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W:Ti Flexible Transversal Electrode Array
for Peripheral Nerve Stimulation:

A Feasibility Study
Carolina Silveira, Graduate Student Member, IEEE, Emma Brunton, Member, IEEE,

Enrique Escobedo-Cousin, Gaurav Gupta, Roger Whittaker,
Anthony O’Neill, Senior Member, IEEE, and Kianoush Nazarpour , Senior Member, IEEE

Abstract— The development of hardware for neural
interfacing remains a technical challenge. We introduce a
flexible, transversal intraneural tungsten:titanium electrode
array for acute studies. We characterize the electrochemical
properties of this new combination of tungsten and titanium
using cyclic voltammetry and electrochemical impedance
spectroscopy. With an in-vivo rodent study, we show that
the stimulation of peripheral nerves with this electrode
array is possible and that more than half of the electrode
contacts can yield a stimulation selectivity index of 0.75 or
higher at low stimulation currents. This feasibility study
paves the way for the development of future cost-effective
and easy-to-fabricate neural interfacing electrodes for acute
settings, which ultimately can inform the development of
technologies that enable bi-directional communication with
the human nervous system.

Index Terms— Flexible neural interfaces, peripheral nerve
stimulation, selective stimulation.

I. INTRODUCTION

DELIVERING sensory feedback for prosthesis users has
attracted a significant level of scientific and clinical inter-

est [1]–[5]. Proof-of-principle demonstrations of closed-loop
control of prosthetic limbs are the manifestation of an increas-
ing understanding of the human sensorimotor system and
development of appropriate neural interfacing technology
[6]–[8]. For instance, using different encoding and nerve
stimulation approaches, the information from the sensors,
which are typically embedded into prosthetic limbs, can be
mapped onto sensations, such as pressure, touch, vibration
as well as others, e.g. tingling, as reported by the users
[2]–[4], [6]–[11]. However, different groups approach this
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problem from different angles with marked differences in the
site in the nervous system where the stimulation is delivered:
central [12]–[14] vs. peripheral nervous system [2], [15]–[17];
invasive [2], [7], [8], [10], [18] vs. non-invasive [5], [17], [19];
and the way the neural stimulation is modulated to convey
sensory precepts: biomimetic [8]–[10], [20]–[23] vs. abstract
[13], [17], [21], [24]. We believe that this diversity is due to
three main reasons: 1. uncertainty on how to best sense and
convert sensory information from the environment to electrical
patterns to stimulate the nervous system and evoke naturalistic
sensation; 2. lack of technologies for targeted delivery of
this information to the nervous system; and 3. research still
ongoing on the development of biocompatible neural interfaces
that allow direct communication with the peripheral nervous
system without causing physical damage and pain.

There are different types of neural interfaces, typically
divided according to their invasiveness to the tissues and
selectivity of stimulation [25]. Within the more invasive cat-
egory there are well-known electrodes such as the transverse
intrafascicular multichannel electrode (TIME) [26], the longi-
tudinal intrafascicular electrode (LIFE) [27], the Utah Slanted
Electrode Array (USEA) [28], the 3D spiked ultraflexible
neural interface (SUN) [29] and the self-opening neural inter-
face (SELINE) [30]. All of these electrodes allow for a high
degree of selectivity and consequently tailored stimulation.
These intrafascicular electrodes have been tested in acute and
in chronic settings with the purpose of enabling protheses
forward control and sensory feedback, reducing phantom limb
pain, and helping improve the natural movement of users [3],
[10], [15], [31]–[36]. Within the less invasive category of
neural interfaces the most common are neural cuffs and the
flat interface nerve electrode (FINE), which have also been
extensively studied and implanted in patients for decades or
in animal models in chronic experiments [25], [37]–[40].

