
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A multidisciplinary design optimization algorithm with
distributed autonomous subSystems

Citation for published version:
Gupte, A, Missoum, S, Sen, S & Desai, J 2007, A multidisciplinary design optimization algorithm with
distributed autonomous subSystems. in Proceedings of the 7th World Congress on Structural and
Multidisciplinary Optimization. pp. 481-491.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the 7th World Congress on Structural and Multidisciplinary Optimization

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 16. Oct. 2020

https://www.research.ed.ac.uk/portal/en/publications/a-multidisciplinary-design-optimization-algorithm-with-distributed-autonomous-subsystems(b88e9d0c-1d48-460f-96e8-b22eba4d40bc).html


7th World Congress on Structural and Multidisciplinary Optimization
COEX Seoul, 21 May - 25 May 2007, Korea

A Multidisciplinary Design Optimization Algorithm with Distributed
Autonomous SubSystems

Akshay Gupte1, Samy Missoum2, Suvrajeet Sen3 and Jitamitra Desai1

1Systems & Industrial Engineering, University of Arizona, Tucson, USA

akshay@email.arizona.edu, jdesai@email.arizona.edu
2Aerospace & Mechanical Engineering, University of Arizona, Tucson, USA

smissoum@ame.arizona.edu
3Industrial, Welding & Systems Engineering, Ohio State University, Columbus, USA

sen.22@osu.edu

1. Abstract
This work in progress presents a novel Multidisciplinary Design Optimization (MDO) algorithm that is
tailored to provide maximum autonomy to the disciplines (subsystems). The link between system and
subsystem levels is performed through shared variables (resources) whose nominal values are not imposed
on the subsystems. As opposed to approaches such as Collaborative Optimization, the disciplines have
the ability to not only find the optimal values of their own local design variables but also to inform the
system level of optimal values of shared variables viewed from the subsystems. A distributed autonomous
formulation of the fully integrated MDO problem is provided using a penalty decomposition method and
a trust region approach. Disciplinary feasibility is achieved by the addition of artificial variables. Within
each iteration loop, exactly one subsystem and the system are optimized. A first-order approximation
of each discipline is used at the system level and the quality of this approximation is measured by an
update scheme for the trust region. Computational results for this work in progress are provided for two
test problems.
2. Keywords: multidisciplinary design optimization, distributed autonomous subsystems, penalty
decomposition, trust region, artificial variables

3. Introduction
Over the course of last few decades, Multidisciplinary Design Optimization (MDO) has received a
lot of attention from researchers in various fields and has been the subject of numerous publications,
particularly from the applied design optimization community. The reasons for this acute interest are two-
fold. First, many real-world engineering design applications require the interaction of several subsystems,
thus making the development of MDO tools a necessity to perform design optimization. The second
reason lies in the mathematical, algorithmic and computational aspects of MDO that have given rise to
many interesting challenges pertaining to the sharing/coupling of information between subsystems.

Broadly stated, MDO deals with formulating and solving problems arising in complex organizational
systems that typically comprise of the so-called system level (or management level) coupled together
with several subsystems (or disciplines), along with their interactions. In a classical MDO framework,
each subsystems represents a discipline that is concerned with one aspect in the design of the com-
plete system (e.g. thermodynamics, structures, aerodynamics etc.). The challenge lies in the ability
of each subsystem to optimally exploit the available system-level (global) resources while simultane-
ously satisfying system-level objectives and subsystem autonomy. A detail discussion of formulation
methodologies and computational costs for coupled systems is provided in [1]. Due to the presence of
the inter-disciplinary coupling, the optimal decisions made at the subsystem level might have conflicting
objectives, thus increasing the challenge of developing an efficient approach. Then in a game theoretic
perspective, each discipline plays the role of a player in the game. The interactions can then be modeled
as Pareto (cooperative), Nash (noncoopeative) or Stackelberg (leader-follower) formulations depending
on the level of cooperation and information sharing [2].

