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Abstract  

Context: SJX-653 is a novel neurokinin 3 receptor (NK3R) antagonist. The NK3 pathway is a central 

regulator of GnRH secretion and has also been implicated in the generation of hot flashes. Therefore 

decreases of LH and testosterone in men serve as sensitive pharmacodynamic (PD) markers of central 

NK3 antagonism.  

Objective: To characterize the safety, tolerability, pharmacokinetics, and pharmacodynamic activity 

of SJX-653 in healthy men. 

Design: Randomized, placebo-controlled, double-blind, single ascending dose study.  

Setting: Phase 1 unit 

Patients or other participants: Seven cohorts of 6 healthy men 18-45 years (4:2 randomization to 

SJX-653/placebo per cohort). 

Intervention(s): single oral doses of 0.5 to 90 mg SJX-653 

Main outcome measure(s): Safety assessments and serial Pharmacokinetic (PK)/PD measurements. 

Results: SJX-653 was well tolerated at all dose levels. Cmax and AUC0-24 increased in a dose 

proportional manner. The terminal elimination half-life ranged between 9.8 and 12.5h independent of 

dose. A statistically significant, dose-dependent, reversible reduction of LH and testosterone was 

observed with near maximal effect after 15 mg and little to no effect at 4.5 mg. Maximal LH 

reduction was 70±7% (mean±sd) at 6h after 30 mg SJX-653, versus 10±43% for placebo (p = 

0.0006); maximal T reduction was of 68±5% at 8h after 60 mg SJX-653, versus 18±11% for placebo 

(p < 0.0001). The plasma IC50 for LH reduction was 33 ng/mL.  

Conclusions: These data demonstrate clinical proof-of-mechanism for SJX-653 as a potent centrally-

acting NK3R antagonist.  

Key terms: neurokinin/NK3 antagonist/KNDy neuron/LH/testosterone/pharmacodynamics  
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Introduction 

Preclinical data indicate that SJX-653 is a centrally active, competitive antagonist of the human 

neurokinin 3 (NK3) receptor. It is based on a proprietary isoquinolinone scaffold originally developed 

by H. Lundbeck A/S (1,2), which is chemically distinct from other NK3 antagonists currently or 

previously in clinical development  and has >1000 fold selectivity versus NK1 and >100 fold vs NK2 

(Sojournix, data on file). 

NKB/NK3R signalling is now recognized to have a key role in the regulation of GnRH secretion in 

humans and thus acts as a major regulator of the hypothalamo-pituitary-gonadal (HPG) axis (3-5). 

Individuals with loss of function mutations in the genes encoding NKB and NK3R (TAK3 and 

TAK3R, respectively) fail to undergo puberty due to hypogonadotropic hypogonadism (4). 

Suppression of GnRH secretion or action is the basis for a wide range of medical treatments, 

including of uterine fibroids, endometriosis and prostate cancer, as well as underpinning approaches 

to ovarian stimulation in assisted reproduction and indeed hormonal contraception. Novel therapies 

targeting GnRH secretion may therefore have wide application in sex hormone-dependent and other 

conditions. The essential role of the NKB/NK3R pathway in regulating GnRH secretion in men and 

women has been confirmed through studies with NK3R antagonists. These have shown efficacy in 

suppressing LH and testosterone secretion in men (6,7), and gonadotropin secretion, follicle growth 

and ovulation in premenopausal women (6,8-10). Suppression of LH and testosterone secretion has 

also been demonstrated in women with polycystic ovary syndrome (PCOS) (11). These findings show 

proof of concept for the potential efficacy of NK3R antagonists in hormone-dependent conditions, 

and while confirmation of both efficacy and comparison with existing therapies are awaited, their 

apparent specificity and potential for variable rather than complete suppression of the HPG axis in 

both sexes may have therapeutic advantages.  NKB can be expressed in the same neurons in the 

hypothalamus as kisspeptin (with dynorphin also expressed in some, giving rise to the term KNDy 

neurons) (5), with NKB signalling being functionally upstream of kisspeptin (10,12,13). As a result, 

reductions of LH and testosterone in men are now established pharmacodynamic (PD) markers of 

central NK3R antagonism in men and doses of NK3R antagonists that reduce levels of these markers 
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in men may inform doses across a range of indications of conditions in which NK3R signalling is 

implicated.  