One key characteristic that is highly desirable of neural
interfaces is the ability to smoothly adhere or adapt to the
biological structures at the implant site, and to conform to the
surrounding mechanical conditions [29], [41], [42]. Flexible
interfaces have been identified as a solution to reduce this
mismatch between the device and the implant medium [43].
As such, there have been advances in the field of flexible
interfaces, building upon the traditional and well-established
neural cuff. In [44], Xiang et al. presented a flexible neural
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ribbon with coated gold contacts capable of adapting to the
shape of peripheral nerves or branches. The neural ribbon was
able to selectively record neural signals from the different
sciatic nerve branches. The flexible split ring electrode [45],
having four gold:platinum (Au:Pt) contacts, also targeted nerve
branches or small nerves and achieved selective stimulation
of different muscles by varying the configuration of the active
stimulating contacts. In [45], Lee et al. also presented a flexible
neural clip with coated iridium oxide contacts that focused
on showing the importance of flexible designs to better adapt
to nerve structures. Therefore, it is clear that flexibility has
been and will continue to be a sought-after characteristic for
neural interfaces [42], [43], [46]. From the most invasive group
of interfaces the TIME electrode is the flexible interface that
has been more widely used and reported high selectivity of
stimulation [26], [47]. The TIME electrode used in acute
studies is comprised of 10 platinum-black circular active sites
of 60 μm in diameter.

Another key factor to take into account in a neural interface
is the material of the electrode contacts. The most cru-
cial requirements of these materials include minimal tissue
response, low impedance in contact with the tissue, enough
charge storage capacity and they should not corrode or
delaminate [48], [49]. Numerous materials have been used
over the years and some of the most popular are platinum,
platinum:iridium, gold, titanium nitride and tungsten [25],
[48], [50]. More recently, some of the new emerging materials
are PEDOT:PSS, carbon nanotubes [50], ruthenium oxide
[51] and conductive elastomers composites [52]. Considering
more traditional materials, tungsten has been described as a
valuable material for neural signal recording [25], [48], [49],
however, it has not been comprehensively investigated for
its stimulation capabilities. Tungsten is a good candidate for
acute laboratory studies as it is an easy material to deposit
on a parylene-C substrate; its flexibility can be improved
by conjugation with other metals, and it is a cheaper than
platinum.

The aim of this article is to report our progress on the
use of a flexible intraneural tungsten:titanium (W:Ti) electrode
array for stimulation of peripheral nerves. In this feasibility
study, we acutely implanted the fabricated electrode array in
the sciatic nerve of four rats aiming to answer two questions:
1) Can the flexible electrode stimulate peripheral nerves? and
2) Can the stimulation be selective?

To address these questions, electroneurographic (ENG)
signals were recorded from the two main sciatic nerve
branches (tibial and peroneal) and electromyographic (EMG)
signals recorded from the Gastrocnemius (GM) and Tibialis
Anterior (TA) muscles, both of which are innervated by the
sciatic nerve branches. The threshold and maximum stimu-
lation current of each electrode contact were identified by
visually observing the EMG signal response on an oscillo-
scope. Selectivity of stimulation was assessed by analysing the
peak-to-peak amplitude of the compound muscle action poten-
tials (CMAP) and calculation of a selectivity index (SI). For
completeness, electrochemical characterisation of the electrode
array was carried out by running cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS).

II. METHODS

A. Design and Fabrication of the Flexible Electrode Array

The flexible electrode array comprises twenty four record-
ing/stimulating sites sandwiched between two 10 μm-thick
layers of parylene-C. The metallisation for the active sites
and connecting tracks uses a tungsten:titanium (W0.8Ti0.2)
alloy to provide greater flexibility compared to using tungsten
alone. The fabrication process is summarised in figure 1. The
electrode arrays were fabricated on 3-inch silicon wafers using
standard semiconductor processing techniques. Each recording
site has a rectangular shape with rounded corners, width of
25 μm, length of either 50 or 75 μm, and a separation of either
50 or 75 μm. The electrodes were connected to a bond-pad
via W:Ti tracks, and the bond-pads connect to a matching,
custom-made PCB to interface with the stimulation system.

