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Abstract

The aim of this paper is to compare the performance of a local solution
technique – namely Sequential Linear Programming (SLP) employing random
starting points – with state-of-the-art global solvers such as Baron and more
sophisticated local solvers such as Sequential Quadratic Programming and In-
terior Point for the pooling problem. These problems can have many local
optima, and we present a small example that illustrates how this can occur.

We demonstrate that SLP – usually deemed obsolete since the arrival of fast
reliable SQP solvers, Interior Point Methods and sophisticated global solvers
– is still the method of choice for an important class of pooling problem when
the criterion is the quality of the solution found within a given acceptable
time budget. On this measure SLP significantly ourperforms all other tested
algorithms.

In addition we introduce a new formulation, the qq-formulation, for the case
of fixed demands, that exclusively uses proportional variables. We compare the
performance of SLP and the global solver Baron on the qq-formulation and
other common formulations. While Baron with the qq-formulation generates
weaker bounds than with the other formulations tested, for both SLP and
Baron the qq-formulation finds the best solutions within a given time budget.
The qq-formulation can be strengthened by pq-like cuts in which case the same
bounds as for the pq-formulation are obtained. However the associated time
penalty due to the additional constraints results in poorer solution quality
within the time budget.
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1 Introduction

The Pooling Problem is the problem of mixing a set of raw materials to form a
specified set of final products in such a way that the products satisfy a set of given
limits on the concentration of certain qualities. The composition of these qualities
in the inputs is a known parameter of the model (although it may assumed to be
stochastic in some variants). In the standard Diet Problem the products are directly
mixed straight from the inputs, which results in a linear model. In the Pooling
Problems the inputs can also flow through a sets of mixing bins, as illustrated
Figure 1. The compositions of these mixing bins are variables of the problem and
this results in the mixing constraints being non-linear (indeed bilinear). This makes
the problem non-convex and thus it can have local solutions.

Raw 1

Raw 2

Raw 3

Raw 4

Prod 1

Prod 2

Prod 3

Prod 4

Bin 1

Bin 2

Bin 3

Figure 1: Superstructure of the standard Pooling Problem

The Pooling Problem was first described by Haverly[8] in the late 1970’s and
shortly after Lasdon[9] proposed Sequential Linear Programming (SLP) as a solu-
tion method. Since then the pooling problem has become a much studied global
optimization problem with applications in the oil and coal industry and general pro-
cess optimization in chemical engineering. It has been one of the problems driving
progress in global optimization solvers over the last few decades [1].

The problem of interest to us is a version of the pooling problem arising in the
modelling of animal feed mills. Compared to other application areas, animal feed
problems are often large scale (with up to a hundred raw materials and products
and several dozen bins) and there are many more qualities (nutrients in this case)
and restrictions on them than, say, in problems originating from the oil or coal
industry (where there are only a few qualities, such as sulphur or octane level, that
need to be taken care of). In addition the demands are fixed, firm orders, which
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need to be satisfied exactly, rather than maximum demand levels. Therefore, unlike
the pooling formulations from the literature, the model does not have the freedom
to decide which products to produce. It may seem that this substantially simplifies
the problem: it is well known that the pooling problem is NP-hard[7], however
the proofs typically exploit this combinatorial choice to establish NP-hardness. We
will show by an example that even when there are fixed orders for all products
there can be many local solutions of the problem. Figure 1 also shows some direct
connections from the raw materials to the products. These are called straights.
They are typically not available for all raw material/product combinations and even
where they are they can only be used at a premium cost. Further, while Figure 1
shows connections for all raw materials and bin combinations and likewise for all
bin and product combinations, the set of allowable flows might be a much sparser
network. There are variants of the animal feed problem for both the standard
pooling problem and the general pooling problem (with bins allowed to feed into
bins), however in this paper we concentrate on the standard pooling problem.

In the context of the Pooling Problem the usual nomenclature is to speak of
inputs (or sources), pools and outputs (or targets or products). Restrictions are on
qualities of the inputs (and outputs). We will use these terms, but in the specific
context of animal feed mills also refer to them as raw materials, (mixing) bins and
products, and we refer to the qualities as nutrients, though they can represent more
general properties such as energy or water content.

The pooling problem is a well studied global optimization problem and most
contributions to the literature are concerned with solving the problem to proven
global optimality[10, 7]. In this paper we have a slightly different motivation:
rather than solving the problem to global optimality (which for larger problems
may well not be achievable, at least within a reasonable time) we are concerned
with finding as good a solution as possible in a limited timeframe. This point of
view is closer to the concerns of practical applications (at least for animal feed mills
where these problems have to be solved many times per day and additional cost
due to suboptimal solutions are not so high to make more effort worthwhile).

This paper is laid out as follows. In the following section we review the stan-
dard formulations of the pooling problem and introduce our formulation, which we
term the qq-formulation, that only uses proportional variables. As far as we are
aware this is a new formulation. In Section 3 we provide some insight into how a
small problem can have many local solutions even for fixed demands. Section 4 we
describe the solvers that we compare including our implementation of Sequential
Linear Programming (SLP). Section 5 presents numerical comparisons of the local
solution methods with Baron while in Section 6 we draw our conclusions.

2 Review of standard pooling problem formulations

The following sets, parameters and variables are used in the formulations:

◦ Sets:
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i ∈ I Set of inputs/raw materials,
m ∈ M Set of pools/bins/mixes,
p ∈ P Set of outputs/products,
n ∈ N Set of nutrients.

