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Abstract
Understanding how evolutionary constraints shape the elevational distributions of 
tree lineages provides valuable insight into the future of tropical montane forests 
under global change. With narrow elevational ranges, high taxonomic turnover, fre-
quent habitat specialization, and exceptional levels of endemism, tropical montane 
forests and trees are predicted to be highly sensitive to environmental change. Using 
plot census data from a gradient traversing > 3,000 m in elevation on the Amazonian 
flank of the Peruvian Andes, we employ phylogenetic approaches to assess the in-
fluence of evolutionary heritage on distribution trends of trees at the genus-level. 
We find that closely related lineages tend to occur at similar mean elevations, with 
sister genera pairs occurring a mean 254 m in elevation closer to each other than the 
mean elevational difference between non-sister genera pairs. We also demonstrate 
phylogenetic clustering both above and below 1,750 m a.s.l, corresponding roughly 
to the cloud-base ecotone. Belying these general trends, some lineages occur across 
many different elevations. However, these highly plastic lineages are not phyloge-
netically clustered. Overall, our findings suggest that tropical montane forests are 
home to unique tree lineage diversity, constrained by their evolutionary heritage and 
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1  | INTRODUC TION

Global environmental change urges investigation of potential 
evolutionary trends shaping biodiversity distribution and con-
straining the response of biota to novel environmental conditions 
(Christmas, Breed, & Lowe, 2016; Lavergne, Evans, Burfield, Jiguet, 
& Thuiller, 2012). Closely related lineages frequently occupy simi-
lar environments (Holt, 2009; Wiens & Graham, 2005), display 
similarities in functional characteristics (Felsenstein, 1985; Harvey 
& Pagel, 1991; Losos, 2008), and may respond comparably to en-
vironmental changes (Edwards & Donoghue, 2013). Understanding 
evolutionary influences on distribution patterns may provide a 
powerful aid in predicting the climate change response of unique 
and threatened systems such as tropical montane forests (TMFs). 
However, whether evolutionary heritage shapes distribution ten-
dencies among TMF tree lineages is yet to be fully elucidated.

In keeping with montane environments globally, TMFs experi-
ence decreasing temperatures with increasing elevation (Humboldt 
& Bonpland, 1805; Körner, 2007; Schimper, 1903). Climatic trends, 
variation in biotic interactions (Hillyer & Silman, 2010), and topo-
graphic complexity engender globally exceptional levels of biodi-
versity within TMF (Hughes & Eastwood, 2006; Merckx et al., 2015; 
Myers, Mittermeier, Mittermeier, da Fonseca, & Kent, 2000). TMFs 
provide ecosystem services, regulating hydrological processes 
(Bruijnzeel, Mulligan, & Scatena, 2011), and influencing carbon and 
nutrient cycling (Girardin et al., 2010; Spracklen & Righelato, 2014; 
van de Weg et al., 2014). However, the response of TMFs to rap-
idly increasing temperatures (Pepin, 2015; Russell, Gnanadesikan, 
& Zaitchik, 2017), precipitation regime changes (Hu & Riveros-
Iregui, 2016), and other anthropogenic drivers remains poorly un-
derstood, with substantial potential for biodiversity losses (Feeley & 
Silman, 2010a, 2010b).

Within TMFs, tropical montane cloud forests (TMCFs) are a 
fragile and enigmatic habitat, defined by persistent cloud immer-
sion (Foster, 2001; Halladay, Malhi, & New, 2012). Cloud immersion 
creates a complex, perhumid environment where epiphytes thrive 
(Bruijnzeel et al., 2011), but where light limitation can constrain the 
growth of other plants (Fahey, Sherman, & Tanner, 2016). The lower 
elevation edge of TMCF, the cloud-base ecotone, marks a transition 
within TMFs (Bruijnzeel, 2001; Fadrique et al., 2018) accompanied 
by changes in factors such as precipitation (Rapp & Silman, 2012), 
soil properties (Nottingham et al., 2015; Whitaker et al., 2014), and 
light availability (Fyllas et al., 2017).

The heterogeneous TMF environment combines with vari-
ation in climatic tolerances among biota to drive remarkable 
biodiversity (Richter, Diertl, Emck, Peters, & Beck, 2009) and 

distinct community-level changes across elevations (Grubb & 
Whitmore, 1966; Hemp, 2006; Jankowski et al., 2013; Martin, Fahey, 
& Sherman, 2011). Different climatic tolerances among species 
mean factors, such as temperature, filter the composition of commu-
nities across environments (Kraft et al., 2015). Such environmental 
filtering can have greater influence in more stressful environments 
(Chase, 2007), for example, high elevation (Marx et al., 2017). If envi-
ronmental filtering interacts with niche conservatism, the constraint 
of species’ environmental tolerances by their evolutionary history 
(Wiens et al., 2010; Wiens & Donoghue, 2004), then evolutionarily 
close lineages will be more likely to occur in similar environments 
(Cavender-Bares, Kozak, Fine, & Kembel, 2009).