The disciplinary analysis phase is sometimes computationally intensive and time-consuming. Re-
sponse Surface Methodologies (RSM) and other meta-modeling techniques have been of considerable
help in solving issues related to high computational time, black-box, discontinuous and non-smooth
functions [3]. A typical example is the trade-off that occurs in the case of optimizing car design si-
multaneously for NVH (noise, vibration and harshness) and crashworthiness [4]. A high cost of the
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crash response is approximated by a meta-model whereas linear dynamic finite element analysis can be
implemented to determine NVH parameters within an optimization loop.

There have been several attempts to develop modeling frameworks and algorithms for MDO. Almost
all the MDO algorithms face issues of algorithmic convergence, feasibility, consistency of solution and at-
tainment of a Karush-Kuhn-Tucker point. Of particular interest are the techniques such as Collaborative
Optimization (CO) [5], Bi-Level Integrated System Synthesis (BLISS) [6], Concurrent SubSpace Opti-
mization (CSSO) [7, 8], Simultaneous Analysis and Design (SAND) [1, 9] and Multidisciplinary Design
Optimization with Independent Subspaces(MDOIS) [10]. All these methodologies vary primarily with
respect to handling the interactions between the system & the subsystems and the degree of autonomy
imparted to each subsystem. Also, most of these algorithms have been tested on real-world problems
with varying degrees of success.

In this research effort, we propose a novel MDO algorithm that is based on maximizing the subsystem
autonomy and is applicable to a general class of MDO problems. Although the necessity of imparting
autonomy is clearly understood by the design community, approaches that are exclusively dedicated to
this end are nonexistent. The central idea of our algorithm is to give each subsystem the autonomy to
optimize its own local design variables as well as system (resource) variables, which are bounded within
a trust region. Also, the system objective is composed of the subsystem objective functions. During the
system-level optimization, since the system has decision-making control over only the system variables,
the subsystem objectives are linearized with respect to their local variables. It is important to note
that although each subsystem is linearized, the system objective can be a nonlinear function of these
linearizations. Thus the system optimization independently revises the values of the global variables. A
trust region update is used to guide the quality of linearizations at the system-level. Trust region models
are frequently used in optimizing nonlinear functions whose first-order gradients are unavailable [11].
Using the revised updates the subsystems are re-optimized and the process is iterated until convergence.

The consistency constraints between the system resources and each subsystems’ value for the system
resources are relaxed and are penalized in the objective function of system and each subsystem using a
quadratic exterior penalty function. This penalty parameter is updated using a suitable update scheme.
To decouple the interdisciplinary coupling, each subsystem uses the values from the previous iteration
of the local design variables of other subsystems. Multidisciplinary feasibility is attained at termination.
It is important to note that this formulation is distributed in its nature and guarantees disciplinary
autonomy. A discussion on distributed formulations is provided in [5, 12]. The advantages of the
proposed MDO algorithm are that the subsystem optimization problems are completely autonomous
and can be done concurrently within a distributed parallel computing framework.

The proposed MDO algorithm is distinct from existing methods in that each subsystem is allowed to
recommend system-level variable values (disciplinary autonomy). Also, we use a trust region approach
alongwith a penalty function formulation. The issue of disciplinary autonomy is addressed in CO, BLISS
and CSSO. However CO involves imposing target values to the subsystem optimization problem while
trying to minimize the deviation from this target, which essentially restricts the autonomy provided
to the subsystem. On the contrary, our algorithm forms a trust region on the system variables and
updates the trust region diameter at the system level. Both BLISS and CSSO use the Global Sensitivity
Equations (GSE) in their algorithm and do not adopt a trust region framework. On a general basis, GSE
may be impractical to implement considering the organizational challenges of the MDO framework. One
subsystem may not have access to the sensitivities of another subsystem. However, as will be discussed
in a future section, the knowledge of global sensitivities may be a crucial factor in the attainment of a
Karush-Kuhn-Tucker (KKT) point. MDOIS [10] does not account for autonomy and uses GSE. [13, 14]
provide some inspiring ideas on autonomy. However the narrow class of problems handled in [10, 13, 14]
assumes that the subsystem problems involve local design variables and system resource variables but no
variables from other subsystems, thus not accounting for the interdisciplinary coupling observed in many
real-world problems. Including the interdisciplinary coupled variables as a part of the shared system
variables may not be possible since one discipline may not have a decision-taking control over another
discipline’s design variables.

