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Abstract

Schistosomiasis control is heavily reliant on the drug praziquantel (PZQ), which is used as

preventive chemotherapy as part of national helminth control strategies. Given the heavy

reliance on PZQ for mass drug administration, there has been considerable research on the

potential of parasites developing resistance to the drug, resulting in decreased drug efficacy.

However, there have been comparatively fewer studies of other factors that can potentially

alter PZQ efficacy. Here, we investigate whether host PZQ metabolism contributes towards

variable cure rates. We evaluate factors that can influence the metabolism of PZQ and the

resultant effect on the efficacy of PZQ treatment to determine factors that potentially influ-

ence an individual’s response to the drug. The literature search was directed at published

studies from three online databases: Web of Science, PubMed, and EMBASE. The search

terms for the review comprised of ([praziquantel OR PZQ] AND [schistosom* OR bilharzia]

AND [pharmaco*]) and included studies evaluating PZQ metabolism. Publications were cat-

egorised into pharmacokinetics, drug–drug interactions, pharmacogenetics, and metabolite

analysis. Forty publications describing human and experimental studies fitted the inclusion

criteria and were subjected to data extraction and analysis. The analyses showed that vari-

able exposure to PZQ was associated with alterations in the liver’s capacity to metabolise

PZQ and observed drug–drug interactions. Other factors influencing the efficacy of PZQ

were brand, formulation, and co-administered food. Although some work has been per-

formed on metabolite identification, there was minimal information on PZQ’s metabolic path-

way, and no pharmacogenetics studies were identified. The study indicated that in both

human and experimental studies alterations in the liver’s capacity to metabolise PZQ as well

as drug–drug interactions affected systemic levels of PZQ that could result in variable cure

rates. The study confirmed previous findings of higher antischistosomal activity of (R)-PZQ

enantiomer when administered alone compared to the racemate at the same dose as well

as improved efficacy when the drug is administered with food. The study also highlighted
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the need for more comprehensive studies of the PZQ metabolic pathway and PZQ pharma-

cogenetic studies in humans.

Author summary

Schistosomiasis is a neglected tropical disease caused by parasitic worms, and its control is

heavily reliant on the drug praziquantel (PZQ). Reports of individuals not being cured of

schistosomiasis after a treatment have raised concerns about drug efficacy and the poten-

tial for the development of drug resistance. Many factors can be responsible for reduced

efficacy including host, parasite, and drug–related factors. We investigated the potential

effect of varying systemic levels of PZQ on cure rates. We reviewed studies on PZQ metab-

olism identifying factors that may influence PZQ systemic levels, including the drug

administered, host liver health, and genetic polymorphisms of liver enzymes involved in

PZQ metabolism. The results indicated that varying levels of PZQ were due to the drug

formulation and differences in the liver’s capacity to metabolise PZQ as well as drug–drug

interactions. The study also highlighted the need for further studies of the effect of human

genetics on PZQ’s metabolic pathway, and the PZQ metabolites produced.

Introduction

Schistosomiasis is a prominent public health problem [1], with the majority of affected people

residing in Africa [2]. Praziquantel (PZQ) is the drug of choice to treat schistosomiasis and is

widely used in preventive chemotherapy (PCT) programs (as defined by WHO) [3] across

Africa to treat intestinal and urogenital schistosomiasis infections caused by Schistosoma man-
soni and S. haematobium parasites, respectively [4]. Mass drug administration (MDA) of PZQ

in PCT to treat schistosome infection and reduce associated morbidity has been a success, with

an estimated 235 million people treated with PZQ in 2018 alone [5]. PZQ itself is a racemic

drug, with the standard dose consisting of a 1:1 mixture of two enantiomers (see Fig 1).

Only the (R) enantiomer (also known as Levo-PZQ, L-PZQ, or (-)-PZQ) of PZQ has anti-

schistosomal activity; in contrast, the (S) enantiomer (also known as Dextro-PZQ, D-PZQ or

(+)-PZQ) does not have antischistosomal action but contributes to some of PZQ’s known side

effects [6]. PZQ is well-tolerated and effective in patients of all ages with different clinical

forms of schistosomiasis [7] and has been used to treat schistosomiasis since the 1980s [8]. The

precise mechanism of PZQ’s antiparasitic action remains poorly described. Studies suggest

that its action arises from the (R)-PZQ enantiomer disrupting the schistosome calcium ion

homeostasis causing uncontrolled muscle contraction and death in adult worms [9, 10]. PZQ

targets only adult schistosomes; therefore, the drug is not effective against the larval stages

infections [11].

The efficacy of PZQ treatment is determined by the cure rate (CR), which compares the

number of egg-positive individuals pre-PZQ treatment who become negative for schistosomia-

sis post-PZQ treatment as well as by the egg reduction rate (ERR), determined by the reduc-

tion in mean number of eggs excreted in urine or stool (depending on the schistosome

species) from pre-PZQ to post-PZQ treatment [12, 13]. Low PZQ cure rates have been

reported by some studies, with many attributing this to a high pretreatment parasite burden

[14–17]. However, variable efficacy of PZQ has also been observed in other studies, even when

accounting for the level of pretreatment infection [18, 19], suggesting that other factors must

be influencing the drug’s efficacy. For example, low cure rates and the reduced efficacy of PZQ
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treatment have been attributed to patients harbouring schistosomes in different developmental

stages and the decreased sensitivity of schistosomes to PZQ treatment [20–23]. Investigations

into cases of laboratory and field PZQ resistance indicated that reduced efficacy of drug treat-

ment due to decreased sensitivity and resistance was rare [24, 25]; hence, parasite sensitivity

cannot account for all incidences of treatment failure. So, why are these low cure rates occur-

ring? This study investigates whether the level of PZQ in systemic circulation is contributing

towards low cure rates, as systemic PZQ may not be exceeding the lethal schistosome concen-

tration. In this study, we will focus on three factors that can influence the amount of PZQ in

systemic circulation, and, thus, affect the efficacy of PZQ treatment: PZQ pharmacokinetics

(PK), pharmacogenetics, and drug–drug interactions.

The term “PK” describes movement of a drug, encompassing the absorption, distribution,

metabolism, and elimination (ADME) parameters of that drug [26]. Metabolism describes the

mechanism of breaking down the drug compound and is commonly analysed via biotransfor-

mations of the xenobiotic by drug-metabolising enzymes [27]. The Cytochrome P450 (CYP)

enzymes mediate the metabolism of PZQ, specifically the following enzymes: CYP1A2,

CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 [28]. The term pharmacogenetics refers

to the variability in an individual’s response to a drug due to genetic variations. Genetic poly-

morphisms in CYPs have linked interindividual variation to metabolism in numerous drug

efficacy and toxicity studies [29]. These variations are primarily due to single nucleotide poly-

morphisms (SNPs) of the CYPs, and these can lead to an increased or decreased pharmacoki-

netic effect [30]. The distribution of CYP alleles differs substantially between populations,

emphasising the need for optimising drugs for the population in which the drug will be used,

e.g. the efficacy of drugs tested in Europe may not have the same efficacy in African popula-

tions [31]. Furthermore, analysing pharmacogenetic differences in the metabolic (drug metab-

olism) products can provide additional information on a patient’s drug response [32].

