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Abstract—Picking up the clustered objects is always a chal-
lenging task in robot research field. And reinforcement learning
enables robot to adapt to different tasks through plenty of
attempts. To reduce the complexity of strategy learning, we
propose a framework for robots to pick up the objects in
clutter on table based on deep reinforcement learning and rule-
based method. To manipulate the objects on table, we mainly
divide the robot actions into two categories: one is pushing that
uses the reinforcement learning method, while the other one
is grasping that is inferred by image morphological processing.
The pushing action can separate the stacking objects, create
a robust grasp point for the following grasp. The grasp detect
algorithm determines if there is a suitable grasp point. Judging
on the result of pushing, the grasp detect algorithm will return
a reward for pushing learning. Taking images as input, our
framework can keep a high grasp rate with low computational
complexity, which makes it achieve clutter clearing quickly.

Index Terms—reinforcement learning, grasp detection,
robot, clutter clearing

I. Introduction
Deep reinforcement learning plays an important role in

the strategic planning of sequential actions, and has been
widely used in the robotics, enabling robot to learn various
skills, such as pushing [1], grasping [2] [3], inserting [4],
and manipulating deformable object [5]. However, more
complex the task is, more time that needs for real robot
to collect data of interacting with the environment and for
neural network fitting. Especially for grasping, few positive
samples and diverse objects lead to the fact that hundreds
of hour for collecting data is inescapable. Although sim-
to-real technique can ease this problem to some extent,
learning to grasp with reinforcement learning is still time-
consuming and costly. Therefore, we prefer to employ
other practical algorithms to control grasp. As for pushing,
there are multiple solutions to separate objects in one
case in general. This kind of problem is hard to define
manually and doesn’t require a very precise solution, hence
it is suitable for reinforcement learning to deal with this
problem.

Similar to our work, in [8] pushing and grasping are
both learned based on reinforcement learning. They use Q-
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learning to choose discrete actions on pixel wise and map
the pixel coordinates to the real-world location. Compared
with their work, we try to employ the reinforcement
learning network with continuous output to remedy this
issue. Since the grasp can be performed better with
other algorithms, such as supervised learning [9] or image
processing method [10], we decide to use another method
instead of reinforcement learning to deal with grasp, only
remaining reinforcement learning for the push action.

We find that the grasp algorithm based on supervised
learning is mostly trained on Cornell Grasping Dataset or
Jacquard Dataset, whose depth image is strikingly differ-
ent from the depth image in simulation because of different
shooting angles. Therefore, we utilize a traditional mor-
phological method in [7], which can be easily transferred
to virtual image with a little change. Compared with
their work, our framework applies a policy that output
continuous action to avoid large action dimensions, and
the accurate grasp point detection ensures high grasp rate
of graspable objects. Therefore, our framework is simple
in structure but competent for the clutter clearing task.

In this work, we propose to combine pushing based on
reinforcement learning and grasping based on traditional
rule-based grasp detect algorithm [7]. We make use of the
twin delayed deep deterministic policy gradient [6] to train
our policy that determines where to start pushing and
pushing direction according to current image. The pushing
direction within 360 degrees is divided into two sides, and
we introduce a variable to decide which side pushing to.
The grasp detecting is processed with rule-based method
mainly based on the recognition of minimum bounding
convex hull and minimum bounding rectangle of connected
regions. The grasp detecting algorithm will calculate out
whether it is graspable, the grasp center and the grasp
orientation. When performing the task, the pushing action
is executed only when no object is graspable judging by
grasp detect algorithm.

The rest of this paper is organized as follows. The
related work will be introduced in Section II. And Section
III describes each part of our architecture in detail. We
show our experiment setting and results in Section IV.
Finally, we draw the conclusion in Section V.
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II. Related Work

Deep reinforcement learning has become popular ever
since the study in the game of Go [11] and the video game
[12]. The reinforcement learning algorithm can be mainly
grouped into two categories depending on whether the
action is continuous [13] or discrete [12]. As the algorithm
continues to improve, there are more and more researches
on the application of algorithms in the field of robotics.
Specially the learning of push or grasp makes robot to
be more intelligent and skillful. Yuan et al. learn the
nonprehensile rearrangement based on deep Q-learning
[1], pushing an object to the predefined goal pose in an
environment with obstacles. Nair et al. utilize variational
auto-encoder to encode the input image [14], calculate the
reward based on the Euclidean distance of encoded vector,
and verify this algorithm in the experiment of reaching and
pushing. Liang et al. learn to slice the flat object to the
wall to enable a grasp from the side [15].