◦ Parameters:
ri,n nutrient composition (amount of nutrient per unit mass) of raw material i,

dpn, dpn lower and upper bounds on nutrient composition of product p,

ci per unit cost of raw material i – when used through bins,
csi per unit cost of raw material i – when used directly (straights),
pp per unit selling price of product p,
tp tonnages: (maximum) demand for product p.

◦ Variables (p-formulation):
vmn nutrient composition of bin m,
fim, fmp flows from raw material i to bin m and from bin m to product p,
fip flow from raw material i to product p (straights).

◦ Variables (other formulations):
λmi proportion of bin m that originates from raw material i,
µpi proportion of demand p that originates from raw material i,
µpm proportion of demand p that originates from bin m,
dpn nutrient composition of demand p,
cdp per unit cost of product p,

cmm per unit cost of bin m.

2.1 PQ-formulation (variables fmp, fip, λmi)

The earliest mathematical formulation of the problem was the p-formulation [8]
which can be seen as a flow-formulation of the problem. Its variables are the total
flows fim from raw materials to bins and onto products as well as the nutrient
composition of the bins vmn.

However, the standard formulation used today is the pq-formulation due inde-
pendently to Quesada and Grossmann [11] and Tawarmalani and Sahinidis [12]. It
is a strengthening of the earlier q-formulation proposed by Ben-Tal et al. [2]. Both
the pq- and q-formulation introduce proportion variables λmi ≥ 0 :

∑

i λmi = 1
that give the proportion of material in pool m originating from raw material i, and
expresses the nutrient content of the bins in terms of these proportional variables
and the nutrient content of the raw materials. The pq-formulation of the pooling
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problem can be stated as

min
f≥0,λ≥0

∑

i∈I



ci
∑

m∈M

∑

p∈P

λmifmp + csi
∑

p∈P

fip



−
∑

p∈P

pp

(

∑

i∈I

fip +
∑

m∈M

fmp

)

(1a)

s.t.

product
demand

[

∑

i∈I

fip +
∑

m∈M

fmp ≤ tp, ∀p (1b)

convexity

[

∑

i∈I

λmi = 1, ∀m (1c)

product
quality





∑

i∈I

rinfip +
∑

m∈M

∑

i∈I

rinλmifmp







≤dpn(
∑

i∈I

fip +
∑

m∈M

fmp),

≥dpn(
∑

i∈I

fip +
∑

m∈M

fmp),







∀p, n

(1d)

pq-cuts

[

∑

i∈I

λmifmp = fmp, ∀p,m (1e)

Here (and in what follows) there are two different unit prices for each raw material:
the costs of using raw-materials as straights, i.e. feeding directly into the products
(through the fip at price csi ) is higher than when they are supplied via the mixing
bins (i.e. variables fim at cost ci : ci < csi ). Typically straights are only allowed for
a subset of raw material/demand combinations.

The only bilinear terms in this formulation are the λmifmp appearing in (1a),
(1d) and (1e): the remainder of the problem is linear.

The final set of constraints are the pq-cuts. They are redundant, indeed they are
obtained by multiplying (1c) with fmp. Their advantage is that they provide extra
(linear) constraints for the bilinear terms λmifmp,∀i,m, p which are already part
of the formulation, and this results in significantly tighter relaxations. However,
their use does not come for free: there is one of these constraints for every choice
of p ∈ P,m ∈ M which increases the number of constraints (roughly by a factor
1 + |M|/(|N | + 1) - see Section 2.3). The pq-formulation without the pq-cuts is
indeed the q-formulation of Ben-Tal et al.

The pq-formulation does not explicitly include variables giving the nutrient
composition of the bins or the total use of each raw material. If there are con-
straints on the nutrient compositions in the bins, these can be expressed by explic-
itly including the variables vmn and the linear constraints vmn =

∑

i∈I λimrin. If
constraints on the availability of raw material are given, then flows fim from raw
materials to bins would have to be calculated via the additional bilinear constraints
fim = λmi

∑

p∈P fmp.
Note that in this formulation the objective is to maximize the net profit (i.e.

difference between selling price and production cost) for each product. While there
is an upper limit tp on how much can be produced of each product p the optimization
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can decide to produce less (or even nothing at all). In the absence of capacity
restrictions (on either raw materials or bins), it is always optimal to produce at the
upper limit (if the product is to produced at all), however it may well be optimal
not to produce a product at all (in case where this would place undue restrictions
on the composition of the pools). This adds a combinatorial choice to the other
obvious non-convexities arising from mixing constraints.

In the case of interest to us, this choice is not present: Indeed, tp, rather than
being an upper bound, is a firm order that has to be satisfied. This has some con-
sequences for the formulation of the problem: constraint (1b) becomes an equality
and the terms

∑

i fip +
∑

m fmp in (1d) and the objective can be replaced by a
constant tp. Indeed the second half of the objective is then a constant and can be
dropped. Thus formulation (1) can be replaced by the somewhat simpler form

min
f≥0,λ≥0,d

∑

i∈I



ci
∑

m∈M

∑

p∈P

λmifmp + csi
∑

p∈P

fip



 (2a)

s.t.

product demand

[

∑

i∈I

fip +
∑

m∈M

fmp = tp, ∀p (2b)

product quality

[

∑

i∈I

rinfip +
∑

m∈M

∑

i∈I

rinfmpλmi = dpntp, ∀p, n (2c)

convexity

[

∑

i∈I

λmi = 1, ∀m (2d)

pq-cuts

[

∑

i∈I

λmifmp = fmp, ∀p,m (2e)

bounds
[

dpn ≤ dpn ≤ dpn, ∀p, n (2f)

where the new variables dpn explicitly denote the nutrient composition of the prod-
ucts. As a consequence product quality constraint (1d) can be expressed as simple
bounds (2f) on the dpn. Note that (2c) could be used to substitute out dpn from
(2f) thus removing the explicit variables. We refer to this formulation as the pqs-

formulation in what follows.