The CYPs are also an important site for drug–drug interactions (DDIs) [33]. PZQ is metab-

olized by multiple CYPs, and so DDIs within these CYP pathways could result in the formation

and accumulation of metabolic by-products or a reduction of the drug’s therapeutic effect

[34]. The bioavailability of a drug can be altered by DDIs via competition for protein-binding

sites on the CYPs, affecting the overall efficacy of a drug. DDIs can induce the CYPs (increased

metabolism), increasing the activity of the CYP enzymes and decreasing the overall bioavail-

ability of the active drug [35]. Vice versa, if a coadministered drug inhibits the PZQ’s

Fig 1. The molecular structure of the two PZQ enantiomers. The (R)-praziquantel has the hydrogen atom (H) pointing down from

the chiral center. The (S)-praziquantel has the hydrogen atom (H) pointing up from the chiral center. PZQ, praziquantel.

https://doi.org/10.1371/journal.pntd.0008649.g001
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enzymatic binding sites, it can no longer be metabolised and eliminated via this pathway

(decreased metabolism), and drug accumulation could result in toxic levels in the body [36].

Evaluating DDIs is important when developing and using any drug treatment, especially when

regarding comorbidity, as patients may be on multiple medications [37]. Overall, evaluating

whether pharmacogenetics factors and DDIs influence a CYP’s ability to metabolise PZQ will

indicate the role of altered metabolism in variable schistosomiasis CR.

Methods

Literature search strategy

The search strategy was guided by the Preferred Reporting Items for Systematic Reviews and

Meta-Analysis (PRISMA) guidelines [38], and the studies included in this review were pub-

lished prior to May 12, 2019. The search used three online databases: Web of Science, PubMed,

and EMBASE. The search terms for the review comprised of ([praziquantel OR PZQ] AND

[schistosom� OR bilharzia] AND [pharmaco�]) and included animal and experimental models

that evaluated PZQ metabolism. As the main burden of schistosomiasis in sub-Saharan Africa

is attributed to two species of schistosomes [4], only studies on S. haematobium and S. mansoni
were included in this review. The citations were compiled in EndNote X8 and duplications

were identified and removed.

Literature screening and inclusion and exclusion criteria

The titles and abstracts of the Endnote Library were screened, and any that met the inclusion

criteria were put aside for a review of the full text. If the abstract was not available or it was

unclear whether the study fully met the inclusion criteria, it was selected for full evaluation.

After a full evaluation of each text, the articles included in this review were required to fit into

one of the following topics: PK, pharmacogenetics, drug–drug interactions, or metabolites

analysis. Selection criteria within each category were based on whether (1) the article was avail-

able as full journal text and in English, (2) the units of the numerical pharmacokinetic parame-

ters were clearly defined, (3) the article included human and animal in vivo/in vitro models for

human extrapolation, and (4) models were either a healthy control or infected with S. mansoni
or S. haematobium. If a paper could not be located through an online repository, it was

requested from the British Library. Any papers that could not be obtained from these sources

were excluded.

Data extraction and data analysis

Pharmacokinetic data, including the dose of PZQ and any “Drug B” measured (racemic or

enantiomeric PZQ), the model, Schistosoma infection status, the number of subjects (N), the

numerical pharmacokinetic parameter and its units, and any external test conditions, such as

fasting or fed states, were documented in an Excel spreadsheet. To extract comparable data

from each study, it was concluded that the in vivo pharmacokinetic parameters to quantify

drug-concentration-time relationships would be as follows: area under the plasma-concentra-

tion curve (AUC), peak plasma concentration (Cmax), time to reach peak plasma concentration

following drug administration (Tmax), and drug-elimination half-life (t1/2) [39]. Data points

were extracted, grouped together by parameter, and converted into standard SI units. If no

units were quoted, the data point was excluded from the data tables. Where the published data

was presented in a graph, Data Thief III software was used to extract the numerical values. The

data points were analysed to detect trends affecting PZQ metabolism between studies, creating

new combined graphical results. These graphs were then analysed in the results to assess
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whether the combined data reflected the hypothesis of this review. Only limited statistical anal-

ysis was possible due to sparsity of data and heterogeneity of populations used.

To evaluate the efficacy of PZQ without pharmacokinetic values, the worm burden reduc-

tion (WBR) in the case of experimental models, ERR, and CR were also collected. For pharma-

cogenetic factors, the population ethnicity of each human study was recorded when provided

in the source publication as genetic factors can determine response to a drug [40]. By linking

the individuals in the studies by ethnicity, it implies a common genetic ancestral background

that could influence a therapeutic response to a drug [41]. For the papers that depicted PZQ

metabolite analysis, the structural identity of each metabolite was created using ChemDraw

Prime v16.0, and any information about its metabolic pathway was reported.

Results

The search yielded a combined total of 873 studies and, after the removal of duplicates, 425

titles and abstracts were screened, resulting in 95 publications for a full-text review. There

were 55 excluded publications, leaving 40 publications for data extraction and analysis (S1

Table). The results of this systematic search are displayed in a flow chart (S1 Fig).

PK and PZQ efficacy

In the PK category of this review, data points extracted from multiple papers describing

healthy and infected human and animal models provided an overview of the published PK and

efficacy of PZQ treatment. The animal models obtained from the search strategy were exclu-

sively rodents, and included mice, rats, and hamsters. The human studies included adults (16

years or older), school-aged children (SAC) (6 to 15 years), and preschool-aged children

(PSAC) (5 years or younger). An evaluation of these as separate study groups was made based

on the model, either rodent or human, and parameters measured.

Experimental studies: PK and PZQ efficacy

The relative exposure of PZQ in the reviewed rodent models was compared using t1/2, Tmax,

Cmax, and AUC values (refer to S2 Table). The effects of different PZQ doses, brands, and

infection status on the exposure parameters (Cmax and AUC) of PZQ in various rodent models

were described in six studies [42–47].

Hepatic CYP metabolism. On average, based on the PK data extracted from these papers,

the general trend of the compiled exposure parameters was that with increasing PZQ dose, the

Cmax and AUC also increased. Upon closer inspection, there were some deviations from this

trend with a common factor; it appeared that the healthy rodent models tended to have a

lower exposure to PZQ than the infected rodents. A study by Botros and colleagues [42] in

healthy and S. mansoni–infected mice showed that in the infected mice there was a significant

difference in maximum concentration of PZQ in systemic circulation, approximately triple

that found in healthy mice. The increased exposure was attributed to the reduced liver capacity

of infected rodents, resulting in decreased metabolism of parent PZQ and, therefore, longer

exposure in the circulation. Botros and colleagues [43] and Kokwaro and colleagues [44] con-

ducted further analysis of the overall decreased hepatic CYP activity and the resultant alter-

ation of PZQ’s PK parameters due to schistosomiasis, once again with significant differences

between S. mansoni–infected and uninfected mice detected. The relative t1/2, Tmax, Cmax, and

AUC values were increased proportionally to the degree of decreased CYP activity, an influen-

tial factor if this effect is also observed in humans. In fact, due to decreased hepatic CYP activ-

ity, severe side effects were observed by Gotardo and colleagues [45] from toxicity caused by

the higher Cmax and AUC values in infected mice treated with 400 mg/kg PZQ.
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PZQ brands. Additional factors which may have contributed to variable PZQ exposure

were investigated by comparing the parasitic efficacy of the different brands of PZQ available.