The silicon wafer is solvent-cleaned in N-Methyl-2-
pyrrolidone (NMP) and isopropanol (IPA) to remove organic
contamination. The 300 nm-thick sacrificial aluminium layer
is deposited on the silicon surface by sputtering in an Oxford
Instruments Plasmalab 400 DC & RF system, at a process
pressure of 10 mTorr. The first layer of parylene-C is deposited
to a thickness of 10 μm in a SCS Labcoater™(PDS 2010).
Next, a 1 μm-thick film of W:Ti is deposited by magnetron
sputtering in the Oxford Instruments Plasmalab sputtering sys-
tem from a 99.9% pure W:Ti target from Pi-Kem. The chamber
environment was maintained at a pressure of 19 mTorr by
a constant Ar gas flow of 15 sccm. The DC power used
was 100 W. The W:Ti was then patterned by reactive ion
etching (RIE) in a Plasma-Therm 790 machine, at a pressure
of 150 mTorr and power of 175 W, using AZ 5214E photoresist
from MicroChemicals as a mask. The gas mixture in the
chamber was SF6 (40%)/Ar (60%). The etch rate for W:Ti
under these parameters is 200 nm/min. Following RIE etching,
the photoresist mask can be removed using NMP and IPA.
The patterned W:Ti is then capped with a second parylene-C
layer of 10 μm. A 30 nm-thick titanium mask is outlined
on top of the parylene-C surface in order to pattern the final
probes. The Ti mask is deposited by e-beam and patterned
by direct photo-lithography. Dry etching of the parylene-C
was carried out in oxygen plasma in a custom-made etcher
system by Oxford Instruments. The gas mixture in the chamber
was O2 only. Following parylene-C etching, the remaining
Ti mask is removed in H2O:HF (30:1) for 5-10 s. Finally,
the probes are released from the carrier by dissolving the sac-
rificial aluminium layer in tetramethylammonium hydroxide
at 60◦ C.

B. Electrochemical Characterization
The CV and EIS methods were performed using Autolab

PGSTAT302N. A three-electrode configuration set-up in PBS
(pH 7.4, Gibco™) was used for these measurements. The
counter electrode was a high surface area platinum mesh;
the non-current carrying reference was an Ag|AgCl leakless
electrode (eDAQ ET069-1) and the working electrode was
the flexible electrode contact under test. A potential range
of −1 to 1 V vs. Ag|AgCl was used to generate the CV
curve at a sweep rate of 50 mV/s. EIS was run at 0.1 V vs.
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Fig. 1. A-H: Summary of the fabrication process of the flexible electrodes; I: Dimensions of the fabricated electrode. The zoomed window shows
the actual electrode contacts which are either 50 or 75 µm in length and have a gap of either 50 or 75 µm. The length of the recording area is either
2.4 mm, 3 mm or 3.6 mm; J: A microscopic image of the electrode.

Ag|AgCl between 10 Hz to 100 kHz at an amplitude of 10 mV.
This potential was chosen for running the EIS since it was
within the range where no irreversible reactions happen for this
electrode.

C. Animal Preparation and Surgery

All animal care and procedures were approved by UK Home
office under the Animals (Scientific Procedures) Act (1986)
and by the Animal Welfare and Ethical Review Board of
Newcastle University. Animals were housed in a 12 hour
light/dark cycle with food and water available ad-libitum.
Four Sprague-Dawley rats weighing 300-400 g were acutely
implanted with the electrode in the sciatic nerve. A total of
five experimental sessions (sessions 0-4) were conducted in
four consecutive days. Sessions 3 and 4 were carried out on
the same day and with same animal.

For induction of anaesthesia the animals were placed inside
a box of 3% isoflurane in oxygen. A meloxicam injection
(1 mg/kg) was administered and isoflurane in oxygen was
delivered through a nose mask. The isoflurane levels were
constantly adjusted throughout the experiment for maintaining
depth of anaesthesia. The heart rate and oxygen saturation
levels were monitored with the help of a pulse oximeter. A tail
vein cannula was used to deliver 20 ml of saline (0.9% NaCl
and 5% glucose) with 0.05 ml of KCL to keep fluids and
hydration levels. The animal was placed on the surgical table
on top of a heat-pad with a skin temperature probe. The surface
temperature was kept between 36-37◦ C.

