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Abstract
We present a detailed numerical study of multi-component col-
loidal gels interacting sterically and obtained by arrested phase
separation. Under deformation, we found that the interplay be-
tween the different intertwined networks is key. Increasing the
number of component leads to softer solids that can accomodate
progressively larger strain before yielding. The simulations high-
light how this is the direct consequence of the purely repulsive
interactions between the different components, which end up en-
hancing the linear response of the material. Our work provides
new insight into mechanisms at play for controlling the material
properties and open the road to new design principles for soft com-
posite solids

1 Introduction
Gels are ubiquitous in soft matter with applications that range from
food1 to materials and biomaterials science2. In these systems, the
main feature is the presence of a ramified backbone that confers
the capability to sustain finite stresses. The building blocks of the
backbone (e.g. polymers3, proteins4,5, colloids6 or micelles) and
their geometrical nature can alter the mechanical response and,
for this reason, their design is of great technological importance.
The advances in syntesis have allowed the fabrication of colloidal
particles in a variety of sizes, shapes and functionality6–8, con-
tributing to the increasing interest in the field. Colloidal gels have
been used for a wide range of applications such as synthetic col-
loid porous materials9,10, functionalisation of surfaces and films
production11,12, ceramics processing13,14, foams15, protein sys-
tems16,17, food science1,18, soft matter6,19 and bio-engineering20.
One common route to colloidal gelation is through arrested phase
separation5,21–26. In this scenario, attractive forces between spher-
ical colloids, as originated by depletion or charge destabilisation,
induce a thermodynamics phase separation between two liquids at
different densities. The final equilibrium state, however, is never
reached due to the onset of a kinetic arrest that ultimately leads
to an arrested space spanning percolating network: the colloidal
gel27.
Different models have been proposed for colloidal gels, includ-
ing short range isotropic interactions21,22,24,25,28, anisotropic ef-
fective interactions29,30, patchy models31,32, short-ranged non-
central forces33 and dipolar particles34–36. The key idea is to de-
velop relatively simple, but microscopically relevant, particle mod-
els that can induce macroscopic structural disorder characterised
by complex spatio-temporal fluctuations and correlations typical of
kinetically arrested systems37.

In the last decade, several studies have focused on understand-
ing how the kinetics drives the self-assembly towards an out-of-
equilibrium gel phase, which is now well understood thermody-
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namically6,7,27. However, the rheological properties of colloidal
gels are still under active investigation38–45. Typically, the non-
linear mechanical response of gels is visco-elasto-plastic and the
prevalence of one behavior or the other may depend on the mode
of deformation compared to the observation time. The result is
a complex rheological behavior including shear banding, strain
hardening, creep, fracture, slip, ageing, rejuvenation and yield-
ing37,46,47. Indeed, when the shear stress is quite important, the
system ends up either fluidising like yield stress fluids, or frac-
turing like soft solids (see for example also protein gels or (bio) -
polymers)48–53. Thus, it is evident that understanding the physical
mechanisms that control colloidal gel response to external stimuli
is key to tune their macroscopic properties.

The examples discussed so far are characterised by a single
type of particle. However, it has been shown that increasing the
number of components can change dramatically the morphology
and connectivity of gels. For binary mixtures, for example, by
carefully tuning the inter-particle attractions it is possible to
obtain double colloidal gels, known as bigels, that are the result
of an arrested demixing54. As a matter of fact, double network
gel formation has been investigated in different systems, both ex-
perimentally and with simulations. These systems include patchy
particles31,32, mixtures of dipolar particles34–36, fumed silica-
based organogels55, protein mixtures56 and selective short range
interactions54,57,58. In all of them, interpenetrating networks of
two different gels that seem to exhibit non-intuitive mechanical
properties are formed54–58. In particular, aqueous-organic bigels
and two-protein bigels have been reported to exhibit an elastic
modulus higher than the sum of the elastic moduli of each of the
two forming gels55,56.