To compare efficacy, two parameters were measured: (1) WBR, as the World Health Organiza-

tion describes a reduction in adult worm counts as a measure of the efficacy of an anthelmintic

in experimental models [48], and (2) the percentage inhibition of hepatic CYP450 activities as

a result of S. mansoni infection, observing the extent of CYP450 inhibition when compared to

healthy mice. The results in S3 Table are adapted from Botros and colleagues [42], with the

highest WBR and lowest CYP450 inhibition was achieved with pure PZQ, with Distocide and

Biltricide showing comparable efficacy. Interestingly, Bilharzid, brand T3A, and Epiquantel

had a significantly lower WBR than the other brands analysed, yet had significantly higher

CYP450 inhibition. In comparison to pure PZQ, Distocide and Biltricide, the Bilharzid, brand

T3A, and Epiquantel were not aiding the recovery of the CYP450 activity from schistosomiasis

infection as well as the other brands examined.

PZQ formulations. Further studies focused on the PZQ compound itself as a topic of dis-

cussion, with Zhang and colleagues [46] and Meister and colleagues [49] showing the pharma-

cological differences between the (R) and (S)-PZQ enantiomers, confirming the

antischistosomal activity of (R)-PZQ. A comparison of the activity of racemic PZQ (rac-PZQ)

compared to each PZQ enantiomer in mouse models can be seen in Fig 2 (data in S4 Table).

This is consistent with (R)-PZQ being the pharmacologically active enantiomer, with a sig-

nificantly higher WBR than the (S)-PZQ and a higher WBR than the current standard rac-

PZQ treatment at the same dose [49, 50]. One contradictory piece of data extracted during this

review was from Tanaka and colleagues [50], in which the (S)-PZQ had a higher WBR than

rac-PZQ and (R)-PZQ at 50 mg/kg of PZQ, yet this could be due to interanimal variability as

the study was only conducted in seven mice. Overall, this discrepancy in the activity of the

enantiomers was only observed in one paper and was not seen in any of the human studies.

A PZQ formulation (Polymorph B) was tested in mice by Lombardo and colleagues [47] as

a new treatment option in comparison to the current PZQ tablet. Polymorph B aimed to

increase efficacy and improve the PK parameters of the current PZQ formulation, which has

low bioavailability and low water solubility, by enhancing PZQ’s solubility and dissolution.

The crystalline formulation created from grinding rac-PZQ showed improved physical proper-

ties, particularly increasing PZQ chemical stability and doubling water solubility. Yet, the PK

parameters of both enantiomers of Polymorph B had a lower exposure profile compared to a

reference PZQ, indicating lower bioavailability of the new drug formulation compared to the

current standard PZQ. This was most prominently visualised in the AUC value, which was

approximately 40% lower for Polymorph B than reference PZQ.

Human studies: PK and PZQ efficacy

As with the rodent models, the relative exposure of PZQ was compared using t1/2, Tmax, Cmax,

and AUC values, with 13 papers containing human PK data sets [51–63].

PZQ formulations. As seen in the rodent models, data in human studies also showed a

significant difference in antischistosomal activity between the two PZQ enantiomers. Four

papers [51–54] (S5 Table) measured the PK of each PZQ enantiomer after a racemic dose in

humans. The results were compiled and, as Fig 3 depicts, there were clear differences in enan-

tiomer exposure between the biologically active (R)-PZQ and the (S)-PZQ.

Despite (R)-PZQ being the desired circulating pharmacoactive substance, the results

extracted during this review in healthy normal volunteers (HNV) showed that the exposure

parameters of the (R)-PZQ enantiomer were significantly lower than the (S)-PZQ. Therefore,

the Cmax and the AUC of the active enantiomer are lower than the inactive enantiomer at the
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same dose (Fig 3), so, when PZQ is dosed as a racemic tablet, there are significantly lower pro-

portions of the desired enantiomer entering the circulation. This is the opposite of the desired

action and demonstrates that a dose with a rac-PZQ tablet is not reflective of the dose of active

(R)-PZQ.

Two studies in this review evaluated the PK of a small orally dispersible tablet (ODT) for-

mulation that would allow for fast dispersion and an acceptable taste [51, 52]. The relative bio-

availability of a rac-PZQ ODT formulation was compared with the single active enantiomer

(R)-PZQ ODT ((R)-ODT), to determine if there were pharmacokinetic differences between

ODTs and the current rac-PZQ tablet. When dosed at 40 mg/kg, the rac-PZQ reference is

50:50 of (R)-PZQ to (S)-PZQ; therefore, it was expected that when the (R)-ODT was dosed at

20 mg/kg, it would be approximately equal to that of the 40 mg/kg of rac-PZQ or the PZQ

Fig 2. Comparison of the percentage WBR in an infected mouse model when dosing racemic PZQ or a single enantiomer. The data for this graph

were extracted from two papers in this review and evaluated to assess the WBR-dose response [49, 50]. The relationship between WBR and drug

formulation was found to be significantly different (�P< 0.01, ��P< 0.001) for each PZQ dose based on the results of the independent samples

Kruskal-Wallis Test. PZQ, praziquantel; WBR, worm burden reduction.

https://doi.org/10.1371/journal.pntd.0008649.g002
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reference. However, this did not appear to be the case as the 20 mg/kg dose of (R)-ODT was

only around 40% of the PZQ reference.

Hepatic CYP metabolism. The activity of the drug-metabolising CYPs during PZQ

metabolism and the resultant variable exposure of the drug was assessed by multiple studies.

With regard to hepatic CYP activity, el Guiniady and colleagues [55] investigated the potential

decrease in CYP metabolism in S. mansoni–infected adult patients with either liver cirrhosis or

splenomegaly (data in S6 Table), building on the rodent study by Kokwaro and colleagues

[44]. The study concluded that, in general, the Cmax, Tmax, and AUC were significantly higher

in the liver-impaired patients compared to the controls. This was determined to be due to the

delay in elimination of PZQ to its metabolites as a result of decreased CYP function [55]. In

humans, as the severity of cirrhosis increased, the patients had an elevated Cmax and AUC in

comparison to HNV and nonimpaired S. mansoni patients at the same PZQ dose.

