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Abbreviations

Analysis of variance   ANOVA;        Arbitrary fluorescence units  a.f.u 

Bovine Serum Albumin  BSA;        Calcium   Ca2+ 

Central Nervous System  CNS;        Chi-squared    χ2 

Days in vitro   DIV;        Duchenne Muscular Dystrophy DMD 

Food and Drug Administration FDA;         Glial Fibrillary Acidic Protein GFAP 

Hank’s balanced salt solution  HBSS;        Horse radish peroxidase  HRP 

Ionized calcium-binding adapter-1 Iba-1;        Lysophosphatidylcholine  LPC 

Minimal Essential Medium  MEM;        Minutes   Min 

Myelin Basic Protein  MBP;        Myelin Oligodendrocyte Glycoprotein MOG 

Neural progenitor cell   NPC;        Neurofilament H   NFH 

Organotypic Cerebellar Slice  OCS;        Oligodendrocyte precursors  OP 

Postnatal day 10   P10;        Paraformaldehyde  PFA 

Penicillin/Streptomycin  Pen/Strep;      Phosphate-buffered saline  PBS 

Proteolipoprotein   PLP;        Psychosine   PSY 

Polyvinylidene difluoride membrane PVDF;        Radioimmunoprecipitation assay RIPA 

Reactive oxygen species  ROS;        Region of interest  ROI 

Sodium chloride   NaCl;        Sodium dodecyl sulfate  SDS 

Standard Deviation   SD;     
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Main Points 

• Piezo1 negatively regulates central nervous system myelination. 

• Piezo1 antagonist, GsMTx4, enhances myelination and attenuates demyelination. 

• GsMTx4 is neuroprotective and inhibits lysophosphatidylcholine-induced 

astrocyte toxicity. 

 

Abstract 

Piezo1 is a mechanosensitive ion channel that facilitates the translation of extracellular 

mechanical cues to intracellular molecular signalling cascades through a process 

termed, mechanotransduction. In the central nervous system (CNS), mechanically-

gated ion channels are important regulators of neurodevelopmental processes such as 

axon guidance, neural stem cell differentiation, and myelination of axons by 

oligodendrocytes. Here, we present evidence that pharmacologically-mediated 

overactivation of Piezo1 channels negatively regulates CNS myelination. Moreover, 

we found that the peptide GsMTx4, an antagonist of mechanosensitive cation channels 

such as Piezo1, is neuroprotective and prevents chemically-induced demyelination. In 

contrast, the positive modulator of Piezo1 channel opening, Yoda-1, induces 

demyelination and neuronal damage. Using an ex vivo murine-derived organotypic 

cerebellar slice culture model, we demonstrate that GsMTx4 attenuates demyelination 

induced by the cytotoxic lipid, psychosine. Importantly, we confirmed the potential 

therapeutic effects of GsMTx4 peptide in vivo by co-administering it with 

lysophosphatidylcholine (LPC), via stereotactic injection, into the cerebral cortex of 

adult mice. GsMTx4 prevented both demyelination and neuronal damage usually 

caused by the intra-cortical injection of LPC in vivo; a well-characterised model of 

focal demyelination. GsMTx4 also attenuated both LPC-induced astrocyte toxicity and 

microglial reactivity within the lesion core. Overall, our data suggest that 

pharmacological activation of Piezo1 channels induces demyelination and that 

inhibition of mechanosensitive channels, using GsMTx4, may alleviate the secondary 

progressive neurodegeneration often present in the latter stages of demyelinating 

diseases.   
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Introduction 

Piezo1 is a mechanically-gated cation channel and allows the influx of calcium ions 

(Ca2+) into the cell when activated by mechanical cues (Gnanasambandam, Bae, 

Gottlieb, & Sachs, 2015; Gnanasambandam et al., 2017). PIEZO proteins are highly 

conserved throughout evolution and play crucial roles in mechanosensation and 

mechanotransduction in multicellular organisms (Coste et al., 2012). In the vertebrate 

central nervous system (CNS), Piezo1 is expressed on neuronal cell membranes and 

regulates important developmental processes such as axon guidance. This was recently 

demonstrated in retinal ganglion neurons of developing Xenopus embryos (Koser et 

al., 2016). Moreover, elegant work by Pathak et al. (2014) showed that traction force-

mediated activation of Piezo1 triggers Ca2+ influx and directs the lineage choice of 

neural stem cells toward a neuronal phenotype rather than astrocytic. More recently, 

we reported that reactive cortical astrocytes that engulf stiff amyloid plaques 

upregulate Piezo1 channels, as demonstrated in an ageing rat model of Alzheimer’s 

disease (Velasco-Estevez et al., 2018). This suggests that glial mechanotransduction 

may be disrupted by amyloid plaque pathology. Moreover, the mechanoresponsive 

transcriptional coactivators, Yap and Taz, are targeted to the nucleus of stem cells 

following activation of Piezo1 (Pathak et al., 2014). However, before its important role 

in mechanosensation had been elucidated, Piezo1 was known by another name, 

FAM38A. McHugh et al. (2010) had previously shown how Piezo1 helps to maintain 

integrin-mediated cell adhesion in epithelial cells by recruiting the small GTPase, R-

Ras, to the endoplasmic reticulum which, in turn, leads to Ca2+ release from internal 

stores, activation of calpain signalling (i.e. a Ca2+-dependent protease) and cleavage of 

talin (a protein that links membrane integrins and the actin cytoskeleton) (McHugh, 

Murdoch, Haslett, & Sethi, 2012). Both integrin signalling and Yap/Taz nuclear 

localisation are key cellular events in the formation of CNS myelin (O'Meara, 

Michalski, & Kothary, 2011; Shimizu et al., 2017). Here, we investigated the role of 

Piezo1 channel activity in both myelination and demyelination of the central nervous 

system. 

 

Demyelinating disorders are defined by the progressive degeneration of the myelin 

sheath which is formed by specialised glial cells that envelop and insulate neuronal 

axons (Saab, Tzvetanova, & Nave, 2013; Simons & Nave, 2015). In the CNS, the close 

physical contact between oligodendrocytes and axons facilitates intimate neuron/glial 
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crosstalk (Chang, Redmond, & Chan, 2016) consisting of both biochemical and 

mechanotactic cell signalling (Jagielska et al., 2012). As such, both neuronal and 

oligodendroglial homeostasis are intimately linked; i.e. axonal injury often leads to 

demyelination, but the opposite is also true, in that myelin damage can trigger 

neurodegeneration (Hauser & Oksenberg, 2006; Simons et al., 2014). Moreover, 

demyelinating disorders often display perturbations to axonal Ca2+ homeostasis caused 

by large influxes through membrane-bound ion channels or a sustained release of Ca2+ 

from intracellular stores (Stirling, Cummins, Wayne Chen, & Stys, 2014), culminating 

in excitotoxicity. Elevated Ca2+ can also lead to the production of pathophysiological 

levels of reactive oxygen species (ROS) and oxidative damage which, in turn, activate 

apoptotic cascades (Azuma & Shearer, 2008; Gorlach, Bertram, Hudecova, & 

Krizanova, 2015; Wojda, Salinska, & Kuznicki, 2008). Consequently, abnormally high 

Ca2+ influx can cause the destabilisation and unravelling of axonal cytoskeletal 

transport machinery, ultimately causing irreversible neurodegeneration (Barsukova, 

Forte, & Bourdette, 2012; Frati et al., 2017). As such, neuronal damage often 

exacerbates CNS myelin breakdown (Baloh, 2008). Therefore, therapeutics that can 

inhibit excessive Ca2+ influx or pathophysiological calcium-induced calcium release 

from intracellular stores may hold therapeutic potential in demyelinating diseases. 

