
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A new two-fingered dinosaur sheds light on the radiation of
Oviraptorosauria

Citation for published version:
Funston, G, Funston, G, Chinzorig, T, Tsogtbaatar, K & Sullivan, C 2020, 'A new two-fingered dinosaur
sheds light on the radiation of Oviraptorosauria', Royal Society Open Science, vol. 7, no. 10.
https://doi.org/10.1098/rsos.201184

Digital Object Identifier (DOI):
10.1098/rsos.201184

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Royal Society Open Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 16. Oct. 2020

https://www.research.ed.ac.uk/portal/en/persons/greg-funston(c90f1a34-b858-4451-b7ec-0fba9b43c081).html
https://www.research.ed.ac.uk/portal/en/persons/gregory-funston(3f745456-3214-454b-91fe-5f3765f76d89).html
https://www.research.ed.ac.uk/portal/en/publications/a-new-twofingered-dinosaur-sheds-light-on-the-radiation-of-oviraptorosauria(1f183c07-b2f3-46dd-9680-39e93c441f31).html
https://www.research.ed.ac.uk/portal/en/publications/a-new-twofingered-dinosaur-sheds-light-on-the-radiation-of-oviraptorosauria(1f183c07-b2f3-46dd-9680-39e93c441f31).html
https://doi.org/10.1098/rsos.201184
https://doi.org/10.1098/rsos.201184
https://www.research.ed.ac.uk/portal/en/publications/a-new-twofingered-dinosaur-sheds-light-on-the-radiation-of-oviraptorosauria(1f183c07-b2f3-46dd-9680-39e93c441f31).html


royalsocietypublishing.org/journal/rsos
Research
Cite this article: Funston GF, Chinzorig T,
Tsogtbaatar K, Kobayashi Y, Sullivan C, Currie PJ.

2020 A new two-fingered dinosaur sheds light

on the radiation of Oviraptorosauria. R. Soc. Open

Sci. 7: 201184.
http://dx.doi.org/10.1098/rsos.201184
Received: 6 July 2020

Accepted: 7 September 2020
Subject Category:
Earth and environmental science

Subject Areas:
palaeontology/evolution

Keywords:
Oviraptoridae, Late Cretaceous, Theropoda,

digit reduction, forelimb evolution
Author for correspondence:
Gregory F. Funston

e-mail: gregory.funston@ed.ac.uk
© 2020 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

5132762.
A new two-fingered dinosaur
sheds light on the radiation
of Oviraptorosauria
Gregory F. Funston1,2, Tsogtbaatar Chinzorig3,4,

Khishigjav Tsogtbaatar4, Yoshitsugu Kobayashi3,

Corwin Sullivan2,5 and Philip J. Currie2

1School of GeoSciences, University of Edinburgh, Edinburgh, UK
2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
3Hokkaido University Museum, Hokkaido University, Sapporo, Japan
4Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
5Philip J. Currie Dinosaur Museum, Wembley, Alberta, Canada

GFF, 0000-0003-3430-4398; CS, 0000-0002-5488-6797

Late Cretaceous trends in Asian dinosaur diversity are poorly
understood, but recent discoveries have documented a
radiation of oviraptorosaur theropods in China and
Mongolia. However, little work has addressed the factors that
facilitated this diversification. A new oviraptorid from the
Late Cretaceous of Mongolia sheds light on the evolution of
the forelimb, which appears to have played a role in the
radiation of oviraptorosaurs. Surprisingly, the reduced arm
has only two functional digits, highlighting a previously
unrecognized occurrence of digit loss in theropods.
Phylogenetic analysis shows that the onset of this reduction
coincides with the radiation of heyuannine oviraptorids,
following dispersal from southern China into the Gobi region.
This suggests expansion into a new niche in the Gobi region,
which relied less on the elongate, grasping forelimbs inherited
by oviraptorosaurs. Variation in forelimb length and manus
morphology provides another example of niche partitioning in
oviraptorosaurs, which may have made possible their
incredible diversity in the latest Cretaceous of Asia.
1. Introduction
Oviraptorosaurs are theropod dinosaurs known from an excellent
fossil record spanning much of the Cretaceous of Asia and North
America [1]. Revived interest in oviraptorosaurs since the 1990s
has resulted in a wave of new discoveries, and they are now
among the best-known theropods. Aspects of their integument
[2,3], reproduction [4–7] and functional morphology [8–11] are
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well studied, providing information that is important in understanding the biological changes that

accompanied the transition to birds.
Like extant birds, oviraptorosaurs had pennaceous feathers [2,3,12], and most were completely

edentulous [1], presumably possessing a keratinous rhamphotheca. They retained two functional
oviducts [13], but brooded their eggs like birds [6]. Four main clades of oviraptorosaurs are
recognized: the basal caudipterygids, and the more specialized avimimids, caenagnathids and
oviraptorids. Of these, oviraptorids are known from the best material and are the most speciose, but
they are restricted to China and Mongolia. Between the Nanxiong Formation of China and the
Nemegt Basin of Mongolia, at least 15 oviraptorid genera are known, of which eight have been
described in the last decade [14–16]. This flurry of discovery has documented one of the last
diversifications of non-avian theropods prior to the Cretaceous–Palaeogene (K-Pg) extinction [14,15].