The remainder of this paper is organized as follows. In §4 we present the formulation of the MDO
problem. In §5, the various elements and a step-by-step description of the algorithm are discussed in
greater detail. Computational results for the test problems are presented in §6. §7 concludes the paper
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with a summary.

4. Problem Formulation
The original system and subsystem formulations for the MDO problem are of the following form

System− level
min
s0

F0 = f0(s0, f1(s0, x1 . . . xN ) . . . fN (s0, x1 . . . xN ))

s.t. s0 ∈ S ∩ Ω ⊆ <m
Ω = {s0 : sl ≤ s0 ≤ su}

Subsystem i
min
xi

fi(s0, x1 . . . xN )

s.t. gi(s0, x1 . . . xN ) ≤ 0
hi(s0, x1 . . . xN ) = 0
xi ∈ Θi ⊆ <ni

where Θi = {xi : xil ≤ xi ≤ xiu}

(1)

s0 is the system-level variable, xi is the local design variable of subsystem i, N is the number of
subsystems, ni is the number of local variables for subsystem i and n = n1 + . . .+nN is the total number
of local design variables at subsystem level. The function f0 :<m+N → < is the system objective function
while fi :<m+n → < is the objective function of subsystem i. gi :<m+n → <gi and hi :<m+n → <hi are
the constraints on the problem of subsystem i and hence define its design search space. The functions
f0, fi, gi, hi are assumed to be continuous and twice continuously differentiable. The fact that (fi, gi, hi)
are functions of (x1 . . . xN ) and not just xi amply demonstrates the interdisciplinary coupling. The set
S is some closed set that defines the design constraints on s0 at the system-level. The sets Ω and Θi are
hyper-rectangles in <m and <ni respectively and hence are compact convex sets. Thus the set S ∩ Ω is
a compact set in <m.

Given Eq.(1), the following steps are followed to relax problem (1) into a bilevel, autonomous,
distributed formulation

1. Introduction of proxy system variables si at subsystem i and the corresponding consistency con-
straints Ci ≡ s0 − si = 0 ∀i ∈ {1 . . . N}

2. Relaxation of consistency constraints Ci by forming the exterior penalty function Φi where

Φi(s0, si) = ‖ (σi)1/2 ◦ (s0 − si) ‖2 (2)

where the symbol ◦ denotes the Hadamard product

3. Introduction of trust region constraints of the form ‖ s0 − si ‖ ≤ ∆i

4. Decomposition into a single system problem and N subsystem problems

The norms ‖ · ‖ used here are the l2-norm. It must be noted that the solution to the relaxed problem is
not equal to the solution to the original formulation (1). However the relaxation error can be driven to
zero with an appropriate trust region and penalty update. The subsystem and system formulations are
discussed next.

4.1 Subsystem optimization
Using Eq. (2), the relaxed consistency constraints for subsystem i at iteration k are given by

Φik(si) = ‖ (σik)1/2 ◦ (si − s0k−1) ‖2 (3)

For the purpose of decoupling the interdisciplinary interaction, each subsystem i uses the values of
({xj}Nj=1 j 6= i) from the previous iteration. Thus at iteration k, pik = ({xjk−1}Nj=1 j 6= i) appears as
a parameter in the optimization problem Πi

k of subsystem i. Also, it is observed that the presence of
equality constraints hi forces the variables (si, xi) to strictly follow a certain manifold, which may cause
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problem Πi
k to be infeasible for the given values of pik. The inequality constraints gi allow more search

space for the optimization algorithm. Hence we introduce slack variables ξi ∈ <gi
+ and unrestricted

artificial variables ζi ∈ <hi and put a penalty term for ζij in the objective function. The value of s0
is fixed in problem Πi. Also the knowledge of system design constraints defined by S in problem (1)
is available only at the system-level and hence is not imposed on the subsystem. The formulation for
problem Πi at iteration k is given by

Πi
k ≡ min

(si,xi,ξi,ζi)
Fi = fi(si, xi, pik) + 1

2Φik(si) + Mi

2 ζi
T ζi

s.t. ‖ si − s0k−1 ‖ ≤ ∆i
k

gi(si, xi, pik) + ξi = 0
hi(si, xi, pik) + ζi = 0

si ∈ Ω ⊆ <m
xi ∈ Θi ⊆ <ni

ξi ∈ <gi
+ ζi ∈ <hi

(4)

where Mi is some large positive scalar.