Here, we present evidence that pharmacological blockade of mechanosensitive Piezo1 

channels prevents axonal and myelin damage in the CNS, both in vitro and in vivo.  
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Materials and Methods 

 

Ethics statement:   

All experiments involving animals and Schedule 1 protocols used to obtain brain tissue 

were approved by the Animal Welfare and Ethical Review Bodies (AWERB 

committees) of the University of Brighton and the University of Glasgow, as well as 

the Animal Research Ethics Committee (AREC) in Trinity College Dublin. Surgical 

procedures were carried out under UK Home Office licence-approved protocols. This 

study was conducted in accordance with the principles of the Basel Declaration and 

adhered to the legislation detailed in the UK Animals (Scientific Procedures) Act 1986 

Amendment Regulations (SI 2012/3039). All efforts were taken to maximise animal 

welfare conditions and to reduce the number of animals used in accordance with the 

European Communities Council Directive of September 20th, 2010 (2010/63/EU). 

 

Reagents:  

GsMTx4 (also known as AT-300) has been designated an orphan drug by the US food 

and drug administration (FDA) and counteracts cellular Ca2+ dysregulations in 

preclinical models of muscular dystrophy  (Ward, Sachs, Bush, & Suchyna, 2018). The 

34-amino acid peptide (Alomone labs, STG-100) is a member of the Inhibitory 

Cysteine Knot family with six cysteines, is a non-toxic component of tarantula venom, 

and functions as a negative allosteric modulator of mechanoreceptors (Suchyna et al., 

2000). The D and L enantiomers of GsMTx4 have almost identical activity (Wang, Ma, 

Sachs, Li, & Suchyna, 2016) which suggests that its mechanism is not reliant on direct 

stereo-chemical interactions (Gnanasambandam et al., 2017). Instead, it has high 

affinity for lipid bilayers and its ability to partition into membranes and inhibit 

mechanosensitive ion channel opening appears key to its mechanism of action as a 

gating modifier of Piezo1 (Gottlieb, Suchyna, & Sachs, 2007). 

 

Yoda-1 (Tocris, 5586) is a synthetic small molecule that specifically activates Piezo1 

at micromolar concentrations (Syeda et al., 2015; Evans et al., 2018) by interacting 

with the agonist transduction motif of Piezo1 subunits, thus enhancing channel 

opening-time (Lacroix, Botello-Smith, & Luo, 2018). In contrast to GsMTx4, Yoda-1 

may interact directly with Piezo1 domains rather than modifying the lipid environment 

around the ion channel (Syeda et al., 2015). 
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Galactosylsphingosine or psychosine (Santa Cruz Biotechnology, sc-202781) is a 

cationic lysosphingolipid that accumulates in the brains of patients with Krabbe 

disease (Giri et al., 2002) and causes oligodendrocyte cell death and demyelination 

(Misslin, Velasco-Estevez, Albert, O'Sullivan, & Dev, 2017; C. O'Sullivan & Dev, 

2015).  

 

Lysophosphatidylcholine (LPC; Sigma, #L4129) is an endogenous lysophospholipid 

that disrupts myelin-associated lipids (Plemel et al., 2018) leading to focal 

demyelination. It has been shown that the LPC-induced demyelination of axons 

requires an increase in intracellular Ca2+ levels (Fu, Wang, Huff, Shi, & Cheng, 2007).  

 

Organotypic cerebellar slice culture model 

Organotypic cerebellar slice (OCS) cultures were prepared from postnatal day 10 (P10) 

C57BL/6 mice. Mice were sacrificed by decapitation, the skull removed, and the 

cerebellum separated from the hindbrain. The cerebellum was sliced into 400 μm 

parasagittal sections using a McIlwain tissue chopper. The tissue was placed into a 

petri dish with Opti-MEM (Gibco, 31985) and separated into individual slices under a 

dissecting microscope. Five slices per organotypic insert (Millicell, PICMORG50) 

were cultured, with the first medium change taking place 24 hr after the dissection. For 

the first four days, slices were cultured in serum-based medium composed of 50% 

Opti-MEM, 25% HBSS (Gibco, 14025-050), 25% heat-inactivated horse serum 

(Gibco, 26050-088), supplemented with 2 mM GlutaMAX™ (Gibco, 35050061), 28 

mM D-Glucose (Sigma, G8769), 10 mM HEPES (Gibco, 15630-056), 100 units/mL 

penicillin and 100 µg/mL streptomycin (Pen/Strep) (Sigma, P4333). On day 4 in vitro, 

the medium was changed to a serum-free composition containing 98% Neurobasal-A 

(Gibco, 10888-022), 2% B-27 (Gibco, 17504-044), 28 mM D-Glucose, 2 mM 

GlutaMAX™, 10 mM HEPES, 100 units/mL penicillin and 100 µg/mL streptomycin. 

OCS cultures were replenished with fresh serum-free medium changes on days 7 and 

10 and drug treatments began on day 12 in vitro.  

 

Immunofluorescence of slice cultures 

OCS cultures were fixed using increasing concentrations of paraformaldehyde (PFA; 

1%, 2%, 3% and 4%) for 5 min each. Blocking and permeabilization was performed 
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at 4oC for 18 hr in a phosphate-buffered saline (PBS) solution containing 10% BSA + 

0.5% Triton X-100. Primary antibodies were diluted in 2% BSA + 0.1% Triton X-100 

and incubated for 48 hr at 4oC. Slices were washed with PBS + 0.1% Triton X-100 

buffer three times for 10 min. Incubation with secondary antibodies was performed at 

4oC for 18 hr. Slices were washed again and mounted on microscope slides using 

ProLong® Gold antifade reagent (ThermoFisher Scientific, P36934). Primary 

antibodies included: goat anti-PIEZO1 (N-15; Santa Cruz, sc-164319, RRID: 32 

AB_10842990; 1/500 dilution); rabbit anti-myelin basic protein (MBP) (Abcam, 

ab40390; RRID: AB_1141521; 1/1000 dilution); mouse monoclonal anti-

proteolipoprotein (PLP) (Millipore, MAB388; RRID: AB_177623; 1/1000 dilution); 

mouse monoclonal anti-myelin oligodendrocyte glycoprotein (MOG) (Millipore, 

MAB5680; RRID: AB_1587278; 1/1000 dilution); chicken anti-neurofilament heavy 

(NFH) (Millipore, AB5539; RRID: AB_177520; 1/1000 dilution); mouse monoclonal 

anti-vimentin (Santa Cruz, sc-373717; RRID: AB_10917747; 1/1000 dilution); rabbit 

anti-ionized calcium-binding adapter molecule 1 (Iba1) (Wako, 019-19741; RRID: 

AB_839504; 1/1000 dilution); chicken polyclonal anti-GFAP (Abcam, ab4674; RRID: 

AB_304558; dilution 1/1,000) and mouse monoclonal anti-SMI-32 (Millipore, 

NE1023; RRID: AB_2043449; 1/1000 dilution). Secondary antibodies used included: 

donkey anti-goat Alexa Fluor 488 (Abcam, ab150133; RRID: AB_2687506; 1/2000 

dilution); goat anti-rabbit Alexa Fluor 488 (ThermoFisher Scientific, A11008; RRID: 

AB_143165; 1/2000 dilution), donkey anti-rabbit IgG CF™ 555 (Sigma, 

SAB4600061; 1/2000 dilution), goat anti-mouse DyLight 549 (Jackson 

ImmunoResearch, 115-506-068; 1/2000 dilution), donkey anti-chicken IgY CF™ 633 

(Sigma, SAB4600127; 1/2000 dilution), and goat anti-chicken IgY Alexa Fluor 633 

(ThermoFisher Scientific, A21103; RRID: AB_2535756; 1/2000 dilution). 

 

Microscopy and image analysis of slice cultures 

Immunofluorescence images of OCS cultures were captured at 40× magnification 

using a Leica SP8 confocal microscope. For each experiment (n ≥ 5), there were 5 

slices per treatment group and 5–6 fluorescence images were captured per slice. The 

areas of the cerebellum captured were kept consistent between treatment groups. The 

images were exported as 8-bit tif files for analysis using the software package FIJI. To 

quantify fluorescence intensity, 10 regions of interest (ROI) were manually selected 

from each image and the average fluorescence intensity within each ROI was 
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calculated. Intensity values were normalised to the average control value for each 

protein of interest. To analyse the expression of SMI-32 in the white matter tracts, the 

software package Imaris® 9 was used. Briefly, an ROI containing predominantly white 

matter tracts was manually selected in each image. The proportion of this white matter 

area that stained positive for SMI-32 immunoreactivity (termed SMI-32 surface area) 

was quantified. 

