesa et al., 2019) 0.9800 0.0071 0.0004 0.9426
CS2Net 0.9841 0.0068 0.0001 0.9637

VascuSynth-2

ITM (Cetin et al., 2012) 0.9423 0.0577 0.0471 0.9406
CBS (Cheng et al., 2015) 0.9529 0.0471 0.0563 0.9489
WSF (Zhao et al., 2018a) 0.9603 0.0451 0.0526 0.9543
3D UNet (Çiçek et al., 2016) 0.9602 0.0502 0.0013 0.9587
V-Net (Milletari et al., 2016) 0.9605 0.0503 0.0011 0.9584
Uception (Sanchesa et al., 2019) 0.9607 0.0510 0.0009 0.9468
CS2Net 0.9611 0.0494 0.0004 0.9593

VascuSynth-3
3D UNet (Çiçek et al., 2016) 0.9338 0.0661 0.0024 0.9112
V-Net (Milletari et al., 2016) 0.9365 0.0598 0.0027 0.9037
Uception (Sanchesa et al., 2019) 0.9413 0.1033 0.0066 0.9157
CS2Net 0.9484 0.0416 0.0005 0.9256

Meta volume Ground truth 3D UNet CS2Net

Fig. 7. 3D renderings of curvilinear structure segmentation results of an
image in the MRA dataset. From the left to right column: a MIP view of a
sample MRA image, the segmentation of ground truth, the 3D U-Net and
the proposed CS2-Net respectively.

method in detecting curvilinear structures in noise-corrupted
data. In the remainder of this paper, we refer to these noise-
corrupted versions as: VascuSynth-1 (σ2 = 20), VascuSynth-2
(σ2 = 60), and VascuSynth-3 (σ2 = 100). An additional ran-
dom crop operation with a size of 128×128×128 is adopted to

reduce the training cubes and we set the batch size to 6 in this
part.

We first evaluate our proposed method and compare it
with the state-of-the-art ones: Intensity-based Tensor Model
(ITM) (Cetin et al., 2012), Constrained B-Snake (CBS) (Cheng
et al., 2015), Weighted Symmetry Filtering (WSF) (Zhao et al.,
2018a), 3D UNet (Çiçek et al., 2016), V-Net (Milletari et al.,
2016) and Uception (Sanchesa et al., 2019) on the Synthetic
dataset. The results are shown in Table 7. We observe that the
proposed method successfully segments 3D curvilinear struc-
tures with competitive performance and outperforms the 3D
UNet in terms of TPR, FNR, FPR, and particularly DC (up by
0.0807). Fig. 8 further demonstrates the segmentation perfor-
mance of both methods. Compared with the 3D UNet (Çiçek
et al., 2016), the proposed method shows better discrimination
ability at boundaries, which can be verified from the enlarged
view (green box) of the first row in Fig. 8. The synthetic vessels
segmented by the 3D UNet are thicker than the results of the
proposed method. This proves that the proposed method is able
to achieve better edge discrimination ability through the pro-
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VascuSynth-2

VascuSynth-3

Meta volume Ground truth 3D UNet

Synthetic

CS2Net

Fig. 8. 3D renderings of curvilinear structure segmentation results of dif-
ferent methods over Synthetic and VascuSynth. The first column shows
volumes with the different levels of noise (σ2 = 20 for Synthetic, σ2 = 60
for VascuSynth-2 and σ2 = 100 for VascuSynth-3). Segmentation results
of different methods in the second to right column: ground truth, 3D UNet
and the proposed CS2-Net, respectively. The green box in first row shows
an enlarged view of the local segmentation results.

posed CSAM. It can also be analyzed from p = 0.027 < 0.05
that the proposed method performs significantly better than
both the 3D U-Net and the V-Net.

