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Abstract  

Diatomite, a porous non-metal mineral, was used as support to prepare 

TiO2/diatomite composites by a modified sol-gel method. The as-prepared composites 

were calcined at temperatures ranging from 450 to 950oC. The characterization tests 

included X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with 

an energy-dispersive X-ray spectrometer (EDS), High-resolution transmission 

electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and 

nitrogen adsorption/desorption measurements. The XRD analysis indicated that the 

binary mixtures of anatase and rutile exist in the composites. The morphology 

analysis confirmed the TiO2 particles were uniformly immobilized on the surface of 

diatom with a strong interfacial anchoring strength, which leads to few drain of 

photocatalytic components during practical applications. In further XPS studies of 

hybrid catalyst, we found the evidence of the presence of Ti—O—Si bond and 

increased percentage of surface hydroxyl. In addition, the adsorption capacity and 

photocatalytic activity of synthesized TiO2/diatomite composites were evaluated by 

studying the degradation kinetics of aqueous Rhodamine B under UV-light irradiation. 

The photocatalytic degradation was found to follow pseudo-first order kinetics 

according to the Langmuir-Hinshelwood model. The preferable removal efficiency 

was observed in composites by 750oC calcination, which is attributed to a relatively 
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appropriate anatase/rutile mixing ratio of 90/10.  

 

Keywords: Diatomite; TiO2; Adsorption; Photocatalysis 

 
 
1. Introduction 

 
 Over the past decades, semiconductor photocatalysis attracted public interest as a 

promising technology for the removal of dye pollutants from textile and paper 

wastewater and of volatile organic compounds (VOCs) from indoor air [1, 2]. 

Semiconductor metal oxides, typically such as titanium dioxide (TiO2), zinc oxide 

(ZnO), tin oxide (SnO2), nickel oxide (NiO) and cuprous oxide (Cu2O), have been 

used as photocatalysts [3-7]. Among them, TiO2 is widely investigated because of its 

high photocatalytic activity, biological and chemical inertness, and non-toxic nature. 

However, from the standpoint of large-scale practical application and commercial 

benefits, TiO2 nanoparticles (NPs) show disadvantages, which may result in a low 

photocatalytic efficiency and high cost. For example: strong tendency to aggregate, 

difficult to be recovered from the solution after treatment and low adsorption capacity. 

To overcome these drawbacks, recently many researchers are focused on 

immobilizing TiO2 NPs on supports having large surface area and excellent 

adsorption capacity. This approach may enhance the TiO2 NPs distribution in 

suspension which enables to adsorb and concentrate the target substances. 

Furthermore, the substances can easily diffuse from the adsorption site to the 

photocatalytic surface. 

 It has been demonstrated that heterogeneous photocatalytic reactions occurred on 

the surface of the catalyst and pre-adsorption of the target substrates around TiO2 

particles is critical for the degradation [1, 8]. Ao and Lu et al. [9, 10], for example, 

reported that TiO2 immobilized onto the activated carbon shown a more effective 

photocatalytic activity for nitrogen oxide, BTEX (benzene, toluene, ethylbenzene and 

xylene) and formaldehyde. The strong adsorption of the pollutants over the activated 
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carbon was the main reason pointed by the authors to explain the occurred 

phenomenon. Recently, porous non-metal minerals have been taken into account as 

supports of TiO2-based photocatalysts, such as perlite, zeolite and diatomite due to 

their low costs [11-14]. The use of porous minerals as support induces a synergistic 

effect by improving the photo-efficiency of the immobilized TiO2 NPs. This effect 

can be associated to their high surface areas which avoid the formation of 

macroscopic aggregations of the photoactive particles. 

  Diatomite is a light fine-porous mineral consisting of extremely small diatom 

shells and its main chemical component is amorphous SiO2. Diatomite has ordered 

pore-size distribution with specific properties such as high amorphous silica content, 

high porosity, and low density, which has been widely used in sound and heat 

insulation, as filters. Moreover, diatomite has outstanding merits as catalyst support 

for the removal of pollutants [15-18], from point of views of inert characteristics, 

substantial resources, practical use and environmental requirements [19]. The huge 

amount of silicon hydroxyl groups, acid sites and hydrogen bonds on the surface of 

amorphous SiO2 can be considered as adsorption sites for pollutants [20-22]. 