In the present work we use selective short-range interactions
to model multiple component gels. The case of two component
mixtures has already been studied and found to form bigels giv-
ing preliminary results of increase in the yield stress when com-
pared with monogels54,57,58. Indeed double networks have been
introduced as a strategy to obtain stronger and tougher materi-
als in the context of hydrogels or elastomers59,60 and hence those
results suggest that similar strategies could be attempted for col-
loidal gels. Here, using a model for colloidal gels similar to54, we
explore mixtures of up to three components to disentangle the im-
pact of the structure, the dynamics and the mechanical response
in these soft solids. In particular, we find that when the mutual
interactions between the different particle species are prevalently
repulsive, the multi-component gels are softer and allow for ac-
commodating much larger strains, leading to potentially tougher
but definitely softer materials.

2 Model and numerical simulations

2.1 Numerical model

We have developed a minimal 3D model for multi-component col-
loidal particle gels formed by a mixture of N spherical particles,
with m distinguishable species of diameter d. Our model uses selec-
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tive interactions: intra-species interactions uss are given by a short
range attractive well combined with a repulsive core à la Lennard-
Jones widely used to study gelation21,22 while inter-species inter-
actions uss′ are set as purely repulsive. These interactions are de-
scribed by the potential:

us(i)s( j)(ri j) =


Cε

[(
d
ri j

)p
−
(

d
ri j

)q]
+(1−δss′)U0 ri j < rss′

0 ri j ≥ rss′
.

(1)
The position vectors of all particles are given by {ri}, ri j = |rj−

ri| denotes the distance between two particles (i and j) and s(i) is
the species of particle i. The additive term containing U0 guaran-
tees that the potential is zero at the cut-off. All the particles have
the same diameter d = 1 which defines the length units while the
energy units are defined such that ε = 1 for all species.

The exponents p and q in Eq. 1 define the range of the attraction,

and are set to p = 36 and q = 24. The constant C = p
p−q

(
p
q

)q/(p−q)

ensures that the minimum is at ε = 1 while the cut-off parameter
rss′ sets the range of the interaction. The cut off is chosen such that

rss′ =


1.6d s = s′ intra− species

1.03d s 6= s′ inter− species
. (2)

For s 6= s′, the cut off distance corresponds to the minimum
of the potential. In this way, the attractive well is present for
same species while the potential is purely repulsive for differ-
ent ones. The shift value U0 is chosen accordingly such that
uss′(rss′) = 0. The total energy for a mixture of N particles is given
by U(ri, ...,rN) = ∑ j>i us(i)s( j)(ri j).

2.2 Initial arrested multi-gel structures

The initial configurations are composed of N = 5.53×104 particles
in a cubic simulation box of size L with periodic boundary condi-
tions. The particle volume fraction φ is estimated as the fraction
of the total volume V = L3 that is occupied by the N particles
φ = Nπd3/6V . All gel configurations are prepared starting from a
gas at kBT/ε = 10 which is quickly cooled down to kBT/ε = 0.01
and then let evolve. Afterwards, this gel configuration is further
quenched by running a simulation with the dissipative viscous dy-
namics as proposed in39:

m
d2ri

dt2
=−ξ

dri

dt
−∇riU. (3)

Where m is the particle mass and ξ the friction coefficient. We
use m/ξ = 1.0τ∗, with τ∗ =

√
md2/ε the molecular dynamics

time unit in our simulations, which corresponds to the overdamped
limit61. The kinetic energy is drawn from the system down to
a value lower than 10−10, which leads to a final arrested config-
uration corresponding to a local minima of the potential energy
known as the inherent structure62. All simulations have been per-
formed in LAMMPS63 with a time step of δ t = 5× 10−4τ∗ in the
initial sample preparation runs.

2.3 Mechanical tests

The mechanical properties of our colloidal gels are investigated
through (i) small amplitude oscillatory rheology (SAOR) to char-
acterise the linear response and (ii) continuous strain deformation
for large deformations.