2.2 A new model: QQ-formulation (variables µmi, λpi, λpm, vmn, c
m
m, dpn, c

d
p)

A different formulation, which we call the qq-formulation, and which as far as we
are aware has not been described in the literature, uses only proportion and no flow
variables. That is, flows fmp and fip are removed from the formulation and instead
proportions µpi ≥ 0, µpm :

∑

i µpi +
∑

m µpm = 1 are introduced that represent the
fraction of product p that originates from pools m or raw materials i respectively.

The nutrient composition vmn of pools and dpn of products can be calculated
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using

vmn =
∑

i

λmirin, ∀m,n, (3a)

dpn =
∑

i

µpirin +
∑

m

µpmvmn, ∀p, n. (3b)

Since this formulation does not include any flow variables the objective function
needs to be changed. In this formulation variables cmm, cdp representing per-unit
prices of pools (mixes) and products (demands) are introduced and set via the
constraints

cmm =
∑

i∈I

λmici, ∀m (4a)

cdp =
∑

i∈I

µpic
s
i +

∑

m∈M

µpmcmm, ∀p. (4b)

The complete qq-formulation is thus

min
λ≥0,µ≥0,d,cd,m,cm

∑

p∈P

tpc
d
p (5a)

s.t.

pool quality

[

vmn =
∑

i∈I

λmirin, ∀m,n (5b)

product quality

[

dpn =
∑

i∈I

µpirin +
∑

m∈M

µpmvmn, ∀p, n (5c)

convexity-m

[

∑

i∈I

λmi = 1, ∀m (5d)

convexity-d

[

∑

i∈I

µpi +
∑

m∈M

µpm = 1, ∀p (5e)

price pools

[

cmm =
∑

i∈I

λmici, ∀m (5f)

price products

[

cdp =
∑

i∈I

µpic
s
i +

∑

m∈M

µpmcmm, ∀p (5g)

bounds
[

dpn ≤ dpn ≤ dpn, ∀p, n (5h)

The bilinear terms in this formulation are µpmvmn and µpmcmm appearing in con-
straints (5c) and (5g).

A constraint similar to the pq-constraint (1e) can be derived by substituting
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vmn from (5b) into (5c) and then multiplying (5d) by µpm,∀p,m to obtain

dpn =
∑

i

µpirin +
∑

m

∑

i

µpmλmirin, ∀p, n (6a)

∑

i

µpmλmi = µpm, ∀p,m (6b)

Again the introduction of these strengthening constraints comes at the cost of
increasing the problem size. We call this strengthened qq-formulation the qq+-

formulation in the later sections.
There is a close connection of the qq-formulation with the q/pq-formulations

through the relations
fip = µpitp, fmp = µpmtp (7)

Indeed the qq-formulation can be obtained from the pq-formulation by using the
above to substitute out the fip and fmp variables.

Note that the qq-formulation does not include any flow variables so if there
are any capacity limits on pools or availability limits for raw materials then flow
variables would need to be added where needed by explicitly including the (bilinear)
constraints (7). On the other hand, limits on nutrient composition of the bins
can be modelled by simple bounds on the vmn, whereas in the pq-formulation
additional variables and constraints are needed to model these composition bounds
as described earlier on page 5. Our test problems have bounds on the nutrient
composition of the bins but not on the raw material availability. The next section
summarizes the situation.

2.3 Size of Formulations

The table below summarises the size (number of constraints and variables) of the
different formulations of the pooling problem as given in (1), (2) and (5). Here
N=#nutrients, I=#raw materials, M=#bins, P=#products, and S=#straights
(raw materials that can be used directly in products).

form variables constraints

q (S +M)P + IM P (2N+1) +M
pq (S +M)P + IM P (2N+1) +M +MP
pqs (S +M)P + IM + PN P (N+1) +M +MP

qq (S +M)P + IM + (M + P )(N+1) P (N+1) +M +M(N+1) + P
qq+ (S +M)P + IM + (M + P )(N+1) P (N+1) +M +M(N+1) + P +MP

We note that

◦ The pq-constraints (2e/6b) introduce an additional MP constraints to either
the q- or qq-formulation.

◦ The qq-formulation has explicit vmn variables. When these are needed (for
example to express bounds on the pool quality) the other formulations (q,
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pq, pqs) need a further MN variables and constraints. This accounts for
the major size difference between the formulations. Since our test problems
have bounds on the nutrient composition the size of the qq-formulations and
the pqs-formulation with those added variables and constraints are roughly
comparable.

◦ If there are limits on the amount of available raw materials, these can be
expressed directly as I linear constraints in formulations with explicit flow
variables (namely p, q and pq), while the qq-formulation would need to intro-
duce additional bilinear constraints.

◦ The qq-formulation has an additional M + P + PN variables and M + P
constraints compared to the q/pq/pqs-formulations. These are due to the
explicit cm, cd and dpn variables (the latter two of which could be substituted
out).