Most application of reinforcement learning in robot is a
low level control that needs long sequence to achieve the
goal. The large-scale exploration space and delayed reward
makes it hard to get training data of high quality, and thus
lots of time is needed to collect data. As presented in [2]
[3] [16] [17] , it needs more than 100k grasps to learn
the grasp skill without camera calibration. This amount
of data requires multiple robots to execute over a long
period of time, which is costly for most of us and hard to
transfer the skill to different robots.

As for deep supervised learning to grasp, Chu et al.
[18] come up with a grasp proposal based on the faster r-
cnn network by transferring the grasp rectangle detection
to object detection, and result in high classification per-
formance. In [19] they achieve pixel-wise grasp rectangle
detection by using the fully convolutional network like U-
net to predict rectangle for every pixel. Without fully
connected layers, their network is significantly smaller
than other networks.

In the face of cleaning clustered objects that needs to
combine pushing and grasping, we are inspired by the
algorithm that maps the image to the high-level actions
instead of continuous actions of low level based on the
mapping relation between image and workspace [8] [20].
One-to-one correspondence between discrete actions and
pixels has the ability to make precise decision, but leads
to large network and long infer time.

III. Pushing and Grasping

A. Pushing

We consider the task of pushing as a Markov decision:
given a state st, the agent decides an action at to
perform, and reach a new state st+1 while getting a reward
R (st, st+1). We employ the Twined Delayed DDPG to
learn the policy, which consists of one policy network,

double critic networks and their own target networks. We
can map the state to action with policy network πϕ:

at = πϕ(st)

The Q value is calculated by critic network Qθi , whose
loss function is as follows:

loss =
(
R (st, st+1) + γ min

i=1,2
Qθ′

i
(st+1, ã)−Qθi(st, at)

)2

where ã is the action decided by target network at state
st+1, Qθ′

i
is target critic network, and γ is a discount

factor. The policy network is updated with following
gradient:

∇ϕJ(ϕ) = ∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s)

In this work, only depth image is used as the state
that is captured by the camera over the table. The pixel
plane is parallel to table surface so that pixel coordinate
and table planimetric position are linearly proportional.
The policy network outputs action with four dimensions
(a1, a2, a3, a4) and each dimension is limited to (−1, 1).
They present x and y coordinate of the table surface,
which side pushing to and the pushing angle, respectively.
Specifically, (a1, a2) decides the position where to start
pushing, and (a3, a4) decides the pushing orientation.

To avoid pushing objects out of table, we limit the length
of area that can start push to 0.6 times the length of
table surface. The x and y coordinate is linear to this
push working range. For example, (1, 1) means the top
left of this area, and (0, 0) means the center of the table.
Although cosine-sine encoder is widely used in supervised
learning [19] to represent the angle at the circumference,
we found it hard to master the many-to-one mapping for
reinforcement learning in the absence of direct oversight
of the target. Therefore, we divide the angle into left side
and right side, each with 180 degrees. If a3 < 0, the robot
will push its end-effector to the left side. Otherwise, it
would move to the right side. The a4 from -1 to 1 is linear
mapping of 180 degrees. Given the (a1, a2, a3, a4), the
robot executes the pushing action following three steps:

• The robot end-effector reaches the position that is
30cm over the pushing start point decided by (a1, a2).

• The robot end-effector moves straight down until it
contacts with objects or it is 1.5cm above the table
surface.

• The robot end-effector pushes a constant distance in
a given orientation decided by (a3, a4).

Our reward function is simple for reinforcement learn-
ing. If a grasp can be performed after the push action,
the reward R (st, st+1) = 1. If the push action results
in enough change of the clustered object positions which
can be judged by calculating the difference between depth
images before and after pushing, the reward R (st, st+1) =
0.5. In other case the reward is zero.

The network structure is shown in Fig.3. Both the policy
network and critic network have the same convolutional



Fig. 1. The overview of our proposed system. A Baxter robot with parallel grippers is used for experiment. In the last two picture, a blue
line means a grasp that will be executed with the same angle and the same center. An arrows means a push that will be executed with the
same start point and the same direction. We also use this kind of method to present push and grasp in the rest of the paper.

layers to extract image feature. We prefer to add SeLU
activation after the fully-connected layer. Before concate-
nating state and action feature in critic network, they
are processed with batch normalization to guarantee the
balance of gradient back propagation.
B. Grasping

The grasp detection can be defined as a problem to find
the best grasp rectangle based on image [21], and convert
it into the real robot grasp pose by eye to hand calibration.
The grasp rectangle g is formulated as follows:

g = {x, y,θ, h,w}

where (x, y) is the grasp center location, θ is grasp angle,
w is open width of the gripper and h is the grasp thickness.
Since our robot is equipped with stick-shaped parallel
gripper, the h is ignored in this work. Therefore, we
recognize the grasp line instead of grasp rectangle.