Within montane landscapes, particularly at high elevations, 
evolutionary trends in distribution patterns are evident across a 
diversity of groups including microbes (Nottingham et al., 2018; 
Wang, Soininen, He, & Shen, 2012), ants (Machac, Janda, Dunn, & 
Sanders, 2011), ferns (Kluge & Kessler, 2011), and alpine plants (Li, 
Zhu, Niu, & Sun, 2014). TMFs show significant dissimilarity in evo-
lutionary composition of tree communities across different eleva-
tions (Ramírez et al., 2019). In the tropical Andes, distribution limits 
are manifest within certain tree genera. For example, Weinmannia 
(Cunoniaceae) and Polylepis (Rosaceae) tend to occur at higher eleva-
tions, while Inga (Fabaceae) and Protium (Burseraceae) tend to occur 
at lower elevations. However, the broader strength of evolutionary 
constraint on the elevational distribution of TMF tree lineages re-
mains unclear.

Rapid environmental change forces biodiversity to adapt, accli-
mate, migrate, or face extinction (Aitken, Yeaman, Holliday, Wang, & 
Curtis-McLane, 2008; Feeley, Rehm, & Machovina, 2012). With rates 
of upslope migration insufficient for most taxa to track predicted 
temperature changes (Fadrique et al., 2018; Feeley et al., 2011), 
some TMF lineages may endure through acclimation or adapta-
tion. High taxonomic turnover (Bach, Kessler, & Gradstein, 2007; 
Baldeck, Tupayachi, Sinca, Jaramillo, & Asner, 2016) and narrow el-
evational range sizes (Lieberman, Lieberman, Peralta, & Hartshorn, 
1996; Perez, Stroud, & Feeley, 2016; Terborgh, 1977) are predomi-
nant within TMF. However, a few lineages, like the genera Miconia 
(Melastomataceae) and Meliosma (Sabiaceae), occupy wide eleva-
tional ranges, encompassing broad climatic variation. Such labile 
taxa may possess an adaptive potential that is advantageous in re-
sponding to climate change.

Evolutionary accessibility to potential adaptations may be 
phylogenetically constrained (Edwards & Donoghue, 2013). 
For example, C4 photosynthesis in grasses has only evolved in 
the PACMAD clade, a lineage possessing certain enabling traits 
(Christin et al., 2013). Similarly, constraints on adaptation to freezing 

vulnerable to substantial losses under environmental changes, such as rising tempera-
tures or an upward shift of the cloud-base.

K E Y W O R D S

cloud-base ecotone, niche conservatism, Peru, phylogenetic signal, tropical montane forests
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conditions, combined with niche conservatism, may explain why the 
expansion of angiosperm lineages to temperate regions is phyloge-
netically biased (Donoghue, 2008; Mittelbach et al., 2007; Wiens & 
Donoghue, 2004; Zanne et al., 2014). If tolerance of variation in for 
example, temperature, moisture regime, or cloudiness is phylogenet-
ically clustered within only a few TMF tree lineages, the remaining 
TMF diversity may be threatened by environmental change.

Testing for phylogenetic signal (PS) provides a simple means of 
quantifying correlations between evolutionary history and char-
acteristics such as elevational distribution. A statistical measure of 
the non-independence of trait values of taxa due to evolutionary 
relatedness, PS quantifies the tendency for closely related taxa to 
resemble each other more than they resemble taxa drawn randomly 
from a phylogeny (Felsenstein, 1985; Losos, 2008; Revell, Harmon, 
& Collar, 2008). Evidence of PS has previously been shown for di-
verse characteristics in tropical trees, from mean range size and 
abundance (Dexter & Chave, 2016) to wood density, tree size, and 
mortality rates (Coelho de Souza et al., 2016).

Based on an Amazon-to-Andes elevation gradient, this study 
investigates potential evolutionary constraints on elevational 

distribution and response to environmental change within TMF tree 
lineages. A temporally calibrated, genus-level phylogeny is gener-
ated—covering the breadth of vascular plant diversity, from angio-
sperms and gymnosperms to tree ferns. Using this phylogeny, we 
test for evolutionary patterns underlying elevational distribution 
trends and the influence of the cloud-base ecotone. Specifically, we 
consider two core hypotheses: (a) closely related genera occupy sim-
ilar elevations and (b) genera displaying environmental lability are 
phylogenetically clustered.

