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ABSTRACT  33 

Cells (CD3+ T cell and CD68+ macrophages), cytokines (IFN-+ and TNF-α+) and 34 

effector molecule (iNOS+) responses were evaluated in the lymph nodes and tissue 35 

of cattle naturally infected with Mycobacterium bovis. Detailed post mortem and 36 

immunohistochemical examinations of lesions were performed on 16 cows positive 37 

for single intradermal cervical comparative tuberculin (SICCT) test which were 38 

identified from dairy farms located around the Addis Ababa City. The severity of the 39 

gross lesion was significantly higher (p=0.003) in M. bovis culture positive (n=12) 40 

cows than in culture negative (n=4). Immunohistochemical techniques showed that in 41 

culture positive cows, the mean immunolabeling fraction of CD3+ T cells decreased 42 

as the stage of granuloma increased from stage I to stage IV (p<0.001). In contrast, 43 

the immunolabelling fraction of CD68+ macrophages, IFN-+, TNF-α+ and iNOS+ 44 

increased from stage I to stage IV (p< 0.001). In culture negative cows, early stages 45 

showed a significantly higher fraction of CD68+ macrophages (p=0.03) and iNOS+ 46 

(p=0.007) when compared to culture positive cows. Similarly, at advanced 47 

granuloma stages, culture negative cows demonstrated significantly higher mean 48 

proportions of CD3+ T cells (p< 0.001) compared to culture positive cows. Thus, this 49 

study demonstrates that following natural infection of cows with M. bovis, as the 50 

stage of granuloma increases from stage I to stage IV, the immunolabelling fraction 51 

of CD3+ cells decreases while the immunolabeling fraction of CD68+ macrophages, 52 

IFN-+, TNF-α+ and iNOS+ increases. 53 

Key words: Immune response, Granuloma, Mycobacterium bovis, 54 

Immunohistochemistry, Asymptomatic cows, Natural infection  55 
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INTRODUCTION 57 

Bovine tuberculosis (bTB) is a chronic infectious disease of cattle mainly caused by 58 

M. bovis, a member of the Mycobacterium tuberculosis complex (MTBc). M. bovis 59 

has a wide host range that includes domestic animals, wildlife and humans (1, 2). 60 

With over 50 million infected cattle worldwide, bTB causes significant economic loss 61 

to the agricultural industry, costing US$3 billion annually (3). Effects on human 62 

morbidity and mortality are also considerable. In 2019 alone, it was reported that M. 63 

bovis was responsible for 143, 000 new human TB cases and 12, 300 deaths.  Over 64 

91.0% of the deaths were from African and Asian countries (4).  65 

In some developed countries, the introduction of test and slaughter of bTB infected 66 

cattle together with continuous surveillance systems and movement restrictions,  has 67 

achieved dramatic results in lowering the prevalence and even eradicating  the 68 

disease (5, 6). However, these control programs are costly, and in countries like 69 

Ethiopia where bTB is an endemic disease and the  agricultural economy relies on 70 

traditional farming practices (7, 8),  new tools like effective vaccination and 71 

immunodiagnostic are urgently needed (2, 9, 10).  72 

The single intradermal cervical comparative tuberculin (SICCT) test is the most 73 

widely used test for the diagnosis of bTB in live cattle (11). SICCT test measures the 74 

delayed hypersensitivity reaction to the tuberculin antigen-purified protein derivative 75 

(PPD) of Mycobacterium bovis (PPDb) and Mycobacterium avian (PPDa). In infected 76 

animals, there is swelling and indurations at both injection sites 72 hours later (11, 77 

12). However, SICCT test  has lower sensitivity when there is co-infection with 78 

certain parasites like Fasciola hepatica and Strongylus sp (13, 14) which are widely 79 

distributed in Ethiopia (15, 16) .   80 
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The second feasible bTB control option for developing countries like Ethiopia is 81 

through the vaccination program. However, presently, there are no effective vaccines 82 

that exist for the control of bTB in cattle. Bacillus Calmette Guerin (BCG) which is 83 

used in humans has certain limitations in cattle, including interference with the 84 