Kou-Jong Hsien et al. [13] used three kinds of commercial anatase TiO2 as 

photoactive particles supported in diatomite to study the photocatalytic efficiency of 

the bisphenol-A remediation. In our group, Sun et al. [14] evaluated the influence of 

the different support on the photocatalytic ability of TiO2/amorphous silica minerals 

photocatalysts by using TiCl4 as precursor through low-temperature 

hydrolysis-deposition method. . However, [14] only a few investigations have been 

reported about the effect of calcination temperature on the crystalline structure and 

photocatalytic performance of the TiO2/diatomite photocatalysts prepared by sol-gel 

method. The synthetic method and calcination temperature may strongly affect the 

TiO2 crystallinity, phase fraction and porous structure of the matrix, resulting a direct 

impact on the photocatalytic performance of catalysts [23].  

 Thus, in this study, a mixed phase TiO2 immobilized on diatomite (TiO2/diatomite) 

was successfully synthesized by a modified sol-gel method using tetrabutyl titanate 

(TBOT) as precursor. TiO2 with different phase fraction and crystalline size was 
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found to exist in composites under different calcination temperatures. The 

photocatalytic performance of TiO2/diatomite composites were evaluated by the 

degradation of dye Rhodamine B (RhB) in aqueous solution under UV light. The 

crystalline properties of TiO2, porous structure of diatomite and the interface 

interaction were systematically characterized and studied. 

 

2. Experimental  

 

2.1. Materials 

Raw diatomite (Linjiang, Jilin province, China) was used as catalyst support after 

purification. The process of purification was described in detail elsewhere [24]. The 

main chemical compositions of the purified diatomite (DE) are listed in Table 1. As 

summarized in Table 1, it is clear that the main chemical composition of porous 

diatomite mineral is amorphous SiO2. Tetrabutyl titanate (C16H36O4Ti, TBOT), 

ethanol (C2H5OH), hydrochloric acid (HCl), acetic acid (CH3COOH), and 

Rhodamine B (RhB) were purchased from Beijing Reagent Co. (Beijing, China), 

which were all analytical reagent grade without any further purification before used. 

Pure commercial TiO2 (Degussa P25) particles consists of 75% anatase and 25% 

rutile purchased from Degussa (Dusseldorf, Germany) was used for comparison 

purpose. Deionized water was used throughout all experimental procedures. 
 

Table 1 
Chemical constituent of purified diatomite (DE) 

Constituent SiO2 Al2O3 Fe2O3 CaO 

0.34 

MgO 

0.21 

Na2O 

0.12 

L.O.I.a 

(%) 91.74 2.76 1.14 3.52 
a Loss on ignition 

 

2.2. Preparation of TiO2/diatomite composites 

The preparation of TiO2/diatomite composites was undertaken by a modified 

sol-gel method as follows. Firstly, 1 g of DE dispersed in 14 mL of ethanol and 1 mL 

of acetic acid under stirring for 30min to form diatomite suspension. Secondly, 1.5 

mL of TBOT were added dropwise into the diatomite suspension, under continuous 
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stirring, followed by the addition of 12 mL of ethanol: water solution (v:v=1:1; pH=2) 

which led the hydrolysis of the TBOT at moderate rate. After that, this solution was 

added dropwise into the suspension to arouse hydrolysis of TBOT at a moderate rate. 

The resulting mixture was stirred for 12 h to become aged and to immobilize 

as-synthesized TiO2 colloids on the surface of DE. Finally, the product was dried in 

an oven at 105 oC for 4 h with subsequent calcination at 450~950 oC for 2 h in air at a 

heating rate of 2.5°/min. Fig. 1 shows a schematic diagram of the possible pathways 

of Ti species [such as Ti(OH)3+] deposited onto diatom in the synthesis process. In 

this study, the TiO2/diatomite composites calcined at X oC were denoted as TD-X 

series listed in Table 2, respectively. 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 A schematic diagram of the possible pathways of Ti species [such as Ti(OH)3+] deposited onto diatom. 