3 Occurrence of Local Solutions

Despite having fixed demands the pooling problems that arise in animal feed mills
often have large numbers of local optima. To understand the reason for this it
is helpful to view the problem in nutrient space, with the compositions of each
raw material, product and bin as points in this space. The bins must lie in the
convex hull of the raw materials, and for the problem to be feasible the product
specifications must also lie there.

Fig. 2 shows an illustrative example with 2 nutrients. The two dimensions are
the amounts of each nutrients per unit weight. There are 7 raw materials, 6 at
the vertices of the outer black hexagon, each with a unit cost of 6, and one at its
centre, with a unit cost of 1. There are no limits on their supply. There are 6
products, which are at the corners of the inner green hexagon, each with demand
of 1, and 3 mixer bins shown in red, whose composition depends on the amounts
of raw materials supplying it. Since the central raw material is cheaper than the
others, the unit cost of the mixture in a bin increases with its distance from the
centre.

Consider first the case where no straights are used. To be feasible the convex hull of
the bins must contain all the products. The optimization problem can therefore be
viewed as finding the bin triangle that contains all the products that is as close to the
centre as possible. The solid red triangle in Fig. 2 shown one global optimum. There
are another five symmetric global optima with the bin triangles rotated through
60◦, however all intermediate positions are worse. Two sub-optimal solutions are
shown. These are the best possible configurations where a bin is forced to lie at
angles 37◦ or 44◦. Forcing the rotation forces the average position of the bins to
move outwards, so increasing the cost.

Now consider the case where it is possible to supply raw materials straight to
products without passing thought the mixer bins, but at an extra cost. This removes
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Angle   Cost
30    26.78
37    28.38
44    30.22

   Raws
   Products

    Mixers (opt)
   (rotated)

Figure 2: Optimal and forced rotations

the need for the convex hull of the bins to contains all the products, and can lead
to local optima where the convex hull containing different subsets of the products.
Fig 3 shows all the local solutions for the case when the cost of straights is 2.1 time
the cost of supply via the bins. We report the cost and the number of repetitions
of this solution due to symmetries. When a raw is used as a straight its location is
shown with a black dot. In total there are 94 local optimal in addition to the six
global solutions in Fig 2. Due to symmetry in the example there are only 13 different
values of the cost, but a minor perturbation of the demands or raw material costs
would remove this symmetry without destroying the local optimality, and in that
case there would be 96 distinct objective values. There is an additional symmetry
in the problem as we are assuming all the bins are interchangeable. If this is not the
case, for example because the have different capacities or are in different locations
with different transport costs, then the number of solutions could increase by a
factor of 6.

Finally note that in this example the global solution was the one that did not
use any straights. This is due to the relatively high cost of straights. At lower costs
this is no longer the optimal solution, and other local solutions become the global
one.

4 Solution Methods

The first solution method proposed for the pooling problem was Sequential Linear
Programming (SLP) by Lasdon[9]. SLP, as a local method, is not guaranteed to
converge to a global minimizer and may even terminate at a local minimum of the
corresponding feasibility problem. Even as a local solution method for nonlinear
programming problems, SLP has been deemed obsolete due to the development of
more sophisticated methods such as Sequential Quadratic Programming (SQP,[5])
and Interior Point Methods (IPM, [14]). Progress made in the implementations of
these methods have made the local solution of pooling problems very fast.
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More recently advances in dealing with bilinear constraints in MINLP methods
[10] within Outer Approximation Branch & Bounds solvers such as Couenne and
Baron, have made the global solution pooling problem tractable at least for small
instances.

The aim of this study is to evaluate the performance of different local solution
methods, namely SQP, SLP and Interior Point using random multistart, and to
compare this with a global solution method.

Sequential Linear Programming (SLP). In order to solve a constrained non-
linear optimization problem

min
x

f(x), subject to g(x) ≤ 0, (8)

the basic sequential linear programming method uses successive linearizations of
the problem around the current solution estimate x(k). That is, given x(k), SLP
solves the problem

min
∆x

f(x(k)) +∇f(x(k))T∆x, s.t. ∇g(x(k))T∆x ≤ −g(x(k)). (9)

and then takes a step xk+1 = xk + ∆x. Such an iteration will converge to a local
solution of the problem only under fortuitous circumstances: even if x(k) is close to
the optimal solution, problem (9) may be unbounded or lead to very large steps.1

In practice the SLP subproblem is therefore wrapped in a Trust Region scheme[3],
that is, given a trust region radius ρ(k) > 0, we solve

min
∆x

f(x(k)) +∇f(x(k))T∆x, s.t. ∇g(x(k))T∆x ≤ −g(x(k)), ‖∆x‖∞ ≤ ρ(k) (10)

and employ the usual Trust Region methodology: that is after every solution we
compare the improvement in function value and constraint violation predicted by
the linearized model with what can actually be achieved by taking the step x(k)+∆x.
Depending on the outcome of the test we either choose to take the step, that
is x(k+1) = x(k) + ∆x (and possibly enlarge the trust region), or we reject the
step, reduce the trust region and keep the same iterate x(k+1) = x(k). Since the
test of goodness of the step ∆x consists of two criteria (objective function and
constraint violation) either a merit function or a filter[5] can be employed. In our
implementation we are using a filter strategy.