NKB signalling through the NK3 receptor (NK3R) also has a key role in the generation of 

menopausal vasomotor symptoms (VMS), commonly called “hot flashes”. Specifically, excessive 

NKB/NK3 signalling in the preoptic area of the brain leads to dysfunctional thermoregulation in 

conditions of low estrogen such as the postmenopausal state (14,15) and elicits an excessive heat 

dissipation response, experienced symptomatically as VMS. Consistent with this role of NKB/NK3R 

signalling in the generation of VMS, a growing body of evidence shows that NK3 receptor 

antagonists cause rapid and profound suppression of menopausal VMS in women (9,16-18), with this 

approach having the potential to offer a highly effective non-hormonal therapy for that condition. In 

addition, a genome wide association study (19) of almost 18,000 postmenopausal women linked self-

reported VMS to 14 single-nucleotide polymorphisms all located on chromosome 4 in the locus 

encoding the NK3 receptor. The effectiveness of two NK3R antagonists at suppressing VMS occurs at 

similar doses to those previously shown to be effective at suppressing LH secretion in men (6,7).   

The objectives of this study were to evaluate the safety, tolerability, pharmacokinetics (PK), and PD 

of single ascending oral doses of a novel and selective NK3R antagonist, SJX-653, in healthy adult 

men in order to predict effective doses for application in VMS and also potentially for application in a 

range of sex hormone-dependent conditions.  

 

Materials and Methods 

Subjects and protocol 

This study was a randomized, placebo-controlled, double-blind, single ascending dose study 

of orally administered SJX-653. Eligible subjects were healthy men aged 18 to 45 years, 

nonsmokers with body mass index between 18 and 32 kg/m
2
 with normal physical 

examination, normal hematology, biochemistry and urinalysis, and normal electrocardiogram. 
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The lower cut-off for total testosterone (herafter „testosterone‟) was 8.5 nmol/L.  The study 

was conducted in compliance with International Committee on Harmonisation-Good Clinical 

Practice guidance and all subjects provided informed written consent. Potential subjects were 

assessed for eligibility at an initial Screening Visit; eligible subjects were admitted to the 

clinical site (Hammersmith Medicines Research) on Day -1 and randomized on Day 1. Forty-

two subjects were randomly assigned 4:2 to receive SJX-653 or matching placebo in a fasted 

state to 7 increasing dose cohorts (0.5, 1.5, 4.5, 15, 30, 60, and 90 mg). The initial dose 

cohort had a sentinel group of 2 subjects who received either SJX-653 or placebo (1:1 

randomization) before dosing the remaining subjects. Eligible subjects were confined to the 

clinical site for the duration of the in-house period, administered a single dose of SJX-653 on 

Day 1, discharged from the clinic on the morning of Day 3, and returned to the clinical site on 

Day 8 (±2 days) for end-of-study safety assessments (including physical examination, 

hematology, biochemistry, urinalysis, and electrocardiogram). Cohorts 5, 6, and 7 (30, 60 and 

90 mg doses) also returned to the clinic on Day 4 for PK plasma collection, 72 hours after 

drug administration. 

A Safety Review Committee (SRC) was established to determine and approve the dose levels 

administered during dose escalation, following a blinded review of the safety, tolerability, 

and anonymized PK and PD data for each previous dose cohort. The lowest dose was based 

on a review of pre-clinical toxicity data with a wide margin for safety. The dose was 

increased until a maximal PD response appeared to have been achieved, and plasma levels of 

SJX-653 suggested a high level of NK3 antagonism. 
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Pharmacokinetic and pharmacodynamic assessments 

The PK and PD (LH, FSH and testosterone) of SJX-653 were assessed by collection of serial 

blood samples predose (-1.5, -1, -0.5, 0 hours), and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12, 16, 24, 

36 and 48 hours postdose, with an additional sample at 72 hours for the 3 highest dose 

cohorts. PK analyses were performed using liquid chromatography/tandem mass 

spectrometry (LC/MS/MS). The limit of quantitation for the PK assay was 0.200 ng/mL. 