Despite this rich record, it is unclear why oviraptorids radiated during the late Campanian–
Maastrichtian, when the diversity of other theropod groups remained stable [17]. This is partly
because there is little consensus on relationships within the main oviraptorosaur clades, but also
because the rapid rate of discovery has outpaced macroevolutionary analyses. Regardless, this
radiation is important given that patterns of dinosaur diversity preceding the K-Pg extinction are
debated, and perceived decrease in richness [18,19] and disparity [17] during the Maastrichtian may
be the result of undue extrapolation from the well-studied North American fossil record [20,21]. In
North America, most groups of dinosaurs reach a diversity peak in the Campanian [19,22,23],
followed by stability [20,23] or decrease [17–19] in the Maastrichtian. Diversity trends in Asia are less
well known, but there is evidence of stability in most groups except hadrosaurs [17], which become
increasingly disparate towards the Maastrichtian. The radiation of oviraptorids throughout the
Campanian–Maastrichtian provides another line of evidence that diversity patterns in North America
may not be representative of global trends.

Here, we describe a bizarre new oviraptorid from the Maastrichtian Nemegt Formation of Mongolia,
with a reduced, functionally didactyl forelimb. The new taxon, Oksoko avarsan gen. et sp. nov., known
from multiple associated skeletons, represents the sixth genus of oviraptorid and ninth genus of
oviraptorosaur from the Nemegt Formation, adding to previous evidence for a remarkable diversity of
oviraptorosaurs in the Maastrichtian of Asia. In addition to revealing unambiguous gregariousness in
oviraptorids, the new taxon sheds light on their radiation in the Late Cretaceous. Oksoko avarsan
increases the already considerable range of known variation in the lengths and morphologies of the
forelimb and manual digits among oviraptorids, which in turn suggests functional variation that might
be related to foraging, nesting, display or other behaviours. Ancestral state reconstruction based on a
revised phylogeny shows that forelimb and manual digit reduction occurred in the single oviraptorid
clade Heyuanninae, coinciding with heyuannine dispersal from their ancestral range in southern China
to what is now the Gobi Desert. The conjunction of forelimb reduction and biogeographic dispersal
suggests the expansion of heyuannines into a new niche at the end of the Cretaceous.
2. Results
Theropoda Marsh 1881 [24].

Oviraptorosauria Barsbold 1976a [25].
Oviraptoridae Barsbold 1976b [26].
Heyuanninae (=Ingeniinae) Barsbold 1981 [27].
Oksoko avarsan gen. et sp. nov. (figures 1–3).
Etymology. Oksoko (pronounced ‘Oak-soak-oh’) from the three-headed eagle of Altaic mythology, in

reference to the fact that the holotype assemblage preserves three skulls; the specific name avarsan is from
the Mongolian word ‘аварсан’ (avarsan: rescued), reflecting their confiscation from poachers and/or
smugglers.

Holotype. Institute of Paleontology, Mongolia (MPC-D) 102/110a, a nearly complete juvenile
skeleton missing only the distal half of the tail (figures 1–3), preserved in an assemblage of four
individuals.

Referred specimens. MPC-D 100/33, partial subadult postcranial skeleton; MPC-D 102/11, partial
juvenile skeleton with skull; MPC-D 102/12, adult postcranial skeleton; MPC-D 102/110b, nearly
complete juvenile skeleton; MPC-D 102/110c, partial juvenile postcranial skeleton (figures 1–3).