A skin incision was made at approximately 0.5 cm caudal
and parallel to the femur and the gluteus superficialis and
biceps femoris muscles were blunt dissected. The sciatic nerve
trunk and its peroneal and tibial branches were exposed,
separated and cleared from fat and connective tissue. The TA
and the GM muscles were also exposed through skin incisions.
A tungsten ground wire was attached to the L5 spinous process
using dental acrylic after clearing it from the surrounding
muscles and connective tissue.

Finally, an overdose of pentobarbital was administered and
confirmation of death was assessed by cessation of circulation

Fig. 2. The experimental set-up. Neural stimulation was delivered
through the flexible electrode implanted in the sciatic nerve trunk. The
ENG signals were recorded from the tibial and peroneal branches of
the sciatic nerve, distal to the bifurcation site using in house built micro
half-cuffs. The EMG signals were recorded from the GM and TA muscles.

and onset of rigor-mortis. Further details about the surgical
process can be found in [16], [18], [53].

D. Placement of Stimulation and Recording Electrodes
The flexible electrode array does not have the mechanical

strength to penetrate the sciatic nerve. Therefore, it was
implanted with the help of a micro-needle. Under a micro-
scope, the needle was put through the main branch of the
sciatic nerve and the electrode array was threaded into the
needle. The needle was then removed, leaving the electrode
implanted in the nerve. The electrode was held in place with
the help of a magnetic stand holding on to the PCB connector.

The experimental set-up is shown in figure 2. Two micro
half-cuffs were placed on the peroneal and tibial branches
of the sciatic nerve. The half-cuffs were 3D printed in-house
and were used to record neural responses from the tibial and
peroneal nerve branches. The cuffs had a rectangular shape
and measure 3.5 by 2 by 2 mm. They were designed with two
small side-holes (0.65 mm in diameter) through which two
tungsten wires were threaded for bipolar recording.

The EMG signals of the TA and GM muscles were recorded
using two intramuscular tungsten wire electrodes. These wires



SILVEIRA et al.: W:Ti FLEXIBLE TRANSVERSAL ELECTRODE ARRAY FOR PERIPHERAL NERVE STIMULATION 2139

were fixed in position using tissue glue and the skin surround-
ing the electrodes was glued together, using tissue glue as well.
During the first experimental session (session 0) only the TA
EMG signals were recorded. In experimental sessions 1-4 the
EMG was recorded from both the TA and GM muscles.

E. Stimulation and Recording Systems
Stimulation was delivered with a CereStim R96 (Blackrock

Microsystems, USA) in four out of five experimental sessions
(sessions 0–3). The stimulation ground electrode, a stainless
steel wire, was positioned in the skin close to the flexible
electrode. The PCB board of the flexible electrode was con-
nected to the CereStim using the CereStim R96 cable (Samtec
MIT-019-02-F-D). The EMG recording wires and the ENG
recording half-cuffs were connected to a differential ampli-
fier (A-M Systems™, USA) and bandpass filtered between
10 Hz-1 kHz and between 10 Hz-5 kHz, respectively. The
outputs of the amplifier were connected to the analog inputs of
a Cerebus Neural Signal Processor (Blackrock Microsystems,
USA) where both the compound action potentials (CAP) from
the nerve branches and the CMAP were sampled at 30 kHz.

On the last experiment day, a second round of stimulation
was performed (session 4) using an isolated pulse stimula-
tor (model 2100, A-M Systems™, USA). The AM-Systems
allowed for stimulating with shorter pulse widths. Experimen-
tal sessions 3 and 4 were carried out consecutively on the
same animal and using the same electrode array. However,
in between sessions 3 and 4 the electrode array was removed,
checked for continuity and reimplanted.