4.2 System Optimization
In problem (1) it is observed that the system objective f0 = f0(s0, f1 . . . fN ) is implicitly a

function of the local design variables xi. Realizing that the system will not have decision-making control
over xi in a distributed autonomous framework, we linearize the function fi at the system level and
represent it by fiL. Then the transformed system objective is represented as

f0
L = f0(s0, f1L . . . fN

L) (5)

Also, the artificial variables ζi are linearized to ζiL in order to drive ζi to zero at the subsystem level. The
linearization schemes are presented in §5.1. In case there exist any explicit constraints on the objective
function at the subsystem level, denoted by set ψi, they are imposed on the linearized objective fiL at
the system-level. The formulation for problem Π0 at iteration k is given by

Π0
k ≡ min

s0
F0 = f0

kL

+ 1
2

N∑
i=1

Φik(s0) +
Mi

2
ζi
kLT

ζi
kL

s.t. ‖ s0 − s0k−1 ‖ ≤ ∆i
k

s0 ∈ S ∩ Ω ⊆ <m
fi

L ∈ ψi

(6)

The exterior penalty function is given by

Φik(s0) = ‖ (σik)1/2 ◦ (s0 − sik) ‖2 (7)

at the system level.

5. MDO Algorithm
The proposed MDO algorithm performs one system optimization and one subsystem (say i) optimization
during each iteration k. This signifies that during each iteration, the system tries to find its own descent
direction in reaction to the changes in decision made by subsystem i. It gauges the improvements made
by the subsystem through its linearized objective function fiL. The linearizations from other subsystems
j are held fixed at their values from the previous iteration. Also, each subsystem i maintains its own
trust region ∆i and penalty σi which are updated so {si} → s0. §5.1-5.4 describe the various elements
of the algorithm with a detail mathematical description of the algorithm provided in §5.5.

5.1 Subsystem Sensitivity and Linearizations
Subsystem i is linearized around the point (sik, xik) using Taylor’s first-order expansion

fi
kL

= fi
k + (∇sifi

k)T (s0 − sik) + (∇xifi
k)T∇sixi

k(s0 − sik) (8)
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The linearized system objective at iteration k is then given by : f0k
L

= f0(s0, f1k
L

. . . fN
kL

) which is a
function of only s0. Similarly the linearization of artificial variables ζi is derived as follows

ζij = −hij (si, xi, pi) ∀j ∈ {1 . . .hi}
∴ ζij

kL

= −hij
kL

= −[hij
k + (∇si

hij
k)T (s0 − sik)

+(∇xi
hij

k)T∇si
xi
k(s0 − sik)]

(9)

The first-order gradients (∇fi,∇hi) can be evaluated either using analytical expressions, finite-differences
or by Response Surface Approximations. The sensitivity of local variables xi with respect to system
resources si (∇si

xi) is approximated using the scheme given below.
Consider the restricted Lagrangian L̄(si, xi) for subsystem i at iteration k (it is called restricted since

the Lagrange multipliers (λi, µi) are fixed at their optimal values (λ̄i, µ̄i) obtained after solving problem
(4)). Let L̄kQ denote its quadratic approximation in a δ-neighbourhood of (sik, xik). Then

L̄kQ(si, xi) = L̄(sik, xik) +∇L̄
[
si − sik
xi − xik

]
+

1
2
[
(si − sik) (xi − xik)

]
∇2L̄

[
si − sik
xi − xik

]
(10)

Let ∆si = (si − sik) and ∆xi = (xi − xik). Since (sik, xik) is a KKT point of subsystem i at iteration
k with multipliers (λ̄i, µ̄i), in a δ-neighbourhood of (sik, xik) we have

∂L̄kQ
∂si

= 0 and
∂L̄kQ
∂xi

= 0 =⇒ ∇2L̄

[
∆si
∆xi

]
= 0 (11)