We further make comparisons between some of state-of-the-
art methods and the proposed method. All the performances
are evaluated based on TPR, FNR, FPR and DC. We follow
(Zhao et al., 2018a) and add Gaussian noise with a standard
variance of σ2 = 20 to generate the VascuSynth-1 dataset. To
fully verify the proposed model, we also follow (Zhao et al.,
2018a) to compare the proposed method with other state-of-
the-art models (Intensity based Tensor Model (ITM) (Cetin
et al., 2012), Constrained B-Snake (CBS) (Cheng et al., 2015),
WSF (Zhao et al., 2018a)), as well as deep learning-based
model (3D UNet (Çiçek et al., 2016), V-Net (Milletari et al.,
2016)), and Uception (Sanchesa et al., 2019) on different stan-
dard variances of σ2 = 20 and σ2 = 60 respectively. These
experimental results are shown in Table 7. As can be seen, the
proposed CS2-Net outperforms other state-of-the-art methods
in the segmentation of 3D curvilinear structures. Fig. 8 illus-
trates the 3D segmentation results of two sample 3D images by
the proposed method and 3D UNet. As indicated by the green
arrow and representative patches, we can observe that the 3D
UNet detects discontinuous vessels and misses the small ones
in the middle left of the figure. In sharp contrast, the proposed
CS2-Net detects all the vessels more completely, even though
they vary in thickness, length, and local contrast with the back-
ground. For VascuSynth-1 and VascuSynth-2, the proposed
method has better performance in segmenting the 3D curvilin-
ear structure than other methods, confirmed by p = 0.011 and
p = 0.015 respectively.

Since 3D UNet, V-Net, Uception and the proposed network
are deep learning based methods, we apply a higher-level noise

of σ2 = 100 on the volume data to further confirm their per-
formance for 3D curvilinear structure segmentation. Quantita-
tive results are shown in Table 7. The results of different meth-
ods for the curvilinear structure segmentation of a randomly se-
lected image in the VascuSynth-3 dataset are presented in the
last row of Fig. 8. From the table and the detailed view in
the green box of the figure, we can conclude that the proposed
method has still detected more complete vessels compared with
the other methods. This is because the attention model in the
proposed method evaluates the expression capability of the fea-
tures globally over the whole images and normalises them in
the feature space and are thus more robust to the local noise and
variation in size of the vessels. Compared with 3D UNet, V-
Net, and Uception as the noise level increases, the performance
of the proposed method increases significantly, which can be
concluded from the change of p-value from 0.01 < p < 0.05
(σ2 = 20 and σ2 = 60) to p < 0.001 (σ2 = 100).

6. Discussions

The proposed CS2-Net utilizes a spatial and channel atten-
tion modules to capture the structure information of the tree-
like structures in horizontal and vertical directions, respectively.
In this work, we carefully designed a network focusing on
the extraction of the curvilinear structure in medical images.
Compared with natural images, medical images contain more
unique features, such as simpler semantics and unitary pat-
terns. Therefore, we first construct a network backbone based
on the encoder-decoder framework. More specifically, we in-
troduce a 1 × 3 and a 3 × 1 convolutional kernel to capture
more boundary feature to assist the segmentation of curvilin-
ear structures. DANet (Fu et al., 2019) uses a pre-trained model
to extract features, and up-samples the attention features in the
last layer of the model, and this is the architectural difference
between the proposed method and DANet. Secondly, we intro-
duce batch normalization and ReLU activations after the con-
volutional layers in the spatial attention module to ensure that
the mean and variance of the input distribution are fixed within
a certain range, reducing the internal covariate shift in the net-
work, and mitigating the gradient disappearance to a certain ex-
tent. Thirdly, since 3D volume contains rich depth information
that is not included in 2D medical images, and many impor-
tant lesions can be better observed through different layers of
the 3D volume. In this case, we extend the 2D attention to
the 3D field to enhance the network’s ability to aggregate depth
information of different layers. Therefore, we design a 3D vol-
ume segmentation network, and introduce 1 × 1 × 3, 1 × 3 × 1
and 3 × 1 × 1 convolution kernels in the 3D attention module
with batch normalization and ReLU activations, which makes
the network more suitable for 3D medical data analysis. In ad-
dition, we evaluate the proposed method on a variety of medical
datasets in different modalities, and the evaluation results also
confirmed that our proposed method are effective for segment-
ing curvilinear structures.