2  | METHODS

2.1 | Study site

A plot network spanning a 425 to 3,625 m a.s.l Amazon-Andes eleva-
tion gradient centered on Kosñipata valley, both in and near Manu 
National Park, south-eastern Peru (Figure 1). Established by the 
Andes Biodiversity and Ecosystem Research Group (ABERG: www.
andes conse rvati on.org), plots are subject to regular re-censusing 

F I G U R E  1   Location of 23 plots along an elevation gradient on the Amazonian flank of the south-eastern Peruvian Andes. Yellow 
diamonds indicate location of plots. Letters relate to the following plots and elevations (m a.s.l): A: PAN-01 (425), B: PAN-02 (595), C: TON-
01 (800), D: PAN-03 (850), E: TON-02 (1,000), F: SAI-02 (1,250), G: CAL-02 (1,250), H: SAI-02 (1,500), I: CAL-01 (1,500), J: SPD-02 (1,500), 
K: SPD-01 (1,750), L: TRU-08 (1,800), M: TRU-07 (2,000), N: TRU-06 (2,250), O: TRU-05 (2,500), P: TRU-04 (2,750), Q: ESP-01 (2,890), R: 
TRU-03 (3,000), S: WAY-01 (3,000), T: TRU-02 (3,250), U: TRU-01 (3,450), V: ACJ-01 (3,537), W: APK-01 (3,625)

http://www.andesconservation.org
http://www.andesconservation.org
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and ongoing multidisciplinary research (Malhi et al., 2010, 2017). 
The gradient encompasses broad habitat and environmental varia-
tion, from lowland/sub-montane forests below 800 m a.s.l, up to the 
montane forest-puna grassland transition ~ 3,400 m a.s.l (Girardin 
et al., 2010). Mean annual temperature decreases from ~ 24°C at 
low elevations, to ~ 9°C at higher elevation (Malhi et al., 2017). Mean 
total annual precipitation displays a hump-shaped trend across the 
gradient, ranging from ~ 3,000 mm/yr at low elevations, ~5,000 mm/
yr at mid-elevations, and ~ 1,000 mm/yr at high elevations (Rapp & 
Silman, 2012). Frequent cloud immersion, characteristic of TMCF, 
occurs above 1,500–2,000 m a.s.l (Girardin et al., 2010; Rapp & 
Silman, 2012), reaching peak frequency between 2,000 and 3,500 m 
a.s.l (Halladay et al., 2012). Paleozoic meta-sedimentary mudstone 
dominates geologically, with granite intrusions between 1,500 
and 2,020 m a.s.l (Nottingham et al., 2018). Significant soil charac-
ter changes occur ~ 1,000 and ~ 2,000–2,500 m a.s.l (Nottingham 
et al., 2018).

2.2 | Plot inventory & phylogeny

This study utilizes the latest inventory data for woody 
stems > 10 cm diameter at breast height (1.3 m above the ground; 
DBH) growing in 23 1-hectare plots within the ABERG plot network 
(ABERG: www.andes conse rvati on.org). A total of 301 plant gen-
era were inventoried across all plots. Sequences for rbcL and matK 
plastid genes were obtained from the GenBank database (www.
ncbi.nlm.nih.gov/genba nk/; Benson et al., 2017), for 275 genera 
(251 genera with both rbcL and matK sequences). Where possible, 
sequences were used for geographically proximate representa-
tives of each genus. Sequences were aligned on the MAFFT v7 
online service (https://mafft.cbrc.jp; Katoh, Rozewicki, & Yamada, 
2019) . Manual alignment, checking, and trimming of sequence 
ends where most genera lack data was carried out in Mesquite 
v3.6 (Maddison & Maddison, 2018). Since rbcL and matK are chlo-
roplast markers and therefore do not experience recombination, 
sequences were concatenated prior to phylogeny estimation.

A maximum-likelihood phylogeny was estimated for the 275 
genera in RAxML-HPC2 v8.2.10 (Stamatakis, 2015), with rapid 
bootstrapping (100 iterations), executed on the CIPRES web server 
(www.phylo.org; Miller, Pfeiffer, & Schwartz, 2010) under default 
settings, using a General Time Reversible (GTR) + Gamma (G) model 
of sequence evolution without partitions. Family-level relationships 
were constrained using the “R20160415.new” megatree (Gastauer 
& Meira-Neto, 2017), based on the APG IV topology (Chase 
et al., 2016). Phylogeny temporal calibration was conducted utiliz-
ing penalized likelihood methods in treePL (Smith & O’Meara, 2012) 
with secondary calibrations on 59 of 275 internal nodes, based 
on age estimates in Magallón, Gómez-Acevedo, Sánchez-Reyes, 
and Hernández-Hernández (2015) for angiosperms; Silvestro, 
Cascales-Miñana, Bacon, and Antonelli (2015) for further angio-
sperms and gymnosperms; Lu, Ran, Guo, Yang, and Wang (2014) for 
Podocarpaceae; and Korall and Pryer (2014) for Cyatheaceae.

Patterns often vary across phylogenetic scales (Graham, Storch, 
& Machac, 2018) and a depth much older than the angiosperms is 
encompassed by our phylogeny. Further, gymnosperms and tree 
fern lineages occur on long branches, which when included in analy-
ses may mask phylogenetic trends at the angiosperm scale (Honorio 
Coronado et al., 2015; Kembel & Hubbell, 2006). As such, both our 
full phylogeny (275 genera) and a subset comprising only angiosperm 
genera (269 genera) were analyzed to investigate the consistency of 
potential phylogenetic trends.