Concerning the hepatic metabolism of PZQ in children, Kovac and colleagues [56] investi-

gated the PK parameters of SAC and PSAC regarding age-related metabolism and the level of

CYP maturity in children. Data points from three papers [56–58] were obtained (S7 Table),

including the t1/2, Tmax, Cmax, and AUC. The increase in AUC with increased dose for SAC

and PSAC infected with S. mansoni and S. haematobium were compared in Fig 4, measuring

Fig 3. The mean AUC values extracted from the included studies against the PZQ dose of each of the PZQ enantiomers in HNV.

The PZQ enantiomers were measured after a racemic PZQ dose or the (R)-PZQ dosed alone. These data were extracted from multiple

papers in this review, separated by PZQ enantiomer, and the AUC was averaged for each dose and plotted on a graph for analysis [51–

54]. Using a linear regression model, the difference in AUC between (R)-PZQ and (S)-PZQ in humans was found to be statistically

significant (P< 0.05). AUC, area under the curve; HNV, healthy normal volunteers; PZQ, praziquantel.

https://doi.org/10.1371/journal.pntd.0008649.g003
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Fig 4. The mean AUC values extracted from the included studies against PZQ dose of (R)-PZQ [I, II], (S)-PZQ

[III, IV], and the major metabolite (R)-trans-4-OH-PZQ [V, VI] at 20, 40, and 60 mg/kg. The data are extracted

from Kovac and colleagues [56], which investigated S. mansoni and S. haematobium infected PSAC (●) and SAC (�)

treated with PZQ. The AUC values were then plotted against the dose of PZQ administered for further analysis.

P< 0.05 was considered statistically significant; a: significant difference between SAC and PSAC for the same dose and

analyte, b: significant difference between S. haematobium and S. mansoni for the same dose, age group, and analyte,

and c: significant difference between (R)-PZQ and (S)-PZQ for the same dose, age group, and species. AUC, area

under the curve; PSAC, preschool-aged children; PZQ, praziquantel; SAC, school-aged children.

https://doi.org/10.1371/journal.pntd.0008649.g004
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the (R)-PZQ (Fig 4[I, II]), (S)-PZQ (Fig 4[II, IV]), and the major metabolite (R)-4-OH-PZQ

(Fig 4[V, VI]).

There was a significant difference between the AUC values of the infected S. mansoni SAC

and PSAC at the same dose and analyte, with the exception of (S)-PZQ at 40 mg/kg. Addition-

ally, the AUC of (R)-PZQ and (S)-PZQ in S. mansoni SAC was found to be significantly differ-

ent at the same dose but only at 60 mg/kg for PSAC. Generally, the AUC values of the infected

S. mansoni PSAC were higher than the infected S. mansoni SAC for both the PZQ enantiomers

(Fig 4[I, III]) [56], suggesting that once dosed with PZQ, PSAC metabolised the drug more

slowly. This is in accordance with the age-related model by Bonate and colleagues [52], which

stated that due to the decreased CYP activity of the PSAC, the drug remains in circulation lon-

ger, resulting in a higher AUC. Conversely, the AUC for the (R)-4-OH-PZQ metabolite was

higher in SAC because they had potentially metabolised the drug more rapidly than PSAC

(due to increased CYP activity), leading to a higher circulating level of the metabolite (Fig 4

[V]). Regarding the exposure in S. haematobium-infected children, there was no significant

difference between exposure levels in S. haematobium-infected PSAC and SAC (Fig 4[II, IV,

VI]).

PZQ dosing. In infected children, PZQ is delivered at a dose extrapolated from adult tol-

erance studies. Bustinduy and colleagues [58] and Bonate and colleagues [52] both described

the limitations of current treatment models and further investigated whether the dosing

regime was contributing to low CR in children (S8 Table). Both studies highlighted that the

extrapolation of infected African children from healthy European adult volunteers is mis-

judged, and the resultant model cannot predict the differing bioavailability in each population.

The resultant extrapolation model concluded that the standard method was not predictive of

treatment success and that further studies are required to optimise PZQ treatment, looking at

the effect of higher dosage, sex, weight, and PZQ enantiomeric activity [58]. Additionally,

Bonate and colleagues [52] described the potential of using a model that includes the degree of

maturation of the CYP isoforms involved in PZQ metabolism, and aimed to use this model to

predict PZQ exposure (AUC) based on age.

Impact of food. There are additional factors which need to be considered that could affect

PZQ efficacy, specifically factors not attributed to the host biology. The varying fasting and fed

state of multiple studies were found to contribute to variable exposure of PZQ, noting that the

bioavailability of PZQ increases with the administration of food [64]. Mandour and colleagues

[63] confirmed that, after oral administration in HNV, the bioavailability is reliant on food

intake, with PZQ clearance affected by content of the diet. A high oil diet enhanced PZQ

absorption, and a high carbohydrate diet appeared to inhibit CYP activities due to an accumu-

lation of metabolites, preventing further metabolism and allowing PZQ to remain in systemic

circulation longer.

Drug–drug interactions

There is a paucity of information on DDIs with PZQ, with only 17 published papers on the

topic. Of these studies, many evaluated the use of DDIs to lower PZQ dosing regimens for a

combined drug treatment. To define the effect of each drug combination, an effect-based strat-

egy was introduced, which followed the principle that if one component alters the ability of

PZQ to reach the necessary lethal schistosome concentration via alterations to PZQ metabo-

lism, then this action was designated a pharmacological effect [65]. Therefore, this review used

a pharmacokinetic-based assessment of DDIs based on the alteration of CYP activities and

potentially the overall efficacy of PZQ treatment [66]. This “bioavailability model” focused on

the change in the AUC due to these drug combination effects to aid further discussion of
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potential DDIs that could alter PZQ efficacy [67, 68]. In combination with the descriptive results

of each DDI by the papers reviewed, this allowed a comparison of the potential combined effect

of the two drugs (EPZQ+B) to the effects of its individual components (EPZQ and EB) [69]. The

effect of the DDI is expressed as (1) a synergistic effect: the combined therapy has a greater ther-

apeutic effect than each drug alone following the principle EPZQ+EB�EPZQ+B, where EPZQ+B >

20% change in AUC compared with PZQ alone; (2) an additive effect: similar to each drug used

individually, no significant increase in activity EPZQ+EB�EPZQ+B; (3) an antagonistic effect:

interactions that could decrease therapeutic efficacy, in which EPZQ+B<-20% change in AUC

compared with PZQ alone, or (4) no effect to treatment, these results were not outside the

threshold of -20%�EPZQ+B�20% change in AUC compared with PZQ alone [70–72]. The PZQ

drug combinations obtained in this review are listed in Fig 5, depicting the result of the drug on

PZQ action as described by the published DDI studies.