 

2.3.Characterization of TiO2/diatomite composites 

The structures and crystal phases of TiO2/diatomite composites were examined 

by X-ray powder diffraction (XRD) patterns with a Bruker D8 Advance X-ray 

diffractometer at 40 kV voltages and 20 mA current, using Cu Kα radiation at a scan 

rate of 4°/min. Phase content of TiO2 was estimated from the strongest diffractions of 

anatase (101) and rutile (110), while the crystallite size (D) of TiO2 was estimated by 

applying the Debye-Scherrer equation ( θβλ cos/kD = ), where λ denotes the 

wavelength of the X-rays irradiation, k is usually taken as 0.89, and β is the corrected 

full width at half maxima (FWHM). The morphologies of samples were observed by 

scanning electron microscopy (SEM, EVO 18, Carl Zeiss) with an energy-dispersive 

X-ray spectrometer (EDS). High-resolution TEM (HRTEM) images and EDS 
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measurement were taken on a Philips Tecnai F20. The Brunauer-Emmett-Teller (BET) 

specific surface area of samples was determined at liquid-nitrogen temperature (77K) 

on a Micromeritcs ASAP 2020 system. The total pore volumes were calculated based 

on N2 adsorption at a relative pressure of 0.99. Pore-size distributions were calculated 

from the adsorption branch of the isotherm, according to the Barrett-Joyner-Halenda 

(BJH) model [25]. In addition, X-ray photoelectron spectroscopy (XPS) was 

measured on a Kratos Axis Ultra spectrometer using Al Kα radiation (15 kV, 150 W). 

The survey spectra were recorded from 0 to 1200 eV at an energy interval of 1 

eV/step. The C1s peak at 284.8 eV was used to calibrate the binding energies in XPS 

spectra.  

 

2.4.Adsorption and Photocatalysis of TiO2/diatomite composites 

 

The adsorption and photocatalytic degradation of RhB were evaluated through a 

kinetic test. Aliquots were withdrawn from 100 ml of standard RhB aqueous solution 

(10 mg/L) containing 0.05 g of catalyst (P25 or as-prepared composites). Firstly, the 

suspensions were stirred in the dark for 1 hour to evaluate the adsorption performance. 

After establishing the equilibrium of adsorption, UV light irradiation was turned on. 

The photocatalytic reactions were carried out under UV-light irradiation afforded by a 

250 W Hg lamp. All the collected samples of RhB solution were analyzed by UV-vis 

spectrophotometer (UV-9000S, Shanghai Yuanxi). The absorbance was measured at 

562 nm. The percentage of RhB degradation (DR) was calculated by the following 

equation: 

𝐷R(%) = 𝐶0−𝐶t
𝐶0

× 100%                      Eq. (1) 

where C0 and Ct are concentrations of RhB before and after degradation, respectively.  

 

3. Results and discussion 

 

3.1 Crystalline phase studies 
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XRD technique was employed to analyze the crystalline phases of the diatomite 

support and TiO2/diatomite composites calcined at different temperatures. The 

patterns, crystalline phase, fractional composition and crystallite size for different 

samples are shown in Fig.2 and Table 2. In the patterns of raw diatomite, DE and 

TiO2/diatomite catalysts calcined at relatively lower temperature, the broad peak 

centered at 2θ = 21.8o is assigned to the amorphous SiO2 [18]. The diffraction line 

related to mineral impurities such as quartz and muscovite of the raw diatomite 

disappeared after purification. These impurities adhere to diatom and block pores (see 

SEM results), resulting a decrease in the surface area and adsorption capacity, which 

is harmful to concentrate dye molecules. When the calcination temperature applied is 

over 450oC, the diffraction peaks of anatase TiO2 appear at 2θ = 25.4o (101), 37.9o 

(004) and 48.1o (200), which are consistent with the value in the standard card 

(JCPDS No. 21-1272). Further increase in calcination temperature (650-950oC) 

results in sharpening and narrowing of diffraction lines which corresponds to the 

enhancement in both degree of crystallinity and crystalline size. Moreover, when the 

calcination temperature reaches over 750oC, typical diffraction peaks corresponding 

to rutile TiO2 (JCPDS No. 21-1276) appear in the XRD patterns of the TiO2/diatomite 

composites. This transformation temperature is much higher than pristine TiO2 

(without mineral support) prepared by sol-gel method [26, 27]. It indicates that the 

presence of diatomite improves the thermal stability of the TiO2 particles as a 

consequence of the enhanced distribution of TiO2 NPs on the diatom surface. This 

result coincides with our early report about using TiCl4 as precursor and 

low-temperature hydrolysis to prepare TiO2/amorphous SiO2 catalysts [14]. 
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Fig.2 XRD patterns of diatomite and TiO2/diatomite composites calcined at various temperatures. 