Levels of serum FSH, LH, were measured using UniCel DxI 800 Immunoassay analyzer 

using Beckmann-Coulter Access
TM

 sequential two-step immunoenzymatic assay system.  

Testosterone was measured using the UniCel DxI 800 Immunoassay analyzer with a 

competitive binding immunoenzymatic assay using Beckmann-Coulter reagents. The limit of 

quantitation was 0.2 IU/L for FSH, 0.2 IU/L for LH, and 0.4 nmol/L for testosterone. The 

lowest QC samples and corresponding within-run CV% were: FSH 6.5 IU/L (4.7%), LH 4.29 

IU/L (4.3%) and T 2.7 nmol/L (9.6%). 

Statistical analysis 

All descriptive statistical analyses were performed using Statistical Analysis Software
 

Version 9.4.  Phoenix WinNonlin (Version 8.1) was used to estimate all PK parameters using 

the noncompartmental analysis tool following the Linear Trapezoidal Linear Interpolation 

calculation method. For each PD marker at each dose, post-dose concentration values were 

converted to ratios versus the predose value (mean of -1.5 h, -1.0 h, -0.5 and 0 hours). The 

maximum 1 − ratio from baseline, and the time area under baseline were statistically 

compared for each PD marker in each SJX-653 dose cohort versus placebo, using the 

nonparametric Wilcoxon Rank-Sum test. For each dose cohort, the least square means 

concentration of LH, FSH and testosterone were compared with placebo at each collection 

time point using an analysis of covariance (ANCOVA) model with baseline concentration as 
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covariate. No statistical techniques were used to calculate the sample size: the numbers of 

subjects were chosen based on feasibility and considered sufficient to meet the study 

objectives. 

Regulatory and Ethics Committee approval 

The Medicine and Healthcare products Regulatory Agency (EudraCT 2018-000376-16) and 

the Northern Ireland Research Ethics Committee B (118/NI/0075) approved the study. 

 

Results 

In total, 42 subjects were enrolled into 7 dose cohorts (0.5, 1.5, 4.5, 15, 30, 60, and 90 mg); 28 

subjects received SJX-653, and 14 received placebo. There were no withdrawals. Subject 

demographics are shown in Table 1. 

Safety 

SJX-653 was safe and well tolerated. Overall, 9/28 (32%) subjects treated with SJX-653 

experienced at least 1 treatment-emergent adverse event (TEAE): 1 subject each in the 0.5-, 

1.5-, 4.5-, 30-, and 60-mg cohorts, and 2 subjects each in the 15- and 90-mg cohorts. In the 

placebo group, 3/14 subjects experienced at least 1 TEAE. The majority of TEAEs were 

mild, none was severe. No SAEs were reported, no subjects discontinued the study due to a 

TEAE. A listing of adverse events by preferred term is given in Table 2. There were no 

clinically meaningful changes in vital signs, laboratory parameters or ECG parameters. 

Pharmacokinetics 

Plasma concentrations of SJX-653 for each cohort are shown in Figure 1. For Cohorts 1 to 6 

(0.5 - 60 mg), median Tmax values for SJX-653 were consistently at 6.0 h, whereas for Cohort 

7 (90 mg) Tmax was 3.0 h (Table 3). Mean Cmax values increased in a dose-proportional 
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manner with an approximate 175-fold increase over the 180-fold increase in dose. Similarly, 

mean AUC0-24 values increased in an approximate dose-proportional manner with a 143-fold 

increase over the 180-fold increase in dose. Mean t1/2 for SJX-653 was similar for all doses 

and ranged from 9.8± 2.4 h at the 1.5 mg dose, the lowest dose for which t1/2 could reliably be 

determined, to 12.5±3.7 h at the 15 mg dose, supportive of once-daily (QD) dosing at steady 

state (Table 3). The PK profile exhibited an approximately 3:1 ratio between Cmax and plasma 

concentration at 24 h suggesting a low peak trough ratio at steady-state after QD dosing. 