(a) (b)

Fig. 2. Unsuccessful grasp detection that may be caused by original
grasp algorithm:(a) a grasp hindered by nearby objects; (b) a grasp
with overlong grasp width

Our grasping algorithm is based on the method in
[7], which utilizes minimum bounding convex hull and
minimum bounding rectangle of connected regions. The
original algorithm is mainly applied to grasping single
object with blank desktop background, and we optimized
it for multiple objects grasping.

We start by making a binary image to separate the
objects in the picture from the background based on depth

image. Due to the ideal simulation environment, the pixel
intensity of objects in an image is always greater than
that of desktop background. It is simple to make binary
processing with a fixed threshold. Then, we detect a grasp
configuration for every connected region in binary image
and make up a grasp list. Every element in this grasp list
is a grasp configuration (x, y, θ, w).

This original method deals with each region separately
with no consideration of nearby objects, which may result
in a grasp failure because the gripper can’t move to a posi-
tion low enough to clamp the object(see Fig.2). Therefore,
we estimate whether a grasp is valid by comparing the
pixel intensity of grasp line endpoints and that of grasp
center point, which is illustrated as follows:

is−valid =

{
True, I(center point) < I(endpoint)− τ

False, otherwise

where τ is the threshold that ensures a stable grasp.
On the other hand, this algorithm may treat multiple

connected objects as one object, and detect a grasp with
overlong grasp width. To deal with this problem, we find
out a grasp with the shortest grasp width in the grasp
list, meanwhile it needs to be smaller than a threshold
δ decided by the constant width that robot gripper can
open. The grasp detection process is shown in Algorithm.1.
Therefore, this grasp algorithm can figure out whether it
is graspable and return the best grasp configuration if
graspable.

IV. Experiment
As shown in Fig.1, the pushing action is performed

only when no object is graspable, which means there may
be multiple grasps between two pushes. To improve the
action efficiency, the grasp is stopped after two continuous
grasp failures. We perform the experiment in a simulation
environment called MuJoCo. The module is built with a
toolkit called robosuite [22], which contains a modularized
design of APIs for building new environments. We set the



Fig. 3. The network architecture

Algorithm 1 Grasp Detection Process
Input:

a depth image
Output:

cangrasp, xgrasp, ygrasp, θgrasp, wgrasp

1: Set cangrasp = False, xgrasp = 0, ygrasp =
0, θgrasp = 0, wgrasp = δ

2: Make a binary image with the depth image using fixed
threshold

3: Get a grasp list based on the method in [7]
4: for (x, y, θ, w) in grasp list do
5: if w < wgrasp and is−valid = True then
6: cangrasp = True, xgrasp = x, ygrasp =

y, θgrasp = θ, wgrasp = w
7: end if
8: end for

size of table surface to 0.4m×0.4m due to the robot’s
limited workspace range. After a grasp or a push, the
robot arm is reset to a position out of camera field. Then,
the camera capture an image for the next detection.

In the training phase, the objects to be manipulated
are blocks with two kinds of size: 4cm×4cm×4cm and
4cm×8cm×4cm. At the beginning of training episode, up
to 8 objects are randomly dropped to table. An episode
is terminated if all the objects on table are taken away or
push action has been performed 15 times. Depth image of
288×288 is collected for grasp detection, and the image
is resized to 84×84 as input to the reinforcement learning
network while pushing. All experiment is operated on the
computer with NVIDIA 2080Ti and Intel Core i7-8700.

We train our network by Adam optimizer using the
learning rate of 3e-4, batch size of 128, 0.01 target network
update delay. Gaussian noise is added for the purpose
of exploration and target value counting. The variance

TABLE I
Grasp Rate(%) of Different Algorithms

Method original optimized

single object 96 −

clutter 54 84

Gaussian noise is 0.2 for exploration while training, 0.1 for
target value counting. We remain the Gaussian noise with
0.1 variance in the evaluation to prevent repetitive pushing
that makes no change to the environment. Specially, we
don’t add Gaussian noise on a3 while counting target value
and evaluating. We have denoted that a3 decides which
side push to by determining if it’s greater than 0, and thus
it isn’t sensitive to specific values.