 
Table 2 
Summary of crystalline size calculated from XRD plots and surface characteristics of DE and TiO2/diatomite 

composites calcined at various temperatures determined from N2 physisorption at 77K. 

Sample Crystalline phase and size Specific 

surface area, 

SBET (m2/g) 

Pore volume, 

Vm (cm3/g) 

Average pore 

size, W (nm) Size of 

A(101)  (nm) 

Size of 

R(110)  

(nm) 

Anatase 

ratio (%) 

DE - - - 17.5 0.050 7.9 

TD-450 8.3 - - 34.5 0.079 5.3 

TD-550 10.9 - - 30.4 0.076 5.9 

TD-650 17.7 - 100 15.3 0.049 7.7 

TD-750 19.9 24.1 90.6 13.5 0.052 9.6 

TD-850 29.4 46.0 36.6 6.5 0.028 11.5 

TD-950 30.8 49.3 22.5 6.8 0.024 9.6 

 

The crystalline sizes of anatase TiO2 and rutile TiO2 in samples were calculated 

using Debye-Scherrer equation. A common trend of increase in crystalline size both of 

anatase and rutile TiO2 (see Table 2) occurs with the increase in calcination 

temperature for TiO2/diatomite composites, due to high frequency of aggregation and 

sintering among the grains. In this study, the rutile content in the supported catalysts 

can be calculated based on the intensities of the peaks for anatase and rutile in the 

XRD patterns as follows [28, 29]: 

𝑋R = 𝐼R 𝐼A×0.79⁄
1+𝐼R 𝐼A⁄ ×0.79                         Eq. (2) 

where XR is the weight fraction of the rutile phase in the supported catalysts, and IA 

and IR are the integrated X-ray intensities of the (101) reflection of anatase at 2θ = 

25.4° and the (110) reflection of rutile at 2θ = 27.5°, respectively. The crystalline 

phase fractions are listed in Table 2. With the increasing of calcination temperature, 

the content of anatase phase decreases while the content of rutile phase increases. 

Based on the XRD results we can conclude that both crystalline size and phase 

fraction of TiO2 immobilized on diatomite are depended on calcination temperature. 
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3.2 Morphology investigation 

 

Fig.3 shows the surface morphology by SEM and TEM images of the raw 

diatomite, DE and TiO2/diatomite composites calcined at different temperatures. The 

SEM images (Fig.3a-c) indicate that the diatom as the carrier exhibit highly porous 

disc-like shape with radius of ca. 30-40 μm. In Fig. 3b and c, after purification the 

surface of the diatom becomes clean and even, meanwhile regular pores are opened 

throughout with diameter around 50-100 nm. Moreover, the inherent pore structure of 

the diatom is relatively distinct for TD-750 (Fig. 3d and e), which may represent a 

benefit to adsorb pollutant molecules when it is used as the photocatalyst support [22].  

In comparison to the clean surface of DE, the TiO2/diatomite composites sample is 

obviously rougher, due to the deposition of TiO2 particles on the diatom’s surface. 

The Inset is related to the even distribution of titanium observed by the EDS mapping 

depicted for the TD-750 sample (Fig. 3d). Fig. 3e shows that the TiO2 particles are 

preferentially gathered on the surrounding of pores rather than adhering on the surface 

of the diatom. Some pores are even covered by the TiO2 particles. The high 

magnification SEM image of TD-950, Fig. 3f, illustrates the disc-like shape of the 

diatom destroyed by the high calcination temperature employed which resulted in 

serious aggregation of TiO2 particles and sharp increase of average particle size 

according to the calculation result of XRD pattern. 
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Fig.3 SEM images of (a) raw diatomite, (b-c) DE, (d-e) TD-750 with different magnifications and its Ti element 

surface distribution determined by EDS, (f) TD-950; and TEM image of (g) TD-750, (h-i) the corresponding 

HRTEM and EDS. 