SICCT test. 85 

Hence, understanding the local immunological responses is of paramount 86 

importance in the effort to develop new vaccines and diagnostic tools (2, 9). During 87 

mycobacteria infection, granuloma formation is the main mechanism of host immune 88 

response to contain the spread of bacterial dissemination, but this can result in 89 

significant tissue damage  (17, 18). Immunity against mycobacteria is primarily a cell 90 

mediated immune (CMI) response, which involves recruitment of macrophages, 91 

dendritic cells, and helper T cell type-1 (TH1) modulated by cytokines (17, 19, 20). 92 

Cytokines like interferon gamma (IFN- ) (20), interleukin-12 (IL-12) (21), IL-6, and 93 

tumor necrosis factor (TNF) play a significant role in activating immunological cells to 94 

kill mycobacteria and inducing TH1 responses (22). In addition, the production of 95 

molecules like nitric oxide (NO) by macrophages or phagocytic cells during 96 

mycobacterial infection play a crucial role in the intracellular killing of mycobacteria 97 

as it is cytotoxic at high concentrations. NO release is enhanced by inflammatory 98 

stimuli via the up regulation of inducible forms of NOS (iNOS or NOS2) with in 99 

inflammatory macrophages (23, 24). Conversely, cytokines such as IL-4 (25) and IL-100 

10 (26), known as the anti-inflammatory cytokines, are responsible for down-101 

regulating the role of pro-inflammatory immune responses to control the tissue 102 

damage (17).  103 

Existing studies on the immune response of cattle against M. bovis, largely focus on 104 

the experimental infections generated through the respiratory route (10, 17, 27-29). 105 
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Through characterization of gross and microscopic lesion development, these 106 

studies have shown host immune response related factors to influence bTB disease 107 

outcome (19, 30). Susceptibility to M. bovis infection has also been shown to be 108 

influenced by host genetic makeup and age related factors (31, 32).  109 

However, there are few studies on the fundamental aspects of host immune 110 

response in a natural infection setup (33, 34). Menin et al., (2013) describe that 111 

during natural infection with bTB, the lesion severity, measured using a pathology 112 

severity score (33), correlates positively with viable bacterial loads. Similarly, 113 

neutrophil numbers in the granuloma are associated with increased M. bovis 114 

proliferation (33). Another study shows that as the stage of granuloma increases, 115 

macrophages and epithelioid cells mediate an increase in expression of cytokines 116 

(35). Still, little is known about the local immune response of CD3+ T cells, CD68+ 117 

macrophages, IFN-, TNF-α and iNOS in cattle naturally infected with M. bovis. 118 

Thus, the objective of this study was to evaluate the responses of selected immune 119 

cells (CD3+ T cells and CD68+ macrophages), pro-inflammatory cytokines (IFN-, 120 

TNF-α) and the effector molecule (iNOS) across stages of granuloma development 121 

in cattle with natural M. bovis infection. 122 

RESULTS 123 

Animal signalment, body condition and M. bovis culture status  124 

Samples were taken from 16 cows with positive SICCT tests (> 4 mm cut off). All 125 

cows were female, and ranged in age from 2.5 to 9 years, with a mean of 5.8 years. 126 

Seven (44.0%) were in poor body condition, 6 (37.5%) were medium and 3 (18.7%) 127 

in good body condition. Twelve (75.0%) of the cows were positive for M. bovis 128 

culture and 4 (25.0%) were negative (Table S1).  129 
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Gross pathology 130 

All 16 cows had gross lesion suggestive bTB, characterized by caseous necrosis. 131 

Lymph node lesions were detected in 99/176 (56.3%) samples from the head and 132 

neck region, thorax and abdomen. More specifically lesions were found in the 16/16 133 

(100.0%) caudal mediastinal lymph nodes, 15/16 (94.5%) bronchial lymph nodes, 134 