Localities and Horizon. Bugiin Tsav and Guriliin Tsav, Nemegt Basin. Nemegt Formation [28] (lower
Maastrichtian).
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Diagnosis. Oksoko avarsan is a small oviraptorid oviraptorosaur distinguished from other
oviraptorosaurs by the following suite of autapomorphies (�) and other characters: apically thickened,
dome-shaped cranial crest composed equally of nasals and frontals (figure 2)�; nasal recesses housed
in a depression; postorbital with dorsally directed frontal process; cervical vertebrae with large
epipophyses; functionally didactyl manus (figure 3)�; accessory ridge of brevis fossa of ilium�;
anteriorly curving pubis; and large proximodorsal process of distal tarsal IV.
2.1. Description
The holotype is one of three articulated juveniles of nearly identical size (see electronic supplementary
material; each weighed 44–45 kg based on the method of Campione et al. [29]) contained in a single
block (MPC-D 102/110; figure 1). Individual A, the holotype, is the most complete, whereas only the
right side of individual B and the pelvic region of individual C are preserved. Individuals A and B
are crouched in positions that resemble inferred resting poses of other oviraptorids [6,7,30,31], facing
opposite directions, with their legs beneath their bodies, arms folded, and heads tucked towards their
right arms. Another juvenile skeleton (MPC-D 102/11, 31 kg) was confiscated at the same time, and is
preserved in the same crouched posture. Associated with it are the postorbital, quadrate and
quadratojugal of a slightly larger individual. These specimens are probably from the same assemblage
as the holotype, implying a total of at least four individuals. MPC-D 100/33 was collected in 1974 at
Bugiin Tsav, whereas MPC-D 102/12 was collected in 1998 at Guriliin Tsav. Among the known
specimens, the entire skeleton of Oksoko avarsan is represented (figure 2).

The skull ofOksoko (figure 2b,c; electronic supplementarymaterial, figures S1 and S2) has a dome-shaped,
apically thickened crest composed of the nasals and frontals, with a small contribution from the
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Figure 2. Skeletal anatomy of Oksoko avarsan. (a) Skeletal reconstruction. (b,c) Skull of MPC-D 102/110.a in left lateral view.
(d ) Anterior cervical vertebra of MPC-D 102/12 in left lateral view. (e) Articulated sacrum and ilium of MPC-D 102/11 in
ventral view, anterior is to the left. ( f ) Mid-caudal vertebra of MPC-D 102/12 in left lateral view. (g) Pygostyle vertebrae of
MPC-D 102/12 in left lateral view. (h) Right scapulocoracoid of MPC-D 100/33 in lateral view. (i) Furcula of MPC-D 100/33 in
anterior view. ( j ) Right and left sternal plates of MPC-D 100/33 in anterior view. (k) Articulated pelvis of MPC-D 102/11 in
right lateral view. (l ) Right femur of MPC-D 102/12 in posterior view. (m) Proximal metatarsus and distal tarsals of MPC-D
102/12 in proximal view. (n) Tibia, fibula and pes of MPC-D 102/11 in ventral view. acr, acromion process; astr, astragalus; bt,
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pathology; pbt, pubic boot; pdp, proximodorsal process; pl, pleurocoel; pmx, premaxilla; pop, popliteal fossa; post, postorbital;
prox, proximal end; pub, pubis; q, quadrate; qj, quadratojugal; sac, sacral vertebrae; scap, scapula; spdf, supradiapophyseal
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posteroventrally inclined parietals. The premaxillae are unfused and are laterally depressed below the naris,
as inCitipati [32]. The lateral process of the nasal has pneumatic recesses set within a shallow depression. The
frontal is rare among theropods in being taller than long, a feature shared with Rinchenia [33]. A prominent
lateral ridge extends dorsally from thepostorbital process,which forms the anterior borderof the extension of
the supratemporal fenestra onto the frontal. The postorbital has parallel jugal and frontal processes, as in
Rinchenia [33] but unlike all other oviraptorids [1]. The jugal is triradiate and expanded where the rami
meet, in contrast with the rod-like jugals of most oviraptorids [1]. The parietal has a flat dorsal surface
that tapers transversely in the posterior direction. The interparietal contact lacks a sagittal crest but forms
a laterally protruding lip on either side for the attachment of the adductor musculature. The braincase is
typical for an oviraptorid [34–36], although the bones that make up this part of the skull remain unfused
in MPC-D 102/11. The mandible is like those of most oviraptorids [1], with a pronounced ventral chin
and a tall coronoid arch. The ceratobranchial is rod-like and anteriorly expanded, and curves slightly
medially. Scleral ossicles are preserved but crushed.

The axis is unusual among those of oviraptorosaurs in having a concave posterior articular surface of
the centrum, and the anterior cervical vertebrae have large epipophyses with large lateral pleurocoels
(figure 2d ). The dorsal neural arches are deeply excavated by pneumatic fossae, some of which are
coalesced into larger depressions in the posterior dorsals. There are six sacral vertebrae, comprising
one dorsosacral, three primordial sacrals and two caudosacrals. Only the three primordial sacrals are
fused in MPC-D 102/11 (figure 2e). The caudal vertebrae are barrel-shaped and in juveniles have
large lateral pleurocoels, which are absent in the adult skeleton (figure 2f ). A pygostyle composed of
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three vertebrae is present in MPC-D 102/12 (figure 2g), which is inferred to be an adult on the basis of
osteohistology (figure 4). However, in MPC-D 102/11, the first pygostyle vertebra appears not to have
been fused to the others, which are missing.