2.3.1 Small Amplitude Oscillatory Rheology

The frequency dependence response is measured by imposing an
oscillatory shear strain to the system of the form γ(t) = γ0 sin(ωt).
Here, the new dynamics is given by

m
d2ri

dt2
=−∇riU−ξ

(
dri

dt
− γ̇(t)yiex

)
. (4)

We follow39 and compute the average state of stress of the gel
σαβ using the zero temperature virial definition64 ,

σαβ =
1
V

N

∑
i=1

∂U
∂ rα

i
rβ

i . (5)

Where α,β stand for the Cartesian components {x,y,z}. Here we
have only considered the pairwise energy contribution, the kinetic
term mvα

i vβ

i as well as any contribution from the viscous drag in
Eq. 7 are ignored as the velocities for all the particles are small for
all shear rates. During each cycle, we compute the shear stress σxy
referred as σ in the rest of the paper.

For visco-elastic solids, the shear stress can be decomposed as:

σ(t) =γ0

[(
G′1(ω,γ0)sin(ωt)+G′′1(ω,γ0)cos(ωt)

)
+
(
G′3(ω,γ0)sin(3ωt)+G′′3(ω,γ0)cos(3ωt)

)]
. (6)

Where we have considered an expansion up to the third harmonic,
with G′(ω,γ0) and G′′(ω,γ0) the storage and loss moduli, respec-
tively. The indexes 1 and 3 indicate the first and third harmonic
expansion. The first term in this expression is the relevant part in
the linear regime. The moduli are extracted by a simple Fourier
transform of σ and γ.

2.3.2 Continuous strain by step deformation

Following the same scheme as in39, a series of incremental strain
steps in simple shear geometry are applied to samples produced
as previously described. For each step, the cumulative strain is
increased by ∆γ . This is done by first applying an instantaneous
affine deformation Γ∆γ , which describes a simple shear in the xy
plane:

r′i = Γ∆γ ri =

1 ∆γ 0
0 1 0
0 0 1

ri. (7)

After the boundary conditions are updated, the affinely deformed
configuration is relaxed by allowing the system to evolve following
Eq. 3 while keeping the global strain constant. After repeating the
previous procedure for n steps, the cumulative strain is γ = n∆γ.
In our measurements, we chose a strain increment of ∆γ = 0.01
and a relaxation time interval ∆t such that the shear rate is γ̇ =
∆γ/∆t = 10−5τ

−1
0 , with τ0 = ξ d2/ε the time it takes a particle

subjected to a typical force ε/d to move a distance equal to its size.
The integration time step has been set to δ t = 5× 10−3τ∗ for all
the mechanical tests.

2.4 Structural and dynamical microscopic observables

The structure of multi-component mixtures is characterised both
prior to and during deformation by measuring the pore chord
length probability distribution function p(`). This observable is
defined as the probability p(`)d` of finding a chord length between
` and `+ d`65,66 inside a pore. It is obtained by randomly sam-
pling chord lengths on randomly chosen points. This distribution

2



function maps the pore size, and is used here to characterise in-
herent structures and the effect of deformation in the pore size of
the networks. During deformation we keep track of the average
chord length 〈`〉, and use this quantity to compare the changes in
different mixtures.

At the local scale, we track the dynamics of the formation and
breaking of bonds. Two particles of the same species are consid-
ered bonded when the center to center distance is r ≤ 1.3d, at
longer distances the energy of the bond is considered negligible.
In our simulations, we keep track of the average number of bonds
per particle in the mixtures, which we define as

〈nb〉=
1
m

m

∑
s=1
〈ns〉. (8)

With 〈ns〉 the average number of bonds for species s and m the
total number of components. This quantity is calculated before
and during shearing.

The non-affine squared displacement in continuous strain defor-
mation is measured for all the systems studied. This quantity is
calculated at a step n using the previous step (n− 1) as reference,
and is defined as

〈∆2
n〉=

1
N

N

∑
i=1

(
ri,n−Γ∆γ ri,n−1

)2
. (9)

This is a per-particle quantity, and measures the variation in defor-
mation (from the one imposed) after each step.