13/16 (81.3%) cranial mediastinal lymph nodes, 11/16 (68.7%) hepatic lymph nodes, 135 

6/16 (37.5%) mesenteric lymph nodes and 5/16 (31.3%) tracheal lymph nodes. Lung 136 

lesions were found in 6/16 (37.5%) cows, and 33/96 (34.4%) lung samples. 137 

The total gross pathology score was significantly greater (p=0.004) in M. bovis 138 

culture positive than in culture negative animals (Fig. 1C). Within culture positive 139 

cows the lymph node gross pathology score was significantly higher in the thoracic 140 

lymph nodes (p <0.05) as compared to head and abdominal lymph nodes (Fig. 1A). 141 

Histopathology  142 

A total of 37 tissues were examined from both culture positive and culture negative 143 

animals. Representative microscopic findings are shown below (Fig. 2). Culture 144 

positive animals had more granulomas in stages I to IV when compared to culture 145 

negative animals. The four culture negative cows had granulomas in their cranial and 146 

caudal mediastinal lymph nodes only. The majority of samples examined 147 

microscopically in this study were from caudal and cranial mediastinal lymph nodes 148 

(Table S2).  149 

Acid fast bacillus staining  150 
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A modified Zeihl Nelseen histochemical stain was used to detect the presence of 151 

intralesional acid-fast bacilli (AFB). There was no correlation between the stage of 152 

the granuloma and the AFB positivity (Fig. S1).  153 

 154 

Immunohistochemistry 155 

Immunohistochemistry was used to detect CD3+ T cells , CD68+ macrophages , 156 

interferon gamma (IFN-), tumor necrosis factor alpha (TNF-α) and inducible nitric 157 

oxide synthase (iNOS). Antigen expression was compared between culture positive 158 

and culture negative animals and different stages of granuloma. The positive labeling 159 

was expressed as a fraction of the total area examined. All positive and negative 160 

controls stained appropriately. 161 

Macrophages (CD68+) 162 

Anti- CD68+ antibody was used to identify epithelioid macrophages and 163 

multinucleated giant cells (MNGCs). In both culture positive and negative animals, 164 

the CD68+ immunolabeling fraction within the granulomas increased from stage I to 165 

IV (Fig. 3). In culture positive animals, a one-way ANOVA analysis showed this 166 

change to be statistically significant (p <0.001), which was also the case when 167 

different granuloma stages were compared; stage I vs. stage III (p =0.006), stage I 168 

vs. stage IV (p =0.001), stage II vs. IV (p <0.001) and stage III vs. IV (p=0.009). 169 

When the immunolabeling fraction of CD68+ cells compared between culture 170 

positive and negative cows, in early granuloma stage (I) culture negative cows 171 

showed a higher (p =0.037).  172 
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T cells (CD3+)  173 

In culture positive animals, the CD3+immunolabeling fraction decreased from stages 174 

I to IV (p <0.001) (Fig. 4). In culture negative animals, the same fraction increased 175 

from stages I to IV, but this was not statistically significant (p >0.05). However, when  176 

culture negative and culture positive cows with advanced stage granulomas (III and 177 

IV) were compared to early stage (I and II), the CD3+ immunolabelling fraction was 178 

higher in the early stage (p<0.001).  179 

Cytokines IFN-+ and TNF-α+ 180 

For both culture positive and negative cows, the IFN-+ immunolabeling fraction 181 

increased from stages I to IV (p <0.001) (Fig. 5). For the TNF-α+ immunolabeling 182 

fraction, in culture positive cows, there was a statistically significant increase from 183 

stage I to IV (p < 0.001) (Fig. 6). In culture negative cows, the immunolabeling 184 

fraction increased from stage I to IV granulomas, with differences between stage I 185 

and II reaching statistical significance (p =0.034). 186 

Inducible nitric oxide synthase (iNOS+) 187 

For culture positive cows only, the iNOS immunolabeling fraction increased from 188 

stage I to IV (p=0.0001) (Fig. 7).  189 

DISCUSSION 190 

This study used gross pathology, histological scoring and immunohistochemical 191 

techniques, to further understand the role of the immune response in cattle naturally 192 

infected with M. bovis. Initial gross and microscopic examination of lymph nodes and 193 

lungs, found the most numerous and severe lesions within thoracic lymph nodes. 194 