2.3 | Elevational distribution trends

To test for evolutionary patterns, elevational characteristics of gen-
era were calculated and mapped onto our phylogeny. To quantify 
similarity of elevational distribution among close relatives, we used 
abundance weighted mean elevations of genera, based on numbers 
of individuals per genus within plots. We used several metrics to 
assess the capacity for lineages to respond evolutionarily to novel 
environmental conditions, including measures of lability for eleva-
tional preference: (a) a metric of temporal elevational shifts in the 
distribution of genera, based on their annualized change in basal 
area weighted mean elevation, quantified on this transect by Feeley 
et al. (2011) over a four year period for 35 genera within our phylog-
eny. (b) Elevational range breadth for all 275 genera in the phylogeny, 
measured as the 95% quantiles of occurrence for each genus on the 
gradient. (c) Coefficient of variation (CV) for mean elevation of spe-
cies within a genus, for the 148 genera with more than one species 
on the transect (the other 127 genera are monotypic across sampling 
sites). Both elevational range breadth and CV for mean elevation are 
indicative of broad environmental tolerances. High values in both 
measures suggest a genus occupies a breadth of environmental vari-
ation and may therefore be better able to tolerate climatic changes. 
A metric of change over time may better represent the potential of 
genera to respond to climatic changes, but is only quantified for 35 
genera in our phylogeny (Feeley et al., 2011). We therefore assessed 
if our other measures of evolutionary lability (elevational range 
breadth and CV of mean elevation), available for many more genera, 
correlate with annual change and may act as proxies.

We estimated phylogenetic signal for genera elevational character-
istics using Pagel's λ (Freckleton, Harvey, & Pagel, 2002; Pagel, 1999). 
Based on a comparison of tree branch length transformations, λ con-
trasts variance in observed trait values against expected trait variance 
under a Brownian motion (BM) model of evolution. Under a BM model, 
trait values evolve following a stochastic random walk trajectory, with 
expected trait divergence across each node in the phylogeny being pro-
portional to the phylogenetic depth, or age, of the node. This random 
walk results in a linear increase in variance with time, and therefore, 
variance and covariance of trait values between lineages proportional 
to phylogenetic branch length. Values of λ around 0 indicate no phylo-
genetic signal. Values of λ around 1 indicate strong phylogenetic signal, 
matching that expected under a BM model of evolution. Values of λ 
between 0 and 1 indicate intermediate levels of phylogenetic signal. 

http://www.andesconservation.org
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/genbank/
https://mafft.cbrc.jp
http://www.phylo.org
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In order to test whether results display metric dependency, we also 
calculated phylogenetic signal using Blomberg's K (Blomberg, Garland, 
& Ives, 2003).

Following logic similar to the mid-domain effect on species 
richness (Colwell & Lees, 2000), if phylogenetic signal exists for 
elevational range breadth, any phylogenetic signal for mean eleva-
tion could be an artifact driven by constraint of mean elevations 
for widely ranged genera to intermediate elevations. To test for 
this potential artifact, we ran null simulations, shifting the ranges 
of genera randomly up and down while ensuring ranges remained 
with the gradient limits. We biased genera placements to retain the 
observed distribution pattern of range mid-points, including a higher 
frequency of mid-points at lower elevations. We compared the mean 
phylogenetic signal for genera range mid-point from 1,000 null 
simulations with our observed phylogenetic signal for abundance 
weighted mean elevation. Range mid-point is strongly correlated 
with abundance weighted mean elevations (R2 = 0.93) and give simi-
lar measures of phylogenetic signal in the observed dataset.

2.4 | Cloud-base ecotone

We additionally investigated the influence of the cloud-base eco-
tone on elevational distribution patterns. Along our gradient, the 
cloud-base consistently occurs between approximately 1,500–
2,000 m a.s.l (Girardin et al., 2010; Rapp & Silman, 2012). We used 
the mid-point of this range (1,750 m a.s.l) as the cloud-base eleva-
tion in our analysis. The robustness of this cloud-base approxima-
tion was tested with a hierarchical cluster analysis using Bray–Curtis 
dissimilarity indices of plots based on their species composition. 
We then categorized genera based on their distribution relative 
to the cloud-base. Three distribution categories were assigned (a) 
only above cloud-base (≥1,750 m a.s.l; n = 33), (b) only below cloud-
base (≤1,749 m a.s.l; n = 161), or (c) occurring across the cloud-base 
(both < 1,749 m a.s.l and > 1,750 m a.s.l; n = 81). We estimated phy-
logenetic signal for each category using the D statistic for discrete 
characters (Fritz & Purvis, 2010). D is based on the sum of sister 
clade differences. Running opposite to Pagel's λ values, a D value 
of 1 indicates no phylogenetic signal, and a D value of 0 indicates 
phylogenetic signal equivalent to that expected under a BM model 
of evolution. Values < 0 and > 1 are possible. The observed value is 
then assessed for significance against the expected value, generated 
from simulations (n = 5,000) based on an absence of phylogenetic 
dependency, and phylogenetic structure based on a BM model of 
evolution.