3 Results

3.1 Structural characterisation

We study three different mixtures with one (1C), two (2C) and
three (3C) components. In a given mixture, all components are at
equal relative concentrations cm = φm/φtot = 1/m, with m the to-
tal number of species in each mixture. We have explored packing
fractions in the range 0.10 ≤ φtot ≤ 0.30. Following the quenching
procedure discussed above, the three mixtures form gels charac-
terised by a geometrically percolated network for each component.
These structures are the result of an arrested phase separation. For
the 1C this corresponds to a colloidal gel22,28, while the 2C con-
figuration is originated by an arrested demixing that results in a
bigel54,58. The ternary mixture, i.e. 3C, forms the extension of
a bigel, a trigel. Typical snapshots of the final arrested configura-
tions for the three mixtures at φtot = 0.10 are presented in Fig. 1.
From the images, it is clear that bigels and trigels present inter-
twined networks which result from the gelation process. This by-
eye observation was confirmed by a careful characterisation of the
percolation of each component.

The pore chord length probability distribution function p(`) was
measured for all structures, Fig. 2 shows results for the three mix-
tures at three different packing fractions. At each value of the over-
all packing fraction, one can see that the pore size does not changes
significantly with increasing the number of components, indicat-
ing that each component is forming strands that are progressively
thinner. This is confirmed by the average number of bonds per par-
ticles that is also progressively lower, with increasing the number
of components, since bonds can only be formed by particles of the
same species. By comparing the packing fractions, it is evident that
the distributions tend to move to lower values of ` on increasing
the density. This effect is not surprising and is a consequence of
the dependence of the pore size on density. More interesting is the
comparison between different mixtures for the same packing frac-
tions. At φtot = 0.10 (Fig. 2a), the initial structures are similar for

all mixtures, in agreement to what was found for bigels54. Upon
increasing the packing fraction, the chord length distributions for
bigels and trigels start to show deviations from the monogel. At
φ = 0.30 (Fig. 2c), the highest packing fraction investigated, p(`)
shows a shift towards smaller `, which highlights the presence of
smaller holes with respect to the monogel.

The number of components at a fixed packing fraction affects
locally the structure of the arms in the gels. This difference can be
observed in the average number of bonds per particle 〈nb〉, which
are lower for multi-gels compared to monogels (Fig. 2d) and lead
to thinner arms. As expected, increasing the number of compo-
nents exposes more surface. It is possible that the range of attrac-
tive interactions, set in our model by the exponent values p = 36
and q = 24 in Eq. 1, might play an important role but this was not
explored in this work.

3.2 Gels under deformation

The load curves (stress vs strain) for gels, bigels and trigels at
φtot = 0.20 and equal relative concentrations are shown in Fig. 3a.
We notice immediately that, in contrast with what was observed
for the static quantities, the stress response displays a more com-
plex pattern of variations between the three systems.

In particular, two main differences stand out. The first one is re-
lated to the location of the yielding point where the stress reaches a
maximum and strong plastic effects are expected to set in. Increas-
ing the number of components, and consequently the complexity
of the structures, results in a shift of the yielding point to higher
strain values. At the same time, the shear modulus at low strain,
which can be interpreted as the elastic response of the material,
decreases with the number of components. This unusual feature
indicates that multi-gels are softer but yield at larger strains.

The second observation pertains the linear (elastic) regime.
This regime seems to extend over a higher range of γs for more
than one component, as indicated by the black solid lines in
Fig. 3a. It appears that, the increasing complexity of the structures
in multicomponent gels leads to a more stretchable material
which is capable of sustaining an extended linear elastic regime.
It must be stressed that the term linear used in this context refers
only to the linearity of the relation between stress and strain, and
not to local microscopic elastic behaviour. In other words, the
response is expected always to be visco-elastic and microscopic
plastic events (such as breaking and reformation of interparticle
bonds) can occur.