 

The morphology and composition of the TD-750 hybrid catalyst have been 

further investigated by TEM observations (Fig. 3g and h). It can be clearly found that 

these small TiO2 NPs disperse very well. And the average particle size is ca. 15-30 

nm, which is in good agreement with XRD calculated results.  

This is also ascribed to the intimate interaction between bare TiO2 NPs and 

diatom, which limits the crystalline TiO2 NPs agglomeration to some extents. 

HRTEM image (Fig. 3h) of the product clearly shows the presence of lattice fringes 

hence indicating the crystalline nature of the TiO2 and amorphous SiO2. The spacing 

between the lattice fringes was measured to be around 0.354 nm which is in good 

agreement with the (101) planes of the anatase phase (0.352 nm) [30]. Moreover, the 

EDS measurement confirmed the composition of the hybrids (Fig. 3i), which 

demonstrated the presence of Si, Ti and O; meanwhile Cu signal is derived from the 

plated element for TEM measurement. Besides that, it is noteworthy that TiO2 
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particles were still tightly anchored on the surface of diatom during the preparation of 

the TEM specimen even after a long time of mechanical stirring and sonication. From 

the TEM images, the presence of a strong interfacial anchoring strength between the 

TiO2 NPs and the diatom can be confirmed, which leads to few drain of 

photocatalytic components during the practical applications. These results suggest that 

the TiO2 NPs uniformly immobilized on the porous minerals matrix in the 

TiO2/diatomite catalyst. 

 

3.3 XPS studies 

 

XPS was carried out to further analyze the chemical composition of the 

as-prepared TiO2/diatomite hybrids. Fig. 4a depicts the survey spectra of the hybrids, 

TD-650, TD-750 and TD-850. The signals of O, Ti and Si elements can be clearly 

observed in the all samples. Fig. 4b reveals the high-resolution spectra for Ti 2p peaks. 

The spin-orbit components 2p3/2 and 2p1/2 of the Ti 2p peak could be deconvoluted by 

two peaks at approximately 459.4 and 465.3 eV, respectively (Fig. 4b). This indicates 

that the Ti elements mainly existed as Ti4+ [31, 32], and also confirmed by the 

difference in binding energy (BE) between the spin-orbit components of the Ti 2p 

peak which is close to 5.6 eV [33]. The shift observed on the Ti 2p3/2 peak position 

from ca. 458.2 eV (for pure TiO2) to 459.4 eV (in presence of diatomite) might be 

related to higher electronegativity of Si in comparison to Ti [34]. It is suggested that 

the TiO2 NPs are combined on the surface of diatom via Ti—O—Si bond [35, 36]. 

The deconvolutions of the O 1s peak of pristine TiO2-750 and TD-750 shows three 

peaks in Fig. 4c. The peak of pure TiO2 is assigned to titanium lattice (530.0 eV), the 

surface hydroxyl (531.8 eV) and adsorbed oxygen (533.1 eV) mainly from adsorbed 

water molecules [37, 38]. However, the peak intensity and position have changed in 

the spectrum of TD-750. The dominant peak at about 530.4 eV is still characteristic of 

TiO2, and the peak at about 533.4 eV is corresponding to SiO2 which is the main 

component of diatomite [35]. Additionally, the XPS shift of O 1s is another evidence 

of the presence of Ti—O—Si bond. According to the quantitative analysis (Inset of 
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Fig. 4a), the atomic ratio of Ti is around 10%. It is very similar with the theoretic 

value resulting from the uniformly distribution of TiO2 NPs on the diatomite’s surface. 

The mole ratio of O and Ti plus Si for all samples was larger than 2. The calculated 

results indicated that the amount of the surface hydroxyl O increased notably in the 

TiO2/diatomite composites (from 11.98% for the pristine TiO2 to 20.40%). Several 

previous literatures have presented that the increase of the surface hydroxyl will lead 

to the enhancement of the photocatalytic efficiency [39, 40]. Therefore the increased 

percentage of surface hydroxyl on hybrid catalyst, resulting from the incorporation of 

diatomite matrix, will improve photocatalytic oxidation property.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 XPS spectra of pristine TiO2-750oC and TiO2/diatomite composites: (a) survey scan; (b) Ti 2p regions; and 

(c) deconvolution of O 1s. Inset is the relative contents of the elements in the sample. 
 

