Principles in the design of multiphase experiments with a later laboratory phase: orthogonal designs

Chris Brien¹, Bronwyn Harch², Ray Correll² & Rosemary Bailey³

¹University of South Australia, ²CSIRO Mathematics, Informatics & Statistics, ³Queen Mary University of London

http://chris.brien.name/multitier

Chris.brien@unisa.edu.au

Outline

- 1. Primary experimental design principles
- 2. Factor-allocation description for standard designs.
- 3. Principles for simple multiphase experiments.
- 4. Principles leading to complications, even with orthogonality.
- 5. Summary

1) Primary experimental design principles

Principle 1 (Evaluate designs with skeleton ANOVA tables)

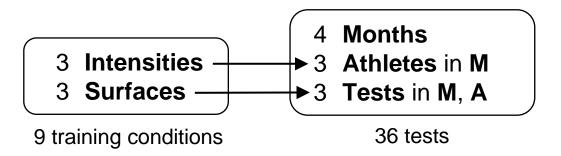
Use whether or not data to be analyzed by ANOVA.

- Principle 2 (Fundamentals): Use randomization, replication and blocking or local control.
- Principle 3 (Minimize variance): Block entities to form new entities, within new entities being more homogeneous; assign treatments to least variable entity-type.
- Principle 4 (Split units): confound some treatment sources with more variable sources if some treatment factors:
 - i. require larger units than others,
 - ii. are expected to have a larger effect, or
 - iii. are of less interest than others.

A standard athlete training example

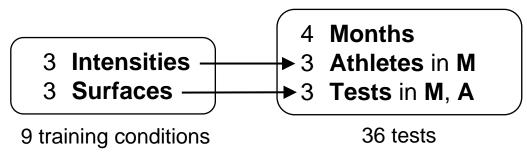
- 9 training conditions combinations of 3 surfaces and 3 intensities of training — to be investigated.
- Assume the prime interest is in surface differences
 - intensities are only included to observe the surfaces over a range of intensities.
- Testing is to be conducted over 4 Months:
 - > In each month, 3 endurance athletes are to be recruited.
 - Each athlete will undergo 3 tests, separated by 7 days, under 3 different training conditions.
- On completion of each test, the heart rate of the athlete will be measured.
- Randomize 3 intensities to 3 athletes in a month and 3 surfaces to 3 tests in an athlete.

> A split-unit design, employing Principles 2, 3 and 4(iii).


2) Factor-allocation description for standard designs (Nelder, 1965; Brien, 1983; Brien & Bailey, 2006)

Standard designs involve a single allocation in which a set of treatments is assigned to a set of units:

- treatments are whatever are allocated;
- units are what treatments are allocated to;
- treatments and units each referred to as a set of objects;
- Often do by randomization using a permutation of the units.
 - More generally treatments are allocated to units e.g. using a spatial design or systematically
- Each set of objects is indexed by a set of factors:
 - Unit or unallocated factors (indexing units);
 - Treatment or allocated factors (indexing treatments).
- Represent the allocation using factor-allocation diagrams that have a **panel** for each set of objects with:
 - a list of the factors; their numbers of levels; their nesting relationships.

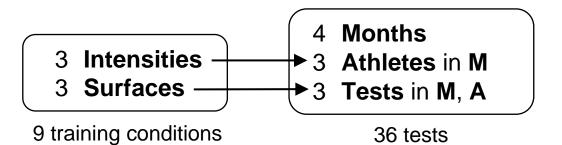

Factor-allocation diagram for the standard athlete training experiment

- One allocation (randomization):
 - > a set of training conditions to a set of tests.

- The set of factors belonging to a set of objects forms a tier:
 - they have the same status in the allocation (randomization):
 - {Intensities, Surfaces} or {Months, Athletes, Tests}
 - Textbook experiments are two-tiered.
- A crucial feature is that diagram automatically shows EU and restrictions on randomization/allocation.

Some derived items

Sets of generalized factors (terms in the mixed model):


- Months, MonthsAthletes, MonthsAthletesTests;
- ➤ Intensities, Surfaces, Intensities ∧ Surfaces.
- Corresponding types of entities (groupings of objects):

month, athlete, test (last two are Eus);

> intensity, surface, training condition (intensity-surface combination).

- Corresponding sources (in an ANOVA):
 - Months, Athletes[M], Tests[MA];
 - Intensities, Surfaces, Intensities#Surfaces.