To explore further this visco-elastic behaviour, we use small
amplitude oscillatory rheology to measure the Lissajous curves
(Fig. 3b-d) using Eq. 6 with a maximum strain of γ0 = 0.08 at
an equivalent shear rate ωγ0 = 10−5τ

−1
0 . This representation can

be used to decouple the elastic contribution from the viscous one,
in the stress tensor, at a fixed amplitude. This particular γ0 value is
used as a qualitative measurement to illustrate the differences be-
tween the three systems at a total strain deformation of γ = 0.08
(dashed line in Fig. 3a).

For each system, σ is calculated using both a first harmonic ap-
proximation (black curves) and a third harmonic approximation
(orange curves). The former corresponds only to the first term
in Eq. 6, the latter considers the full equation. In these figures,
only the reconstructions up to the first and third harmonics are
shown (Eq. 6), which are sufficient for our systems since higher
order terms do not give a relevant contribution. The full simula-
tions data are not reported as they are indistinguishable, in this
strain regime, from third harmonic approximation. The monogel
shows a deviation from the ideal visco-elastic regime, testified by
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Figure 1 Snapshots of arrested phases at φtot = 0.10 for monogel, bigel and trigel. The interactions (attractive or repulsive) are also depicted for each
species
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Figure 2 a-c) Effect of the number of components in the chord length
distribution p(`), for different total packing fractions. d) Average number of
bonds per particle at different packing fractions. Bonds form only between
same species.

the deviation of the Lissajous curve from a perfect ellipse, which
is expected when higher order harmonics are non-negligible. On
the other hand, multicomponent gels display an ideal viscoelastic
behavior. We concluded that the nonlinear terms at γ = 0.08 are
more significant for the monogel than for multi-component sys-
tems. Thus, multi-component systems have an unexpected ex-
tended linear regime with respect to monogels, reinforcing the
idea that more complex interdigitated gel structures have an in-
ternal stress relaxation mechanism that is capable of extending the
linear behavior. Another interesting observation is that the area of
the ellipse is shrinking as the number of components are increased,
confirming the more elastic behavior of multicomponent gels. Fi-
nally, above yielding, the monogel overshoots and the stress starts
to decay. This could be an indication of brittle to ductile transition,
as observe in well annealed glasses67, upon increasing the number
of components.

To further explore the linear regime, we extracted the zero-
frequency shear modulus G0 for small deformations (γ0 = 0.01)
from the frequency dependent elastic modulus G′(ω). The results
are in Fig. 4, which shows G0 as a function of the total packing
fraction for different components. On the one hand, the fact that
the gels are progressively softer, with increasing number of com-
ponents, is consistent with progressively thinner strands for each
component and a comparatively lower average number of bonds
per particle, as indicated by the structural analysis in Fig.2. G0
grows with packing fraction for the same mixture, as expected,
but decreases on increasing the number of components, which is
consistent with low strain behavior in Fig. 3a. On the other hand,
the dependence of G0 with the volume fraction seems to change
with increasing the number of components.

A natural question that arises at this point is if we can con-
sider each component as an independent elastic element that con-
tributes to the overall mechanical behaviour. We propose to model
our system as a set of elastic springs connected in parallel. In this
approach, each component will be an elastic element and the over-
all spring constant will be the sum of each component’s constant.
Within this approximation, the low frequency elastic modulus G0
of a multi-gel can be written as:

G0 ≈∑
s

G0,s = mG0,m. (10)
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Figure 4 Low frequency elastic modulus G0 as a function of total packing
fraction φtot . The inset shows the elastic modulus of each component
Go,m, for mixtures with m = 1,2,3 species, at an effective packing fraction
φm = φtot/m. The dashed line follows G0,m ∝ φ k

m with k = 4.