Pharmacodynamics 

Single oral doses of SJX-653 resulted in dose-dependent and reversible reductions of plasma 

concentrations of LH, testosterone, and to a lesser degree FSH (Figure 2), consistent with 

previous experience with NK3 antagonists. Table 4 shows LH, FSH and testosterone 

concentrations at time 0 and at 6 hours (LH and FSH) and 8 hours (testosterone) post dose for 

all groups. 

The majority of time points between 3 and 8 hours showed separation from placebo (p<0.05) 

for LH reduction at doses of 15 and 30 mg, and between 3 to 24 hours at a dose of 90 mg 

(Figure 2A). Reduction of LH at 60 mg relative to placebo was less pronounced compared to 

30 and 90 mg, which is likely related to a low LH baseline in the 60 mg cohort resulting in a 

smaller calculated reduction from baseline compared to other dose cohorts. A significant 

reduction of testosterone in SJX-653 treated subjects vs placebo was observed at the majority 

of time points from 6 to 12.5 hours (p<0.05) for doses ≥15 mg, and was significantly 

different (p<0.05) for the majority of time points up to 24 hours for doses ≥ 30 mg (Figure 

2B). The duration of testosterone reduction was more prolonged at higher doses.  Reduction 

of FSH was more limited but evident at 30 mg and 60 mg doses, and with the 90 mg dose 

showing separation from placebo (p<0.05) for most time points between 3 and 36 hours 

(Figure 2C).   
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At 15 mg, near maximal reductions of LH and testosterone of 56±13% and 55±7%, 

respectively, were observed after 6 hours for LH, and after 8 hours for testosterone, with little 

to no effect at 4.5 mg, indicating a steep dose-response curve from 4.5 to 15 mg. The 

maximal mean LH reduction in subjects treated with SJX-653 was 70±7% (mean± standard 

deviation) at 6 hours (30 mg), versus 10%±43% in placebo-treated subjects at the same time 

point (p<0.001) (Figure 3A).  The maximal mean testosterone reduction in subjects treated 

with SJX-653 was 68±5% at 8 hours (60 mg), versus 18±11% in placebo-treated subjects at 

the same time point (p<0.0001; Figure 3B). Testosterone concentration below the normal 

range (<8.5 nmol/L) occurred post-dose in 2 of 14 subjects in the placebo group and 1, 0, 0, 

2, 2, 4, and 3 subjects (each n=4) in the cohorts treated with 0.5, 1.5, 4.5, 15, 30, 60 and 90 

mg SJX-653, respectively, thus in 7 of 8 men treated with the highest 2 doses, indicating a 

dose-response relationship. 

The relationship of LH and testosterone reduction from baseline with SJX-653 plasma concentration 

is shown in Figure 4.  Both markers showed a similar response when accounting for a time lag of 2h 

between changes in LH and changes in testosterone. The maximum reductions from baseline for LH 

and testosterone were observed at plasma concentrations of approximately 50 ng/mL and higher, with 

an estimated half maximal inhibitory concentration (IC50) of about 30 ng/mL. 

 

Discussion 

This study evaluated the safety, PK, and PD of single oral doses of the novel selective NK3R 

antagonist SJX-653 in healthy adult men. SJX-653 was safe and well tolerated and resulted in marked, 

reversible suppression of LH and testosterone levels, with a more limited suppression of FSH.  Doses 

of 0.5 to 90 mg of SJX-653 showed a dose-proportional increase in exposure with median Tmax of 6 

hours (except for the highest dose). Once-daily (QD) dosing in future studies with repeated drug 

administration is supported by the t1/2 of 10 to 13 hours. 
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A dose-dependent reduction of LH and testosterone levels achieved near maximal effect after single 

doses of 15 mg, with an estimated half maximal inhibitory concentration (IC50) of about 30 ng/mL, 

indicating the high potency of SJX-653 as an NK3R antagonist.  