3.4 Surface properties 
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Fig. 5 displays the nitrogen adsorption-desorption isotherms measured at 77K and 

the pore size distributions determined by the BJH method applied to the 

TiO2/diatomite composites calcined at temperature ranging from 450 to 950oC. The 

DE isotherm is used in terms of comparison. The nitrogen adsorption isotherms for all 

samples were classified as type IV according to the International Union of Pure and 

Applied Chemistry (IUPAC) [41]. As expected, the adsorption capacities of the 

composites decreased as the calcination temperature increased. At low relative 

pressure (P/P0<0.4), samples TD-450 and TD-550 showed higher values of volume 

adsorbed per gram. This phenomenon was related to the predominance of smaller 

crystallite size species observed at lower calcination temperature condition (Table 2). 

At high relative pressure (P/P0=0.4-0.98), the isotherms of TiO2/diatomite composites 

calcined at 450-750oC shows hysteresis behavior, reflecting a mesoporous structure. 

Furthermore, the pore size distribution of these samples show a narrower range of 

5-10 nm than those of sample TD-850 and TD-950 (Fig. 5b). The result of DE shows 

a wider pore size distribution, which is in agreement with our previous study [18]. 

The pore structure parameters of the TiO2/diatomite composites and DE, such as the 

specific surface area (SBET), pore volume (Vm) and average pore size (W), are also 

summarized in Table 2. SBET of TD-450 and TD-550 are higher than uncoated 

diatomite, which may be ascribed to low degree of crystallinity of TiO2 phase on it. It 

should be also noted that the specific surface area of TiO2/diatomite composites 

decreases with the increasing calcination temperature. When the calcination 

temperature increased to 850-950oC, there is a sharp decrease, resulting from the 

partial microstructure destruction of support and aggregation of TiO2 grains which 

blocked the pores of diatom (can be seen in Fig. 3f). Therefore, the pore structure 

parameters of the TiO2/diatomite composites depend on the calcination temperature. 

And excess heating will lead to a destruction of disc-like diatom. Compared with 

uncoated diatomite, the little enhancement of pore volume for TD-750 is another 

proof to verify this modified sol-gel method we used can maintain the 

micro/mesopores of diatomite, which is benefit to the adsorption of contaminant 

molecules. This TiO2/diatomite photocatalyst is credited to show an excellent 
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performance in future photocatalysis for aqueous and gaseous contaminants. 
  
 
 
 
 
 
 
 
 
 

 
Fig.5 Nitrogen adsorption-desorption isotherms and (b) the corresponding pore size distributions of DE and 

TiO2/diatomite composites calcined at various temperatures. 

 

3.5 Adsorption and photocatalytic performance 

 

We now turn to the main subject of this paper: the study of adsorption and 

UV-light derived photocatalysis behaviors of TiO2/diatomite composites. The 

adsorption and photocatalytic curves are shown in Fig. 6a. Prior to UV light exposure, 

RhB uptake kinetics were performed using TD-450, TD-550, TD-750, TD-850, 

TD-650, TD-950, DE and P25 as sorbents (inset of Fig. 6a). A fast adsorption rate is 

observed, it takes about 15 min to reach the equilibrium of adsorption-desorption for 

all samples. The mass balance equation (Eq. 3) was used to calculate the adsorption 

capacity of the sorbent for RhB at the equilibrium (t = 60 min), as summarized in 

Table 3. 

𝑄𝑒 = 𝑉(𝐶0−𝐶e)
𝑀×1000

                         Eq. (3) 

where C0 and Ce are the initial and equilibrium concentrations of the RhB solution 

(mg/L), respectively, V is the volume of the RhB solution (mL), and M is the mass of 

sorbent (g). From Table 3, the adsorption capacity at equilibrium decreases in the 

following order: TD-450 > TD-550 > TD-750 > TD-650 > TD-850 > TD-950 > DE > 

P25. The higher adsorption capacities provided by the sorbents TD-450 and TD-550 

may be related to their larger BET area and smaller TiO2 particles (Table 2). 