Denote ∇2L̄ =
[
Ai Bi
Ci Di

]
where the columns of

[
Ai
Ci

]
correspond to (si − sik) and those of

[
Bi
Di

]
correspond to (xi − xik). Diagonalize submatrix Bi into an identity matrix I =

[
1 0
0 1

]
using Gauss

elimination. Let the submatrix Ai be transformed to Ai∗. Then we have

Ai
∗(∆si) + I(∆xi) = 0 =⇒ ∇si

xi = −Ai∗ (12)

5.2 Trust Region update
Approximations play an important role in MDO by providing information to the system-level at

a relatively low computational cost. [15] discusses some of the first-order approximation models used in
engineering optimization. Trust region method is one such technique for management of approximation
models and encompasses the idea of imposing move limits on variables by using a reduction/magnification
scheme based on the quality of previous iterand [16].

In our MDO algorithm we manage a trust region model at the system level based on the approxi-
mations used in Eq. (5). A trust radius ∆i is managed for each subsystem i. Let f0L∗ be the optimal
linearized system objective and s∗0 be the optimal system variable. Then the relative reduction is

ρ =
f0
k−1 − f0k

∗

f0
k−1 − f0L∗

(13)

where f0k
∗

= f0(s∗0, {fi(s∗0, xik, pik)}) is the actual system objective value. If subsystem i has optimized
its local problem in iteration k, then the following update scheme is used (0 ≤ η2 < η1 ≤ 1)

If ρ ≥ η1 =⇒ s0
k = s∗0 , f0

k = f0
k∗ ∆i

k+1 = λ1∆i
k (λ1 > 1)

Elseif ρ ≥ η2 =⇒ s0
k = s∗0 , f0

k = f0
k∗ ∆i

k+1 = ∆i
k

Else =⇒ s0
k = s0

k−1 , f0
k = f0

k−1 ∆i
k+1 = λ2∆i

k (λ2 < 1)
(14)

5.3 Penalty parameter update
Exterior penalty methods are sometimes used for nonlinear programming problems with equality
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constraints [16]. [14] uses the augmented Lagrangian algorithm to solve MDO problems that do not have
an interaction between subsystems. In this MDO algorithm, we use the exterior penalty decomposition
method. The same penalty parameter σik is used in subsystem i and the system-level at iteration k.
The following penalty update is analogous to the outer loop of the augmented Lagrangian algorithm.

Define viol(Φik) =‖ sik − s0k ‖∞= max
m=1...M

{|simk − s0m

k|}
If k ≥ 2 then ∀i = 1 . . . N

If viol(Φik) ≥ viol(Φik−1) then
∀m = 1 . . .M 3 |simk − s0m

k| > viol(Φik−1)
=⇒ σim

k+1 = 2σim
k

(15)

5.4 Convergence criteria
The MDO algorithm terminates when the system and all the subsystems agree on the value of

the system resources i.e.

‖ s0k − sik ‖2 < ε , ‖ sik − sjk ‖2 < ε ∀i, j ∈ {1 . . . N} (16)

where ε is some small positive scalar

5.5 Description of the algorithm

1. Initialization Step Let N be the number of subsystems. Set the iteration counter k = 1, i = 1 and
initialize the values of s0, (x1 . . . xN ) and ∆i

2. Subsystem Optimization For subsystem i, evaluate the parameter pi by passing the values of xjk−1

from all other subsystems j. Pass the value of s0k−1 from the system level and solve the optimiza-
tion problem Πi

k given by (4). The optimal values are (fik, sik, xik, ξik, ζik). Update the value of
f0
k−1 using the value fik

3. Subsystem Sensitivities Evaluate the sensitivities ∇fik and ∇si
xi
k using Eq. (12)

4. Subsystem Linearization Linearize the subsystem i objective fik
L

and artificial variables ζik
L

based

on Eq. (8) and Eq. (9). For all other subsystems j, set the linearizations fjk
L

= fj
k−1L

and
similarly for ζjk

L

. If k < N , set fjk
L

= 0 ∀j > i

5. System Optimization Pass the linearizations from the subsystem level to the system level and solve
the optimization problem Π0

k given by (6)

6. Trust Region update Perform the trust region update on ∆i
k using Eq. (14)

7. Counter Increment Set k = k + 1 and i = i+ 1. If i = N go to Step 8, else go to Step 9

8. Check Termination Check the convergence criteria in Eq. (16). If it is satisfied, STOP else go to
Step 9

9. Penalty update Update the penalty parameters σik for subsystem i as given in Eq. (15). Go to
Step 2

6. Computational Results
The proposed MDO algorithm is validated using two test problems. The SQP algorithm available in
MATLAB Optimization toolbox is used as a plugin to the object-oriented code developed in C++.
Analytical derivatives are used for both the test problems.