Immunohistochemical techniques were used to demonstrate that as the stage of 195 
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granuloma increased from I to IV, the immunolabeling fraction of CD3+ cells 196 

decreased, while the immunolabeling fraction of CD68+ macrophages, IFN-+, TNF-197 

α and iNOS+ increased. Some of these changes were also shown to vary between 198 

M. bovis culture status, with the granulomas of culture negative animals showing a 199 

higher expression of CD68+, CD3+ (stage III and IV), IFN-+ and iNOS+ (stage I)  200 

when compared to culture positive animals. 201 

Gross and microscopic examination demonstrated that characteristic TB lesions 202 

were most frequently identified in the caudal mediastinal, bronchial and cranial 203 

mediastinal lymph nodes of the thorax, and that the severity of these lesions was 204 

greater when compared to other lymph nodes. This result supports the respiratory 205 

tract as the most common route of infection (31), which is similar to the findings in a 206 

study on naturally infected M. bovis cattle from a comparable geographical area (36).  207 

Ameni found that when these cattle were exposed to an intensive husbandry system, 208 

they demonstrated a higher frequency and severity of bTB-lesions in the respiratory 209 

tract, but cattle kept on pasture showed a higher severity of bTB lesions in their 210 

abdominal lymph nodes (33, 36). In this study, the culture positive group showed a 211 

greater involvement of head and abdominal lymph nodes than the culture negative 212 

group, supporting the potential role of oral and other infection routes for this cohort.  213 

Using immunohistochemical techniques, it was observed that in culture positive 214 

animals, the immunolabeling fraction of CD68+ macrophages increased with the 215 

granuloma stage from I to IV (p<0.001). An increase was also shown in culture 216 

negative animals, but this was not statistically significant. Similar findings have been 217 

shown in experimental infections, where CD68+ cell numbers increase as the level of 218 

granuloma increases (27). In culture positive animals, the presence of increased 219 
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MNGCs in advanced granulomas could be an indication of the active multiplication of 220 

the M. bovis bacteria, when the immune response is not able to contain the 221 

microorganism (37). Conversely, in culture negative animals higher CD68+ 222 

immunolabeling fractions were found at the early granuloma stages when compared 223 

to culture positive animals. This could be associated with the role of MNGCs in the 224 

early immune response, geared towards protection and elimination of the bacteria.  225 

In contrast to CD68+ macrophages, in culture positive cows the immunolabeling 226 

fraction of CD3+ cells decreased from granuloma stage I to stage IV, but showed no 227 

decrease in culture negative animals. This finding is similar to an experimental study 228 

designed to evaluate the role of CD3+ cells response in BCG vaccinated and non-229 

vaccinated groups during M. bovis infection (28), and supports the role of an 230 

adaptive immune response mediated by T cells in containment of M. bovis infection. 231 

Most importantly, the cell-mediated immune response effected by CD4+ T cells by 232 

producing Th1 cytokines, such as IFN-, and the cytolytic activity of CD8+ cells 233 

toward infected macrophages is crucial (38).  234 

In culture positive animals the immunolabeling fraction of IFN-+, TNF-α+ and iNOS+ 235 

shows the same trend as CD68+ macrophages, increasing with the granuloma stage 236 

from I to IV. Evidence from natural M. bovis infection from other species has shown 237 

that the presence of CD68 macrophages and CD3 T cells in and surrounding 238 

granuloma correlates with the high level expression of pro-inflammatory cytokines 239 

like IFN- and TNF-α and iNOS effector molecules (34). These pro-inflammatory 240 

cytokines are important in promoting the formation and function of the granuloma. 241 