The scapulocoracoid (figure 2h) is unfused and the glenoid faces posteroventrally. The scapula is long
and narrow, with a slightly expanded distal end and a strongly everted acromion. The coracoid has a
moderate biceps tubercle and a long posteroventral process. The paired sternal plates are unfused
(figure 2j ), unlike Heyuannia [33], and each is wider than long, with a ventrolaterally positioned
foramen. The furcula is robust with flat epicleidia and a pointed hypocleidium. The arm is short
overall: the combined length of the humerus, ulna and metacarpal II is 109% of femoral length
(electronic supplementary material), compared with 112% in Conchoraptor (MPC-D 102/03), 128% in
Heyuannia (HYMV 1–2; MPC-D 100/30) and 162% in Citipati (MPC-D 100/42). The humerus,
antebrachium and hand are approximately equal in length (figure 3b,c). Bivariate plots reveal that the
oviraptorosaur forelimb is positively allometric across species (figure 5), which contrasts with the
trend of negative allometry in coelurosaurs as a whole [37]. Previous studies have noted this
discrepancy [38,39], but the allometric coefficients in those studies were indistinguishable from
isometry. The broader sampling of oviraptorosaurs here finds that the allometric coefficient (AC) for
the humerus is statistically greater than isometry (AC: 1.14; 95% confidence interval (CI): 1.04–1.23),
whereas the ulna (AC: 1.09; CI: 0.97–1.21) and metacarpal II (AC: 1.19; CI: 1.00–1.39) are
indistinguishable from isometry. Nonetheless, the forelimb as a whole (humerus + ulna +metacarpal
II) is positively allometric (AC: 1.13; CI: 1.01–1.25).

An ovoid radiale articulates with the sellar proximal articular surface of the large semilunate carpal,
and two minute ossicles are appressed to the distal face of the latter (figure 3g). Based on their positions,
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the two small bones are probably sesamoids, rather than distal carpals, indicating that the carpus
comprises only two carpal bones as in other heyuannines [40–42]. To our knowledge, sesamoid bones
have not yet been reported in the carpus of theropods, although they are present in some ankylosaurs
[43]. Manual digit I is robust (figure 3d ), with a large trenchant ungual, but is not proportionally
longer than in other oviraptorosaurs. The ungual of the gracile second digit is smaller and straighter.
Metacarpal III is greatly reduced (figure 3e), as in other functionally didactyl theropods [44–46]. A
dorsal projection on its distal end would have restricted the movements of the first phalanx
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(figure 3e). Phalanx III-1 is consistently the only phalanx in the third digit and has a blunted distal end,
rather than a distinct condyle (figure 3f ). It does not extend past the condyle of metacarpal II, so the third
digit would not have protruded beyond the metacarpus (figure 3d ), which suggests that the manus of
Oksoko would have externally appeared didactyl.

The ilium is long and low with rounded pre- and post-acetabular blades (figure 2k), as in most
oviraptorids [1]. The brevis fossa has an accessory ridge that is unique to Oksoko. The pubes are
procurving (figure 2k) and share a narrow transverse apron. The unfused ischia are relatively straight
and have large obturator processes, distal to which their ventral margins are concave (figure 2k). The
femur (figure 2l ) has a well-developed medial head and a low trochanteric ridge. The tibia has a
moderately developed cnemial crest, which is smaller than those of caenagnathids [47] but
comparable in size to those of other oviraptorids. The distal end of the tibia has an anteromedial
flange that cups the unfused astragalocalcaneum. The non-arctometatarsalian pes (figure 2n) is
unremarkable for an oviraptorid, except that distal tarsal IV bears a bulbous proximodorsal process
and distal tarsal III is fused to metatarsal III in adults (figure 2m).
2.2. Osteohistology
Detailed histological descriptions for each specimen are provided in the electronic supplementary
material. The cortices of all specimens are composed predominantly of primary fibrolamellar bone
with well-developed osteons, high vascularity and dense osteocyte lacunae (figure 4b). The fibulae of
MPC-D 102/110a,b and MPC-D 102/11 are consistent in the longitudinal–reticular [48] orientation of
vasculature, the development of endosteal lamellae around the small medullary cavities, and the
scarcity of secondary remodelling. In each, a zone with a higher proportion of parallel-fibred [49]
bone exists towards the outside of the cortex, and this coincides with slightly reduced vascularity
(figure 4d ). Vasculature is otherwise dense throughout the cortex and does not become reduced at the
periosteal surface.