Sequential Quadratic Programming (SQP) essentially uses the same method-
ology, but rather than solving the linear approximation (10) it augments this prob-
lem by adding the Hessian of the Lagrangian to the problem: that is given a primal-
dual estimate (x(k), λ(k)) of the optimal solution and the constraint multipliers at
that point, SQP solves the problem

min
∆x

f(x(k)) +∇f(x(k))T∆x+ 1
2∆xT∇2

xxL(x, λ)∆x, (11)

s.t. ∇g(x(k))T∆x ≤ −g(x(k)),

‖∆x‖∞ ≤ ρ(k)

1Local convergence from starting points close to the solution is typically only ensured when the
solution to (8) is at a vertex of the constraints.
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where L(x, λ) = f(x)−
∑m

i=1 λigi(x) is the Lagrangian function of problem (8).
The second order term can be motivated by realising that the step calculated by

(11), without the trust region constraint is the same step that would be calculated
by Newton’s Method employed to find a stationary point of the Lagrangian L(x, λ).
See for example [5] for further details on the implementation of an SQP method.

5 Results

To evaluate the efficiency of the various problem formulations and solution methods
we have tested them on a set of problems taken from the animal feed mix industry.

We have used compared four different formulations, namely the standard pq-
formulation (pq), the pq-formulations including the simplifications due to fixed
demands (pqs), the qq-formulation (qq) and the qq-formulation strengthened with
the pq-equivalent cuts (6b) (qq+). The solvers that we have compared are Baron
as a global solver and our own implementation of SLP, FilterSQP[5] and IPOpt (as
an Interior Point Method).

Our test problems and their sizes are summarised in Table 1. These are problem
instances from industrial practice. In most problems only a subset of the raw
materials can be used as straights (i.e. directly feeding into the products). The
variants with names ending on ‘fs’, however, allow the full set of straights (at a cost
of 10× the normal raw material cost). The problem set is available for download
from[6]. The final two columns in Table 1 give the best objective value that has
been found by any method in our tests and the best lower bound found by Baron,
within 2h of computation time, for any of the tested formulations. Note that for
none of the problems and formulations was Baron able to prove optimality. For the
strengthened formulations (pq, pqs, qq+) the gap was between 0.1% (af-7b-fs) and
4.5% (af-6), but was between 59% up to 100% (lower bound of 0) for formulation
qq.

5.1 Local Solvers: SLP, SQP and Interior Point

To compare the different solution algorithms we start with the local solvers: namely
SLP, SQP and Interior Point. We have used the qq-formulation for all these runs
since it was observed to perform best.

As the Interior Point solvers in these comparisons we have used IPOpt[13],
for SQP we have used FilterSQP[5] and our own implementation of a filter-SLP
algorithm. FilterSQP uses the active set solver bqpd[4] as the QP solver, whereas
SLP uses CPLEX (primal Simplex, which was found to work best in this setting) as
the LP solver. Both of these employ LP/QP hotstarts between SLP/SQP iterations
and a pre-solve phase that performs bound tightening and scaling of variables.
Although bqpd uses a sparse linear algebra implementation, CPLEX is significantly
faster than bqpd when both are used to solve the same LP. In order to give a fair
comparison of SLP against SQP independent of the subproblem solver used we have
in fact tested three SLP/SQP solvers: FilterSQP, FilterSQP as an SLP solver (by
simply passing it zero Hessians), and SLP-CPLEX. Apart from the different LP
solvers, SLP-CPLEX when compared to FilterSQP without Hessians uses a more
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aggressive trust region logic and the removal of all features that make use of Hessian
information (such as second order correction steps). As we show below, even the
ad-hoc SLP setup in FilterSQP-noHess shows some of the advantages of SLP vs
SQP, whereas SLP-CPLEX is significantly better than either of them.

As tests were perfomed on a Scientific Linux 7 system using a Intel Xeon E5-
2670 CPU running at 2.60GHz. All solvers used only a single thread.

Table 2 shows results from 500 runs of FilterSQP with Hessians (SQP-withHess),
FilterSQP without Hessians (SQP-noHess) and our SLP implementation (SLP-
CPLEX). Solutions are counted as feasible if the point at which the algorithm
stops has a constraint violation of < 10−6, independent of the status returned by
the solver. Column ‘Ti’ shows the average solution time per run, column ‘It’ the
average number of SQP or SLP iterations per run and column ‘%Good’ gives the
percentage of solutions that are feasible and whose objective value is within 0.2%
of the best know solution from any method (which is an acceptable tolerance in
practice).

A direct comparison if SQP with either of the two SLP variants is shown in
Table 3. The arrows indicate if larger or smaller numbers indicate better results.
For columns ‘Ti’, ‘It’ and ‘Ti/It’ we give the value for the SLP variants as a per-
centage of the corresponding value for SQP-withHess. Column ‘%Good’ gives the
percentage point difference of good solutions found between the solvers (positive
numbers indicating that SLP found more good solutions, negative numbers show
an advantage of SQP). Generally the quality of the solutions found by the SLP
variants (SQP-noHessian and SLP-CPLEX) are better than SQP-withHess: the
percentage of runs that are within a tolerance of 0.2% of the the best know is on
average 4.7% and 18.5% higher for SQP-noHess and SLP-CPLEX respectively. The
solution times per run are also better, significantly so in the case of SLP-CPLEX.