F. Stimulation Protocol
The diameter of the rat sciatic nerve measures approxi-

mately 1-1.5 mm [54]. Due to the size of the contacts and
inter-electrode pitch, not all of the 24 active sites can be
in contact with the tissue following implantation. Therefore,
the electrodes in contact with the nerve were identified by
measuring their impedances at 1 kHz using the CereStim. Half
way through the experimental session the electrode was moved
along the nerve so that the contacts that sit in the opposite
end of the electrode could also be implanted in the nerve.
We decided to take this approach because understanding the
relationship between the contacts’ position in the nerve and
the selectivity of stimulation was outside the remit of this
feasibility study.

The threshold and maximum stimulation currents were
identified by visually monitoring the EMG signal activity
on the oscilloscope. To find these values the starting current
level was 50 μA and it was increased/ decreased in steps of
5 μA and 1 μA. The CMAP signals were observed for both
muscles simultaneously and as soon as activity was detected
in one muscle the current level was noted as the stimulation
threshold for that electrode contact. Once the threshold was
found, the stimuli were delivered 10 times via the electrode
contact with a pause of 0.5 s between each stimulation pulse.
This process was repeated for all the electrode contacts that
were functional. The maximum stimulation current of each
electrode contact was found by progressively increasing the
current level and observing when the CMAP signal on either

muscle would cap. Stimuli were then delivered ten times at
100%, 80%, 60%, 40%, 20% of the maximum current value.
The difference between the maximum and threshold currents
was calculated and referred to as the dynamic range.

The stimulation parameters used with the CereStim were
symmetric biphasic cathodic-first pulses of 50 μs pulse width
and 53 μs inter-pulse delay at 1 Hz. In session 4, an
AM-systems stimulator was used to investigate the effect using
a monophasic cathodic 40 μs pulses at 1 Hz.

G. Data Analysis
The ENG and EMG signals were normalised to baseline

and averaged over the ten stimuli collected for each threshold
and each percentage of the maximum stimulation value. The
peak-to-peak values of the EMG CMAPs were the features
extracted to estimate muscle activity. The ENG signals were
analysed between 0.5 ms and 1.5 ms to include the CAP and
exclude the artefact, which happened before 0.5 ms. The dis-
tance between the flexible electrode (stimulating electrode) and
the EMG recording wires was approximately 2-3 cm. Given
the nerve conduction velocity (60 m

s and the neuromuscular
junction delay, we did not expect an M-wave before 2 ms [55].
Hence, we analysed the EMG signals between 2-8 ms.

The peroneal branch of the sciatic nerve innervates the TA
muscle, whereas the GM muscle is innervated by the tibial
branch [47]. Thus, the activation of the TA and GM muscles
were used to investigate whether the fabricated electrode
can achieve selective stimulation of the branches and the
associated muscles. The peak-to-peak amplitude of the CMAP
(M-wave) was normalized to the maximum peak-to-peak
CMAP amplitude obtained for each muscle as measured at
100% of maximum stimulation. We use the flexible electrode
for this and found the overall maximum of each muscle in
each experimental session. For each contact that was verified
to be in contact with the tissue i , a selectivity index (SIi,k )
was estimated as the ratio between the normalized CMAP
peak-to-peak amplitude of the muscle of interest, and the sum
of the normalized CMAP peak-to-peak amplitudes evoked in
both GM and TA muscles [56]:

SIi,k = CMAPi,k
∑

j CMAPi, j
.

The SIs were calculated at threshold and at four of the
five stimulation levels (40%, 60%, 80% and 100% of max-
imum stimulation) for both the TA and GM muscles. A SI
of 0.75 was chosen as the minimum index value to consider
that selective stimulation was achieved.