This finding provides further evidence for a key role of the NKB-NK3R pathway in the physiological 

regulation of the male hypothalamo-pituitary-gonadal axis (3) and is in line with data from 

administration of another selective NK3R antagonist, MLE4901 (previously called AZD4901), which 

resulted in reduction of LH, FSH and testosterone when administered twice daily to healthy men for 7 

days (7). Similarly, the NK3R antagonist, ESN364 (fezolinetant) resulted in reversible suppression of 

LH and testosterone in healthy men (6).  Suppression of FSH levels occurred at high doses of SJX-

653, albeit to a much smaller extent than inhibition of LH and T.  FSH secretion is less dependent on 

the pulsatile nature of GnRH secretion (20), and findings of changes in FSH secretion have been less 

consistent than changes in LH in studies investigating the effect of NK3R antagonists in both men and 

women (6,7,10,11). FSH levels were not significantly suppressed with ESN364 (6). The much smaller 

reduction in FSH than LH/testosterone secretion observed in this study is thus supportive of the 

mechanism of T and LH reduction in men via inhibition of GnRH secretion as a pharmacodynamic 

marker of NK3R antagonism in men. In addition, the delayed time course of reduction of testosterone 

versus LH, identified here due to the frequent sampling schedule, supports that the mechanism of 

action of SJX-653 on testosterone is through suppression of GnRH and thus LH secretion.  

These data provide clear evidence of clinical proof of mechanism of SJX-653 as a potent NK3R 

antagonist, supporting further development in menopausal VMS and potentially also in sex hormone-

dependent conditions. NKB/NK3R signalling in the thermoregulatory neurons of the preoptic area is 

increasingly understood to have a key role in mediating VMS associated with estrogen deficiency at 

the menopause (14). Elegant opticogenetic labelling experiments have shown that the stimulation of 

these thermoregulatory neurons by KNDy neurons is mediated by neurokinin B acting though NK3 

receptors (15). Three compunds with NK3R antagonist activity have now been shown to have striking 

efficacy in reducing menopausal VMS (9,16-18,21), supporting the development of NK3R 

antagonists as a highly effective non-hormonal class of medicine. In relation to possible therapeutic 
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potential in a range of sex hormone-dependent conditions through inhibition of GnRH secretion, it is 

noteworthy that the suppression of LH and testosterone was maximal at about. 6-12 hours with 

recovery thereafter, even with higher doses, despite the continuing presence of effective serum 

concentrations of SJX-653 for at least 48 hours. This indicates the presence of important counter-

regulatory pathways to NKB in the control of GnRH secretion. Similarly, the maximal suppression of 

LH and testosterone achieved was approximately 70%, which is less complete than can be achieved 

with GnRH antagonists (22). Regulation of GnRH secretion through the KNDy pathway has been 

likened to a „dimmer switch‟ (3) in contrast to the effect of GnRH antagonism. The prevention of 

complete suppression of the reproductive axis may be of therapeutic value in some conditions, as 

evidenced by the frequent need for „add back‟ estrogen in the treatment of uterine fibroids and 

endometriosis using GnRH analogues to reduce otherwise overly troublesome symptoms of estrogen 

deficiency and to mitigate bone mineral loss (23,24). Similarly, partial suppression of LH secretion by 

a NK3 antagonist reduced serum testosterone levels in women with PCOS (11). 

In conclusion, this study demonstrates that SJX-653 is a potent NK3R antagonist as demonstrated by 

reduction of established PD markers of NK3R antagonism in healthy men, with approximately 70% 

suppression of both LH and testosterone after a single oral dose.  The plasma half-life of 10-13 hours 

at effective doses supports once daily (QD) administration, and no safety concerns were identified.  