The improvements in time per run are due both to a reduction in the number
of SQP or SLP iterations and in the time per iteration. On average SQP-noHess
and SLP-CPLEX take 55.2% and 3.8% of the SQP-noHess time. This can be
accounted for by the time per iteration being significantly less (64.1% and 11.6%),
and also because the number of iterations is less (93% and 35%). SQP-withHess
and SQP-noHess use the same solver, bqpd, and the reduction in time is due to
LP iterations being faster than QP iterations. The further big reduction in time
per iteration achieved by SLP-CPLEX is due to the faster LP implementation in
CPLEX compared to bqpd. A more surprising reason for the improved time per
run is the fact that SQP-noHess and SLP-CPLEX take fewer iterations than SQP-
withHess (average 93% and 35% respectively). Intuitively SQP would be expected
to be superior to SLP: after all it uses a higher order approximation of the nonlinear
programming problem at each iteration. As one (but not the only) consequence
SQP displays second order convergence inherited from Newton’s method once it
has reached a point close enough to the solution. SLP methods on the other hand
may have to resort to reducing the trust region radius to zero after many steps
being rejected by the filter in order to terminate. This results in SLP often taking
more iterations than SQP to converge to high accuracy.

We do observer this tail effect in our experiments, but note that due to LP
hotstarts these iterations are very fast, often requiring only 1 or even 0 simplex
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basis updates. A larger effect, however, is that away from the neighbourhood of
the solution SQP is observed to repeatedly enter the restoration phase before the
algorithm is able to home in on a solution, and this results in both a higher iteration
count and a decreased likelihood of finding a feasible solution than with SLP.

As an explanation of this behaviour we offer the following insight: the nonlinear-
ity in the pooling problem is exclusively due to bilinear terms; these give indefinite
a Hessian contribution of the form

[

0 1
1 0

]

.

In fact rather than being helpful, these Hessians bias the algorithm towards tak-
ing steps along negative curvature directions (increase one bilinear variable while
decreasing the other, as much as possible) which is not desirable. Away from the
region of quadratic convergence of Newtons method (that is, for the vast majority
of the SQP iterations) this can lead to rather erratic behaviour of SQP.

When comparing the two SLP variants, SQP-noHess and SLP-CPLEX, it can
be observed that SLP-CPLEX takes significantly fewer iterations and less time to
solve each problem, but most noticeably massively increases the likelihood of finding
a feasible solution. This does not seem well explained by the algorithmic differences
between them. In fact, while the main reason for an infeasible run in the plain SQP
algorithm, is convergence to a local solution of the feasibility (phase-I) problem, in
the no-Hessian version the main reason for infeasibility is algorithmic failure due to
inconsistent second order information – often there are long sequences of rejected
second order correction steps that reduce the trust region radius and subsequently
lead to premature termination of the algorithm. In SLP-CPLEX this inconsistent
algorithm logic has been removed.

Table 4 compares the average solution time of SLP-CPLEX, SQP (with Hes-
sians) and IPOpt. Generally IPOpt takes about the same amount of time as SQP,
although with some large variation. In all cases, however, SLP is an order of magni-
tude faster than either of the other two algorithms. Somewhat surprisingly IPOpt
struggles to find feasible solutions for some problems, in particular af-2, af-7 and
af-7b where none or almost none of the runs where feasible.

Another way to look at the results in Table 4 would be in terms of Expected
Time to find a Good solution (ETiGood) which can be worked out as the ratio
100Ti/%Good. These are presented in Table 5. On this measure SLP-CPLEX is
significantly faster than the others. The ETiGood speed up of SLP-CPLEX relative
to SQP-withHess is in the range 13.5 to 6,091.9 with average 863.3 (excluding the 1
problem where SQP-withHess failed to find a Good solution). The ETiGood speed
up of SLP-CPLEX relative to IPOPT is in the range 4.9 to 4,258.4 with average
570.6 (excluding the 2 problem where IPOpt failed to find a Good solution). The
ETiGood speed up of SLP-CPLEX relative to Baron is in the range 1.3 to 88.5
with average 20.1.

5.2 Comparison of local and global solvers

We have compared the performance of the global solver Baron using the formula-
tions presented in Section 2 with the two best local solvers, namely SLP-CPLEX
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and IPOpt. Each solve employed a 2 hour time limit for Baron. For the local
solvers we have only used the qq-formulation. The results of these experiments are
presented in Figure 4.

The graphs should be read as follows: Each gives a plot of quality of solution
found (y-axis) vs time spend in seconds (x-axis, logarithmic). For Baron (for each
of the four different formulations) this is a straightforward plot of the progression
of the best feasible solution found within the time limit. The lower bounds on the
solution obtained are not shown as they are much lower and off the scale of most of
the graphs. Indeed the qq+, pq and pqs formulations all obtained the same lower
bound (at the root node) that could not be improved within the 2h time limit The
qq-formulation leads to significantly weaker lower bounds (gap larger by a factor
of 10). The lower bounds are not shown on the graphs since they are (sometimes
significantly) below the lower limit of the area shown. Values can be seen in Table 1.

For SLP (blue curve) and IPOpt (red curve) on the qq-formulation we show the
expected time that would be needed to obtain a solution at least as good as a given
objective value v̂. That is let t̄ be the average time needed for a local solve. If k
out of n SLP/IPOpt runs find a solution better than v̂ we model this as a Bernoulli
trial with success probability p = k/n. The expected number of trials until the first
success is 1/p = n/k runs or time t̂ = t̄n/k. From the figures it can be seen that

1. The SLP and IPOpt curves are almost smooth (rather than step functions)
indicating that the problems have a huge number of local optima. This ties
in with the earlier analysis in Section 3.

2. Baron always finds better solutions with the qq-formulation than with the pq-
formulation. The main reason seems to be that the qq-formulation is smaller
(since it does not include the pq-constraints) and thus is able to process many
more nodes in the same time. In fact the first feasible solution is found by
the qq-formulation much faster than for the pq-formulation.