3  | RESULTS

3.1 | Elevational distribution trends

Abundance weighted mean elevation shows high and significant phy-
logenetic signal at the genus-level (λ = 0.81, p < .001), though less 

than expected under a BM model of evolution. Phylogenetic signal is 
also observed when considering only angiosperm lineages (λ = 0.62, 
p < .001), suggesting the effect is consistent across the phylogenetic 
scales of our analysis. The mean (λ = 0.02, SD = 0.07) and maxi-
mum (λ = 0.52) phylogenetic signal generated by null simulations of 
genera elevational range mid-points suggest our observed λ value 
is not simply an artifact akin to the mid-domain effect (Colwell & 
Lees, 2000).

Significant phylogenetic signal for mean elevation is driven by 
high and low mean elevation values across a number of lineages 
(Figure 2a). High mean elevation values occur frequently across 
the Asterids, with the notable exceptions of the Apocynaceae, 
Rubiaceae, Sapotaceae, and Lecythidaceae, which tend toward lower 
mean elevations. In contrast, low mean elevation values are more 
dominant within the Rosids; strongly so among the Malpighiales, 
Fabaceae, and Malvaceae. Exceptionally among Rosid lineages, the 
Oxalidales and Melastomataceae tend toward high mean elevations. 
Arecaceae, the sole Monocot lineage in the phylogeny displays a low 
mean elevation pattern. The Magnoliids are largely split between a 
low mean elevation trend within the Annonaceae and Myristicaceae, 
and a mid-elevation mean within the Lauraceae. Beyond the angio-
sperms, the Podocarpaceae and Cyatheales lineages also display 
largely mid-elevation means. The difference between mean ele-
vations is 252 m lower for sister genera in the phylogeny (n = 83, 
mean = 504 m, SD = 506 m) than it is between non-sister genera 
pairs (n = 37,675, mean = 756 m, SD = 647 m).

Annual change in the mean elevation of genera, weighted by rel-
ative basal area, positively correlates with elevational range breadth 
of genera (τ = 0.46, p < .001; Figure 3a) and the coefficient of vari-
ation for mean elevation of species within genera (τ = 0.28, p = .01; 
Figure 3b). These correlations suggest elevational range breadth 
and coefficient of variation for mean elevation may be acceptable 
proxy measures of the adaptive potential for elevational distribution 
change.

There is no phylogenetic signal for annual change in the mean 
elevation of genera, weighted by relative basal area (λ < 0.001, p = 1, 
n = 35). Similarly, no significant phylogenetic signal is evident for ele-
vational range size of genera (λ = 0.36, p = .09, n = 275; Figure 2b), or 
the coefficient of variation of species mean elevations within genera 
(λ = 0.00007, p = 1, n = 148). Analyzing angiosperm lineages alone 
reveals significant values for elevational range size (λ = 0.2, p = .01, 
n = 269), though not consistently across metrics (Blomberg's K = 0.2, 
p = .14).

3.2 | Cloud-base ecotone

Hierarchical cluster analysis identifies clear dissimilarities among 
plot species compositions. Though edaphic and topographic varia-
tions between plots must be noted, mid-elevations are a clear point 
of species turnover, with all plots at 1,800 m a.s.l and above more 
similar to each other in species composition than they are to all plots 
at 1,750 m a.s.l and below, and vice versa (Figure 4). This pattern 
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is driven by the fact that more species reach the limit of their el-
evational distribution before 1,750 m a.s.l than at other elevations 
(Figure 2a,c). These patterns lend support to our cloud-base ecotone 
approximation at 1,750 m and its relevance as an area of ecological 
transition.

Genera distributed solely above the cloud-base ecotone (n = 33) 
are more significantly clustered in the phylogeny than would be ex-
pected under a model of random phylogenetic structure (D = 0.31, 
p < .001; Figure 2c). Further, the observed phylogenetic signal is not 
significantly different than expected under a BM model of evolution 
(p = .12). An above cloud-base distribution is more frequent among 
Asterid genera, notably so for a clade within the Ericales. Genera oc-
curring at elevations solely below the cloud-base ecotone (n = 161) 
are also more significantly clustered in the phylogeny than expected 
for random phylogenetic structure (D = 0.69, p = .001; Figure 2c), 
though less than expected under a BM of evolution (p < .001). Below 
cloud-base distribution is common among Rosid lineages, notably 

genera within the Fabaceae, Malvaceae, and Malpighiales. While 
there is also a strong trend within the Apocynaceae, Sapotaceae, 
Lecythidaceae, Annonaceae, and Caryophyllales for genera with 
below cloud-base distributions, those genera occurring across the 
cloud-base ecotone, that is, showing lability across this environmen-
tal threshold (n = 81), are not significantly clustered phylogenetically 
(D = 0.9, p = .16; Figure 2c). These results are consistent when only 
angiosperm lineages are considered in analyses.