The striking efficacy that NK3R antagonism has shown in reducing menopausal VMS occurs in the 

same dose range associated with LH and testosterone reductions in men. Based on the data presented 

here, SJX-653 demonstrated potent NK3 antagonistic activity which may be applicable in the 

treatment of menopausal VMS and in the treatment of sex-hormone dependent clinical conditions.  
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Table 1: Subject Demographics and Baseline Characteristics 

 

Placebo 

(N=14) 

SJX-653 

(N=28) 

Age (years)   

 Mean (SD) 30.9 (8.03) 33.1 (8.20) 

 Min, max 21, 45 19, 45 

Height (cm)   

 Mean (SD) 177.14 (7.33) 177.82 (6.83) 

 Min, max 162.0, 187.0 162.0, 191.0 

Weight (kg)   

 Mean (SD) 78.81 (8.96) 79.01 (12.44) 

 Min, max 63.1, 99.7 55.9, 105.9 

BMI (kg/m
2
)   

 Mean (SD) 25.09 (2.20) 24.93 (3.12) 

 Min, max 20.8, 29.4 19.3, 29.7 

Race   

 Asian 0 3 (10.7) 

 Black/African-American 5 (35.7) 6 (21.4) 

 White 8 (57.1) 18 (64.3) 

 Other 1 (7.1) 1 (3.6) 
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Table 2: Treatment-emergent adverse events by preferred term  

Preferred Term 

Placebo 

(n=14) 

SJX-653 dose  

0.5 mg 

(n=4) 

1.5 mg 

(n=4) 

4.5 mg 

(n=4) 

15 mg  

(n=4) 

30 mg 

(n=4) 

60 mg 

(n=4) 

90 mg 

(n=4) 

All 

SJX-653 

At Least 1 TEAE 3 (21.4) 1 (25.0) 1 (25.0) 1 (25.0) 2 (50.0) 1 (25.0) 1 (25.0) 2 (50.0) 9 (32.1) 

Headache 1 (7.1) 0 0 0 0 1 (25.0) 0 2 (50.0) 3 (10.7) 

Somnolence 0 0 0 0 0 0 1 (25.0) 0 1 (3.6) 

Abdominal pain 0 0 0 0 1 (25.0) 0 0 0 1 (3.6) 

Diarrhoea 0 0 0 0 1 (25.0) 0 0 0 1 (3.6) 

Nausea 0 0 0 1 (25.0) 0 0 0 0 1 (3.6) 

Back pain 0 0 1 (25.0) 0 0 0 0 0 1 (3.6) 

Musculoskeletal pain 0 0 0 0 1 (25.0) 0 0 0 1 (3.6) 

Catheter site pain 0 1 (25.0) 0 0 0 0 0 0 1 (3.6) 

Nasopharyngitis 1 (7.1) 0 0 0 0 0 0 0 0 

Night sweats 1 (7.1) 0 0 0 0 0 0 0 0 

Data are n (%). Abbreviations: AE = adverse event; TEAE = treatment-emergent adverse 

event. AEs were summarized by subject incidence rates; therefore, a subject contributed only 

once to the count for a given AE. 
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Table 3: SJX-653 Pharmacokinetic parameters 

Dose 

Tmax 

(h) 

Cmax 

(ng/mL) 

AUC0-24 

(h*ng/mL) 

t1/2 

(h) 

0.5 mg 6.5±1.0 1.51±0.27 20.5±4.84 8.88 

1.5 mg 6.5±1.0 3.84±0.33 48.8±6.91 9.75±2.38 

4.5 mg 6.5±1.0 15.7±4.69 205±74.8 11.3±3.38 

15 mg 6.0±0 45.0±11.5 615±198 12.5±3.66 

30 mg 6.0±0 73.0±19.0 919±312 10.3±2.68 

60 mg 6.0±1.63 150±84.3 2110±1110 10.8±2.59 

90 mg 4.13±2.59 265±106 2940±786 12.2±2.92 

Data are mean ± SD; n=4 for all cohorts except t1/2 at 0.5 mg, n=1 as this parameter was not calculable 

for other data at this dose. 
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Table 4. LH, FSH and total testosterone concentrations at time 0, at 6 hours (LH and FSH), and 8 

hours (testosterone). 