Previous studies (27, 28, 35) observed a significant increase in the level of pro-242 

inflammatory cytokine, mainly IFN-+, as the stage of granuloma advances. Nitric 243 
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oxide (NO) production by macrophages during mycobacterial infection has also been 244 

shown to play a crucial role in the intracellular killing of mycobacteria, as it is 245 

cytotoxic at high concentrations (23). This observed increase in pro-inflammatory 246 

cytokines (IFN- and TNF-α) and effector molecules (iNOS) seems likely to have 247 

contributed to the regulation of the bovine immune response during M. bovis 248 

infection (35).  249 

Evidence from this study provides basic information on the host immune response 250 

during natural infection with M. bovis which could be used for future studies in the 251 

investigation of biomarkers necessary for diagnostics and vaccines in the fight 252 

against bTB. Limitations that could affect generalization of these findings to other 253 

countries include the effects of regional influence on farming practices and cattle 254 

genetics, and the small number of culture negative animals for comparison with 255 

results from culture positive animals.   256 

CONCLUSION 257 

This study highlighted the role of macrophages, T cells and chemical mediators like 258 

IFN-, TNF-α and iNOS during naturally infected asymptomatic cows with M. bovis 259 

from intensive dairy farms in central Ethiopia. For M. bovis culture positive animals, 260 

the activity of CD68 macrophages, IFN-, TNF-α and iNOS were more intense as the 261 

level of granuloma increases while CD3+ T cells population decreases as the stage 262 

of granuloma increases. Thus, the activity of CD68+, IFN-+, TNF-α+ and iNOS+ 263 

could play a protective role in the immune defense against M. bovis during naturally 264 

infected asymptomatic cows.   265 

MATERIAL AND METHODS  266 
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Study setting and ethical statement  267 

The study was conducted on semi-urban intensive dairy farms situated in central 268 

Ethiopia, Oromia Special Zone surrounding Addis Ababa City, the capital of Ethiopia. 269 

The study obtained ethical approved from the Armauer Hansen Research Institute 270 

(AHRI) Ethics Review Committee (Ref P018/17), from the Ethiopian National 271 

Research Ethics Review Committee (Ref 310/253/2017), the Queen Mary University 272 

of London Research Ethics Committee, London UK (Ref 16/YH/0410); and by the 273 

Aklilu Lemma Institute of Pathobiology, Addis Ababa University (Ref 274 

ALIPB/IRB/011/2017/18). Written informed consent was obtained from all the owners 275 

of the farms.  276 

Animals 277 

A total of 16 single intradermal cervical comparative tuberculin test (SICCT) test 278 

positive cows suspected to be naturally infected with M. bovis were obtained from 16 279 

different farms. Sex and body condition score (BCS) were recorded. A method 280 

developed by Nicholson and Butterworth (39) was used to determine the BCS. Poor 281 

BCS was considered with extremely lean cattle with projecting dorsal spines pointed 282 

to the touch and individual noticeable transverse processes. Medium BCS was 283 

considered with cattle with usually visible ribs having little fat cover and barely visible 284 

dorsal spines. Good BCS was considered with Fat cover is easily observed in critical 285 

areas and the transverse processes were not visible or felt.  286 

SICCT test 287 

Briefly, SCCIT test was performed as follows. Two sites on the right side of the mid-288 

neck, 12 cm apart, were shaved, and the skin thicknesses were measured with 289 

calipers. One site was injected with an aliquot of 0.1ml containing 2,500 IU/ml bovine 290 
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PPD (PPDb) (Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom). 291 

Similarly, 0.1ml of 2,500 IU/ml avian PPD (PPDa) (Veterinary Laboratories Agency, 292 

Addlestone, Surry, United Kingdom) was injected into the second site. After 72 h, the 293 

skin thicknesses at the injection sites were measured (11). Then the difference 294 

between the swellings of PPDa and PPDb were calculated and the positive result 295 

was determined at cut off > 2 mm.  296 

Culture 297 

Isolation of mycobacteria was performed according to World Organization for Animal 298 