III. RESULTS

A. Electrochemical and Functional Characterisation
of the Electrode Array

Figure 3A,B shows the results of the electrochemical char-
acterisation of the electrode array in PBS solution (pH 7.4,
Gibco ™) using CV (−1 V to 1 V) and EIS for two contacts of
the electrode array. These contacts presented similar behaviour
in both their CV and EIS curves. The two peaks observed
in CV (figure 3A) around −0.5 V and 0.6 V indicate the
water window limits for this tungsten:titanium alloy. The peaks
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Fig. 3. Electrochemical and functional characterisation of the electrode array; A: Cyclic voltammetry of two contacts of the flexible electrode. The
CV was run between −1 V and 1 V at a sweep rate of 50 mV/s. Three CV sweeps were run and the third run is shown; B: Impedance magnitude and
phase of the EIS done on the two electrode contacts. The frequency range used was 10 Hz to 100 kHz at a potential of 0.1 V; C: The thresholds,
maximum and dynamic range of stimulation of four experimental sessions (S0 −S3); and D: Thresholds, maximum and dynamic range of stimulation
when using the AM system stimulator (session 4). In the boxplots the red mark is the median, the edges represent the 25th and 75th percentiles,
the whiskers extend to the most extreme data points the algorithm does not consider to be outliers, and the outliers are plotted in red.

seen in the CV curve represent the moment when irreversible
reactions, such as oxidation and reduction of oxygen, start to
take place and thus the potential of 0.1 V was chosen for the
EIS as this lies in the region where no irreversible reactions
take place. The EIS results showed a capacitive curve with a
decrease of phase angle with decreasing frequency. At 1 kHz
the impedance magnitude was approximately 89 k�, which
falls in the range of 50 k� to 1 M� impedance for in vivo
studies as reported in [50].

The thresholds for triggering muscle activation as well as the
maximum of stimulation were found for each working contact
of the electrode. This was carried out by visual observation
of the EMG response on the oscilloscope. Figure 3C shows
the thresholds, maximum and dynamic range of stimulation
of the four experimental sessions done using the CereStim
stimulator (sessions 0-3). The additional results obtained on
session 4 with the AM-systems stimulator are shown in
figure 3D. In comparison, the currents obtained in sessions 0-3
were highly variable ranging from 4 to 191 μA (thresholds)
and from 60 to 200 μA (maximum), whereas the results
obtained with the AM-systems stimulator in session 4 ranged
from 130 to 330 μA (thresholds) and from 350 to 850 μA
(maximum).

B. Selectivity of Stimulation
Figure 4 shows an example of the EMG and ENG traces

obtained when stimulating with one of the flexible electrode
contacts. The shown traces are the average of the 10 stimula-
tion pulses delivered for each percentage of the maximum and
are normalised to the baseline. Part A of this figure shows the
GM muscle traces (top) and the TA muscle (bottom) while
part B shows the corresponding Tibial branch (top) and the
Peroneal nerve branch (bottom) neural recordings.

In figure 4B the grey shade covers the first 0.5 ms of
the recorded signals which contains the stimulation artefact.
The CAP can only be seen after this. The peak-to-peak
amplitude of the TA muscle response is smaller compared
to the amplitude of the GM muscle. Therefore, figure 4 is
an example where selectivity of stimulation can be observed
in the raw data for the GM muscle at stimulation currents
corresponding to 80% and 100% of the maximum current.

Fig. 4. Example of recorded EMG and ENG waveforms showing
selective stimulation of the GM muscle. The traces are for threshold,
and 40%-100% of the maximum stimulation level.

Figure 5A quantifies the selectivity of stimulation of the
sciatic nerve, and consequently the GM and TA muscles,
using the fabricated electrode array. For clarity, in figure 5A,
the results are shown at threshold and at 100% of maximum
stimulation for each contact. The results of experiment ses-
sions 1 and 2 show clear selectivity for the TA muscle at
threshold which expectedly disappears at 100% of maximum
stimulation. In session 3, the TA muscle also showed selectiv-
ity at threshold (SI > 0.75) for all the contacts but at 100% of
maximum 4 out of 9 contacts could selectively stimulate the
TA muscle and 1 out of 9 contacts the GM muscle. The results
of session 4 show that different contacts of the same elec-
trode can provide selective stimulation of different muscles.
Specifically, two contacts show selectivity at threshold for the
TA muscle while four contacts show selectivity at threshold
for the GM muscle. However, at maximum stimulation two
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Fig. 5. Selectivity Analysis. A: Selectivity indices of the GM and TA muscles at threshold and at maximum of stimulation (Max) in experiment
sessions 1-4. The EMG recordings were only collected from two muscles, thus the selectivity indexes are complementary, adding up to 1. The x axis
denotes the contact ID of the electrode arrays and the y axis the selectivity index. A total of 3 electrode arrays were used in sessions 1-4 since
the same electrode was used in sessions 3 and 4. B: Percentage of contacts, across sessions 1-4, with a selectively index higher than 0.75. The
contacts with threshold currents higher than the current levels at 40% and 60% of maximum stimulation were not included in this graph.