4  | DISCUSSION

We find clear phylogenetic signal for the mean elevational occurrence 
of genera, suggesting that evolutionary heritage strongly influences 
elevational distributions of tree genera within tropical montane for-
ests (TMF). Closely related tree genera tend to occupy similar mean 
elevations, clustering either above or below the cloud-base ecotone 

F I G U R E  2   Phylogeny of 275 tree genera with terminal branches colored according to: (a) abundance weighted mean elevation; (b) 
elevational range size; and (c) distribution relative to the cloud-base ecotone. There is significant phylogenetic signal for (a) mean elevation 
(λ = 0.81, p < .001) and (c) distribution solely above (D = 0.31, p < .001) or solely below (D = 0.69, p < .001) the cloud-base ecotone. There 
is no significant phylogenetic signal for (b) genera elevational range size (λ = 0.36, p = .09) or (c) distribution across the cloud-base ecotone 
(D = 0.9, p = .16). Major clades are indicated in gray bar to the right side: a = tree ferns (Cyatheales), b = gymnosperms, c = Magnoliids 
and Hedyosmum, d = Monocots, e = basal Eudicots. Numbered nodes indicate branch stems of lineages mentioned in the main text: 
1 = Fabaceae, 2 = Malpighiales, 3 = Oxalidales, 4 = Malvales, 5 = Melastomataceae, 6 = Apocynaceae, 7 = Rubiaceae, 8 = Sapotaceae, 
9 = Lecythiadaceae, 10 = Lauraceae, 11 = Annonaceae, 12 = Myristicaceae, 13 = Miconia, 14 = Schefflera, 15 = Meliosma, 16 = Ocotea, 
17 = Persea, 18 = Laurales, 19 = Ericales, 20 = Caryophyllales. Inset bar plots display frequency distribution of values for each variable, 
demonstrating (a) and (c) the occurrence of a greater number of lineages below ~ 1,750 m asl, and (b) the predominance of narrow elevational 
ranges

(a) (b) (c)



     |  7GRIFFITHS eT al.

and its associated environmental changes. Further, genera occur-
ring above the cloud-base show stronger phylogenetic clustering 
than those below the cloud-base. While the general pattern among 
genera is for narrow elevational ranges, some genera appear able to 
escape this constraint, occupying large elevational ranges and cross-
ing the cloud-base ecotone. These more broadly distributed genera 
are not phylogenetically clustered, but rather arise randomly across 
the breadth of vascular plant lineages represented in our phylogeny.

That closely related genera tend to occupy similar mean eleva-
tions is evidence that evolutionary heritage influences biodiversity 
distribution across the heterogeneous environment of TMF. This ob-
served trend, in combination with high taxonomic turnover (Baldeck 
et al., 2016; Jankowski et al., 2013; Malhi et al., 2010) and narrow el-
evational ranges (Perez et al., 2016), is consistent with niche conser-
vatism predictions that it tends to be hard to evolve environmental 
tolerances differing markedly from those of evolutionary ancestors 
(Donoghue, 2008; Wiens et al., 2010). Our genus-level observations 
build upon Gentry’s (1988) convincing demonstration of family-level 
elevational shifts in dominant lineages across TMFs. Gentry (1988) 

noted for example, the replacement of lowland dominant Fabaceae 
by Lauraceae at intermediate elevations, and the dominance of 
Asterid families such as Asteraceae and Rubiacae at higher eleva-
tion. These trends are evident in our observations, and the overrep-
resentation of Asterid lineages at higher elevation has been reported 
for other tropical mountain systems (Hemp, 2006; Molina-Venegas, 
Fischer, & Hemp, 2020).

The shifting evolutionary composition of communities across 
elevation is further reinforced by the observed phylogenetic clus-
tering of closely related genera solely above, and solely below the 
cloud-base ecotone. Associated with climatic changes, such as re-
duced solar radiation and increased occult precipitation, the cloud-
base ecotone may represent an important environmental barrier, 
constraining the movement of lineages between contrasting envi-
ronments (Fadrique et al., 2018; Pounds, Fogden, & Campbell, 1999). 
A cluster analysis revealing strong dissimilarity in species composi-
tion between plots above versus below the cloud-base, also shown 
by Jankowski et al. (2013), further suggests this ecotone is an area 
of significant floristic transition (Figure 4). Stronger phylogenetic 