Moreover, the hybrid composites express a better adsorption performance than DE, 
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because of the formation of active sites by the small TiO2 particles [42, 43]. In 

comparison to TiO2/diatomite composites, the adsorption capacity of pure TiO2 

nanoparticles (Degussa P25) is much lower. This behavior is assigned to the tendency 

of P25 particles aggregate in suspension [44]. The pore structure and large surface 

area of diatomite improves the distribution of as-prepared TiO2 particles in 

suspension system. The favored adsorption of RhB molecule can accelerate the 

photooxidation of RhB in a synergetic way [44]. 
 
 
 
 
 
 
 
 
 
 

Fig.6 Adsorption and photocatalytic degradation kinetics of RhB under UV light irradiation for TiO2/diatomite 

composites calcined at various temperatures: (a) 450oC, (b) 550oC, (c) 650oC, (d) 750oC, (e) 850oC, (f) 950oC. And 

for comparison, (g) Blank, (h) DE and (i) Degussa P25 were carried out. 

 
Table 3: Results of adsorption and UV-light photocatalytic kinetic parameters over TiO2/diatomite composites  

Sample Dark adsorption UV-light-derived photocatalysis 

Qe (mg/g) DR (%) kapp (min-1) r2 

TD-450 0.67 70.0 0.018 0.98608 

TD-550 0.54 73.7 0.020 0.98123 

TD-650 0.46 89.1 0.035 0.99673 

TD-750 0.48 92.6 0.042 0.99637 

TD-850 0.44 69.4 0.018 0.99929 

TD-950 0.38 30.9 0.0052 0.99891 

Degussa P25 0.060 92.9 0.044 0.99771 

 

The photocatalytic performance (Fig. 6a, UV-irradiation part) was evaluated by 

the percentage of RhB degradation (DR), as expressed by Eq. 1. The results are 

described in Table 3. From the adsorption data, a better photocatalytic degradation 

performance was expected at 450oC and 550oC of calcination temperature. According 

to the literature [1, 8, 15], the adsorption can play an important role on the 

photocatalytic degradation reaction. However, in the present study, the 
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photodegradation performances greatly increase with the calcination temperature rise 

(from 450oC to 750oC), then dramatically decline at 850oC (see Fig. 6a, 

UV-irradiation part, and Table 3). This behavior is explained by the XRD results 

depicted in Fig. 2, based on the fact that both TiO2 crystallinity and phase fraction are 

crucial to enhance the photocatalytic performance [45-47]. 

From Fig. 2, the anatase (101) peak starts to be well defined at 650oC. Samples 

TD-450 and TD-550 are characterized by the presence of TiO2 in amorphous phase. 

The TD-750 sample shows the highest removal ratio (92.6%, from Table 3) with a 

mixing ratio of anatase/rutile of 90/10, respectively. The photodegradation decay at 

850oC can be associated to the increase of rutile phase observed on the samples 

TD-850 and TD-950 (Fig. 2). The higher percentage of rutile phase and crystal 

particle dimension may inhibit the formation of ∙OH radicals which slow down the 

reactants degradation [43]. Moreover, the microstructure has been fully destroyed at 

temperature higher than 750oC (Fig. 3f). Thus, it may be stated that a synergetic 

combination of the tuned adsorption conditions and TiO2 crystalline structure is key 

parameter to improve the RhB photodegradation. 

Fig. 6b depicts the photodegradation kinetics of RhB fitted by the pseudo-first 

order kinetic model, which could be explained in terms of Langmuir-Hinshelwood 

(LH) mechanism within the initial first hour [48]. The LH kinetic equation was mostly 

used to explain the heterogeneous catalytic process as given by:  

𝑟 = −d𝐶
d𝑡

= 𝑘𝑟𝐾𝐶
1+𝐾𝐶

                        Eq. (4) 

where r represents the rate of reaction that changes with time (t), kr is the reaction rate 

constant and K is the adsorption rate constant. The rate expression based on LH 

expression can be deduced to first-order kinetics when t=0, C=C0, it was described as 

follows:  

− ln � 𝐶
𝐶0
� = 𝑘appt                        Eq. (5) 

where kapp represents the apparent rate constant, C represents the RhB concentration 

in aqueous solution at any time t during photocatalytic degradation, and t is reaction 

time. In this study, the apparent reaction rate constant (kapp) was used to compare the 
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photocatalytic activity of TiO2/diatomite composites calcined at different 

temperatures. The summary of the photodegradation rate and the pseudo-first order 

kinetics of as-prepared composites under UV-light within 1h are shown in Table 3. 