 

Western blot  

Protein samples were prepared from OCS cultures by homogenising slices in 

radioimmunoprecipitation assay (RIPA) buffer containing 150 mM sodium chloride 

(NaCl), 1% Triton X-100, 0.1% sodium dodecyl sulfate (SDS) and 50 mM Tris pH 8.0. 

Samples were sonicated three times for 10 sec at 20% amplitude using a vibracell VCX 

130 (Sonics, USA). Samples were mixed in 1:1 ratio with Laemmli sample buffer 2X 

(BioRad, 161-0737) and boiled at 95oC for 5 min. Samples were run in 15% 

acrylamide/bisacrylamide gels (Applichem Panreac, A1672), loading 6 μg of total 

protein per well. The gels were run at a constant voltage of 120V and wet transfer was 

performed using polyvinylidene difluoride membrane (PVDF; Millipore, IPVH00010) 

at constant 75 mA for 75 min. The membranes were blocked in 5% bovine serum 

albumin (BSA; Santa Cruz, sc-2323) in PBS + 0.05% Tween for 1 hr at 22oC. 

Membranes were then incubated with primary antibodies for 18 hr at 4oC. To remove 

excess primary antibody, membranes were washed in PBS and then incubated with 

secondary antibodies for 1.5 h at 22oC. Membranes were developed after several 

washes using chemiluminescent HRP substrate (Millipore, WBKLS0500).  

 

Stereotactic surgery 

For stereotactic injection of compounds into the left and right cerebral cortex, 10 male 

C57BL/6 mice (9–10 weeks old, 20–30 g in weight; Envigo, UK) were randomly 

divided into three groups: 1) LPC 0.1% (left) vs PBS (right; n = 2); 2) LPC 0.1% (left) 

vs LPC 0.1% + 3μM GsMTx4 (right; n = 4); and 3) PBS (left) vs LPC 0.1% + 3μM 

GsMTx4 (right; n = 4). Mice were injected intraperitoneally with 1.25% Avertin 

(tribromoethanol, 20 µL/g body weight) in PBS prior to 3% isoflurane inhalation 

anaesthesia, followed by shaving the skull from between the eyes to the base of the 

neck. Mice were positioned into a small animal stereotactic frame (KOPF®; California, 

USA), Lacri-Lube eye ointment was applied to prevent dryness of the eyes, and 
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anaesthesia was maintained using 1.5–2% isoflurane during the procedure. The skin 

over the skull was sterilized using iodine and a midline incision was made to expose 

skull bone. To minimise post-operative pain, 1% lidocaine was applied on the skull for 

5 min prior to softening the skull bone using a fine drill at the following injection 

coordinates; 1 mm rostral to bregma, 1 mm lateral to the midline, and a depth of 1.5 

mm from the surface of the brain (Fig. 9A, B). The sites of injection corresponded to 

a region of the primary somatosensory cortex, proximal to the posterior motor cortex 

(Fig. 9C – E). Injections were performed using a HamiltonTM Neuros syringe 1710RN 

(Esslab, 7656-01) and HamiltonTM needle RN 336-A (Esslab, 65461-01). The needle 

was introduced slowly into the brain at a speed of 0.5 mm/min. The compounds (1 μL) 

were injected over a 6 min period and the needle was kept in place for an additional 5 

min, then withdrawn gradually (0.5 mm/min) to minimize backflow of the injected 

substances. The skin was sutured with Vicryl® 6-0 taperpoint curve needle (Ethicon, 

W9981). Mice recovered post-operatively in warm air chambers with easy access to 

water and a soft diet for 24 hr and were then transferred to ordinary cages until the end 

of the experiment. Four days post-surgery, mice were injected with a terminal dose of 

pentobarbital and were transcardially-perfused with 4% PFA in 0.1 M PBS. The whole 

brain was dissected out and placed in 4% PFA for an additional 4 hr at 4oC and then 

submerged in 30% sucrose in 0.1 M PBS for one week. Brains were then embedded in 

OCT, snap-frozen in liquid nitrogen and stored at -80oC until cryosectioning was 

performed. 

 

Tissue cryosectioning and immunofluorescence  

Mouse brains were cryosectioned using a Leica cryostat at a thickness of 12 μm and 

sections were placed onto SuperFrostTM Plus adhesion slides (Fisher, 10149870) which 

were allowed to air-dry for 30 min and then stored at -80oC until required. For 

immunofluorescence, microscope slides were removed from the -80oC freezer and 

allowed to air-dry at 22oC for 20 min prior to rehydration in PBS. For myelin basic 

protein (MBP) and neurofilament H (NFH) staining, antigen retrieval was performed 

in 95oC Tris-EDTA buffer (10 mM Tris-base, 0.5M EDTA pH 9.0, 0.05% Tween-20) 

for 30 min. All slides were permeabilized in 0.2% Triton-X in PBS for 30 min, 

followed by three PBS washes. Next, sections were blocked with 10% BSA in PBS for 

3 hr at 22oC. Blocking solution was removed and brain sections were incubated with 

primary antibodies diluted in 2% BSA/PBS and kept at 4oC for 18 hr. Slides were then 
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washed five times in PBS and incubated with secondary antibodies diluted in 2% 

BSA/PBS for 18 hr at 4oC and protected from light. Finally, slides were washed and 

mounted with coverslips using ProLong® Gold antifade reagent. Primary antibodies 

included: rabbit anti-MBP (Abcam, ab40390; RRID: AB_1141521; 1/1000 dilution); 

chicken anti-NFH (Millipore, AB5539; RRID: AB_177520; 1/1000 dilution); chicken 

anti-glial fibrillary acidic protein (GFAP) (Abcam, ab4674; RRID: AB_304558; 

1/1000 dilution), and goat anti-Iba1 (Novus Bio, NB100-1028; RRID: AB_521594; 

1/400 dilution). Secondary antibodies included: donkey anti-rabbit Alexa Fluor 488 

(Abcam, ab150065; 1/2000 dilution), donkey anti-mouse CFTM 555 (Sigma, 

SAB4600060; 1/2000 dilution), donkey anti-chicken IgY CFTM 633 (Sigma, 

SAB4600127; 1/2000 dilution), and donkey anti-goat Alexa Fluor 488 (Abcam, 

ab150133; 1/2000 dilution). 

 

Microscopy and image analysis of mouse brain sections  

Immunofluorescence images of the left and right hemispheres of each mouse brain 

section were captured at 40× magnification using a Leica SP5 confocal microscope. 

There were 3 groups of mice, as described above, and 2–3 brain sections were analysed 

per mouse. The images were exported as 8-bit tif files for analysis using the software 

package FIJI. To quantify fluorescence intensity, 10 ROI were manually selected from 

each image and the average fluorescence intensity within each ROI was calculated. 

Fluorescence intensity values are displayed as arbitrary fluorescence units (a.f.u.). For 

cell count and surface area analysis, FIJI’s particle analyser tool was employed. 

Briefly, images were converted from 8-bit to binary and a value of 20 pixels was set 

as the minimum particle size. A mask of the particles detected was generated to check 

the accuracy of the detection method. A numbered list of particles displaying the 

fluorescence intensity and the area of each were analysed. To analyse NFH and MBP 

co-localisation, the Manders split coefficient was calculated using FIJI software, which 

is a value between 0 and 1 and is proportional to the amount of NFH positive pixels 

that overlap with MBP positive pixels. Demyelination was assessed by calculating a 

decrease in the proportion of NFH staining co-localised with MBP. The accumulation 

of myelin debris was quantified by calculating an increase in the proportion of MBP 

staining which did not co-localise with NFH-positive axons.  
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Statistical analysis 

For organotypic experiments, there were five technical replicates (i.e., slices) per 

treatment group and each experiment was repeated between n = 5 and n = 11 times, as 

indicated in the appropriate figure legend. Separate experiments were counted as slices 

that were extracted from different brain tissue from different mouse litters on different 

experimental days. In this instance, “n” refers to the number of independent 

organotypic slice culture preparations performed on different experimental days. For 

each slice culture, 25 healthy slices were obtained from the cerebellum of five mouse 

littermates and were randomly separated into the five different treatment groups, as 

described in Figure 2f. Therefore, if an experiment was repeated n = 5, a total of 25 

cerebellar slices were stained and imaged for each treatment group. For in vivo animal 

experiments, “n” refers to the number of mice per experimental group. All post hoc 

statistical analysis was performed using GraphPad® Prism 7 (RRID:SCR_002798). 