Skeleton ANOVA

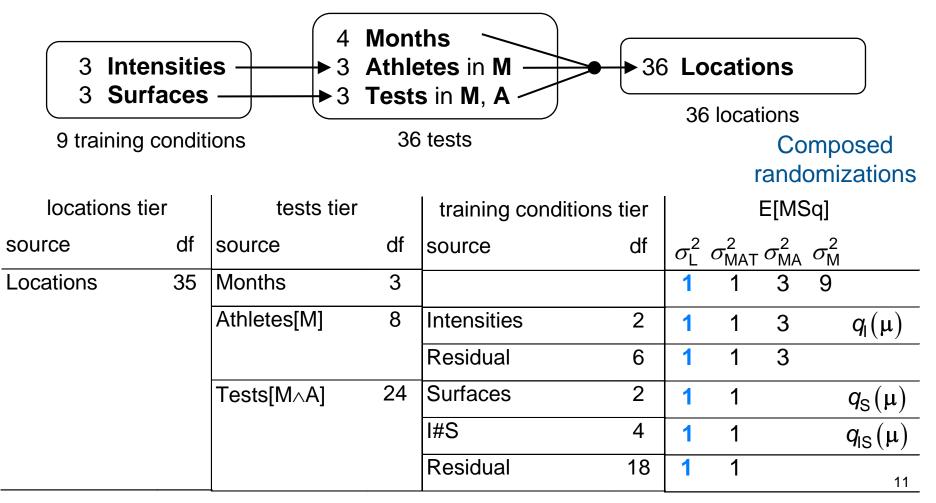
tests tier		training conditions	E[MSq]					
source	df	source	df	σ^2_{MA}	$_{ m \Gamma}\sigma_{ m MA}^2$	$\sigma_{\sf M}^2$		
Months	3			1	3	9		
Athletes[M]	8	Intensities	2	1	3	$q_{l}(\mu)$		
		Residual	6	1	3			
Tests[M^A]	24	Surfaces	2	1		$q_{S}(\mu)$		
		I#S	4	1		$q_{IS}(\mu)$		
		Residual	18	1				

Intensities is confounded with the more-variable Athletes[M] & Surfaces with Tests[M^A].

3) Principles for simple multiphase experiments

- Suppose in the athlete training experiment:
 - in addition to heart rate taken immediately upon completion of a test,
 - the free haemoglobin is to be measured using blood specimens taken from the athletes after each test, and
 - > the specimens are transported to the laboratory for analysis.
- The experiment is two phase: testing and laboratory phases.
 - The outcome of the testing phase is heart rate and a blood specimen.
 - > The outcome of the laboratory phase is the free haemoglobin.
- How to process the specimens from the first phase in the laboratory phase?

Some principles

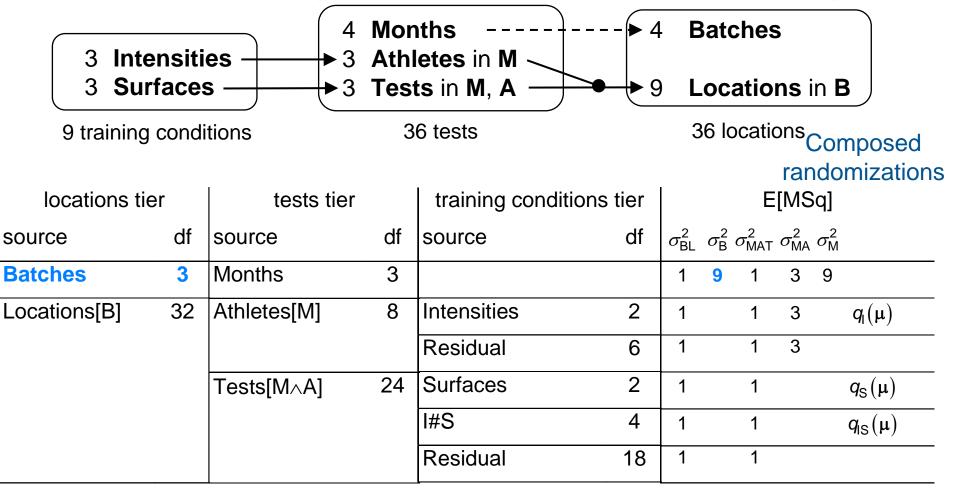

Principle 5 (Simplicity desirable): assign first-phase units to laboratory units so that each first-phase source is confounded with a single laboratory source.

> Use composed randomizations with an orthogonal design.