3. Strengthening the qq-formulation by the pq-cut (qq+) does not pay off: nei-
ther for the local solvers (due to the larger problem size), nor, somewhat
surprisingly, for Baron. While it does strengthen the lower bound, the result-
ing increase in problem size means that it takes longer to find solutions of the
same quality.

4. However, with Baron, the qq-formulation strengthened by the pq-cut (qq+)
performs better than the pq-formulation (to which it is in some sense equiv-
alent).

5a. SLP is clearly superior to Baron in terms of time taken to find a solution of
a given quality: The SLP curve lies well below the Baron curve for almost all
problems, times and formulations.

5b. Only for the qq-formulation there are a few problems (af-1, af-2, af-6,

af-5-fs, af-5) where the first feasible solution found by Baron is better
than the best solution that could be expected to be found by SLP in the
same time and only for af-2 is the difference more than marginal. However
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given more time SLP will find a better solution. Also SLP will have already
have found very good solutions before Baron with the qq-formulations has
found the first feasible solution.

6. At the end of the 2h time limit SLP has always found the best known solu-
tion (as given in Table 1). Baron with the qq-formulation fails to find the
best solution within 2h for problems af-1, af-5-fs, af-5, af-7b-fs and
af-7b.

7. The curve of IPOpt looks similar to the one for SLP but shifted to the right.
The reason is that IPOpt needs much longer for a single run (t) than SLP
does. The IPOpt curves seem to drop down quicker than the SLP ones.
This is mainly due to the logarithmic scale of the x-axis, but also for some
problems due to the probability of finding a solution close to globally optimal
being larger for IPOpt than for SLP-CPLEX (see Table 4). IPOpt is however
clearly uncompetitive for all problems. For problems af-2, af-7 and af-7b

the IPOpt curve is not shown (or off the plot) since all (or almost all) of the
runs are infeasible.

6 Conclusions

We have given a comparison of several local solvers employing randomized starting
points with that of the global solver Baron for the pooling problem.

The best local solver is sequential linear programming, which – while the oldest
method – somewhat surprisingly significantly outperforms newer methods such as
SQP and Interior Point. Measured by best quality solution obtained in a given time
we find that SLP performs much better than Baron for all problem formulations,
including the traditional pq-formulation, and almost all time limits. In terms of the
expected time to find a solution within 0.2% of the best known SLP with CPLEX
as subproblem solver shows an average speedup of respectively 863, 507 and 20
times relative to FilterSQP, IPOpt and Baron.

We further propose a new formulation of the pooling problem, which we term
the qq-formulation. This is of comparable size to the q-formulation and can be
strengthened by additional cuts analoguous to pq-cuts. When measured as quality
of solution found in a given time Baron’s performance on the qq-formulation is
superior to all other formulations. However, strengthening this formulation with
the pq-like-cuts is not worthwhile on this criterion. The qq-formulation is the only
one for which Baron is not totally dominated by SLP for all time limits. With the
qq-formulation for a minority of problems the first feasible solution found by Baron
is marginally better than the solution that could be expected by randomized SLP
in the same time. However for the vast majority of time limits SLP returns better
solutions than Baron even for the qq-formulation. One advantage of Baron is that
it is able to return a lower bound (and thus an optimality gap), which is not the
case for any of the local solvers. However for most of the test examples the bound
gap achieved is too large to be of practical value to the problem owner.
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Figure 3: Local Optima: All except the final 4 cases are isolated local optima. The
final 4 cases are one example from a 1- or 2-dimensional flat area of local optima.
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problem N I M P S n m best known obj best LB gap

af-1 8 16 6 25 16 925 310 296.44604 295.93153 0.1%
af-2 9 35 7 30 2 871 407 239334.02 235751.11 1.5%
af-3 11 31 7 27 2 819 442 122257.45 120498.73 1.4%
af-4 14 28 6 32 4 973 608 186097.11 183620.39 1.3%
af-5-fs 17 29 7 18 29 1266 475 119016.92 118763.29 0.2%
af-5 17 29 7 18 5 816 475 124003.48 123243.60 0.6%
af-6-fs 17 31 7 40 31 2555 893 2921.30 2881.41 1.4%
af-6 17 31 7 40 4 1402 893 3074.23 2937.68 4.5%
af-7b-fs 14 35 14 50 35 3788 1024 130290.06 130147.66 0.1%
af-7 14 35 7 50 8 1690 912 151381.81 145928.01 3.6%
af-7b 14 35 14 50 8 2334 1024 147285.00 145928.01 0.9%

Table 1: Test problem statistics: N=#nutrients/qualities, I=#raw materi-
als/inputs, M=#mixing bins/pools, P=#products/outputs, S=#straights (inputs
that are allowed to feed directly to outputs), n, m = #variables and constraints in
the qq-formulation.