Each dataset was tested for normality using column statistics and the D'Agostino‐

Pearson omnibus test prior to any other statistical analysis being performed. For 

Western blot assays, repeated measures analysis of variance (ANOVA) tests were 

performed because data in every experiment were matched. Data are presented as the 

mean ± SD. Holm–Sidak multiple comparisons post hoc tests were run in conjunction 

with one‐way ANOVAs and all groups were compared with one another. To analyze 

changes in the fluorescence intensities of cell markers and of SMI‐32 expression in 

OCS cultures, repeated measures one‐way ANOVAs were performed, followed by 

Holm–Sidak multiple comparisons post hoc tests. Data are presented as the 

mean ± SEM. Changes in the fluorescence intensity of cell markers, cell count, the 

surface area of astrocytes and microglia in vivo, the number of astrocyte branches and 

their average length were analyzed using two‐way ANOVAs with Holm–Sidak 

multiple comparisons post hoc tests, comparing the left versus right hemispheres for 

each treatment group. Finally, the analysis of proportions for amoeboid, ramified, and 

intermediate‐shaped microglia was carried out using chi‐squared (χ2) tests in 

conjunction with the Bonferroni correction for multiple comparisons. In all cases, a p 

value of <.05 was deemed to be statistically significant.    
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Results 

 

Piezo1 is expressed by neurons in the mouse brain  

We have recently characterised expression of the mechanosensitive channel, Piezo1, 

in young and adult rat brain (Velasco-Estevez et al., 2018). To visualise expression of 

Piezo1 in the mouse brain, horizontal sections were cut from 5-week old C57BL/6 

mice and immunofluorescently stained for Piezo1, the myelin marker PLP, and the 

axonal marker NFH. Similar to the rat (Velasco-Estevez et al., 2018), Piezo1 localised 

to myelinated axonal pathways of the mouse brain, including the corpus callosum and 

cerebellar arbor vitae (Fig. 1A – D). To determine if Piezo1 is expressed by neurons 

and/or mature oligodendrocytes, high magnification images of a more sparsely 

myelinated area of the frontal cortex were captured (Fig. 1E – J). Notably, Piezo1 did 

not co-localise with PLP (Fig. 1G) but instead with NFH (Fig. 1J), suggesting that 

Piezo1 is expressed predominantly by neurons in the mouse frontal cortex. Since the 

function of neuronal Piezo1 in the postnatal and adult brain is unknown, we next used 

organotypic cerebellar slice cultures, a highly myelinated brain region, to investigate 

if Piezo1 plays a role in CNS myelination. 

 

Blocking mechanosensitive ion channels enhances myelination and 

prevents psychosine-induced demyelination 

To confirm Piezo1 expression in organotypic cerebellar slices, the tissue was fixed and 

triple-immunolabelled for Piezo1 (Fig. 2A), PLP (Fig. 2B), and NFH (Fig. 2C). Similar 

to its expression pattern in vivo, Piezo1 mainly localised to myelinated neurons in 

cerebellar slices (Fig. 2D), although the expression pattern was more diffuse than in 

fresh frozen sections from 5-week old mice. After 12 days in vitro, organotypic 

cerebellar slices were treated with a specific activator of Piezo1, i.e. Yoda-1 (10 μM 

for 48 hr), or a peptide inhibitor of Piezo1, i.e. GsMTx4 (500 nM for 48 hr), in order 

to investigate how activating or blocking Piezo1 affects myelination. Slices were also 

treated with the demyelinating agent psychosine (100 nM for 18 hr + 30 hr of fresh 

medium) in the presence or absence of GsMTx4 (500 nM for 48 hr) and myelination 

was assessed by PLP fluorescence intensity (Fig. 2E). A summary of the 

pharmacological treatment regime for slices is illustrated in Fig. 2F. Exposure to Yoda-

1 or psychosine caused similar levels of demyelination (Fig. 2G). We have previously 

reported that psychosine induces demyelination of organotypic cerebellar slices 
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(Misslin et al., 2017; C. O'Sullivan & Dev, 2015) and have used this system as an ex 

vivo model of the dysmyelination that occurs in Krabbe disease (Giri et al., 2002). 

Importantly, blocking Piezo1 channels with GsMTx4 prevented psychosine-mediated 

demyelination. Moreover, GsMTx4 alone enhanced myelination over and above 

control levels, measured as an increase in PLP fluorescence intensity. This suggests 

that over-activation of neuronal Piezo1 disrupts myelination, whilst inhibition may 

promote myelin formation. These results were confirmed by measuring the effects of 

Yoda-1 and GsMTx4 on the levels of MOG (Fig. 3A, C) and MBP (Fig. 3B, D) in 

cerebellar slice cultures, using the same protocol described in Fig. 2F. Furthermore, 

we quantified the stripping of myelin from axons by calculating the proportion of NFH 

staining co-localised with the myelin marker, MBP. Neither Yoda-1 nor psychosine 

caused significant stripping of the myelin sheath from the axon, in vitro (Fig. 3E, F). 

However, both Yoda-1 and psychosine caused a significant accumulation of ‘myelin 

debris’, defined as an increase in the proportion of MBP staining that did not co-

localise with NFH+ axons (Fig. 3G). GsMTx4 prevented the increase in myelin debris 

accumulation caused by psychosine. Next, to measure the relative abundances of 

myelin-associated proteins, MOG and MBP, in the cerebellar slice as a whole; protein 

samples were prepared from cultures treated using the same protocol described in Fig. 

2F. Western blot was performed to measure changes in MOG (Fig. 4A) and MBP (Fig. 

4B) protein levels with respect to total actin expression. There were no statistically 

significant differences in MOG or MBP protein expression between treatment groups. 

However, the pattern of expression did somewhat mimic the immunofluorescence 

results, suggesting that Yoda-1 is detrimental to myelin formation and GsMTx4 may 

rescue psychosine-induced demyelination. 

 

Demyelination-induced axonal damage is attenuated by GsMTx4 

Next, we examined whether blocking Piezo1 channels prevents the axonal damage that 

often accompanies demyelination. Slices were once again treated using the same 

protocol described in Fig. 2F and then fixed and stained for SMI-32, a non-

phosphorylated epitope of NFH (Louis et al., 2012) and a marker of axonal damage 

and demyelination (Linder et al., 2009; Misslin et al., 2017; S. A. O'Sullivan, Velasco-

Estevez, & Dev, 2017). Organotypic cerebellar slices treated with the Piezo1 activator, 

Yoda-1 (10 μM for 48 hr), displayed an increase in SMI-32 expression in the axons of 

cerebellar Purkinje neurons (Fig. 5A, B). As previously reported, psychosine also 
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significantly upregulated SMI-32 expression levels. Importantly, co-treatment with 

GsMTx4 prevented psychosine-induced axonal damage (Fig. 5A, B). We also fixed 

and immunofluorescently-labelled slices for phosphorylated neurofilament H (NFH), 

known to be important in the maintenance of axonal calibre and structural integrity of 

neuronal axons (Rudrabhatla, 2014). Neither psychosine nor Yoda-1 had any effect on 

NFH expression (Fig. 6A). In contrast, treatment with the inhibitor GsMTx4 (500 nM 

for 48 hr) significantly increased the levels of NFH (Fig. 6A), suggesting a 

neuroprotective effect on mature Purkinje axons. However, GsMTx4 did not display 

the same protective actions for neural progenitor cells (NPCs) or immature astroglia, 

as assessed by Vimentin expression (Fig. 6B). Yoda-1 did not cause NPC toxicity. 

However, psychosine caused a decrease in Vimentin expression which was not rescued 

by co-treatment with GsMTx4, suggesting that NPCs and immature astroglia may not 

express as many Piezo1 channels as mature neurons. 