Where G0,m is the low frequency elastic modulus of an isolated
component in a mixture of m species. Quite naturally, we have
assumed that at equal relative concentrations G0,m is the same for
all species. From Eq.10, we can see that G0,m = G0/m which
is a consequence of our approximation. At the same time, each
component is at m-dependent packing fraction φm = φtot/m. If our
approximation holds, the data for the different mixtures should
collapse on the same master curve.

As shown in in Fig. 4, this scaling is a decent first approxi-
mation, with the difference that the elastic modulus is slightly
shifted to higher values for multi-gels. This plot also indicates
that the elastic modulus of each component scales as G0,m ∝ φ k

m,
and that the exponent k is roughly equal to four in the three
cases. As expected, the data collapse seems to break at high
densities where the microscopic structures are more different, as
can be seen in the number of bonds in Fig. 2d. In this regime,
the variation in the number of bonds comes from the interaction
potential, and affects the scaling in Fig. 4. Nonetheless, the
inset agrees with a model of springs in parallel and explains
the origin of the complexity in the response to deformation for
multi-gels. These results suggest that the small deformation
regime can be taken into account with a simplified model that
does not includes cooperative effects between the different gel
strands. However, it does not explains the peculiar mechanical
behaviour that is seen in Fig.3. This opens the question: what is
the origin of the highly resilient behavior of multicomponent gels?.

To unravel the mechanisms at play, we now look at the micro-
scopic configuration changes in samples during continuous defor-
mation. The rest of the analysis focuses only on samples at a
total packing fraction φtot = 0.20, which is chosen as a represen-
tative packing fraction for the range of values explored. First,
we look at the evolution of the number of bonds. Fig. 5a shows
the rate of increment in the average number of bonds per par-
ticle, 〈nb(γ)〉/〈nb(0)〉− 1, at a particular strain γ = n∆γ with re-
spect to the initial configuration. From this graph, it is clear that
the number of bonds increases at a higher rate for monogels than
for bigels and trigels. Next, this information is complemented by
analysing the spatial rearrangements during deformation with the
non-affine squared displacement 〈∆2

n〉. Fig. 5b shows that the trigel
displays not only the more important microscopic rearrangements
for the bonding pattern but also that particle non-affine displace-
ments are bigger in systems of more than one component and are
mainly plastic in nature (i.e. related to bond breaking or forma-
tion). These non-affine displacements are not only bigger but also
delocalised, as can be seen in Fig. 5d-e which show the non-affine
displacement vectors for a monogel and a trigel at a strain value
γ = 0.4 (see Movies).

The last quantity we look at is the pore size during deformation,
which characterises the evolution of the global structure. Fig. 5c
shows the average chord length 〈`〉 for the three mixtures dur-
ing deformation, with a smaller increment for multi-gels which
indicates less macroscopic structure changes than in the monogel.
Fig. 5c also shows that in trigels 〈`〉 deviates more slowly from the
initial values than in monogels, indicating that trigels keep their
macroscopic structure for longer.

Fig. 3 and 5 convey an unexpected picture. On one side, systems
with a larger number of components present an extended linear
regime (Fig. 3) but, at the same time, they display more dramatic
microscopic rearrangements (Fig. 5b). This hints to a self healing
mechanism which helps the gels restructure via large non-affine
displacements, due to the steric hindrance between non interac-
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tive components, maintaining their original overall load-bearing
structure for longer.

Such results provide a more clear picture of the microscopic and
macroscopic behaviour of multi-component gels. The presence of
multiple components delays the permanent damage of the gels
when deformed, and allows these materials to maintain a sim-
ilar pore structure during deformation for bigger strains than a
monogel. This toughening mechanism is presumably due to the
activation of low frequency modes through the excitation of softer
regions that accommodate the strain by deforming the gel along
the direction that cost less energy through higher non-affinity.