Experimental studies: drug–drug interactions

Synergistic and additive drug–drug interactions. To reduce the dose of PZQ while still

having an efficacious effect, synergistic activity using the antimalarial mefloquine was explored

in rodents by El-Lakkany and colleagues [73]. The WBR of PZQ + mefloquine was over double

the value of PZQ alone, indicating a synergistic effect that maintained lethal schistosome PZQ

concentrations and that could be applicable to humans treated with both drugs. Furthermore,

when PZQ combined with another antimalarial, artemether, synergistic and additive effects

were observed in separate rodent studies, even when PZQ was reduced to around a quarter

of its recommended dose. A PZQ + artemether study by Utzinger and colleagues [74] con-

cluded that the lower doses used in the combined treatment was safer and more efficacious

(with over double the WBR) than PZQ alone and was suggested as a basis for a human clinical

trial [74, 75].

Another study aimed to decrease the dose of PZQ, with Keiser and colleagues [76]

combining nilutamide with PZQ to increase WBR compared to PZQ alone. It appeared that

at low doses the combination had an additive effect on PZQ, with nilutamide obtaining a

higher WBR alone. Interestingly, a synergistic effect was seen with PZQ + nilutamide

Fig 5. The DDIs identified by the review, and the resultant effect on PZQ exposure. The in vivo model and “Drug B” are listed as well as the overall

effect of the drug combination on exposure of PZQ. The effect of the drug combination on PZQ efficacy in rodents was calculated based on the

percentage change in WBR of each drug alone in comparison to the combined action (S9 Table) [73–83]. The effect of the drug combination on PZQ

efficacy in humans was calculated based on the percentage change in AUC of each drug alone in comparison to the combined action (S10 Table) [54,

59, 84–86]. AUC, area under the curve; DDI, drug–drug interaction; PZQ, praziquantel; WBR, worm burden reduction.

https://doi.org/10.1371/journal.pntd.0008649.g005
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(100 mg/kg + 200 mg/kg) dose, with a 67% increase in the WBR than PZQ alone at that same

dose, something that was not observed for nilutamide below 200 mg/kg.

Further additive effects were evaluated by El-Lakkany and colleagues [77] and Botros and

colleagues [78], using pentoxifylline and adamantylamide dipeptide in combination with PZQ

(S11 Table). Both combinations used a subcurative dose of PZQ in the DDI to evaluate the

enhancement of each drug on PZQ’s therapeutic effect, with both combinations showing com-

parable results to the full dose of PZQ [77, 78]. Abla and colleagues [79] co-dosed PZQ with

1-aminobenzotriazole, a pan-CYP inhibitor, and predicted a reduction in PZQ clearance and

in turn increase Cmax and AUC of the pharmacoactive (R)-PZQ in plasma. Yet, in S. mansoni–
infected mice, 1-aminobenzotriazole was found to have only a small impact on the WBR, only

increasing it by approximately 25%, reaching similar levels to PZQ alone (additive) taking into

account interanimal variability. This was similar to the combination of turmeric and PZQ

[80], in which a significant additive effect was observed, with around a 24% increase in WBR.

Antagonistic drug–drug interactions. Masimirembwa [81] and colleagues reported two

antagonistic effects with PZQ in rats, as combinations with both phenobarbital and 3-methyl-

cholanthrene decreased the Cmax and AUC of PZQ, with phenobarbital decreasing PZQ expo-

sure greater than 3-methylcholanthrene.

No effect. It is also important to analyse the combinations that have no effect on PZQ effi-

cacy and can, therefore, be confidently co-administered without affecting PZQ’s systemic con-

centration. Araujo and colleagues [82] and Ebeid and colleagues [83] investigated the

combination of PZQ with clonazepam and metrifonate. Both studies concluded that there was

no beneficial synergistic or additive action with the combined treatments of PZQ and that any

antischistosomal action originated from PZQ alone and not a DDI. Furthermore, dexametha-

sone, a multiple CYP inducer, was expected to antagonistically decrease PZQ exposure and

decrease PZQ efficacy due to an increase in the CYPs available to metabolise PZQ. Contrary to

these predictions by Abla and colleagues [79], dexamethasone decreased plasma exposure of

(R)-PZQ by approximately 10 fold but did not affect overall PZQ efficacy in rodents.

Human studies: drug–drug interactions

Five studies [54, 59, 84–86] describing human DDIs and the resultant variable drug exposure

after oral administration of drug and food combinations were examined. The drug combina-

tions and the percentage change in AUC from PZQ are shown in Fig 6.

Synergistic DDIs. Nleya and colleagues [84] evaluated the effect of combining PZQ with

ketoconazole, as ketoconazole is a prominent inhibitor of the CYP3A4/5 isoforms which are

known metabolic pathways of PZQ [88]. There was a 75% increase in the relative bioavailabil-

ity of PZQ (measured by the change in the AUC) when co-dosed with ketoconazole, with the

Cmax increasing by 96% in response to the DDI. To measure the extent of the synergistic effect,

the study was dosed at one-half the recommended value for a PZQ treatment (20 mg/kg PZQ

+ 200mgs ketoconazole). Despite this, 9 of 29 individuals reached the 1μM therapeutic thresh-

old required to kill adult schistosomes, compared to only 2 of 29 when PZQ was given alone.

PZQ + cimetidine were evaluated by Jung and colleagues [59], with the potential to simulta-

neously treat schistosomiasis and neurocysticercosis, building on a study by Metwally and col-

leagues [85] that noted elevated PZQ sera concentrations with this DDI. Compared to PZQ

alone, the plasma levels of PZQ more than doubled during combined drug administration,

with a Cmax greater than 400 ng/ml even after 12 hours, suggesting a synergistic effect.

Lima and colleagues [54] treated HNV with a combination of PZQ and albendazole (anthel-

mintic used for treating soil-transmitted helminths), with the aim of improving the therapeutic

efficacy of both drugs by increasing plasma concentrations of the active forms of both drugs.
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This conclusion can be visualised in Fig 6, in which the combination of PZQ + albendazole

appears to have no effect on the AUC of rac-PZQ. Opposing this, Lima and colleagues [54]

showed that PZQ increased the Cmax of the active albendazole metabolite, and, in turn, alben-

dazole increased the AUC of the pharmacologically active (R)-PZQ: a synergistic effect. In Fig

6, the AUC of (R)-PZQ increased by 76%, which would not be apparent if only the rac-PZQ

was measured.

Antagonistic drug–drug interactions. Masimirembwa and colleagues [86] investigated

the antagonistic effect of the CYP inhibitor chloroquine in HNV, with chloroquine expected

to increase the bioavailability of PZQ due to its action as a CYP3A4 inhibitor. In contrast, it

was found to decrease the Cmax and AUC of PZQ, decreasing overall exposure, with 50% of

individuals studied not reaching the lethal schistosome plasma concentration of 1μM. Masi-

mirembwa and colleagues [86] determined this effect was not due to alterations in CYP activi-

ties but, rather, an alternate mechanism of chloroquine.