To better support improved segmentation results, we further
visualize some intermediate attention maps of our proposed
CS2-Net over different datasets, as shown in Fig. 9(a). By ana-
lyzing and comparing the blood vessels and nerve fibers in the
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Fig. 9. Attention maps of different methods in the intermediate layers of
decoding parts. (a) the attention maps of the proposed CS2-Net in dif-
ferent decoding layers on different datasdets: DRIVE, STARE, IOSTAR,
CORN-1, OCT-A, and OCT RPE datasets, respectively. D1 ∼ D4 display
the attention maps representing the incremental refinement in curvilinear
structure segmentation; (b) the enlarged local intermediate attention maps
of different methods: UNet, DANet, and CS2-Net.

attention maps from D1 to D4, it can be found that the pro-
posed model can pay more attention on the curvilinear struc-
ture during training, that is, the curvilinear structures gradually
become clearer and smoother. In the low level attention maps,
the highlighted areas basically are distributed at the curvilinear
structure region, which reflects that the CAB module focuses
more classified information on the curvilinear structure. On the
other hand, the highlighted areas at different spatial locations
also confirm that the SAB module can enhance the ability of the
proposed network to capture long-range dependencies of curvi-
linear structure. In addition, we present several sets of attention
maps of the proposed method and its two backbone methods
(DANet and U-Net) in the same intermediate layer in Fig. 9(b)
to more intuitively verify the performance of the proposed at-
tention modules. Overall, it can be observed from the com-
parison of each column that the proposed CS2-Net has stronger
response than both DANet and U-Net in terms of curvilinear
structure information aggregation. In this case, the proposed
CS2-Net is more responsive to vessels and nerve fibers than

Table 8. TPR, FNR, FPR, Over-segmentation Rate (OR) and Under-
segmentation Rate (UR) of the proposed method with a combination of
different components for the curvilinear structure segmentation of the 3D
images in the MIDAS ToF MRA dataset.

Methods TPR ↑ FNR ↓ FPR ↓ OR ↓ UR ↓
Backbone 0.9517 0.0493 0.0103 0.0877 0.0808
Backbone+CAB 0.9663 0.0310 0.0024 0.1082 0.0341
Backbone+SAB 0.9565 0.0413 0.0018 0.1147 0.0532
CS2Net 0.9706 0.0285 0.0004 0.1027 0.0296

DANet, which can be clearly seen from the brighter highlights
of curvilinear structures in Fig. 9(b). Moreover, by comparing
the attention maps of CS2-Net and U-Net, it may be seen clearly
that the proposed CS2-Net is more powerful in suppressing the
background interference than U-Net.

Moreover, in order to demonstrate the effectiveness of the
3D CSAM in CS2-Net, we carry out an ablation study over the
MIDAS dataset. Firstly, we test the backbone of our network,
e.g., Deep ResUNet (Zhang et al., 2018), without the CSAM.
For fair comparison, we retrain the backbone network under
the same hyperparameter settings as the proposed method and
use the same metrics to perform its evaluation. Secondly, we
perform a further ablation study by removing the CAB but re-
taining the SAB inside the original CS2-Net. For the final ab-
lation study, we remove the SAB in the CS2-Net but retain the
CAB to form the final set of the ablation study. All computed
metrics are shown in Table 8. The results reveal that the pro-
posed CSAM can effectively extract the features of curvilin-
ear structures. For the performance of the backbone (Back-
bone) is slightly improved by that with the CAB only (Back-
bone+CAB) from 0.9517 to 0.9663 in TPR and from 0.0493 to
0.0310 in FNR. However, much better performance is achieved
with the SAB only (Backbone+SAB). This is because the CAB
normalises the features in the feature space for simple binary
classification (vascular and non-vascular) tasks, while the SAB
enhances the features over the whole image and thus increases
the contrasts of different objects at different locations. Thus,
the CSAM integrates the advantages of both the CAB and SAB
to make the model better at producing inter-class discrimination
and intra-class responses, and thus obtains the best performance
with a TPR of 0.9706 and an FNR of 0.0285.