4 Conclusions
In this work we have investigated the link between the structure
and the mechanical properties of a new class of gels made by in-
tertwined (and mutually repulsive) multi-component networks. At
low density, the structural analysis shows similar pore size distri-
bution widely spread over several length scales, that tend to ho-
mogenise with increasing the overall density. Multi-component
gels form thinner arms that lead to a decrease in the shear mod-
ulus as well as an extended linear response under deformation.
These soft structures provide the possibility to self-reorganise and
heal the gels, accommodating larger deformations. The physi-
cal mechanism involves large non-affine deformations originated
from steric interactions that prevent a local compactification of the
structure. Our work shows that the combination of this collective
reorganisation of the arrested structures and the interspecies inter-
actions can lead to new mechanical properties.
The model presented here is clearly simplified but the mechanism
for the unusual mechanical behaviour is a result of the interplay
between the interpenetrating networks, a situation that is encoun-
tered in a lot of soft matter systems. In particular, the preservation
of the network structure at larger deformations can be of great
importance for a lot of applications in which one looks for soft
materials that are able to preserve their connectivity such as soft
robotics68, dielectric elastomers69 and stretchable electronics70.
Similar forms of gels have been been realised recently using differ-
ent approaches, but we want to stress an important point. One of
the main features of our model is the fact the individual gels that
compose the multi-gels are identical. This is a substantially differ-
ent situation to double polymeric network gels where properties
such us self healing and toughness are encoded independently in
the two networks59. In our case, the unusual mechanical proper-
ties are solely a consequence of the inter-gels interactions. In this

sense, our work tries to shed a light on the physical behavior of
multi-gels as originated solely by the cooperative effects between
the individual components. In the future, we would like to inves-
tigate the role of possible variations of the types of components. It
would be interesting, for example, to see what happens when the
bond energies of one of the species are varied and different inter-
actions between the components are possible. Another aspect, that
we have only partially addressed, is the effect of varying the pro-
tocol to gelation. As a matter of fact, gels are out-of-equilibrium
solids and their thermal history is highly coupled to their struc-
ture. Finally, it would also be interesting to look more in detail
into fatigue tests. It has been shown that glasses, under periodi-
cal deformation, are able to go under annealing and hardening71.
Gels, with their heterogeneous structure, are intriguing for us in
this respect.
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MeiÄĞ, and Mladen Å¡iniÄĞ. Surface-enhanced raman scat-
tering on colloid gels originated from low molecular weight
gelator. Journal of Raman Spectroscopy, 39(12):1799–1804,
2008.

[12] Q. Wang, L. Wang, M.S. Detamore, and C. Berkland.
Biodegradable colloidal gels as moldable tissue engineering
scaffolds. Advanced Materials, 20(2):236–239, 2008.

[13] Hans M. Wyss, Elena V. Tervoort, and Ludwig J. Gauckler.
Mechanics and microstructures of concentrated particle gels.
Journal of the American Ceramic Society, 88(9):2337–2348,
2005.

[14] Iwan Schenker, Frank T. Filser, Tomaso Aste, and Ludwig J.
Gauckler. Microstructures and mechanical properties of
dense particle gels: Microstructural characterisation. Journal
of the European Ceramic Society, 28(7):1443 – 1449, 2008.
Developments in Ceramic Science and Engineering: the last
50 years. A meeting in celebration of Professor Sir Richard
Brook’s 70th Birthday.

[15] Joseph T. Muth and Jennifer A. Lewis. Microstructure
and elastic properties of colloidal gel foams. Langmuir,
33(27):6869–6877, June 2017.

[16] Frédéric Cardinaux, Thomas Gibaud, Anna Stradner, and Pe-
ter Schurtenberger. Interplay between spinodal decomposi-
tion and glass formation in proteins exhibiting short-range
attractions. Phys. Rev. Lett., 99:118301, Sep 2007.

[17] Kitty van Gruijthuijsen, Vishweshwara Herle, Remco Tuinier,
Peter Schurtenberger, and Anna Stradner. Origin of sup-
pressed demixing in casein/xanthan mixtures. Soft Matter,
8:1547–1555, 2012.

[18] J. Kroll. E. dickinson: An introduction to food colloids. 207
seiten, zahlr. abb. oxford university press, oxford, new york,
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