The kapp increases in the order of TD-950 < TD-850 < TD-450 < TD-550 < TD-650 < 

TD-750, which is identical with the photodegradation results shown in Fig. 6a. All 

experiments demonstrated that the TiO2 supported by diatomite possess a significant 

photocatalytic activity towards degrading the RhB dye in aqueous solution. Degussa 

P25 sample, which is composed by pure particles of TiO2 showed DR and kapp similar 

to the TD-750. However, the active material (TiO2) content theoretically calculated to 

TD-750 is only 10 wt%.  

Beside these, the disc-like composite photocatalyst assemblies are micron size 

which facilitates the solid-liquid separation in suspension (easy centrifugation and 

vacuum filtration). The results herein reported demonstrate that the composite 

TiO2/diatomite is a promising candidate to be used as photocatalyst of RhB 

degradation in practice. 

 

Conclusions 

The TiO2 NPs were successfully immobilized onto diatomite by a modified 

sol-gel method using tetrabutyl titanate as precursor. X-ray diffraction analysis 

displayed the influence of calcination temperature on TiO2 crystallinity, phase fraction 

and TiO2 crystalline size. In addition, SEM/TEM and EDS studies indicated a good 

distribution of TiO2 particles on surface of disc-like diatom without blocking the pore 

of diatom. The presence of an interfacial anchoring strength between the TiO2 NPs 

and diatom was confirmed by TEM results, which may inhibit the drain of 

photocatalytic components during the practical applications. Moreover, comparing the 

binding energies of Ti 2p3/2 and O 1s of TiO2/diatomite composites with pristine TiO2, 

it is concluded that the TiO2 NPs is combined on the surface of diatomite through 

Ti—O—Si bond forming at the interface. And the increased percentage of surface 

hydroxyl on hybrid catalyst can improve photocatalytic oxidation property. The best 

experimental result for the photocatalytic degradation of dye RhB under UV-light was 
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found with TiO2/diatomite composites calcination at 750oC for 2 h having a 90/10 

mixing ratio of anatase/rutile, which was confirmed by the photodegradation kinetics 

study and by the reaction rate constant of pseudo-first order kinetics calculated using 

the LH model. Therefore, we can conclude that in our case, the photocatalytic 

activities of TiO2/diatomite composites are greatly dependent on the crystalline size 

and the anatase/rutile ratio rather than the BET surface area and the adsorption 

equilibrium amount of RhB. Namely, the calcination temperature is the crucial 

influence factor of catalyst photoactivity. 
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Figure captions: 
Fig.1 A schematic diagram of the possible pathways of Ti species [such as Ti(OH)3+] deposited onto 
diatom. 
Fig.2 XRD patterns of diatomite and TiO2/diatomite composites calcined at various temperatures. 
Fig.3 SEM images of (a) raw diatomite, (b-c) DE, (d-e) TD-750 with different magnifications and its Ti 
element surface distribution determined by EDS, (f) TD-950; and TEM image of (g) TD-750, (h-i) the 
corresponding HRTEM and EDS. 
Fig.4 XPS spectra of pristine TiO2-750oC and TiO2/diatomite composites: (a) survey scan; (b) Ti 2p 
regions; and (c) deconvolution of O 1s. Inset is the relative contents of the elements in the sample. 
Fig.5 (a) Nitrogen adsorption-desorption isotherms and (b) the corresponding pore size distributions of 
DE and TiO2/diatomite composites calcined at various temperatures. 
Fig.6 Adsorption and photocatalytic degradation kinetics of RhB under UV light irradiation for 
TiO2/diatomite composites calcined at various temperatures: (a) 450oC, (b) 550oC, (c) 650oC, (d) 
750oC, (e) 850oC, (f) 950oC. And for comparison, (g) Blank, (h) DE and (i) Degussa P25 were carried 
out. 
 
 
 