Health protocols (40).  Briefly, tissue specimens for culture were collected into sterile 299 

universal bottles in 5ml of 0.9 % saline solution, and then transported to Aklilu 300 

Lemma Institute of Pathobiology (ALIPB) TB laboratory. The tissues were sectioned, 301 

homogenized and the sediment was neutralized by 1% (0.1N) HCl using phenol red 302 

as an indicator. Thereafter, 0.1ml of suspension from each sample was spread onto 303 

a slant of two Löwenstein Jensen (41) medium tubes one enriched with sodium 304 

pyruvate and the other enriched with glycerol. Cultures were incubated aerobically at 305 

37oC for at least eight weeks and with weekly observation of the growth of colonies. 306 

In order to report culture negative, the tissues were repeatedly cultured three times.   307 

Postmortem examination  308 

The cows were humanely slaughtered by personnel of the local abattoirs in the study 309 

area. The post-mortem examination was performed by an experienced meat 310 

inspector. From all the 16 animals, a total of a total of 176 lymph nodes and 96 lung 311 

tissues were examined by slicing the tissue into 0.5-1cm sections, and assigning  a 312 

pathology severity score, as developed by Vordermeier et al., 2002 (30) shown in 313 

Table S2.  Both lymph node and lung pathology score were added to determine the 314 
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total pathology score per animal. In order to maintain the scoring consistency, all 315 

scoring was performed by a single person.   316 

Histopathology 317 

A total of 37 tissue samples (27 culture positive and 10 culture negative) with high 318 

gross pathology scores were selected from lymph nodes and lung tissues. Lesions 319 

were carefully selected to include the encapsulated granulomas of different sizes 320 

with caseous necrosis and mineralisation.  321 

The tissues were fixed in 10% neutral buffered formalin for 24-72 hours, embedded 322 

in paraffin, sectioned in 4μm sections and stained with hematoxylin-eosin (H&E) and 323 

Ziehl Neelsen acid fast stain. Granulomas were classified into different stage I to IV 324 

according to the previously described criteria (Table S3) (27). The granulomas were 325 

scored experienced Veterinary Pathologist before the result of M. bovis culture was 326 

known. Acid fast bacilli (AFB) were recorded as being present or not.  327 

Immunohistochemistry 328 

For the immunohistochemistry experiment, 4 μm formalin fixed tissue samples were 329 

stained with avidin-biotin-complex (ABC Vector Elite; Vector Laboratories) method. 330 

Tissue sections were first either deparaffinized or dewaxed and rehydrated. Antigen 331 

retrieval was induced by heat (Microwave) or enzymes (trypsin /chymotrypsin) 332 

(Sigma, Poole, UK) (Table 1) and adjusted to pH 9 or 6 using 0.1N sodium 333 

hydroxide. Tissue sections were washed in running tap water, and then incubated 334 

with a blocking buffer (normal goat/horse serum in 10 ml PBS) for 30 minutes. Slides 335 

were incubated with primary antibody overnight at room temperature and with the 336 

secondary antibody for 20 minutes. The labelling was amplified using avidin-biotin-337 

peroxidase conjugate (ABC elite; Vector Laboratories) and visualized using 3, 30-338 
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diaminobenzidine tetrahydrochloride. The unbound conjugates were removed prior 339 

to DAB application with two buffer washes. Finally, the slides were washed in tap 340 

water and stained by Mayer’s Haematoxylin counterstain, and mounted for analysis. 341 

For negative control tissue we used a bovine lymph node with no gross lesion and 342 

no isolation of M. bovis with culture. For each experiment we included a slide with 343 

secondary antibody but no primary antibody.   344 

Image analysis 345 

For each granuloma, a total of 10 fields from different areas of the granuloma, 346 

avoiding necrotic and mineralized areas, were analyzed using a Fiji-ImageJ software 347 