contacts provided selective stimulation of the GM muscle,
while at threshold the same two contacts had been able to
selectively stimulate the TA muscle. The results of session
4 also show, however, that there is a less pronounced gap
between selectivity achieved at threshold and at maximum of
stimulation.

Finally, figure 5B summarises the percentage of contacts
across experiment sessions 1-4 that resulted in a SI of at
least 0.75. Expectedly, the graph shows that with increasing
stimulation levels less contacts were able to selectively recruit
either one of the muscles. In this graph the results of the
20% of maximum stimulation current were not included
because in 91% of the cases these values were lower than
the threshold of the stimulation current. Therefore, for those
cases, the stimulation current was not high enough to evoke
any discernible EMG signals. The same happened for 15 out
of the 33 electrode contacts at 40% of maximum stimulation
and for 7 (out of 33) contacts at 60% of maximum stimulation.
Thus, these contacts were not included in figure 5B.

IV. CONCLUDING REMARKS

In this study, an in-house fabricated flexible electrode array
was acutely implanted in the sciatic nerve of rats to understand
if this electrode recipe could stimulate the nerve and if this
stimulation could be selective. Results showed that stimulation
was possible and at threshold 67% of the contacts achieved
a SI of 0.75 or higher for recruitment of either the GM
or TA muscles. The EMG signals were only recorded from
two muscles, thus a SI of 0.5 does not indicate selectivity.
An SI of 0.75 was therefore chosen as the minimum index of
selectivity. An SI of 0.75 does not necessarily mean that high
selectivity was achieved but instead shows that the stimulation
was selective.

At 40% of maximum stimulation 39% of the contacts also
achieved a SI of at least 0.75 because for those contacts the
current levels were close to the threshold levels. In contrast,
at maximum stimulation current only 12.1% of contacts had
SIs higher than 0.75. As expected, and reported in other
studies with the intrafascicular TIME electrode, the higher
the stimulation current the lower the selectivity due to the
spread of current to neighbouring nerve fascicles that inner-
vate other muscles [26], [47]. For the selectivity analysis,

the contacts that at 40% and 60% of stimulation did not
reach the threshold current level were not included since they
would have not triggered a muscle response. In these cases,
the dynamic range was low and for that reason even at 60% of
maximum stimulation the threshold of activation had not been
reached.

The results of sessions 3 and 4 also showed that for 8 out
of 17 contacts a similar SI was found at both threshold and
maximum of stimulation. It may indicate that those contacts
were able to more specifically target fascicle bundles. This
could also be because of the mentioned low dynamic range
where the proximity in value of the threshold and maximum
current could allow for similar selectivity of stimulation.
It is important to highlight that sessions 3 and 4 were per-
formed with the same electrode array - only the stimulator
and parameters of stimulation were different. Furthermore,
the positioning of the electrode and therefore the contacts that
were inside the nerve changed between session 3 and session
4 as the electrode array was re-implanted when switching
stimulators. We believe this is what probably allowed for
recruiting different muscles with the two different stimulators.
The different waveform parameters are likely to have played a
role in the threshold and maximum current value differences
observed between session 4 and the other sessions. Future
work is required to understand the impact of the waveform
parameters on the stimulation selectivity.

The current thresholds for muscle activation of sessions 0-3
varied between 3 μA and 130 μA except for one outlier at
191 μA. These values are higher than what was reported with
other intraneural electrodes (20 to 100 μA with the TIME
[26] and 24 to 66 μA with TIME and LIFE devices [47]).
This could be due to a poorer contact at the electrode-tissue
interface caused the by the inherent damage of passing a
200+ μm wide needle through the nerve or due to the different
metals’ combinations used for stimulation. Furthermore, since
we only recorded from two muscles, the thresholds of some
contacts might appear higher for the TA or the GM muscle
because their position in the nerve would better target a
different subset of fibres innervating muscles we did not record
from.