 

GsMTx4 does not prevent psychosine-mediated astrocyte toxicity in vitro  

We next investigated the effects of Yoda-1 and GsMTx4 on microglial reactivity in 

cerebellar slice cultures. Neither activating nor blocking Piezo1 channels had any 

significant effects on microglial expression of Iba1 (Fig. 7A). It must be noted, 

however, that Iba1 is not a specific marker of altered microglia reactivity. Similarly, 

neither Yoda-1 nor GsMTx4 had any significant effects on astrocyte reactivity, 

assessed by GFAP fluorescence intensity (Fig. 7B). Psychosine, on the other hand, 

caused a decrease in GFAP expression which was not attenuated by co-treatment with 

GsMTx4 (Fig. 7B). The effects of psychosine, GsMTx4 and Yoda-1 on neural 

progenitor cells/ immature astroglia (Vimentin expression), microglia (Iba1 

expression) and mature astrocytes (GFAP expression) were corroborated using 

Western blot (Fig. 8A – C). Psychosine caused both NPC and astroglial toxicity which 

was not rescued by blocking Piezo1 channels using GsMTx4. There were no 

significant changes in microglial Iba1 expression in any of the treatment groups. This 

suggests that Piezo1 is predominantly expressed by mature neurons as opposed to glial 

cell types in the mouse cerebellum. 

 

GsMTx4 attenuates microglia and astrocyte reactivity caused by LPC-

induced demyelination in vivo 

To further investigate the potential therapeutic properties of GsMTx4, we employed 
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an in vivo model of toxin-induced focal demyelination of cortical brain tissue (Irvine 

& Blakemore, 2008; Plemel et al., 2018). In this case, we used the toxin LPC (Plemel 

et al., 2018) to determine both the protective effects of GsMTx4 in vivo and to 

investigate if these effects were specific to psychosine. In this set of experiments, mice 

were injected in the left and right cerebral hemispheres (Fig. 9A, B) with either: PBS, 

LPC (0.1%), or LPC + GsMTx4 (3 μM) (Fig. 9C – E). Mice were sacrificed four days 

post-injection and the brains were processed for immunofluorescence. Unlike 

psychosine, LPC induced a potent increase in microglial reactivity (measured by 

enhanced Iba1 fluorescence intensity) and microglial cell numbers within the lesion 

site (Fig. 9F). The surface area of individual microglial cells also increased, and this 

was reflected by a change in cell shape from a quiescent ramified shape (PBS) to a 

more amoeboid shape following LPC injection (Fig. 9G). Co-injection of GsMTx4 

with LPC prevented this enhanced microglial reaction (Fig. 9H). The number of 

microglial cells in the lesion core were reduced following LPC + GsMTx4 co-

administration and the cells present largely remained in the ramified state (Fig. 9I). 

These results were confirmed by comparing animals injected with PBS in the left 

cerebral hemisphere and with LPC + GsMTx4 in the right (Fig. 9J). There were no 

differences in microglial numbers, Iba1 expression or microglial morphology between 

PBS and LPC + GsMTx4 treated hemispheres (Fig. 9J, K).  

 

Next, the effects of LPC on astrocyte reactivity was assessed in the same mice. LPC 

induced a measurable decrease in the number of GFAP+ cells and GFAP fluorescence 

intensity within the demyelinated lesion site (Fig. 10A). Moreover, astrocyte 

morphology was altered, measured as a decrease in the average surface area and a 

decrease in the number of branches of astrocytes present within the lesion core (Fig. 

10A). Importantly, co-injection of GsMTx4 prevented LPC-mediated astrocyte 

toxicity (Fig. 10B) by attenuating the decrease in GFAP+ cells and GFAP fluorescence 

intensity seen with LPC alone. Of note, when compared to PBS treated hemispheres, 

LPC + GsMTx4 caused an increase in the average surface area and a decrease in the 

branch length of GFAP+ astrocytes (Fig. 10C), without affecting the number of 

branches per astrocyte. This suggests that GsMTx4 can rescue astrocyte cell death and 

may facilitate astrocyte hypertrophy. If the astrocyte hypertrophy subsides and does 

not become a chronic glial scar, this may accelerate tissue recovery and re-myelination 

following CNS injury (Ishibashi et al., 2006; Sofroniew, 2009; Sofroniew & Vinters, 

2010; Su et al., 2009). 
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GsMTx4 attenuates LPC-induced demyelination in the cerebral cortex in 

vivo 

Lastly, we investigated the effects of GsMTx4 on LPC-induced demyelination in vivo. 

Injection of LPC into the cortex caused significant focal demyelination compared to 

vehicle control PBS (Fig. 11A – C). This was measured by, 1) a decrease in MBP 

fluorescence intensity, 2) a decrease in the proportion of NFH-positive axons co-

localised with MBP protein (myelin stripping) and, 3) an increase in the proportion of 

MBP which was not co-localised with NFH (i.e. myelin debris). Importantly, co-

injection of GsMTx4 with LPC prevented demyelination (Fig. 11D – F). This was 

confirmed by comparing mice that had been injected with PBS in the left hemisphere 

and LPC + GsMTx4 in the right. Here, MBP expression matched that of vehicle 

controls (Fig. 11G – I). LPC injection also caused damage to cortical axons, measured 

as a fragmented pattern and a decrease in the intensity of NFH staining within the 

lesion core (Fig. 11A, B). The most promising result found, from a translational 

neurology viewpoint, was that co-injecting GsMTx4 completely prevented the 

neurodegeneration caused by LPC (Fig. 11D, E). This indicates that blocking Piezo1 

channels with GsMTx4 peptide may prove to be a novel therapeutic strategy for 

treating demyelinating diseases of the CNS.   
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Discussion 

 

Chronic and progressive demyelination of CNS neurons often leads to irreversible 

axonopathy and neurodegeneration (Castelvetri et al., 2011). Therefore, identifying 

compounds that show both neuroprotective and myelin promoting properties may 

prove valuable in the development of novel therapeutics for demyelinating diseases. 

Here, we report that the mechanosensitive ion channel blocker, GsMTx4, can prevent 

both psychosine-induced demyelination of organotypic slice cultures and LPC-

mediated demyelination of cortical neurons in vivo. It is not yet known if GsMTx4 

exerts a direct beneficial effect on oligodendrocytes or an indirect protective 

mechanism of action on myelinated axons. Indeed, both scenarios are possible. What 

the data presented here do support, is that CNS neurons appear to express higher levels 

of Piezo1 than mature oligodendrocytes (Fig. 1). It will be important to confirm this 

finding using different molecular approaches because this will help to determine how 

exposure of cerebellar slice cultures to Yoda-1 triggers demyelination (Figs. 2, 3, 4) 

and how overactivation of Piezo1 leads to axonal damage in Purkinje neurons (Fig. 5). 

On the contrary, blocking Piezo1 channels with GsMTx4 peptide increased the levels 

of phosphorylated NFH (Fig. 6). Phosphorylation of NFH has been shown to enhance 

axonal calibre which, in turn, promotes myelination (Hsieh et al., 1994; Yuan et al., 

2017). This neuroprotective property of GsMTx4 may increase the likelihood that 

axons will become myelinated by neighbouring oligodendrocyte precursor cells 

(OPCs). 

 

We have recently found that Yoda-1 increases Ca2+ influx into primary mouse 

astrocytes and triggers Ca2+ release from intracellular stores, particularly under 

inflammatory conditions (i.e. after 24 hr exposure to 100 ng/mL lipopolysaccharide) 

(Velasco-Estevez et al. 2019). Therefore, we hypothesise that overactivation of 

neuronal Piezo1 in cerebellar slice cultures may trigger excitotoxic levels of calcium 

entry into CNS axons which, in turn, could cause the release Ca2+ from intracellular 

stores and activation of the Ca2+ dependent protease, calpain, which is known to be 

involved in LPC-mediated demyelination (Fu et al., 2007). Whilst this is speculative 

at present, the data presented here suggests that blocking Piezo1 channels in vivo 

protects astrocytes from LPC-induced toxicity (Fig. 10). Therefore, by preventing 

astrocyte cell death and the accumulation of myelin debris that often accompanies 
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toxin-induced demyelination (Kocur et al., 2015; Ousman & David, 2000), GsMTx4 

also attenuates microglial reactivity within the core of CNS lesions (Fig. 9).  