(https://imagej.net/Fiji/Downloads). All images were examined at X400 magnification, 348 

and captured with an Olympus®DP74 digital camera attached to a microscope BX 349 

Olympus®63. Briefly, after image was imported to Fijii-Image J software actual color 350 

was deconvulated into three different colors (green, gray and blue) using H DAB 351 

vector. The second color (gray) used for further processing and converted into black 352 

and white contrast using “Make Binary” tool, color threshold was adjusted at default 353 

(0 scale for min and 255 for max). Next the mean (including minimum and maximum) 354 

value of area of fraction was taken and percent area was determined (42). For each 355 

antibody, the total area of positive labeling was given as a percentage of the total 356 

area examined in 10 fields.  357 

Statistical Analysis  358 

The results of the histopathological and the immunohistochemical analysis were 359 

expressed in mean and standard deviation, and the results were compared between 360 

the stages of granuloma and between culture results. A nonparametric statistical 361 

analysis employing Mann Whitney test was used to compare the means and p<0.05 362 
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was considered statistically significant. The analyses were conducted using 363 

GraphPad Prism 8.0 (San Diego, CA, USA).    364 
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Fig. 1: Gross pathology severity score of lymph nodes and lung tissues of cattle 525 

positive for M. bovis culture (n=12) compared to negative for M. bovis culture (n=4). 526 

A) Gross pathology severity score of the M. bovis culture positive animals. B) Gross 527 
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pathology severity score of the M. bovis culture negative animals. C) Gross 528 

pathology severity score vs. culture result of both culture positive and culture 529 

negative animals. P values from Mann Whitney test. Proportions of animals positive 530 

for TB like lesion are also displayed. CP: culture positive, CN: culture negative, LN: 531 

Lymph nodes, LRM: left retropharyngeal medial, RPH: retropharyngeal, MCR: 532 

medial cranial, MCD: medial caudal, BRC: bronchial, TB: tracheobronchial, and MS: 533 

Mesenteric, HEP: hepatic, and LUN: lung. 534 

Fig. 2: The four stages of granulomas in lymph nodes from naturally infected 535 

asymptomatic cows with M. bovis. A) Stage I (Initial). Clustered epithelioid 536 

macrophages are typical of this stage. HE 10*10. B) Stage II (Solid). Increased 537 

number of epitheliod macrophages including Langharn’s giant cells (arrow). 538 

Encapsulation is complete and central caseous necrosis is lacking. HE 10*10. C) 539 

Stage III (Minimal necrosis) thinly encapsulated with epitheliod macrophages and 540 

caseous necrosis. HE 10*10. D) Stage IV (Necrosis and mineralization). Large, 541 

irregular, encapsulated granuloma, often with multiple centers of caseuous necrosis 542 

and mineralization. HE 10*10. 543 

Fig. 3: Macrophages (CD68+).  A) Mean percentage of area of positive 544 

immunolabeling within granulomas of stage I to IV for CD68+ within the lymph nodes 545 

and lung tissue. The mean percentage of immunolabeling fraction of culture positive 546 

animals significantly increase as the stage of granuloma increases from stage I to 547 

stage IV (p<0.05). Similarly for culture negative animals, as the stage of granuloma 548 

increases from stage I to stage IV an increased immunolabeling fraction was 549 

observed although it was not statistically significant (p>0.05). *Culture negative 550 

animals showed significantly higher immunolabeling fraction at stage I of the 551 

granuloma (p=0.037). The results are expressed as means and SD. Fiji-ImageJ 552 
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software was used to measure the % area of positive labeling. P values from Mann 553 

Whitney test. Immunlabeling of CD68+ macrophages of the lymph nodes of M. bovis 554 

culture positive (B, C) and (D, E) culture negative animals. Higher percentages of 555 

CD68+ macrophages can be seen in stage IV granulomas (C, E) compared to stage 556 

I (B, D). 557 

Fig. 4: T cells (CD3+). Mean percentage area of positive immunolabeling within 558 

granulomas of stage I to IV for CD3+ T cells within the lymph nodes and lung tissue. 559 