A. Grasp algorithm verification
We test our grasp algorithm under two conditions:

multiple objects on table and only one object on table.
Since no push is performed, it is possible that only grasp
action can’t clear the multiple objects. Therefore, we reset
the environment if no grasp is detected in the condition
of multiple objects. We make 50 trials every time, and
the grasp rate is shown in Table I. We see that the grasp
rate of original algorithm is very high in face of single
object but hard to deal with complex situation about
multiple objects. The optimized version of this algorithm
is much better in the face of clutter, which is qualified
for the clutter clearing task. The main reason for grasp
failure presently is that two objects next to each other
are recognized as one object, and the grasp center is on
where they connect. But this kind of grasp failure usually
separates the connected objects, and the next grasp will
be successful.



TABLE II
Comparison on Results of Different Parameters

γ 0.3 0.5 0.7 0.9

reward per step 0.54 0.57 0.53 0.37

completion 0.92 0.94 0.86 0.74

Fig. 4. The visualization of push decision and result

B. Reinforcement Learning Training
In this section, we study effects of different setting on

performance. It is hard to evaluate the performance during
training because the placement of objects is varied a lot in
each episode. Therefore, we evaluate pushing performance
for 50 episodes after 300 episodes of training. As shown
in the Table II, this method can achieve a completion
rate of 94% with high action efficiency. And we can see
that the discount factor γ has a great impact on pushing
performance. Unlike the reinforcement learning in other
tasks whose γ is usually more than 0.9, the pushing task
prefers to have smaller γ around 0.5. In this kind of task,
the pushing action should have a positive immediate effect
to help grasp, and the relationship between two pushes
is little. Therefore, small γ reduces the consideration of
future state and have greater performance.

We also compare the algorithm based on different inputs
and the result is shown in Table III. We found that
the pushing performance is poor if just RGB image is
used as input. The concat of depth image and RGB
image has similar performance as depth image. From
the perspective of input type, depth image is the main
factor affecting performance. Maybe depth image involves
enough information for detecting pushing. Therefore, only
depth image is used as input for reinforcement learning in
this framework to accelerate speed.

We show some examples of pushing in Fig.4. We see
that the pushing action can effectively separate adjacent
objects, create a good grasp point and enough space for
next grasp.

C. Clutter clearing
Besides evaluating in the case of random objects, we set

two more testing situation by manual placement of objects.
As shown in Fig.5, these objects are closely connected

TABLE III
Comparison on Results of Different Input Types

input image RGB depth RGB+depth

reward per step 0.32 0.57 0.58

completion 0.76 0.94 0.92

(a) (b)

Fig. 5. The environment for testing

without any space to give a grasp. It is impossible to
clear these objects without the combination of grasp and
push. We ran 20 episodes in each situation, and the data
is shown in Table IV. We see that the grasp rate is lower
than that in the random situation. The objects are more
crowded and it is more possible to treat multiple objects
as single object. But this algorithm made a completion for
17 times and 18 times respectively in the evaluation of 20
times. The main reason for unsuccessful clearing is that
double objects stay in a corner, and the robot can’t divide
them by pushing because of the limitation of push working
range. Several full episodes are shown in Fig.6. We see
that our algorithm has the ability to manipulate objects
in clutter quickly. In our framework, it only takes 1ms to
calculate from image to push action, and 5ms to detect
the best grasp. Therefore, our framework is hopefully used
in real world to perform the task in real time.

V. Conclusion
In this paper, we present a framework that combines

pushing and grasping to manipulate objects in clutter.
The pushing decision is based on reinforcement learning
method that has continuous output, and the traditional
rule-based method is used to make grasp detection.
Thanks to the simple network architecture and practical

TABLE IV
Results of Test Environment

test 1 test 2

Grasp Rate(%) 74.2 72.8

reward per step 0.58 0.62

completion 0.85 0.90



Fig. 6. Four full episodes including two tests and two random situations. Each row shows an episode.

grasp detecting algorithm, the action can be decided based
on depth image within 5ms. The experiment results show
that our algorithm is qualified to clear multiple objects
with high efficiency and success rate. In the future, we
will try to further improve the grasp rate, transfer this
framework to real Baxter robot, and test it with more
objects of different shapes.
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