The fibula of MPC-D 102/12, by contrast, has lower vascularity, more abundant secondary
remodelling, and a much thicker band of parallel-fibred bone at the periosteal surface. At least three
lines of arrested growth [48] can be detected in the outer part of the cortex, and it is likely that more
have been obliterated by expansion of the medullary cavity and secondary remodelling [50–52]. The
femora of MPC-D 102/11 and MPC-D 102/12 contrast starkly in the arrangements of the vasculature
and the proportion of parallel-fibred bone. Whereas the cortex of MPC-D 102/11 has reticular
vasculature and abundant woven bone [48], especially endosteally, the vasculature of MPC-D 102/12
is arranged into more orderly plexiform–laminar [48] rows, with fewer radial canals (figure 4g). The
vasculature of the femur of MPC-D 102/12 changes throughout the cortex: both the abundance of
radial canals and the density of vasculature overall decrease towards the periosteal surface. These
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changes occur in tandem with a transition to parallel-fibred bone with a reduced density of osteocyte

lacunae. At least five cyclical growth marks punctuate the femoral cortex of MPC-D 102/12 (figure 4g,
h), whereas the femur of MPC-D 102/11 resembles its fibula in having only a faint annulus of
parallel-fibred bone near the periosteal surface.
ietypublishing.org/journal/rsos
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3. Discussion
The osteohistology of the specimens suggests that two ontogenetic stages [53] are represented by the
material. MPC-D 102/110a,b and MPC-D 102/11 show evidence of rapid growth (well-vascularized
[54–56] fibrolamellar bone with dense osteocyte lacunae [57]), but the bone matrix and vasculature of
MPC-D 102/12 is more organized, which indicates a slower growth rate [49] (figure 4). This is
especially true towards the periosteal surface of the femur of MPC-D 102/12, which shows a
transition to parallel-fibred bone with reduced vascularity and closely spaced growth marks [50]. The
zones of parallel-fibred bone near the outer cortices of MPC-D 102/110a,b and MPC-D 102/11 are
similar to an early growth mark described in the tibia of a caenagnathid [58], and it is likely that they
also represent cyclical growth marks. Accordingly, MPC-D 102/110a,b and MPC-D 102/11 are best
interpreted as actively growing juveniles at least 1 year old. By contrast, the histology of MPC-D 102/
12 is more consistent with an adult that was approaching maximum body size. The presence of five
growth marks indicates a minimum age of 5 years, although it is likely that this individual was in fact
older and its earlier growth marks were obliterated by expansion of the medullary cavity [50–52].
These ontogenetic stage estimates are supported by patterns of skeletal fusion elsewhere in the body:
the braincases, neurocentral sutures and sacral vertebrae of MPC-D 102/110a,b and MPC-D 102/11
are unfused, whereas the distal tarsals, neurocentral sutures and pygostyle of MPC-D 102/12 are
fused. The ontogenetic stage of MPC-D 100/33 could not be histologically assessed, but this specimen
shows an intermediate degree of fusion: the sacrum is fused, but the distal tarsals and most of the
neurocentral sutures are unfused. Accordingly, it was probably intermediate between MPC-D 102/11
and MPC-D 102/12 in ontogenetic stage.

Gregarious behaviour has been inferred in other oviraptorosaurs [59,60], but only unpublished and/
or circumstantial evidence exists for gregariousness in oviraptorids. Although the association of two
individuals of the heyuannine Khaan suggests that these animals were interacting prior to their deaths
[41,61], whether this is evidence of gregarious behaviour is ambiguous. However, the main
assemblage of Oksoko described here provides, for the first time, clear evidence of gregarious
behaviour in oviraptorids. Because the specimens were poached and their exact provenance within the
Nemegt Formation is unknown, the sedimentology of the site cannot be assessed. Regardless, some
taphonomic information can be gleaned from the skeletons and their arrangement. The crouched
posture of the individuals differs from the opisthotonic ‘death pose’ commonly seen in theropod
dinosaurs [62], in which the body lies on one side and the head, neck and tail are arched dorsally.
Instead, the feet and belly of each individual are parallel to the bedding plane and the arms and legs
are tucked underneath the body—a pose that resembles the resting poses inferred for other non-avian
theropods [6,30,31,63–66]. This posture is unlikely to be the result of taphonomy, especially
considering that it is consistent in at least three individuals oriented in different directions. Indeed, the
pose is nearly identical between MPC-D 102/110.a and MPC-D 102/11, and in both individuals the
third toe curves medially to rest medial to the cnemial crest of the tibia (figures 1 and 2; electronic
supplementary material, figure S12), a commonality unlikely to be the result of chance. The presence
of small, delicate elements like sclerotic plates, and the tight articulation of all the bones, also suggest
minimal decay or transport prior to burial. This is further supported by the pristine surface condition
of the bones, which argues against extensive scavenging, insect burrowing, or weathering before
interment. Thus, we infer that the positions of the skeletons reflect resting postures prior to death and
burial, as inferred for other theropods preserved in similar ways [6,7,30,31,63,64,66–68]. However, it is
clear that the specimens were dorsoventrally crushed during or after burial, and this has resulted in
lateral displacement of the pelvic bones, ribs and possibly other elements of the skeletons. The
unexpected positions of the skulls might reflect displacement during burial and compaction, but could
also be explained by folding of the neck, as in the sleeping pose of some extant avians [69,70].