 

Regulation of CNS myelination by GsMTx4 

Demyelinating diseases display underlying dysregulations to neuronal Ca2+ 

homeostasis which lead to eventual axonopathy and neurodegeneration (Galbiati et al., 

2009; Zundorf & Reiser, 2011). By correcting intracellular Ca2+ perturbations, it may 

be possible to prolong neuronal function, delay disease progression, and promote the 

innate remyelination capacity of the CNS (Franklin, ffrench-Constant, Edgar, & Smith, 

2012). Based on elegant work by various groups who have characterised the functions 

of Piezo1 channels in different tissues (Coste et al., 2010; Koser et al., 2016; McHugh 

et al., 2010; Pathak et al., 2014; Poole, Herget, Lapatsina, Ngo, & Lewin, 2014), and 

investigated the effects of GsMTx4 on distinct cell types (Blumenthal, Hermanson, 

Heimrich, & Shastri, 2014; Gottlieb & Sachs, 2012; Gottlieb et al., 2007; Jacques-

Fricke, Seow, Gottlieb, Sachs, & Gomez, 2006); we propose that the neuroprotective 

actions of GsMTx4 reported here may rely on its ability to regulate intracellular 

calcium levels (Fig. 12). In support of this hypothesis, GsMTx4 has shown early 

promise as a therapy for Duchenne muscular dystrophy (DMD) (Yeung et al., 2005), 

which is characterised by the accumulation of excessive levels of intracellular Ca2+ 

concentrations in muscle cells that lack a proper functioning dystrophin protein (Allen, 

Whitehead, & Froehner, 2016). DMD-affected muscle cells are subjected to enhanced 

Ca2+ entry through mechanosensitive channels and GsMTx4 inhibits this excessive 

Ca2+ influx, thus limiting muscle degeneration. It is also well established that GsMTx4 

blocks Ca2+ entry through Piezo1 channels (Ilkan et al., 2017) and acts as a negative 

modulator of channel opening probability for mechanosensitive channels like the 

canonical transient receptor potential channels, TRPC1 and TRPC6 (Gottlieb et al., 

2007). Several voltage-gated sodium and potassium channel currents are also blocked 

by GsMTx4 at higher concentrations (Redaelli et al., 2010), in contrast to TRPA1 

channels which become more likely to open in the presence of GsMTx4 (Hill & 

Schaefer, 2007). Importantly, TRP channels and voltage-gated sodium and potassium 

channels are also expressed by oligodendrocytes (Berret et al., 2017; Paez et al., 2011; 

Wang et al., 2011). Therefore, we cannot rule out the possibility that GsMTx4 may 

also directly protect oligodendrocytes through several mechanisms that are 

independent of Piezo1. More recently, Wang et al. (2019) have shown that Yoda-1 
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induces Ca2+ influx and calpain activation in the PC12 neuronal cell line and enhances 

oxygen/glucose deprivation-induced apoptosis. This may help to explain the data 

presented here, which show that Yoda-1 triggers axonal damage and demyelination 

and that GsMTx4 peptide attenuates both psychosine and LPC-induced demyelination. 

Taken together, our data suggest that blocking Ca2+ influx through mechanosensitive 

channels in neurons and oligodendrocytes exposed to toxins, such as psychosine and 

LPC, attenuates neurodegeneration and demyelination. Moreover, GsMTx4 may be a 

useful adjunct therapeutic for the treatment of neuroinflammatory disorders of the 

CNS. However, other Ca2+ independent processes could also be involved and, 

therefore, rigorous testing of this hypothesis is still required. 

 

Piezo1 channels and the role of mechanical cues in CNS myelination 

Piezo1 proteins (>2,500 amino acids) (Coste et al., 2010; Coste et al., 2012) trimerize 

to form non-selective cation channels (Gnanasambandam et al., 2015) with 

extracellular mechanosensing ‘propeller blades’ that facilitate the mechanogating 

mechanism of the ion channel (Zhao, Zhou, Li, & Xiao, 2018). Traction force-

mediated activation of Piezo1 channels in neural stem cells causes Ca2+ influx, 

resulting in nuclear localisation of the mechanoresponsive transcriptional coactivators 

yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif 

(Taz) (Pathak et al., 2014). Yap/Taz coactivators also regulate myelin formation in both 

Schwann cells (Fernando et al., 2016; Grove et al., 2017) and oligodendrocytes 

(Shimizu et al., 2017). The function of Yap/Taz is to integrate biochemical and 

mechanical signals within cells, drive the Hippo signalling pathway, and control 

expression of α6 integrin subunits. Therefore, oligodendrocytes are mechanosensitive 

and recent studies have shown that oligodendrocyte precursors (OPs) grown on soft 

substrates tend to remain as undifferentiated progenitor cells, whereas stiffer substrates 

promote differentiation of OPs into myelin basic protein (MBP)-expressing mature 

oligodendrocytes (Jagielska et al., 2017; Jagielska et al., 2012; Lourenco & Graos, 

2016; Lourenco et al., 2016). As shown here, GsMTx4 is an important 

pharmacological tool that will enable further investigation of the importance of 

mechanical guidance cues in regulating CNS myelin formation. Indeed, in recent years 

the process of myelin formation has caught the attention of mechanobiologists 

interested in understanding how oligodendrocytes determine which axons to myelinate 

and if mechanical cues, such as axonal curvature, are important for that ‘decision 
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process’ (Almeida, 2018; Bechler et al., 2018). As OPs begin to differentiate, they 

extend membrane processes that detect and bind axonal laminin-2 through α6β1 

integrin adhesion molecules present on their surface. Binding of laminin-2 and α6β1 

integrins activates the focal adhesion kinases (FAKs), Fyn and talin, which trigger 

mechanotransduction pathways that lead to increased MBP expression and 

oligodendrocyte cell maturation (Colognato, Ramachandrappa, Olsen, & ffrench-

Constant, 2004). However, much less is known about the mechanotransduction 

pathways that are activated specifically in neurons during myelin formation. During 

the initiation phase of myelination, as the oligodendrocyte begins to wrap around the 

axon, it must generate forces that will be transferred to, and detected by, the neuron. 

Given its role as a mechanosensitive channel, Piezo1 may be one of several candidate 

proteins involved in detecting traction forces generated by myelinating 

oligodendrocytes as they wrap around the axon’s surface. Traction force-mediated 

activation of Piezo1 channels in neural stem cells has been shown to cause an influx 

of Ca2+ and results in nuclear localisation of Yap/Taz transcriptional coactivators 

(Pathak et al., 2014). Moreover, our data suggest that Piezo1 is a negative regulator of 

myelination. Recent reports suggest that shear stress-induced opening of endothelial 

Piezo1 channels activates the Ca2+-dependent protease calpain (Li et al., 2014) which, 

in turn, can cleave talin (a protein that links membrane integrins and the actin 

cytoskeleton), thus modifying integrin-mediated cell adhesion (McHugh et al., 2010). 