For culture positive animals, the mean percentage of CD3+ immunolabeling fraction 560 

decreases as the stage of granuloma increases from stage I to stage IV (p<0.05). On 561 

the other hand, for culture negative animals the immunolabeling fraction stayed the 562 

same as the stage of granuloma increases. *At stage IV, culture negative animals 563 

showed an increased CD3+ immunolabeling fraction as compared to culture positive 564 

animals (p<0.05).  The results are expressed as mean and SD. Fiji-ImageJ software 565 

was used to measure the % area of positive labeling. P values from Mann Whitney 566 

test.  567 

Fig. 5: Interferon gamma (IFN-+).  A) Mean percentage area of positive 568 

immunolabeling within granulomas of stage I to IV for IFN-+ within the lymph nodes 569 

and lung tissue. Both culture positive and culture negative animals showed a 570 

statistically significant increase in the mean percentage of immunolabeling fraction 571 

(p<0.05). The results are expressed as means and SD. Fiji-ImageJ software was 572 

used to measure the % area of positive labeling. P values from Mann Whitney test. 573 

Immunolabeling of IFN-+ cells of the lymph nodes of M. bovis culture positive (B, C) 574 

and (D, E) culture negative animals. Higher percentages of IFN-+ cells can be seen 575 

in stage IV granulomas (C, D) compared to stage I (B, E).  576 
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Fig. 6: Tumor necrosis factor- alpha (TNF-α+). The mean percentage area of positive 577 

immunolabeling for TNF-α+ within the lymph nodes and lung tissue of both culture 578 

positive and negative animals showed an increase from stage I to IV granuloma 579 

(p<0.05). The results are expressed as means and SD. Fiji-ImageJ software was 580 

used to measure the % area of positive labeling. P values from Mann Whitney test.  581 

Fig. 7: Inducible nitric oxide synthase (iNOS+). The mean percentage area of 582 

positive immunolabeling for iNOs+ within the lymph nodes and lung tissue for culture 583 

positive animals showed significant increase as the stage of granuloma increase 584 

from stage I to IV (p<0.05). For culture negative animals the iNOS+ immunolabeling 585 

fraction did not show any variation as the granuloma increases from stage I to IV. 586 

The results are expressed as means and SD. Fiji-ImageJ software was used to 587 

measure the % area of positive labeling. P values from Mann Whitney test. 588 
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Table 1: Antibodies used for immunohistochemistry 

Primary 

antibody 

Antibody type Supplier Dilution Antigen retrieval method  Secondary 

antibody  

Buffer  

CD68 Mouse versus human 

CD68(monoclonal) 

Dako, M0718 1:50 Trypsin/chymotrypsin Goat versus 

mouse (1/200) 

TBS 

CD3 Rabbit versus human 

CD3(polyclonal) 

Dako, A0452 

(Ely, UK) 

1:400 Trypsin/chymotrypsin* Goat versus 

rabbit (1/1000) 

TBS 

IFN- Mouse versus bovine IFN- 

(monoclonal) 

Serotec 

CC330 

1:200 Microwave, 396 min at 100°C, 

in citric acid buffer, pH6 

Goat versus 

mouse (1/200) 

TBS 

TNF-α Mouse versus bovine 

TNF- α 

Serotec MCA 

(Ab/15-3) 

1:100 Trypsin/chymotrypsin Goat versus 

mouse (1/200) 

TBS 

iNOS Rabbit versus mouse 

iNOS(polyclonal) 

Millepore 06-

573 

(Billerica, 

MA, USA) 

1:400 Microwave, high-pH buffer, 

295 min at 100°C 

Goat versus 

rabbit (1/1000) 

TBS 
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*Trypsin/chymotrypsin was prepared by measuring 0.5g of trypsin and 0.5g of chymotrypsin and 1g of CaCl2 were dissolved in 1L of distilled 

water and the resulting solution titrated to pH 7.8 using 0.1M sodium hydroxide solution.
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