Assemblages of multiple articulated skeletons are also known for other theropods including
coelophysids [71], ornithomimids [72–74], other oviraptorids [61] and tyrannosaurids [75], as well as
for other dinosaurs [76–78], but these assemblages rarely preserve individuals in their inferred resting
positions. The excellent preservation of the articulated skeletons suggests that the main Oksoko
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assemblage is a mass-death assemblage, rather than a post-mortem aggregation, and that the close
association among the individuals is not the result of taphonomic processes. Accordingly, this
assemblage provides strong evidence of gregarious behaviour. Like some other theropod assemblages
[73], the main Oksoko assemblage is comprised solely of juveniles, which suggests that oviraptorid
groups were age-segregated. This may have been a by-product of a life-history characterized by multi-
year maturation and parental care [79], although no evidence of parental care can be inferred from the
main Oksoko assemblage. What selective advantages gregarious behaviour conferred on young
oviraptorids remains unclear, but possibilities include improved foraging success [80,81], reduced
susceptibility to predation [82,83] and increased capacity for thermoregulation [84,85].

Cretaceous faunal interchange between North America and Asia is a well-established fact [86–88], but
oviraptorosaur biogeography has traditionally been difficult to interpret because of poor phylogenetic
resolution. The greater phylogenetic clarity of our results relative to previous studies allows for
reconstructions of biogeography using stochastic mapping and S-DIVA analyses. These show two major
range expansions that appear to have led to separate diversification events (figure 6; electronic
supplementary material, figure S10). Based on previous work and our analysis, oviraptorosaurs almost
certainly originated in Asia [2,89]. Some basal caenagnathoids dispersed to North America by the Albian
[90] and gave rise to the caenagnathids, a transition accompanied by changes in the mandible [91] and
elongation of the forelimb and manus [92,93]. Oviraptorids were restricted to Asia, and most belong to
one of two clusters, centred on the Nanxiong Basin of southern China and the western Gobi Desert of
Mongolia (figure 6). When these regions are considered separately, rather than lumped together in a
single continent-scale entity, an interesting biogeographic scenario is inferred. In this scenario, the first
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oviraptorids originated in southern China, as did Citipatiinae (figure 6). Range expansion as early as the

Cenomanian into the western Gobi Desert led to the radiation of Heyuanninae, although taxa continued
to disperse between the two regions until at least the Campanian. However, it is important to note that
stratigraphic control is poor in both China and Mongolia, and these dispersals may have occurred later
than estimated, even as late as the Maastrichtian. In any case, such dispersals must have been rare
enough to allow each region to develop its own unique oviraptorid fauna. Range expansion, therefore,
was clearly an important factor in the evolution and diversification of Oviraptorosauria as a whole.
Dispersals into new regions appear to have precipitated two of the major radiations of oviraptorosaurs:
the caenagnathids in North America and the heyuannines in the western Gobi Desert.