We chose the peak-to-peak amplitude of the CMAP as the
parameter to analyse the EMG signals. The area under the
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curve was also extracted from the signals and the results
in terms of selectivity of stimulation were equivalent to the
peak-to-peak results. The same analysis was performed for
the ENG signals. We did not observe ENG selectivity as
we showed in the EMG domain. We believe that it was
because the recorded ENG signals were not always able to
capture the action potentials even though the CMAPs were
captured. Perhaps this could be due to the suboptimal contact
between the recording 3D-printed cuffs and the nerve; the
nerve branches sat on the cuff wires partially.

For the development of flexible electrode array, parylene-C
was the polymer of choice for the substrate given its adherence
properties, inertness and deposition technology at room tem-
perature [41]. The mechanical, dielectric and barrier properties
of parylene-C are comparable to those of other commonly
used polymers such as polyimide. However, the deposition
of most polymers requires them to be spun on the sample
as a liquid and liquid-phase deposition can lead to bubble
formation. In addition, surface tension prevents the polymer to
fill micron-size features effectively, which can lead to encap-
sulation failure. In contrast, parylene-C can be deposited as a
vapour, resulting in bubble free, air-tight, conformal layers.
Furthermore, the parylene-C layer thickness can be accu-
rately controlled to sub-micron resolutions, which improves
reproducibility in the fabrication process [57]. However, using
polyimide instead of parylene-C as the substrate could be
beneficial for the chronic stability of intraneural implants [57],
[58]. Oliva et al. looked at the fibrotic response of parylene-C
based intraneural implants in rats over a period of more
than six months and found the response larger than that of
polyimide. In addition, the lifetime of parylene-C encapsulated
implants is shorter than previously estimated [59]. Therefore,
polyimide could be a more adequate substrate for chronic
neural implants while parylene-C remains an adequate material
for acute applications.

Tungsten electrodes have been used for more than 60 years
to record from the central nervous system in chronic set-
tings [60]–[63]. To our knowledge, the potential of tung-
sten:titanium electrode for the stimulation of the peripheral
nerves has not been studied. It can be useful, in acute settings,
to experiment with different material combinations and config-
urations to better understand how these influence stimulation.
The electrodes still need to be non-toxic and sufficiently
robust to survive several tissue insertions. Tungsten and gold
are readily compatible with microfabrication techniques as
they can be deposited either by evaporation or sputtering.
Platinum deposition occurs at high energy, which may lead
to thermal stress and cracking of the underlying parylene-C.
Gold and tungsten can be evaporated on parylene-C without
causing damage, however, gold has extremely poor adhesion
to parylene-C which may result in a 50% reduction of yield
compared to tungsten. We sought to determine if it would
be feasible to use a tungsten:titanium alloy for the electrode
surfaces and interconnecting tracks (W0.8Ti0.2 ratio) to provide
greater flexibility, as the Young’s modulus of W:Ti is 110 GPa,
compared with 400 GPa, for tungsten alone [64].

Future work on the presented flexible electrode array will
include reducing its overall dimensions to better fit the sciatic

nerve of rats. The number of available stimulating and record-
ing contacts can also be reduced since with the transversal
implantation not all of the 24 contacts fit within the nerve.
Before chronic studies can be conducted with the flexible elec-
trode more rounds of design improvement and therefore acute
studies are necessary. Incorporating an anchoring mechanism
to keep the electrode in place and changing the substrate to
polyimide are examples of improvements. With the current
fabrication method different electrode designs (e.g. contact
size, shape or separation) can be made on the same wafer,
allowing for a direct comparison of the outcome. Experiment-
ing with different conventional metals and combinations of
metals is also an alternative to find a good balance between
cost, ease of fabrication and functionality.
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