Piezo1 activation also recruits the small GTPase, R-Ras, to endoplasmic reticulum 

leading to calcium release from internal stores. Therefore, overactivation of Piezo1, 

via Yoda-1, may cause demyelination of CNS axons through excessive calpain-

mediated destabilisation of integrin signalling. It will be important to test this 

hypothesis in future studies. We also show here that blocking Piezo1 channels, using 

GsMTx4, promotes myelination in organotypic slice cultures under control conditions, 

strengthening the argument that Piezo1 is a negative regulator of CNS myelination. By 

blocking Piezo1 channels, GsMTx4 likely blocks excessive influx of Ca2+ into 

neuronal axons which may inhibit calpain-mediated destabilisation of integrin 

attachments and promote myelin formation. Once again, we emphasise that further 

work is needed to test these hypotheses and connect the missing links between Piezo1 

activation and demyelination/ neuronal damage; as illustrated in schematic Fig. 12. 
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Conclusion 

Our data suggest that the mechanosensitive channel blocking peptide, GsMTx4, has 

neuroprotective properties, prevents LPC-induced astrocyte cell death, inhibits CNS 

demyelination caused by both LPC and psychosine, and promotes developmental 

myelin formation in the absence of any CNS insults. Moreover, results from this study 

reveal Piezo1 as a potential new drug target for demyelinating diseases and provide a 

mechanistic rationale for further development of mechanosensitive channel blockers 

that could enhance myelin repair in the damaged central nervous system.   
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Figure 1: Piezo1 localises to neurofilament-positive axons in the mouse brain. The brains 

of postnatal day 36 (5-week old) mice were cryosectioned in the horizontal plane (-4.5 mm 

with respect to Bregma) and immunofluorescently labelled for (A) Piezo1 (green), (B) 

neurofilament H (NFH; blue), (C) proteolipoprotein (PLP; red) and (D) the merged image of 

all three channels. To determine if Piezo1 co-localises with neurons or oligodendrocytes, 

images of the frontal cortex (white arrow) were captured at high magnification. The frontal 

cortex is a region of the brain with sparsely myelinated axons running relatively parallel to one 

another. From qualitative analysis of these images, it was evident that Piezo1 (E) does not co-

localise with PLP-labelled myelin (F, G), but instead with myelinated neuronal axons (H, I, J) 

Scale bar = 15 µm. 
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Figure 2: Piezo1 regulates CNS myelination. To examine if Piezo1 activation regulates CNS 

myelination, organotypic cerebellar slices were cultured for 14 days in vitro (DIV) and then 

fixed and immunofluorescently-labelled for (A) Piezo1 (green), (B) PLP (red), (C) NFH (blue), 

and (D) the merged image of all three channels. (E) Exposure of cerebellar slices to 10 µM 

Yoda-1 for 48 hr induced demyelination as assessed by PLP fluorescence intensity. On the 

contrary, treatment of slices with 500 nM GsMTx4 promoted PLP expression in slice cultures. 

As previously described (Misslin et al., 2017), 18 hr exposure to 100 nM psychosine (PSY) 

induced demyelination. However, co-treatment of slices with PSY + GsMTx4 prevented 

demyelination. (F) Schematic diagram explaining the experimental protocol for toxin-induced 

demyelination of ex vivo brain slice cultures. Cerebellar slices were cultured for 12 DIV and 

then treated for 18 hr with 100 nM PSY to trigger demyelination. After 18 hr, slices were 

transferred to fresh medium and allowed to demyelinate for a further 30 hr. Slices were also 

treated with either 500 nM GsMTx4 or 10 µM Yoda-1 to assess the effects of blocking or 

activating Piezo1 channels on myelination, respectively. (G) Immunofluorescence data are 

presented as mean ± SEM (n = 5). Repeated measures one-way ANOVAs with Holm-Sidak 

post-hoc tests were performed. * represents a statistically significant difference (p < 0.05) from 

control and # represents a statistically significant difference (p < 0.05) between psychosine and 

PSY + GsMTx4 groups.  
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Figure 3: GsMTx4 

prevents psychosine-

induced demyelination of 

organotypic cerebellar 

slice cultures. The 

demyelination protocol 

described in Fig. 2F was 

repeated and the levels of 

(A) myelin oligodendrocyte 

glycoprotein (MOG) and 

(B) myelin basic protein 

(MBP) were quantified by 

immunofluorescence. Scale 

bar = 150 µm. The results 

for (C) MOG and (D) MBP 

closely matched those for 

PLP expression (see Fig. 

2G), i.e. Yoda-1 induced 

demyelination of cerebellar 

slice cultures, whereas 

GsMTx4 enhanced 

myelination and prevented 

PSY-induced 

demyelination. (E) To 

assess if this decrease in the fluorescence intensity of myelin-associated proteins is 

accompanied by a stripping of the myelin sheath from axons, the proportion of NFH staining 

co-localised with MBP was quantified. (F) There were no statistically significant differences 

between treatment groups. However, both Yoda1 (10 µM) and PSY (100 nM) caused an 

increase in myelin debris compared to control slices. (G) Myelin debris was quantified as MBP 

staining which was not co-localised with an NFH-positive axon. GsMTx4 (500 nM) prevented 

PSY-induced myelin debris accumulation. Data are presented as mean ± SEM (n = 5). Repeated 

measures one-way ANOVAs with Holm-Sidak post-hoc tests were performed. * represents a 

statistically significant difference (p < 0.05) from control and # represents a statistically 

significant difference (p < 0.05) between psychosine and PSY + GsMTx4 groups.  
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Figure 4: Western blot confirming changes in myelin-associated proteins in response to 

Yoda1 and GsMTx4 treatments. The demyelination protocol (described in Fig. 2F) was 

repeated in cerebellar slice cultures and protein samples were prepared. Changes in the levels 

of (A) myelin oligodendrocyte glycoprotein (MOG) and (B) myelin basic protein (MBP) were 

quantified using Western blotting. There were no statistically significant differences in MOG 

or MBP protein levels between treatment groups (repeated measures one-way ANOVAs with 

Holm-Sidak post-hoc tests were performed), although quantification of the relative abundances 

in myelin-associated protein appears to follow the same pattern of expression to that described 

in Fig. 3.  

 

 

Figure 5: GsMTx4 inhibits psychosine-induced axonal injury in organotypic cerebellar 

slice cultures. OCS cultures were exposed to the same experimental protocol described in Fig. 

2F. (A) Slices were immunofluorescently stained for the axonal damage marker, SMI-32 (n = 

5), a non-phosphorylated epitope of neurofilament H which is constitutively expressed in the 

soma of neurons but absent in healthy axons. Scale bar = 150 µm. Changes in axonal SMI-32 

expression were quantified by calculating the mean surface area stained within the cerebellar 

arbor vitae axons (yellow boxes; scale bar = 30 µm). (B) Yoda-1 (10 µM) and PSY (100 nM) 

caused an increase in axonal damage. Co-treatment of slices with GsMTx4 (500 nM) prevented 

PSY-induced axonal injury. Immunofluorescence data are presented as mean ± SEM (n = 5). 

Repeated measures one-way ANOVAs with Holm-Sidak post-hoc tests were performed. * 

represents a statistically significant difference (p < 0.05) from control.  
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Figure 6: GsMTx4 does not prevent psychosine-induced decreases in neural precursor 

cells. OCS cultures were exposed to the same experimental protocol described in Fig. 2F. (A) 

Slices were then immunofluorescently-stained for phosphorylated neurofilament H (NFH), a 

marker of axonal integrity, and changes in NFH fluorescence intensity were quantified (n = 11). 

Scale bar = 150 µm. Neither Yoda-1 nor PSY caused any significant changes in NFH 

expression. GsMTx4, on the other hand, caused an increase in NFH expression suggestive of a 

neuroprotective effect in OCS cultures. (B) Next, the responses of neural precursor cells (NPC) 

to Yoda-1, PSY and GsMTx4 exposure were quantified by assessing changes in Vimentin 

immunofluorescence (n = 6). Scale bar = 150 µm. PSY caused a significant decrease in 

Vimentin fluorescence intensity. However, co-treatment of slices with PSY + GsMTx4 did not 

rescue NPC degeneration. Immunofluorescence data are presented as mean ± SEM. Repeated 

measures one-way ANOVAs with Holm-Sidak post-hoc tests were performed. * represents a 

statistically significant difference (p < 0.05) from the control group. 
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Figure 7: GsMTx4 does not attenuate psychosine-induced astrocyte damage in vitro. OCS 

cultures underwent the same experimental protocol described in Fig. 2F. (A) Slices were then 

immunofluorescently-stained for ionized calcium binding adaptor molecule 1 (Iba1; n = 6) to 

assess microglial reactivity in response to Yoda-1, PSY and GsMTx4. Scale bar = 150 µm. 

Neither psychosine nor Yoda1 caused any significant change in microglial responses, assessed 

as a change in Iba1 fluorescence intensity. Similarly, treating slices with GsMTx4 (500 nM for 

48 hr) had no significant effect on microglial reactivity in OCS cultures. (B) Next, OCS cultures 

were stained for glial fibrillary acidic protein (GFAP) to study the effects of Yoda-1, PSY and 

GsMTx4 on astrocytes. Psychosine decreased GFAP fluorescence intensity in OSC cultures 

suggesting a toxic effect on astrocytes. Yoda1 and GsMTx4 had no effect on GFAP levels in 

OCS cultures. Moreover, GsMTx4 did not rescue psychosine-induced astrocyte damage. 