The functionally didactyl manus of Oksoko is distinctive not only among oviraptorosaurs but also in
comparison with other didactyl theropods. Re-examination of Heyuannia huangi suggests that this taxon
may resemble Oksoko in possessing a third digit with only a single, reduced phalanx (electronic
supplementary material, figure S13m), a condition that may accordingly have been widespread within
Heyuanninae. The third digit in Oksoko satisfies the conditions of Senter [94] for a vestigial structure,
using other heyuannines with fully developed third digits (e.g. Khaan, Machairasaurus) and
Citipatiinae as outgroups. Typically, digit vestigiality in theropods eventually results in the complete
absence of phalanges in the digit in question, as seen in some parvicursorine alvarezsaurs [95,96],
Chilesaurus [45], Gualicho [46] and tyrannosaurids [97]. In this sense, the retention of a single small
phalanx in the vestigial digit of Oksoko is unusual, but an equivalent condition characterizes the
manus of the enigmatic paravian Balaur [98,99] and some other non-coelurosaurian theropods like
Carnotaurus, Ceratosaurus, Coelophysis and Tawa [100–103]. However, the fully developed digits in
Balaur and Oksoko contrast starkly: those of Balaur are elongate and well adapted for grasping,
whereas those of Oksoko are stout and appear to have had reduced ranges of motion (based on
manual manipulation of the bones) compared with other oviraptorosaurs [11], which would have
limited the grasping ability of the manus (figure 3h). Retention of a small vestigial phalanx in the
third digit is therefore unlikely to be the result of functional similarity between Oksoko and Balaur;
instead, it probably reflects developmental constraints on the pattern of digit loss in archosaurs [104,105].

To explore trends in oviraptorosaur forelimb evolution, manual proportions and forelimb length were
mapped onto a phylogeny using maximum-likelihood ancestral state estimation. This reveals a reduction
in the length of both the third digit (figure 6) and the entire forelimb (electronic supplementary material,
figure S9) at the base of Heyuanninae, followed by continued reduction in more derived forms. Notably,
the onset of forelimb and digit reduction in Heyuanninae appears to coincide with range expansion from
southern China into the Gobi Desert (figure 6). The dispersal to the Gobi Desert precedes major changes
to the manus (figure 6), which argues against forelimb adaptations for other reasons enabling a dispersal
event. Furthermore, the citipatines of the Gobi Desert (Citipati and the Zamyn Khondt oviraptorid) also
show a slight reduction in the third digit compared with citipatines in southern China (figure 6).
Maximum-likelihood reconstruction indicates that this reduction is independent of that in
Heyuanninae, but that it also coincides with the arrival of these taxa in the Gobi Desert. This strongly
suggests a shift in forelimb function resulting from selection pressures encountered in the new
environment. The nature of this niche change is unclear, but it could possibly have been related to
diet or foraging style. Early oviraptorosaurs show a trend towards tooth loss that was probably linked
to the evolution of herbivory [89,106]. However, the diets of more derived oviraptorosaurs are less
certain, because although they show adaptations for herbivory, their edentulous mandibles could have
been co-opted for a wide variety of diets [8,9,106]. Direct evidence of diet in oviraptorosaurs is limited
to the presence of a gastric mill in Caudipteryx [2] and a possible instance of predation in Oviraptor
[107], which support herbivory and carnivory, respectively. These diets appear to be linked to
forelimb and digit reduction and elongation in each of these genera (figure 6; electronic
supplementary material, figure S9), although the sample is small. Interestingly, other caudipterids in
which the forelimb is not reduced appear to lack a gastric mill [3,108,109], although this could be the
result of taphonomy or other factors. Also, the skulls of derived oviraptorosaurs show numerous
correlates of herbivory [8,10,106,110], so retention of a plesiomorphic forelimb seemingly well suited
to prey capture does not necessarily reflect strict carnivory. In any case, the reduction in length of the
forelimbs in Heyuanninae and range of motion of the digits of Oksoko imply that these taxa relied less
on grasping than other oviraptorosaurs [11] and were probably less well adapted for predatory
behaviour [111,112]. Thus, Oksoko and other heyuannines were probably more strictly herbivorous
than other oviraptorids, but whether herbivory is the primary driver of forelimb reduction in
heyuannines is unclear. Indeed, the cranial and mandibular shapes of heyuannines are indistinct from
those of citipatines, which suggests minimal differences in diet [110]. Furthermore, at least some
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regions of the oviraptorid skull seem to have been subject to strong stabilizing selection [110], suggesting

a constrained function. By contrast, the radical departure in the form and evolutionary trend of the
heyuannine forelimb suggests that it became functionally decoupled from the skull. Thus, the
reduction of the forelimb in heyuannines may be driven by its release from the selective pressures of a
foraging function. Instead, the morphology of the forelimb may reflect selection pressures related to
nest building, grooming, display or other behaviours, but these are difficult to test. Further study of
the biomechanics of the oviraptorosaur forelimb and its evolution may illuminate the drivers of
forelimb reduction in heyuannines.