6.1 Heart Dipole Problem
The Heart Dipole problem is a test problem in the NASA MDO test suite for evaluating the

performance of MDO algorithms [17]. It has no pre-defined system and subsystems and can be stated
as a set of eight nonlinear equations (feasibility problem) in eight variables (x1 . . . x8) given eight pieces
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of measured data (parameters d). This problem arises from the experimental electrolytic determination
of the resultant dipole moment in the heart.

f1 ≡ x1 + x2 − d7 = 0
f2 ≡ x3 + x4 − d8 = 0
f3 ≡ x1x5 + x2x6 − x3x7 − x4x8 − d1 = 0
f4 ≡ x1x7 + x2x8 + x3x5 + x4x6 − d2 = 0
f5 ≡ x1(x5

2 − x7
2)− 2x3x5x7 + x2(x6

2 − x8
2)− 2x4x6x8 − d3 = 0

f6 ≡ x3(x5
2 − x7

2) + 2x1x5x7 + x4(x6
2 − x8

2) + 2x2x6x8 − d4 = 0
f7 ≡ x1x5(x5

2 − 3x7
2) + x3x7(x7

2 − 3x5
2) + x2x6(x6

2 − 3x8
2) + x4x8(x8

2 − 3x6
2)− d5 = 0

f8 ≡ x3x5(x5
2 − 3x7

2)− x1x7(x7
2 − 3x5

2) + x4x6(x6
2 − 3x8

2) + x2x8(x8
2 − 3x6

2)− d6 = 0

(17)

The given system of equations in Eq. (17) is decomposed into four subsystems - A,B,C,D, and one
system as shown below

System Subsystem A Subsystem B Subsystem C SubsystemD
s =

[
x1 x3

]
xA =

[
x5 x7

]
xB =

[
x6 x8

]
xC = x2 xD = x4

min f5 + f6 + f7 + f8 min f5 min f6 min f7 min f8
f5 ≥ 0 f6 ≥ 0 f7 ≥ 0 f8 ≥ 0
f3 = 0 f4 = 0 f1 = 0 f2 = 0

(18)

The decomposition in Eq. (18) is relaxed into a distributed autonomous formulation using Eq. (4)
and Eq. (6). Upper and lower bounds of 10 and -10 are imposed on the subsystem local variables
(xA, xB , xC , xD). The high degree of nonlinearity and nonconvexity of the functions demonstrates the
challenge in finding a optimal solution. The Heart Dipole problem is successfully solved for three
instances with different initial value conditions and parameter values. We present computational results
for three instances solved with the parameter values d = 1 and d = 0 in Table 1 using ε = 0.01, λ1 =
1.2, λ2 = 0.8, η1 = 0.65, η2 = 0.2. Initial trust diameter values of 2.23 and 1.5 were used for the two
instances. At termination, the trust diameters for the four subsystems were (3.08, 3.69, 3.85, 1.37) and
(5.7, 1.69, 3.65, 4.56) in the two problem instances. All the equations / functions were equal to zero
within tolerance at optimality. It must be noted that the initial value of x = x0 is infeasible to the set
of eight nonlinear equations.