Immunofluorescence data are presented as mean ± SEM. Repeated measures one-way 

ANOVAs with Holm-Sidak post-hoc tests were performed. * represents a statistically 

significant difference (p < 0.05) from the control group. 
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Figure 8: Western blot confirming that 

GsMTx4 does not rescue neural 

precursor cell degeneration or 

astrocyte toxicity induced by 

psychosine. The treatment protocol 

(described in Fig. 2F) was repeated in 

cerebellar slice cultures and protein 

samples were prepared. Changes in the 

levels of (A) Vimentin, (B) Iba1, and (C) 

GFAP were quantified using Western 

blotting. There was a statistically 

significant decrease in (A) Vimentin 

protein levels following psychosine 

exposure. However, GsMTx4 did not 

protect NPCs from cytotoxicity. (B) 

Yoda1, GsMTx4 and psychosine had no 

effects on Iba1 protein abundance, 

suggesting microglial reactivity was 

unchanged following each 

pharmacological treatment. (C) 

Psychosine also caused a significant 

decrease in GFAP protein abundance 

relative to control slices, but this damage 

to astrocytes was not rescued by co-

treatment with GsMTx4. These results 

matched that found in Fig. 7B using 

immunofluorescence techniques. 

Repeated measures one-way ANOVAs 

with Holm-Sidak post-hoc tests were 

performed. * represents a statistically 

significant difference (p < 0.05) from 

control.  
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Figure 9: GsMTx4 attenuates microglial reactivity induced by lysophosphatidylcholine in 

vivo. (A, B) Adult C57BL/6 mice were stereotactically-injected in the left and right cerebral 

hemispheres with either: (C) LPC 0.1% (left) vs PBS (right) (n = 2); (D) LPC 0.1% (left) vs 

LPC 0.1% + 3μM GsMTx4 (right) (n = 4); or (E) PBS (left) vs LPC 0.1% + 3μM GsMTx4 

(right) (n = 4). Mice were sacrificed 4 days post-surgery and perfused with 4% PFA and the 

brains were sectioned for immunofluorescence. (F) LPC caused significant microglial 

reactivity, measured as an increase in Iba1 fluorescence intensity, an increase in the number of 

Iba1+ cells in the lesion core, and an increase in the surface area of individual microglial cells 

which is caused by (G) a change from ramified (PBS) to amoeboid-like cell morphology in the 

LPC-treated left hemisphere. (H) Co-injection of LPC + GsMTx4 in the right cerebral cortex 

prevented the increase in microglial reactivity measured in the LPC-treated left hemisphere. (I) 

Comparison of Iba1+ microglia in the LPC-exposed left hemisphere (where ~63% of cells 

displayed an amoeboid-like morphology) with the LPC + GsMTx4 treated right hemisphere 

(where only ~16% of cells appeared amoeboid-like) reveals that GsMTx4 inhibits 



31 | P a g e  

 

morphological changes in microglial cells which remain in the ramified non-reactive state. (J) 

As such, there were no significant differences in Iba1 fluorescence intensity, Iba1+ cell numbers 

or Iba1+ cell surface area between the PBS-treated left hemisphere and LPC + GsMTx4 treated 

right hemisphere. Scale bar = 100 µm. (K) Moreover, a similar percentage of microglial cells 

showed quiescent ramified morphologies in PBS (87%) versus LPC + GsMTx4 (75%) exposed 

cerebral hemispheres. Immunofluorescence data are presented as mean ± SEM. Two-way 

ANOVAs with Holm-Sidak post-hoc tests were performed to compare the left and right 

hemispheres of each treatment group. * represents a statistically significant difference (p < 

0.05) between the left and right hemisphere within each group. The analysis of proportions was 

carried out using chi-squared (χ2) tests in conjunction with the Bonferroni correction for 

multiple comparisons. 
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Figure 10: GsMTx4 attenuates astrocyte cell death induced by lysophosphatidylcholine in 

vivo. (A) LPC caused a significant reduction in GFAP fluorescence intensity and reduced the 

number of GFAP+ astrocytes at the site of injury. The mean surface area of cortical astrocytes 

was also reduced suggesting that LPC exposure caused astrocyte cell death within the lesion 

core. This was also reflected in a reduction in the number of branches per astrocyte. (B) Co-

injection of LPC + GsMTx4, however, prevented astrocyte toxicity. (C) GFAP fluorescence 

intensity and the number of GFAP+ astrocytes at the site of injection were similar in PBS 

vehicle control left hemispheres and LPC + GsMTx4 right hemispheres. However, the mean 

surface area of GFAP+ astrocytes increased in the LPC + GsMTx4 hemisphere, whilst the 

average length of each branch was reduced, suggesting that GsMTx4 not only protects 

astrocytes from LPC-induced cell death, but also facilitates subsequent hypertrophy and 

reactivity, possibly expediting recovery from CNS injury. Scale bar = 100 µm. 

Immunofluorescence data are presented as mean ± SEM. Two-way ANOVAs with Holm-Sidak 

post-hoc tests were performed to compare the left and right hemispheres of each treatment 

group. * represents a statistically significant difference (p < 0.05) between the left and right 

hemisphere within each group. 
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Figure 11: GsMTx4 is neuroprotective and prevents LPC-induced demyelination of 

cortical axons in vivo. Adult C57BL/6 mice were randomly assigned into one of three groups, 

as described in Fig. 9C – E, and injected with either PBS, LPC 0.1% or LPC + GsMTx4 (3 µM) 

into the left and right cerebral hemispheres. (A) LPC caused significant demyelination and 

axonal damage, (B) measured as a decrease in myelin basic protein (MBP) and neurofilament 

H (NFH) immunofluorescence, respectively. (C) Moreover, LPC caused a decrease in the 

proportion of NFH-labelled axons co-localised with MBP staining, suggesting that the myelin 

sheath was stripped from axons following LPC exposure. As such, LPC caused an increase in 

the accumulation of myelin debris in the lesion core, measured as an increase in MBP-staining 

which was not co-localised with NFH. (D, E, F) Co-injection of GsMTx4 prevented LPC-

induced axonal injury and demyelination. The neuroprotective and myelin-preserving 

properties of GsMTx4 were confirmed by comparing (G) PBS vehicle control injected 

hemispheres (left) with LPC + GsMTx4 hemispheres (right). Scale bar = 100 µm. (H, I) 

Cortical axons exposed to LPC + GsMTx4 displayed similar levels of MBP and NFH 

expression to PBS-treated hemispheres. Moreover, there was no reduction in NFH+ axons 

which were co-localised with MBP and no accumulation of myelin debris when GsMTx4 was 
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co-injected with LPC. This confirmed the myelin-preserving properties of blocking Piezo1 

channels. Immunofluorescence data are presented as mean ± SEM. Two-way ANOVAs with 

Holm-Sidak post-hoc tests were performed to compare the left and right hemispheres of each 

treatment group. * represents a statistically significant difference (p < 0.05) between the left 

and right hemisphere within each group.  

 

 

 

 

 

Figure 12: Proposed mechanism to explain Yoda1-mediated demyelination of CNS axons 

and how GsMTx4 may prevent the neuro-damaging actions of Piezo1 overactivation. 

Yoda1 can activate Piezo1 channels present on CNS axons. This may promote the influx of 

extracellular Ca2+ into the neuron which, in turn, could trigger calcium-induced calcium release 

(CICR) from intracellular stores. Yoda1 has also been shown to activate calpain signalling in 

neurons leading to neurodegeneration (Wang et al. 2019). This may explain how Yoda1 causes 

demyelination of CNS axons, i.e. partly mediated through excitotoxicity and neuronal damage. 

GsMTx4 acts to block mechanosensitive Ca2+ channels such as Piezo1. By inhibiting excessive 

Ca2+ influx or CICR from internal stores, GsMTx4 may prove a useful experimental tool to 

probe further the role of Piezo1 in myelination of the central nervous system.  
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