F I G U R E  3   The annual change in mean 
elevation of genera, weighted by relative 
basal area, is positively correlated with a) 
the elevational range breadth of genera 
(τ = 0.46, p < .001) and b) the coefficient 
of variation for mean elevation of species 
within genera (τ = 0.28, p = .01). Points 
represent genera. Correlations based on 
Kendall's tau coefficient. Blue lines are 
derived from linear regression
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F I G U R E  4   Dendrogram generated 
by a hierarchical cluster analysis based 
on Bray–Curtis dissimilarity indices, 
illustrating the main areas of taxonomic 
turnover across the elevation gradient. 
Species compositions in all plots at or 
above 1,800 m a.s.l (indicated by blue 
branches) are more similar to each other 
than species compositions in all plots at or 
below 1,750 m (indicated by red branches) 
and vice versa
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signal in lineages distributed solely above the cloud-base ecotone 
compared with those solely below suggests lineage clustering, niche 
conservatism, and environmental filtering may be stronger drivers of 
distribution patterns within TMCF. Frequent cloud immersion pres-
ents ecological challenges which may engender adaptations, such as 
foliar water uptake (Eller, Lima, & Oliveira, 2016; Goldsmith, Matzke, 
& Dawson, 2013), and promotes the evolution of a unique floral di-
versity above the cloud-base ecotone.

Any cloud-base effect likely acts in concert with other factors. 
For example, ~1,700 m a.s.l may represent the upper temperature 
limit for many tropical forest tree species which have tracked to 
higher elevations after evolving under the cooler lowland conditions 
of the Pleistocene (Silman, 2007). Additionally, the geologically re-
cent major uplift of the Andes, and relative lack of high elevations 
until < 10 mya (Garzione et al., 2008; Leier, McQuarrie, Garzione, 
& Eiler, 2013; Sundell, Saylor, Lapen, & Horton, 2019), likely had 
major impact on the biogeographic history of the South American 
flora (Antonelli, Nylander, Persson, & Sanmartin, 2009). However, 
evidence increasingly suggests a genuine cloud-base effect. For ex-
ample, phylogenetic discontinuity between cloud forest and lower 
montane forest occurs in Africa on Mt Kilimanjaro (Molina-Venegas 
et al., 2020). Though further comparisons among TMFs are neces-
sary, it seems that TMCFs contain a unique and important biodi-
versity. Along our gradient, lineages with a clear temperate affinity, 
such as Alnus (Betulaceae) and Prunus (Rosaceae), are observed more 
frequently at middle and upper elevations yet these lineages do not 
dominate. Rather, the tree assemblages of TMCFs appear to contain 
substantial unique evolutionary diversity.

It is worth noting that while some analyzed characteristics show 
significant phylogenetic signal, this signal is generally less than that ex-
pected under a Brownian motion (BM) model of evolution. This could 
result from divergent selection among closely related taxa and/or con-
vergent evolution across distant relatives. Alternatively, a simple BM 
model may not accurately describe genus-level distribution changes 
over time. For example, a simple BM model does not account for vari-
ation in rate of evolution over time or among lineages. Different evo-
lutionary models are possible, yet our goal was simply to identify the 
existence of phylogenetic signal and not to test any specific underlying 
evolutionary mechanism, given the genus-level nature of our phylog-
eny. As such, a BM model can provide insight into evolutionary trends 
influencing elevational patterns such as high taxonomic turnover and 
narrow elevational range occupancy.

Most genera evidently occupy relatively narrow elevational 
distributions (Figure 2b). However, a few genera, such as Miconia 
(Melastomataceae), Meliosma (Sabiaceae), Ocotea (Lauraceae), Persea 
(Lauraceae), and Schefflera (Araliaceae), seem able to escape the 
constraints of evolutionary heritage and occupy large elevational 
ranges, as well as cross the ecotonal transition of the cloud-base 
(Figure 2b,c). In addition to occupying, broad elevational ranges, 
genera such as Miconia, Persea, and Schefflera, are among those that 
show significantly greater upslope shifts in mean elevation than tree 
genera in general (Feeley et al., 2011). For Miconia and Schefflera, 
rates of elevational change have actually kept pace with predicted 

temperature increases, contrasting with the many tree genera lag-
ging in their responses to temperature increases (Feeley et al., 2011; 
Malhi et al., 2009; Urrutia & Vuille, 2009). Such specific genera 
trends, along with the correlation observed between elevational 
range size and rate of elevational distribution change (Figure 3a,b), 
reinforce the suggestion that occupancy of a broad elevational range 
may associate with greater lability of response to the pressures of 
a changing climate. In any case, our findings reveal no phyloge-
netic signal for elevational range size (Figure 2b) or annual rate of 
elevational distribution change, demonstrating that characteristics 
such as broad elevational ranges, or trends of upslope distribution 
change, are not phylogenetically clustered among closely related 
genera. Rather, such genera come from lineages distributed across 
the breadth of the vascular plant phylogeny.