- **Principle 6** (Preplan all): if possible.
- Principle 7 (Allocate all and randomize in laboratory): always allocate all treatment and unit factors and randomize first-phase units and lab treatments.
- **Principle 8** (Big with big):
 - Confound big first-phase sources with big laboratory sources, provided no confounding of treatment with first-phase sources.

A simple two-phase athlete training experiment

 Simplest is to randomize specimens from a test to locations (in time or space) during the laboratory phase.


A simple two-phase athlete training experiment (cont'd)

locations tier		tests tier		training conditions	E[MSq]					
source	df	source	df	source	df	$\sigma^2_{ m L}$	σ^2_{MAT}	$\sigma^2_{\rm MA}$	$\sigma_{\sf M}^2$	
Locations	35	Months	3			1	1	3	9	
		Athletes[M]	8	Intensities	2	1	1	3	$q_{I}(\mu)$	
				Residual	6	1	1	3		
		Tests[M _A]	24	Surfaces	2	1	1		$q_{\rm S}(\mu)$	
				I#S	4	1	1		$q_{IS}(\mu)$	
				Residual	18	1	1			

- No. tests = no. locations = 36 and so tests sources exhaust the locations source.
- Cannot separately estimate locations and tests variability, but can estimate their sum.
- But do not want to hold blood specimens for 4 months.

A simple two-phase athlete training experiment (cont'd)

Simplest is to align lab-phase and first-phase blocking.

Note Months confounded with Batches (i.e. Big with Big). 13

The multiphase law

- DF for sources from a previous phase can never be increased as a result of the laboratory-phase design.
- However, it is possible that first-phase sources are split into two or more sources, each with fewer degrees of freedom than the original source.

locations tier		tests tier		training conditions tier		E[MSq]					
source	df	source	df	source	df	$\sigma^2_{\rm BL}$	$\sigma_{\sf B}^2$ ($\sigma^2_{ m MAT}$	$\sigma^2_{\rm MA}$	$\sigma_{ m M}^2$	
Batches	3	Months	3			1	9	1	3	9	
Locations[B]	32	Athletes[M]	8	Intensities	2	1		1	3	$q_{I}(\mu)$	
				Residual	6	1		1	3		
		Tests[M _A]	24	Surfaces	2	1		1		$q_{\rm S}(\mu)$	
				I#S	4	1		1		$q_{IS}(\mu)$	
				Residual	18	1		1			

DF for first phase sources unaffected.

4) Principles leading to complications, even with orthogonality

- Principle 9 (Use pseudofactors):
 - An elegant way to split sources (as opposed to introducing grouping factors unconnected to real sources of variability).
- **Principle 10** (Compensating across phases):
 - Sometimes, if something is confounded with more variable firstphase source, can confound with less variable lab source.
- **Principle 11** (Laboratory replication):
 - Replicate laboratory analysis of first-phase units if lab variability much greater than 1st-phase variation;
 - Often involves splitting product from the first phase into portions (e.g. batches of harvested crop, wines, blood specimens into aliquots, drops, lots, samples and fractions).
- **Principle 12** (Laboratory treatments):
 - Sometimes treatments are introduced in the laboratory phase and this involves extra randomization.

5) Summary

- Have provided 4 standard principles and 8 principles specific to orthogonal, multiphase designs.
- In practice, will be important to have some idea of likely sources of laboratory variation.
- Are laboratory treatments to be incorporated?
- Will laboratory replicates be necessary?

References

- Brien, C. J. (1983). Analysis of variance tables based on experimental structure. *Biometrics*, **39**, 53-59.
- Brien, C.J., and Bailey, R.A. (2006) Multiple randomizations (with discussion). J. Roy. Statist. Soc., Ser. B, 68, 571–609.
- Brien, C.J., Harch, B.D., Correll, R.L. and Bailey, R.A. (2011) Multiphase experiments with laboratory phases subsequent to the initial phase. I. Orthogonal designs. *Journal of Agricultural, Biological and Environmental Statistics*, available online.
- Littell, R. C., G. A. Milliken, et al. (2006). SAS for Mixed Models. Cary, N.C., SAS Press.
- Peeling, P., B. Dawson, et al. (2009). Training Surface and Intensity: Inflammation, Hemolysis, and Hepcidin Expression. *Medicine & Science in Sports & Exercise*, **41**, 1138-1145.
- Searle, S. R., G. Casella, et al. (1992). Variance components. New York, Wiley.

Web address for link to Multitiered experiments site: <u>http://chris.brien.name/multitier</u>