In addition to numerical verification, we also obtain and vi-
sualize the outputs before and after CSAM for different im-
age modalities through a heat map. Note that we applied up-
sampling and sigmoid operations on the outputs to resize the
feature maps to the corresponding image size and normalize
the outputs to [0, 1], respectively. The visualization results are
shown in Fig. 10. As indicated by the green arrow, the vox-
els with the probabilities as being curvilinear structure by our
proposed CSAM are better clustered and indicative than those
without it. These results clearly show that the CSAM is effec-
tive in extracting and aggregating the edge features of the curvi-
linear structures and enhancing the network’s ability to distin-
guish between vascular and non-vascular patterns.
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MRA Image

Input before CSAM after CSAM

Fig. 10. The output of the proposed CSAM on a randomly selected image
from the MIDAS dataset. From the left to right: the original volume, the
predicted probabilities of voxles as curvilinear structure before and after
the application of the proposed CSAM, respectively.

7. Conclusion and Future Works

Curvilinear structure segmentation is a fundamental step in
automated diagnosis of many diseases, and it remains as a chal-
lenging medical image analysis problem despite considerable
research efforts. In this paper, we have developed a new curvi-
linear structure segmentation network, named CS2-Net, which
is applicable to both 2D images and 3D volumes. Our CS2-
Net improves the inter-class discrimination and intra-class ag-
gregation abilities, by applying a self-attention mechanism to
high-level features in the channel and spatial dimensions (Fu
et al., 2019). The experimental results over 9 datasets in 6 imag-
ing modalities have demonstrated that the proposed method can
improve the segmentation of curvilinear structures. Its superior
performance confirms its great potential as a powerful tool for
a wide range of healthcare applications and beyond.

Over the past few years there has been an increasing num-
ber of AI models that have been proposed and published. The
lack of evaluation of their usefulness across different images in
different imaging modalities appears to make them slow to be
adopted in real applications. It is our intention to provide ex-
tensive evaluation not only to demonstrate the effectiveness of
our model in the segmentation but also their applicability over
many different images. We are expecting that this strategy will
lead to fast impact on real applications.

Although these studies have revealed important findings
about the potential and applicability of our proposed CS2-Net
method for curvilinear structure segmentation, the following
limitations of our method will be addressed in the future. Due
to the presence of pathological cells similar to the curvilinear
structure in some regions of the image, the model will thus
oversegment the curvilinear structure. It may be possible to
improve this segmentation by applying additional information
to the model such as local neighbourhood and continuity. An-
other limitation is that 3D volume segmentation consumes a lot
of GPU resources, which makes it difficult to train the network.
It is possible to simplify the architecture and thus reduce the
complexity of the proposed method.
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Läthén, G., Jonasson, J., Borga, M., 2010. Blood vessel segmentation using
multi-scale quadrature filtering. Pattern Recognition Letters 31, 762–767.

Lesage, D., Angelini, E., Bloch, I., Funka-Lea, G., 2009. Bayesian maximal
paths for coronary artery segmentation from 3D CT angiograms, in: Inter-
national Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 222–229.

Li, Y., Gong, H., Wu, W., Liu, G., Chen, G., 2015. An automated method using
hessian matrix and random walks for retinal blood vessel segmentation, in:
International Congress on Image and Signal Processing (CISP), IEEE. pp.
423–427.

Liao, W., Rohr, K., Kang, C., Cho, Z., Wörz, S., 2012. Automatic human brain
vessel segmentation from 3d 7 tesla mra images using fast marching with
anisotropic directional prior, in: 2012 9th IEEE International Symposium
on Biomedical Imaging (ISBI), pp. 1140–1143.

Liskowski, P., Krawiec, K., 2016. Segmenting retinal blood vessels with deep
neural networks. IEEE Transactions on Medical Imaging 35, 2369–2380.
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