The observed random phylogenetic pattern for elevational range 
size provides interesting contrast to research revealing clear phy-
logenetic signal for geographic range size across Amazonian tree 
lineages (Dexter & Chave, 2016). However, environmental drivers 
of elevational range sizes, more closely linked to abiotic tolerances 
(Ghalambor, Huey, Martin, Tewksbury, & Wang, 2006; Janzen, 1967), 
may vary from those driving distributions in the lowlands where bi-
otic interactions may be stronger (Hillyer & Silman, 2010). While 
phylogenetic signal is not evident for elevational range size across 
the breadth of genera considered in this analysis, there appears to 
be a trend for broad elevation ranges in a few lineages, notably the 
Laurales (Figure 2b). Such lineages may drive the marginally signif-
icant phylogenetic signal observed for elevational range size when 
only angiosperms are included in the analysis.

Although lability of response to environmental change, indicated 
by occupancy of a broad elevational range, is not clearly constrained 
within particular evolutionary lineages, the majority of lineages 
nonetheless occupy narrow elevational ranges, and the timescale 
necessary for evolutionary adaptation within most tree lineages 
may be incompatible with the current rapid rate of environmental 
change (Feeley et al., 2011; Pepin et al., 2015; Russell et al., 2017). 
Clustering of closely related genera around similar mean elevations 
may suggest that climatic trends, such as rising temperatures, will 
have unequal impacts across lineages. Lowland lineages, already 
occupying broad distributions across the Amazon, may find amena-
ble environmental conditions become available on higher ground. 
Meanwhile, those few lineages already occupying broad elevational 
distributions may find themselves at a competitive advantage in 
terms of tolerating changing conditions. But TMF lineages, and the 
evolutionary diversity constrained to mid and high elevations may 
be at risk. As climate conditions track up mountain slopes, the area 
of land amenable to TMF lineages may reduce in size (Lutz, Powell, 
& Silman, 2013). At the same time, TMF lineages may be squeezed 
from below by increasing competition as lowland lineages migrate 
upslope (Colwell, Brehm, Cardelus, Gilman, & Longino, 2008; Feeley 
et al., 2011). Among TMF lineages, those clustered solely above the 
cloud-base ecotone may be most vulnerable. Many TMCF tree lin-
eages display special adaptation to the conditions associated with 
frequent cloud immersion, such as nutrient uptake from arboreal 
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soils (Gotsch, Nadkarni, & Amici, 2016) and high foliar water uptake 
(Eller et al., 2016), and may thus be at risk under a changing climate. 
With lineages constrained by evolutionary heritage to narrow ele-
vational distributions and particular niches, climatic changes such as 
a decline in cloud immersion frequency or lifting of the cloud-base 
(Helmer et al., 2019; Still, Foster, & Schneider, 1999) may fundamen-
tally alter the tropical montane environment and result in large pop-
ulation reductions and potential extinctions among the TMF biota. 
Phylogenetic clustering in the elevational distribution of TMF tree 
lineages means any extinctions may lead to disproportionate losses 
of evolutionary history, a risk which is particularly stark for special-
ized lineages constrained within TMCF.

A degree of perspective must be given to interpretation of ge-
nus-level phylogenetic analyses. Genera trends may mask substan-
tial variation among their constituent species (e.g., Rapp et al., 2012), 
while species-level patterns may influence genus trends. For exam-
ple, along our gradient the range size of genera is correlated with 
the mean range size of constituent species, although the latter only 
explains 16% of the variation in the former. Species-level analyses 
may reveal divergent patterns at a finer scale, though DNA sequence 
data are not yet available for an analysis representing the breadth 
of lineages we can consider at the genus-level. Further, focusing on 
higher taxonomic levels, such as genera, can be a valuable means of 
understanding deeper evolutionary trends. Additionally, most spe-
cies in this data set are only recorded in a single plot and, given ele-
vational intervals up to 250 m between plots, quantification of their 
elevational distribution may have limited precision. A genus-level 
analysis is also advantageous in minimizing potential errors created 
by individuals not reliably identified to species. Nevertheless, fu-
ture analyses of lineage-specific, species-level phylogenetic trends 
across elevation, particularly focusing on functional characteristics, 
would further develop our understanding of the mechanisms driving 
elevational distribution patterns.

Overall, our study illustrates that by utilizing phylogenetic ap-
proaches we can better understand how evolutionary heritage, 
and the tendency of close relatives to share similar ecological and 
functional characteristics, influences lineage distribution pat-
terns across different environments (Segovia et al., 2020; Wiens & 
Graham, 2005). In particular, our analyses draw out the ecological 
significance of environmental transition zones, such as the cloud-
base ecotone, showing that such transitions can coincide with signif-
icant phylogenetic community turnover. Further, by demonstrating 
clustering of evolutionary lineages at similar elevations, we pro-
vide valuable insight into the potential impact rapid environmental 
changes may have on the unique and vulnerable evolutionary di-
versity of tropical montane forests in general, and tropical montane 
cloud forests in particular.
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