An antagonistic effect was also observed by Metwally and colleagues [85], when PZQ was

co-dosed with glucose. However, as depicted in Fig 6, the percentage change of the AUC for

Fig 6. A summary of the human DDIs. Each bar represents the percentage change in AUC during the drug combination in

comparison to PZQ alone. The effect of the drug combination is listed above the bar chart, with ±20% representing the boundaries of no

effect due to interindividual variation [87]. The data were extracted from five papers [54, 59, 84–86], compiled in S10 Table, analysed to

create percentage change in AUC and then plotted to aid further analysis. ABZ, albendazole; AUC, area under the curve; BIC,

bicarbonate; CHQ, chloroquine; CIM, cimetidine; DDI, drug–drug interaction; GLUC, glucose; KTZ, ketoconazole; PZQ, praziquantel.

https://doi.org/10.1371/journal.pntd.0008649.g006
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the combination compared to PZQ alone was −27%, which was just outside of the 20% “no

effect” threshold [87]. Therefore, although this has been noted as an antagonistic effect with

glucose, it may be due to interindividual variation slightly skewing the results because there

were only 20 participants in this study, and there may be no effect regarding this interaction.

No effect. Although the combination of bicarbonate with PZQ did reduce the AUC of

PZQ [85], it was not outside the 20% threshold (see Fig 6). Similar to glucose, this combination

is not likely to have an effect on the efficacy of PZQ and is most likely due to the mean calcula-

tion of the AUC and the interindividual variation in the metabolism of the participants in the

study.

Pharmacogenetics

Human studies: pharmacogenetics. The search did not yield any studies targeting the

pharmacogenetics of PZQ metabolism. However, the data extracted from the included studies

contained numerous examples of metabolic variability in the human studies. Although there

were no specific studies on pharmacogenetics, the reasoning behind the variable drug exposure

and efficacy of PZQ was postulated by many authors to be attributed to interindividual varia-

tion and host genetic factors [43, 45, 55–59, 61–63, 75, 85, 86]. The majority of the included

studies did not evaluate this hypothesis further but merely stated that CYP polymorphisms

and CYP-related maturity may be causing variation in PZQ PK parameters and bioavailability.

The ethnicities of the individuals included in the human studies in this review were also

recorded. Of the 17 human studies, 17.6% studied individuals from Europe, 17.6% from South

America, and 64.7% from Africa. The ethnicities of the study populations included in this

review were recorded to aid further discussion.

Metabolite analysis of praziquantel

Seventeen metabolites were elucidated from four papers [28, 53, 84, 89], and their structures

are displayed in Fig 7. PZQ and its enantiomeric metabolites, including their CYP pathway

and structure, were evaluated by multiple in vivo and in vitro techniques. Using human

plasma, human urine, human and mouse liver microsomes, and human recombinant

enzymes, there were 8 distinguishable mono-oxidised metabolites, 2 dehydrogenated mono-

oxidised metabolites, 3 di-oxidised metabolites, and 4 glucuronide metabolites detected.

A study by Nleya and colleagues [84] depicted the metabolic pathway of PZQ to its main

metabolite; 4-OH-PZQ (Fig 7[II]). This study showed that when PZQ was concomitantly

administered with CYP3A4/5 inhibitor ketoconazole, significant changes in the level of metab-

olites in circulation were observed. The AUC of the main 4-OH-PZQ metabolites were

increased by 57% (cis-) and 67% (trans-) when co-dosed with ketoconazole, with 30 times

more trans isomer than the cis as seen in Fig 8. The higher levels of the trans- isomer stems

from the favourable cyclohexane ring conformation placing the bulky OH substituent equato-

rial to prevent steric hindrance compared to the axial (cis-) conformation [90].

Discussion and conclusion

Heterogeneity in PZQ drug efficacy has been reported in multiple studies [18, 19]. Given the

concern about the development of drug resistance in schistosome parasites, there has been

considerable research on the potential for parasites developing resistance. However, it is criti-

cal to investigate the impact of nonparasite related factors that give rise to variability in PZQ

drug efficacy. The majority of studies determined this to be due to interindividual variation

and host genetic factors with no further analysis [43, 45, 55–59, 61–63, 75, 85, 86]. Here, we

determined whether variable cure rates in humans could be attributed to fluctuating levels of
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Fig 7. A comprehensive map of PZQ metabolites extracted and combined from studies that focused on the metabolite analysis of PZQ. I:

8-OH-PZQ [89], II: 4-OH-PZQ [28, 53], III: X-OH-PZQ [84], IV: O-PZQ [28], V:O-PZQ [28], VI: O-PZQ [28], VII: O-PZQ [28], VIII: O-PZQ [28],

IX: (-2H)-O-PZQ [28], X: (-2H)-O-PZQ [28], XI/XII: O2-PZQ [28], XIII: O2-PZQ [28], G1: Gluc-PZQ [28], G2/G3: Gluc-O-PZQ [28], G4: (-2H)-Gluc-

O-PZQ [28]. The chemical structures and metabolite map were created using ChemDraw Prime v16.0. Gluc, glucuronide; PZQ, praziquantel.

https://doi.org/10.1371/journal.pntd.0008649.g007

Fig 8. The favourable formation of trans-4-OH-PZQ compared to the cis-4-OH-PZQ isomer created from pharmacokinetic data by Nleya

and colleagues [84]. The equatorial position points upwards and the axial position points downwards. The chemical structures were created

using ChemDraw Prime v16.0. PZQ, praziquantel.

https://doi.org/10.1371/journal.pntd.0008649.g008
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PZQ in systemic circulation and explored the factors that influence an individual’s response to

PZQ treatment, focusing on the metabolism of the drug and the resultant efficacy of

treatment.

Multiple studies reviewed confirmed (R)-PZQ as the pharmacologically active enantiomer

and that the exposure of the desired (R)-PZQ enantiomer was significantly lower than the (S)-

PZQ when dosed as rac-PZQ [46, 49–54]. The reasoning behind the chiral differences in the

elimination of each enantiomer has been postulated to be due the variations in their affinity in

binding to the active site of the CYPs [28]. If the affinity of (R)-PZQ for CYP1A2 is higher

than (S)-PZQ, then the metabolism of the active (R)-PZQ to its major metabolite (as described

by Nleya and colleagues [84]) would be greater than metabolism of (S)-PZQ, resulting in a

more rapid decrease in (R)-PZQ plasma exposure than for (S)-PZQ. However, as affinity to

CYP1A2 has not yet been evaluated, the metabolic differences between (R)-PZQ and (S)-PZQ

are still unclear. These studies highlight the benefits of treatment with the (R)-PZQ enantiomer

alone in comparison to using the racemate and supporting the development of new formula-

tions with the active enantiomer, as is the case for the ODT paediatric formulations of PZQ

currently undergoing clinical trials [91]. In this case, the ODT formulation increased the AUC

of the desired (R) enantiomer for the rac-ODT and (R)-ODT in comparison to the reference

rac-PZQ, but it had a nonproportional PK profile [51, 52]. This limited the interpretation of

each PZQ enantiomers PK profile in the ODT and emphasises the need for an (R)-ODT dose-

finding study in PSAC to fully define the PK in paediatric patients and find the correct dosing

regimen.