The variation in forelimb length andmorphology described here adds to a growing body of evidence of
high adaptability in Late Cretaceous oviraptorosaurs [15,33,110,113]. This adaptabilitymay have facilitated
the radiation of oviraptorosaurs in the latest Cretaceous. The advent of an edentulous beak and the dietary
flexibility it conferred may have enabled caenagnathids to disperse to North America and heyuannines to
the Gobi region, resulting in two major diversifications of oviraptorosaurs. Plasticity in forelimb function
might have helped oviraptorosaurs disperse to new environments, too, but it may also have aided in
coexistence where ranges overlapped. Niche partitioning in oviraptorosaurs has already been suggested
on the basis of body size [33,113,114], cranial morphology [110] and mandible morphology [8,9,40].
However, the potential role of the forelimb in niche partitioning has not been previously recognized.
Differences in forelimb morphology between caenagnathids and oviraptorids in the Nemegt Basin
[33,47,115] may be the result of broader dietary differences already recognized on the basis of the
mandibles [110]. Forelimb adaptability could also have contributed to the coexistence of citipatines and
heyuannines in the same areas, as the skulls and mandibles of these taxa occupy similar morphospaces
[110]. The aberrant bauplan of oviraptorids compared with other theropods [110,116] suggests that they
occupied a specialized niche, and variation in the skull, dentary and forelimb may have maximized the
available niche space. Oviraptorids were a minor but exceptionally diverse part of the ecosystems they
inhabited [14,15,33], and they appear to have been uniquely able to diversify and coexist in the latest
Cretaceous ecosystems of Asia.
4. Methods
4.1. Histological analysis
Thin sections (see electronic supplementary material) were made from the fibular shafts of MPC-D 102/
110.a, MPC-D 102/110.b, MPC-D 102/11 and MPC-D 102/12. Additional sections were made from
fragments of the femoral shafts of MPC-D 102/11 and MPC-D 102/12. Thin sections were prepared
using conventional petrographic methods [49] by embedding shaft fragments in resin, cutting in the
appropriate planes, mounting the billets onto slides and polishing to the desired thickness.
4.2. Phylogenetic methods
Oksoko avarsan was coded into a modified phylogeny [1,14,93,117] and analysed using parsimony (see
electronic supplementary material). Character scores were updated using new caenagnathid specimens
that improve skeletal representation [114], and some uninformative or poorly constructed characters
were removed. The resulting matrix comprised 42 taxa coded for 246 characters and the cladistic
analysis was performed in TNT v. 1.1 [118]. Tree searches were run with 10 000 replications of
Wagner trees followed by branch swapping using the tree bisection-reconnection algorithm (TBR). A
final round of TBR branch swapping was used to find the most parsimonious trees. The analysis
recovered nine most parsimonious trees of 641 steps. The strict consensus tree included a polytomy
within Caudipteridae and at the base of Citipatiinae, but was otherwise dichotomous. Bremer support
for each of the major clades is strong (electronic supplementary material). By contrast, the majority-
rule consensus was fully resolved and all clades were recovered in at least 66% of the trees.

The phylogeny was time-scaled using age ranges published in the literature. Although the ages of
most taxa could be determined relatively precisely, the stratigraphic ranges of oviraptorids from
southern China are poorly constrained. In these cases, stratigraphic ranges were taken from published
estimates of the ages of the formations where the specimens were found (electronic supplementary
material). Time-scaling was done using the strap v. 1.4 package in R v. 3.3.3. Stratigraphic branch
lengths were calculated using the equal dating method of Brusatte et al. [119].
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4.3. Statistical methods

Expanded statistical methods are outlined in the electronic supplementary material. The length ratio of
manual ungual III-4 to manual ungual I-2 was mapped as a quantitative character onto a phylogeny
scaled using time-calibrated branch lengths and maximum likelihood to estimate ancestral states and
missing tips using the phytools package in R. To more accurately constrain the root condition, additional
outgroups representing a broader array of coelurosaurs were grafted to the preferred tree (following the
topology in Hendrickx et al. [120]) and included in all subsequent analyses. The resulting ancestral state
estimation was visualized with warm colours indicating a low ratio of III-4 : I-2 (i.e. smaller third digit),
and cool colours representing a higher ratio of III-4 : I-2 (i.e. larger third digit).

Palaeobiogeography was examined by creating discrete bins that were analysed as a categorical
character. To make these bins more informative, they were chosen based on the biogeographic
transition of interest in the relevant part of the phylogeny. For example, to understand the dispersal
of caenagnathids into North America, basal oviraptorosaurs and caenagnathids were coded as either
‘Asian’ (purple) or ‘North American’ (orange), without subdividing either of those regions. Because
all oviraptorids are found in Asia, two subdivisions representing the main basins were created:
southern China (black) and Gobi Desert (white). Biogeographic histories were stochastically simulated
to estimate ancestral states. Biogeographic estimations were integrated with the digit reduction data
by plotting biogeographic ancestral state likelihoods onto the nodes of a tree on which digit reduction
was mapped as a continuous character.
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