Table 1: Numerical results for Heart Dipole problem

Problem x0 = Initial x x∗ = Optimal x

d = 1 s0 =
[

0
2

]
xA =

[
1
−1

]
xB =

[
3
0

]
s0 =

[
0.0022
0.002

]
xA =

[
1.65
−2.11

]
xB =

[
1.01

0

]
xC = 2 xD = −1 xC = 0.998 xD = 0.997

d = 1 s0 =
[

1
2

]
xA =

[
0
1

]
xB =

[
2
3

]
s0 =

[
0
0

]
xA =

[
3.542
1.38

]
xB =

[
1.005

0

]
xC = 3.2 xD = 1.3 xC = 1 xD = 1

d = 0 s0 =
[

1
2

]
xA =

[
0
1

]
xB =

[
2
3

]
s0 =

[
0.0185
0.0089

]
xA =

[
1.76
−1.167

]
xB =

[
3.25

0

]
xC = 3.2 xD = 1.3 xC = −0.0015 xD = 0.0053

The convergence graphs for problem instance 1 are presented in Figure (1) - (3).
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Figure 1: Convergence of system objective and system resources for Heart Dipole
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Figure 2: Convergence of local variables for subsystems A and B for Heart Dipole
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Figure 3: Convergence of local variables for subsystems C and D for Heart Dipole

6.2 Test Problem 2
Example 1 from [10] is used as the second test problem for our MDO algorithm. However the

problem is modified in the sense that the original equality constraints h1 = 0 and h2 = 0 are replaced
by inequality constraints h1 ≤ 0 and h2 ≤ 0. There are no predefined system and subsystems. The NLP
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formulation is given below

min
(x1...x4,y1,y4)

F = y2 + y3

s.t. h1 = x2
1+2x1x2+x3x4−3

25 − y1 − 4.2y4 ≤ 0

h2 = x1x4+x2x3+x3x4−10
20 + 2y1 − y4 ≤ 0

g1 = x1x2 + x2
2 + y4 − 3 ≤ 0

g2 = x2
4 − 4x3x4 − 2x4 + y1 + 7 ≤ 0

g3 = x2
3 + x4 − x3y1 − 3 ≤ 0
−10 ≤ x1 . . . x4 ≤ 10

where y2 = x2
1 + 2x1x

4
2 + 5x2 + x1 exp y4 + 12

y3 = x2
4 + 2x3x4

2 − 8x3 + x4y
2
1

(19)

Eq. (19) is decomposed into one system and two subsystems - A,B as follows

System Subsystem A Subsystem B
s =

[
y1 y4

]
xA =

[
x1 x2

]
xB =

[
x3 x4

]
min y2 + y3 min y2 min y3

h1 ≤ 0 h2 ≤ 0
g1 ≤ 0 g2 ≤ 0 g3 ≤ 0

−10 ≤ x1, x2 ≤ 10 −10 ≤ x3, x4 ≤ 10

(20)

The computational results for the above problem are presented in Table 2. The values of the problem
parameters (ε, λ1, λ2, η1, η2) are the same as those in §6.1. An initial trust diameter of 5.5 is used. At
termination, the trust diameters for the two subsystems were (0.42, 0.8). The convergence graphs are
presented in Figure (4) & (5).

Table 2: Numerical results for test problem 2

x0 = Initial x x∗ = MDO optimal x MDO optimal f0 KKT optimal f̄

s0 =
[

0
1

]
xA =

[
−1
−2

]
s0 =

[
0.42
0.276

]
xA =

[
−0.609
−1.374

]
-8.594 -9.32

xB =
[

2
0

]
xB =

[
1.648
0.973

]
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Figure 4: Convergence of system objective and system resources

The 7.7� optimality gap between the KKT local optimal value (-9.32) and the optimal value from
our MDO algorithm (-8.594) is due to the fact that the MDO algorithm does not necessarily guarantee
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Figure 5: Convergence of local variables for subsystems A and B

a KKT point. Since a distributed autonomous framework does not allow the use of sensitivity of the
Lagrangian of other subsystems (in other words GSE), there is no guarantee that the point obtained at
termination will be a KKT equilibrium point.

7. Conclusion
An MDO algorithm with the objective of maximizing disciplinary autonomy has been developed. The al-
gorithm is based on a trust-region approach that dictactes the availability of resources for each discipline.
Within these boundaries, each discipline has the ability to not only make optimal decisions on its own
local variables but also on the system variables. Consistency between disciplinary decisions is enforced
through a penalty approach. The algorithm has been tested on two examples from the litterature.

Because the algorithm does not guarantee convergence to a solution satisfying the first order op-
timality conditions, the next step of this research consists of developing a measure allowing to detect
how far the solution is from optimality. In addition, larger scale problems will be used to validate the
approach.
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