SQP-withHess SQP-noHess SLP-CPLEX
problem Ti %Good It Ti %Good It Ti %Good It
af-1 6.6 66.4 64.9 3.9 81.0 42.2 0.5 79.0 38.0
af-2 44.9 2.0 254.5 19.2 13.2 202.2 1.3 19.4 58.7
af-3 20.6 11.4 105.6 8.0 6.0 111.6 1.3 20.0 50.6
af-4 42.3 12.2 127.4 30.2 10.0 100.7 1.7 19.8 49.1
af-5-fs 145.5 20.2 366.1 26.1 56.0 340.0 1.7 99.6 61.2
af-5 24.2 97.8 106.2 13.2 99.2 151.9 1.5 100.0 53.9
af-6-fs 400.8 0.2 199.5 169.5 0.4 92.7 6.5 5.2 47.0
af-6 112.1 0.0 110.3 87.7 0.0 83.1 4.5 4.0 47.7
af-7b-fs 681.0 0.4 359.0 508.0 0.0 349.0 14.7 52.6 48.5
af-7 99.0 32.6 119.1 58.0 27.2 161.3 4.6 20.4 61.5
af-7b 307.4 27.0 180.1 208.9 33.8 198.2 12.3 71.8 72.0

Table 2: Performance of SQP-withHess, SQP-noHess and SLP-CPLEX:
Average per run: Ti (solution time in sec), It (number of iterations), %Good (per-
centage of solutions within 0.2% of best known.
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SQP-withHess v SQP-noHess SQP-withHess v SLP-CPLEX
Ti↓ %Good↑ It↓ Ti/it↓ Ti↓ %Good↑ It↓ Ti/It↓

af-1 59.1 14.6 65.0 90.9 7.58 12.6 58.55 12.94
af-2 42.8 11.2 79.4 53.8 2.90 17.4 23.06 12.55
af-3 38.8 -5.4 105.7 36.7 6.31 8.6 47.92 13.17
af-4 71.4 -2.2 79.0 90.3 4.02 7.6 38.54 10.43
af-5-fs 17.9 35.8 92.9 19.3 1.17 79.4 16.72 6.99
af-5 54.5 1.4 143.0 38.1 6.20 2.2 50.75 12.21
af-6-fs 42.3 0.2 46.5 91.0 1.62 5.0 23.56 6.88
af-6 78.2 0.0 75.3 103.8 4.01 4.0 43.25 9.28
af-7b-fs 74.6 -0.4 97.2 76.7 2.16 52.2 13.51 15.98
af-7 58.6 -5.4 135.4 43.3 4.65 -12.2 51.64 9.00
af-7b 68.0 6.8 110.0 61.8 4.00 44.8 39.98 10.01
Average 55.2 4.7 93.1 64.1 3.81 18.5 35.21 10.56

Table 3: Improvements from SQP-withHess to SQP-noHess or SLP-CPLEX:
Ti↓, It↓ and Ti/It↓ are the ratio (as %) of SQP-withHess values to SQP-noHess
or SLP-CPLEX values. %Good↑ is the difference between the SLP-CPLEX or
SQP-noHess quality and the SQP-withHess quality.

SLP-CPLEX SQP-withHess IPOpt
problem Ti %Feas %Good Ti %Feas %Good Ti %Feas %Good
af-1 0.5 100.0 79.0 6.6 80.6 66.4 6.4 96.2 93.2
af-2 1.3 100.0 19.4 44.9 12.6 2.0 30.9 0.0 0.0
af-3 1.3 99.2 20.0 20.6 96.2 11.4 33.9 50.4 33.8
af-4 1.7 98.5 19.8 42.3 56.4 12.2 46.1 53.4 12.8
af-5-fs 1.7 100.0 99.6 145.5 20.6 20.2 58.8 85.0 86.4
af-5 1.5 99.8 100.0 24.2 98.8 97.8 67.3 33.2 33.2
af-6-fs 6.5 95.0 5.2 400.8 15.4 0.2 71.3 99.4 9.6
af-6 4.5 78.4 4.0 112.1 42.8 0.0 37.6 99.4 6.8
af-7b-fs 14.7 99.0 52.6 681.0 22.4 0.4 508.6 58.2 32.0
af-7 4.6 99.0 20.4 99.0 81.0 32.6 82.6 0.0 0.0
af-7b 12.3 98.8 71.8 307.4 72.6 27.0 437.7 2.2 0.6

Table 4: Performance of SLP-CPLEX, SQP-withHess and IPOpt:
Ti (average time per run in sec), %Feas (percentage of runs that are feasible),
%Good (percentage of runs with a solutions within 0.2% of best known) .
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ETiGood SLP-CPLEX Speedup relative to:
Problem SLP-CPLEX SQP-withHess IPOpt Baron SQP-withHess IPOpt Baron
af-1 0.6 9.9 6.9 3 15.7 10.8 4.7
af-2 6.7 2245.0 inf 11 335.0 inf 1.6
af-3 6.5 180.7 100.3 20 27.7 15.4 3.1
af-4 8.6 346.7 360.2 21 40.4 41.9 2.4
af-5-fs 1.7 721.7 68.1 151 422.8 39.9 88.5
af-5 1.5 24.7 202.7 51 16.5 135.1 34.0
af-6-fs 125.0 200400.0 742.7 2331 1603.2 5.9 18.6
af-6 112.5 inf 552.9 147 inf 4.9 1.3
af-7b-fs 27.9 170250.0 1589.4 1362 6091.9 56.9 48.7
af-7 22.5 303.7 inf 268 13.5 inf 11.9
af-7b 17.1 1138.5 72950.0 107 66.5 4258.4 6.2
Average 863.3 507.7 20.1

Table 5: ETiGood is the expected time to find a Good (i.e. 0.2%) solution.
EIiGood = Ti 100

%Good
.
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Figure 4: Comparing SLP (blue) with IPOpt (red) and Baron for different formu-
lations.
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Figure 4: Comparing SLP (blue solid) with IPOpt (red solid) and Baron for different
formulations (cont).
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