In experimental models, host schistosome infection status was an important factor influ-

encing PZQ’s pharmacokinetic parameters, with PZQ’s exposure parameters in infected ani-

mals higher on average than in uninfected animals [42–45]. The studies proposed that S.

mansoni infection interferes with liver function, preventing PZQ metabolism. However, this

does not easily translate to human hosts. Instead variable exposure in human hosts tended to

be associated with alterations in the liver’s capacity to metabolise PZQ due to other factors, as

observed in studies in which liver disease impaired CYP function, leading to increased levels

of PZQ in systemic circulation. In patients suffering from liver cirrhosis and also treated with

PZQ, the Cmax and AUC increased with the severity of cirrhosis in comparison to nonimpaired

S. mansoni–infected and healthy patients at the same PZQ dose [55]. The increase in exposure

parameters is contrary to the study performed in rats by Kokwaro and colleagues [44] and fur-

ther highlights the limitations of experimental models in capturing human dynamics.

In human studies, age-related maturation of hepatic CYPs has been postulated, suggesting

that the hepatic CYP pathways are not fully matured in children and affect drug AUC [52, 58].

The effect of age-related metabolism was investigated in a study of S. mansoni–infected chil-

dren in which the AUC values of the PSAC were higher than the SAC for both the PZQ enan-

tiomers in the circulation, yet the AUC for the (R)-4-OH-PZQ metabolite was higher in SAC

[56]. This suggested PSAC could be metabolising the drug more slowly than the SAC, with

higher concentrations of the parent drug found in PSAC and higher concentrations of metabo-

lite found in SAC. This is consistent with higher exposure to active PZQ in the PSAC, resulting

in higher cure rates compared to SAC. This is contrary to a study performed by Coulibaly and

colleagues in which the cure rates in PSAC were lower at 40 and 60 mg/kg than in the SAC.

This concurred with the data from this review at 60 mg/kg, as the SAC had a 5% higher cure

rate than PSAC. However, Coulibaly and colleagues did suggest that during the study the

crushing of the tablets may have altered the PK of PZQ, which may account for the difference

in efficacy [92]. This age-related effect has not yet been observed in S. haematobium. Ofori-

Adjei and colleagues [57] reported no differences in the PK parameters between uninfected

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008649 September 25, 2020 16 / 26

https://doi.org/10.1371/journal.pntd.0008649


and S. haematobium infected SAC, concluding that S. haematobium infection does not influ-

ence PZQ metabolism due to alterations to hepatic function [56].

Non–host-related factors also affected exposure and efficacy of PZQ treatment, and these

included PZQ brands and the coadministration of food or other drugs. Simultaneous adminis-

tration of PZQ and food can alter the PK as food can delay absorption, affect stomach pH,

alter blood flow, or interact with the PZQ itself [93]. One of the initial PZQ tolerance studies

in humans provided the adult volunteers with a standardised meal for continuity in the study

[61], but during PCT programs, this is not particularly representative, as diet can vastly differ.

Fed groups have a lower clearance of PZQ due to altered absorption, highlighting the impor-

tance of attaining a fed state during treatment and in human PK studies to enhance success of

exposure to the anthelmintic [63]. Of the different brands of PZQ on the market, Distocide

and Biltricide were found to be more comparable in terms of exposure to pure PZQ [42]. Even

so, the PZQ brands evaluated showed a decreased AUC, Cmax, and t1/2 and, therefore,

decreased efficacy and drug exposure in comparison to pure PZQ, indicating that treatment

failures may be due to variable exposure of PZQ arising from the quality of the PZQ

formulation.

A host attribute that can also affect drug metabolism is genetic polymorphism of liver

enzymes involved in drug metabolism, i.e., pharmacogenetics. While CYP pharmacogenetic

studies have been conducted in different ethnic populations [94], there are relatively few stud-

ies on PZQ metabolism. [94]. In recent publications, trials of more efficacious formulations

and age-dosing models were being performed in European populations instead of the majority

drug target population in Africa [52, 61]. Although 90% of schistosomiasis infected people live

in Africa there have been no studies of PZQ population genetics in Africa [95, 96], highlighting

the need for pharmacogenetic studies on the clinically relevant CYP variants in target popula-

tions [94]. For example, CYP2D6 is a metabolic route of PZQ; therefore, the presence of

CYP2D6�17, which is unique to populations of African origin [97], exemplifies the need for its

impact on PZQ metabolism and overall treatment efficacy to be evaluated. Nleya and col-

leagues [84] have provided evidence CYP1A2 may be the metabolic route of PZQ to its main

metabolite in Zimbabwean volunteers. As a recent study reported that Zimbabwean children

in schistosomiasis-endemic areas exhibited decreased CYP1A2 activity, and, as PZQ is meta-

bolised via this pathway, this could also have detrimental implications on bioavailability [45].

In order to translate molecular findings into drug metabolism and predict efficacy, there is

a need to characterise the PZQ metabolites, their quantities and their effect. Wang and col-

leagues [28] have performed the most comprehensive evaluation of PZQ’s metabolites, albeit

in experimental models, which identified phase I and phase II metabolites using both in vivo
and in vitro methods. Fifteen metabolites were structurally identified from urine and faeces of

mice 24 hours after PZQ dosing. The in vitro incubations using human liver microsomes

(HLM) and human recombinant enzymes confirmed the metabolic activity of CYP1A2,

CYP2C9, 2C19, 2D6, and 3A4/5, with metabolic products identified via all of these pathways.

However, the in vivo results from the experimental studies were not identical to the human in
vitro HLM, with 3 dioxidised metabolites not detected in HLM. The Zimbabwean study, one

of the few human studies, also characterised the metabolic pathway of PZQ to its main metab-

olite: 4-OH-PZQ [84]. The combination of PZQ with CYP3A4/5 inhibitor ketoconazole

resulted in significant changes in the AUC of the main 4-OH-PZQ metabolites, with increases

of 57% (cis-) and 67% (trans-) when co-dosed with ketoconazole. The overall increase in the

AUC of both 4-OH-PZQ metabolites revealed that when the CYP3A4/5 pathway was inhib-

ited, there was a greater exposure of the main metabolite in the circulation. This indicates that

CYP3A4/5 is not the metabolic route of 4-OH-PZQ and suggests that other CYP pathways,

primarily CYP1A2 or CYP2C19, are instead involved in the principal elimination of the active
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parent drug. So what metabolite is the CYP3A4/5 pathway producing? The study reported a

novel metabolite, X-OH-PZQ, which was suppressed upon administration of ketoconazole

with PZQ, and therefore appeared to be dependent on CYP3A4/5 for its formation. The

X-OH-PZQ levels were reduced by approximately 57%, providing categorical evidence that

this novel metabolite is produced via the CYP3A4/5 pathway. Other studies have discussed the

use of CYP3A inhibitors to reduce the conversion of PZQ to its main metabolite (Fig 7[II])

[53]; however, based on the results from this study, it appears that the introduction of a

CYP1A2/CYP2C19 inhibitor to PZQ may result in a greater exposure of active parent drug. If

the 4-OH-PZQ metabolic pathway is inhibited, then a reduction in the elimination of PZQ

could occur and result in higher circulating concentration of the parent drug enhancing thera-

peutic efficacy. The exact structure of X-OH-PZQ was, at this time, not yet fully determined;

to achieve this, the exact nature of the hydroxylation biotransformation must be evaluated.