 

Treatment 

group 

/dose of SJX-

653 

n Time 0 

LH 

(IU/L) 

6 hour 

LH 

(IU/L) 

Time 0 

FSH 

(IU/L) 

6 hour 

FSH 

(IU/L) 

Time 0 

Testosterone 

(nmol/L) 

8 hour 

Testosterone 

(nmol/L) 

Placebo 14 3.8±2.0 3.5±1.4 4.2±2.5 3.8±2.4 17.4±3.9 14.2±2.3 

0.5 mg 4 4.2±1.3 3.4±0.4 5.3±0.9 5.3±2.2 15.4±5.7 15.1±6.5 

1.5mg 4 4.6±2.6 3.3±1.8 3.7±2.5 3.4±2.4 15.7±1.6 13.2±2.4 

4.5 mg 4 4.7±1.8 5.1±0.9 4.7±1.0 5.0±1.3 15.5±1.9 11.6±2.9 

15 mg 4 4.7±1.0 2.1±0.3 4.9±2.6 5.5±5.0 19.0±1.3 9.2±0.4 

30 mg 4 4.7±1.3 1.4±0.6 3.7±2.0 2.8±1.4 20.4±3.4 9.2±1.6 

60 mg 4 3.4±2.1 1.1±0.4 5.3±4.0 3.1±1.7 13.2±4.8 4.8±2.1 

90 mg 4 4.9±1.6 1.7±0.5 4.7±3.0 4.5±3.8 14.1±2.5 5.2±2.8 

All data are mean±SD 
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Figure legends 

Figure 1. SJX-653 plasma concentration by cohort for doses 0.5 mg to 90 mg, over 48 h 

following single oral administration. Data are mean±SD, n=4 per cohort. 

 

Figure 2. Effects of single doses of SJX-653 on (A, B) LH, (C, D) testosterone and (E, F) FSH. Doses 

as indicated on figure. Data are time profiles for changes from baseline calculated as ratio of mean 

value for each time point to the mean baseline value, which was calculated as the average of 4 predose 

time points collected over 1.5 hours before dosing. Mean ±SD, n=4 subjects per dose; placebo cohorts 

were pooled, n=14. 

 

Figure 3. Maximum observed percentage reductions in (A) LH and (B) FSH at 6 hours and (C) 

testosterone at 8 hours from baseline. Mean±SD, n=4 per group except placebo, n=14. Significance 

indicated as * p<0.05, **p<0.01,   ***p<0.001,   ****p<0.0001 vs placebo. 

 

Figure 4. Reduction in LH (6 hours) and testosterone (8 hours) versus plasma concentration 

of SJX-653 (6 hours): individual subject responses at doses of 1.5 to 90 mg SJX-653. Blue 

circles: LH at 6 hours; red triangles: testosterone at 8 hours after drug administration. 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaa657/5908704 by U

niversity of Edinburgh user on 08 O
ctober 2020



0 8 16 24 32 40 48 56 64 72
0.01

0.1

1

10

100

1000

Time (h)

!"
#
$%
&
'
()
*
+
,-

./

0.5 mg

1.5 mg

4.5 mg

15 mg

30 mg 

60 mg

90 mg

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaa657/5908704 by U

niversity of Edinburgh user on 08 O
ctober 2020

https://www.editorialmanager.com/jclinendometab/download.aspx?id=111029&guid=183c3d11-20ec-46de-9c7b-f2be650c598e&scheme=1
https://www.editorialmanager.com/jclinendometab/download.aspx?id=111029&guid=183c3d11-20ec-46de-9c7b-f2be650c598e&scheme=1


0 8 16 24 32 40 48

0

50

100

150

D: Testosterone, high doses SJX-653

Time (hours)