The intricacies of metabolite identification is potentially one of the factors contributing to the

limited number of results addressing this topic, as Schepmann and colleagues [89] demon-

strated, dedicating an entire paper to elucidating the structure of one phase I metabolite:

8-OH-PZQ (Fig 7[I]). By obtaining further information on PZQ’s metabolites via the detection

and quantification of each metabolite, they could be compared between individuals for vari-

ability. As individual genetic variation in the CYP enzymes could affect PZQ metabolite con-

centration in systemic circulation, there is the potential to use the metabolite itself as genetic

marker without the need for sequencing.

As schistosomiasis is coendemic with several other parasites and pathogens, affected popu-

lations can be subjected to drug coadministration, giving rise to DDIs. Malaria is one such co-

endemic parasite, and coadministering the antimalarials mefloquine and artemether with PZQ

was investigated in experimental models, building on work from an in vitro experiment by

Keiser and colleagues [98]. The coadministration of reduced doses of PZQ + mefloquine and

PZQ + artemether showed enhanced pharmacological activity and efficacy over PZQ alone

[73–75]. Other coendemic infections include intestinal helminths, and helminth control pro-

grams often coadminister PZQ and albendazole or mebendazole [99]. In humans, the combi-

nation of the anthelmintic albendazole + PZQ resulted in an increase in the plasma

concentrations of the active enantiomers of both drugs [54]. Previous reports presented con-

tradictory data regarding the DDIs between PZQ and albendazole, concluding that coadminis-

tration of PZQ + albendazole does not alter PZQ PK [100, 101]. However, Lima and colleagues

[54] demonstrated a synergistic interaction upon this combination with the AUC of the (R)-

PZQ increasing by 76%, which would mean an increase in the exposure of the active drug to

the schistosomes. This interaction was determined to be due to the albendazole inhibiting

CYP1A and CYP3A pathways, indicating the (R)-PZQ cannot be metabolised and remains in

systemic circulation longer, leading to higher (R)-PZQ plasma concentrations. Nonetheless,

even with the advantage of increased PZQ exposure, the increased plasma concentrations of

both active drugs risks unknown adverse effects without further investigation [54]. This bene-

ficial combination is not the case with chloroquine. This antimalarial drug, when coadminis-

tered with PZQ, decreased the AUC of PZQ by approximately 64% compared to PZQ alone

[86] and may create too low a systemic concentration of PZQ to be lethal to schistosomes. This

antagonistic effect on PZQ metabolism was deemed not to be due to CYP alterations,

highlighting the need for further investigations into this DDI mechanism.

Other drugs affecting CYP activity have also been shown to synergistically affect PZQ

plasma availability. For example, cimetidine more than doubled the plasma levels of PZQ dur-

ing combined drug administration than PZQ alone. Cimetidine nonselectively inhibits

CYP1A2, 2C9, 2D6, and 3A4 [102], all of which are metabolic pathways of PZQ. A nilutamide

+ PZQ combination was also found to be synergistic in rodent infections, significantly
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increasing WBR by 67% compared with PZQ alone [76]. In humans, coadministering PZQ +

ketoconazole can increase the duration of active PZQ exposure [84] by inhibiting the

CYP3A4/5 pathway to reduce clearance of PZQ by 30% and enhance parasite exposure to PZQ

[84]. The AUC value at 20 mg/kg PZQ when coadministered with ketoconazole was compara-

ble with a study using 40 mg/kg PZQ alone [63]. Despite this, upon a linear extrapolation of

the level of PZQ exposure from this combination, it predicted only a 37.5% reduction in PZQ

dose. Therefore, regardless of this synergistic activity, there would not be a significant reduc-

tion of the current tablet size with this DDI and, so, would not be a better alternative than the

development of a new formulation [84].

There is definite need for more studies of PZQ metabolism in humans, specifically in

affected populations. The majority of studies reviewed here were experimental models of

schistosomiasis, and findings from these cannot always be easily translated or extrapolated to

human hosts, particularly the PZQ metabolite characterisation studies. Although animal

studies are useful as models of potential DDIs, some enzymes that are orthologous to the

CYPs are not representative of human responses [43]. A methodological limitation of this

review was the measurement used. One of the main measures of exposure used to compare

drug exposure in this review is the AUC; however, the absolute bioavailability is generally a

more representative parameter. It is calculated using the AUC of the intravenous route and

the AUC of the IV dose [103], but this data was not available for the majority of included PK

studies. The quantity and type of data available in the original publications also limited the

conclusions in this review, particularly when data were presented as the mean values postana-

lysis and not the raw data; therefore, no further statistical analysis was possible. Additionally,

we could not identify clearly established drug-specific thresholds beyond which reductions in

AUC might lead to alterations in drug effect. The use of the 20% threshold in change in AUC

was a representative value to identify important changes in systemic bioavailability [87].

While the lack of defined thresholds may hinder the clinical interpretations in this review,

there was no definitive method to determine the DDIs from the data available. Therefore, the

DDI effects described here were based on efficacy of PZQ treatment stemming from exposure

to the active drug and are not necessarily the confirmation of a mechanistic interaction. Also,

the low number of published studies that were obtained for each topic using the search crite-

ria highlighted the gap in the knowledge in PZQ metabolism during schistosomiasis treat-

ment. When the search criteria used in this review was applied to tuberculosis, there was

approximately eight times the number of search results (S12 Table). This increase in results

could be due to the number of different drugs used in tuberculosis, in comparison to the one

drug used for schistosomiasis; nonetheless, this shows the difference in the quantity of pub-

lished research for schistosomiasis in comparison to a disease that can occur in every part of

the world.

Overall, schistosomiasis control is predominantly reliant on a single drug, PZQ, for treating

millions of people. Variable cure rates from the drug raise concerns about the possibility of the

development of drug resistance amongst the parasites; therefore, there is a need to determine

the sources of heterogeneity in cure rates and determine the relative contribution of host-

related factors. Our review has shown that several such factors can result in variable levels of

PZQ in systemic circulation that potentially contribute to these low cure rates. These include

drug formulation (enantiomers) and brand, the health of the host’ s liver, host age, coadminis-

tered drugs, and host genetics. There is need for more of these studies in affected human popu-

lations, especially in Africa, where host and parasite attributes are studied simultaneously, to

fully understand the sources of heterogeneity in PZQ efficacy.
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