P
e
rc

e
n

t 
o

f 
b

a
s
e
li
n

e

30 mg

60 mg

Placebo

90 mg

0 8 16 24 32 40 48

0

50

100

150

Time (hours)

P
e
rc

e
n

t 
o

f 
b

a
s
e
li
n

e

F: FSH, high doses SJX-653

30 mg

60 mg

90 mg

Placebo

0 8 16 24 32 40 48

0

50

100

150

200

250

300

350

Time (hours)

P
e
rc

e
n

t 
o

f 
b

a
s
e
li
n

e

B: LH, high doses SJX-653

30 mg

60 mg

90 mg

Placebo

0 8 16 24 32 40 48

0

50

100

150

200

250

Time (hours)

P
e
rc

e
n

t 
o

f 
b

a
s
e
li
n

e

A: LH, low doses SJX-653

0.5 mg

1.5 mg

4.5 mg

Placebo

15 mg

0 8 16 24 32 40 48

0

50

100

150

Time (hours)

P
e
rc

e
n

t 
o

f 
b

a
s
e
li
n

e

E: FSH, low doses SJX-653

0.5 mg

1.5 mg

4.5 mg

15 mg

Placebo

0 8 16 24 32 40 48

0

50

100

150

C: Testosterone, low doses SJX-653

Time (hours)

P
e
rc

e
n

t 
o

f 
b

a
s
e
li
n

e

0.5 mg

1.5 mg

4.5 mg

15 mg

Placebo

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaa657/5908704 by U

niversity of Edinburgh user on 08 O
ctober 2020

https://www.editorialmanager.com/jclinendometab/download.aspx?id=111030&guid=9674b0de-d978-4559-9a27-8c4f5dd46374&scheme=1
https://www.editorialmanager.com/jclinendometab/download.aspx?id=111030&guid=9674b0de-d978-4559-9a27-8c4f5dd46374&scheme=1


LH
 P

la
ce

bo

4.
5 

m
g

15
 m

g

30
 m

g

60
 m

g

90
 m

g

-1
0
0

-8
0

-6
0

-4
0

-2
00

2
0

4
0

6
0

LH Change from Baseline (%)

n
s

*
*

*
*

*
*
*

*
*
*

A

P
la

ce
bo

4.
5 

m
g

15
 m

g

30
 m

g

60
 m

g

90
 m

g

-1
0
0

-8
0

-6
0

-4
0

-2
00

2
0

4
0

FSH Change from Baseline (%)
n
s

*
*

*
*

n
s

B
 T

 P
la

ce
bo

4.
5 

m
g

15
 m

g

30
 m

g

60
 m

g

90
 m

g

-1
0
0

-8
0

-6
0

-4
0

-2
00

2
0

T Change from Baseline (%)

n
s

*
*

*
*
*
*

*
*
*
*

*
*

C

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaa657/5908704 by U

niversity of Edinburgh user on 08 O
ctober 2020

https://www.editorialmanager.com/jclinendometab/download.aspx?id=111031&guid=776f0452-e058-403b-b107-49ef436e7688&scheme=1
https://www.editorialmanager.com/jclinendometab/download.aspx?id=111031&guid=776f0452-e058-403b-b107-49ef436e7688&scheme=1


0 50 100 150 200 250 300
-100

-75

-50

-25

0

25

50

Plasma conc SJX-653 at 6 h (ng/mL)

%
 C

h
a
n
g
e
 f
ro

m
 B

a
s
e
lin

e
D

ow
nloaded from

 https://academ
ic.oup.com

/jcem
/advance-article/doi/10.1210/clinem

/dgaa657/5908704 by U
niversity of Edinburgh user on 08 O

ctober 2020

https://www.editorialmanager.com/jclinendometab/download.aspx?id=111032&guid=caa00360-6087-4108-853e-b05ef4d0de84&scheme=1
https://www.editorialmanager.com/jclinendometab/download.aspx?id=111032&guid=caa00360-6087-4108-853e-b05ef4d0de84&scheme=1

