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Abstract

We present planar substrates suitable for investigating the sucrose/triglyceride fat interfaces
found in molten chocolate with surface science techniques. The planar sucrose substrates are
produced by spin coating sucrose onto hydrophilic, silicon oxide-capped, silicon substrates
from millimolar aqueous solutions of sucrose. We present the characterisation of the su-
crose film thicknesses and crystallinity using X-ray reflectivity and grazing incidence X-ray
diffraction, respectively. These sucrose-coated substrates can be used in flow cells for Quartz
Crystal Microbalance with Dissipation (QCM-D) and neutron/X-ray reflectivity measure-
ments, through which triglyceride oils containing the surfactants commonly used in choco-
late manufacture can be flowed. This provides a well-defined, planar, sucrose/triglyceride
interface, which can be used to probe the solid/liquid interfaces that are found in molten
chocolate at the molecular level.

Keywords: chocolate, sucrose, spin coating, triglyceride, neutron reflectivity, X-ray
reflectivity

1. Introduction

Chocolate is a dense suspension (>65% w/w) of solids, mainly sucrose, milk solids and
cocoa, in a continuous fat phase of cocoa butter, which is mainly composed of triglycerides,
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with 95% of the fatty acid tails being derived from palmitic, stearic and oleic acids [1]. Inter-
particle interactions between the solid particles affect the stability of the suspension and also
control how the particles flow past each other, thereby controlling the rheology of molten
chocolate. The rheology of molten chocolate plays an important role in the manufacture of
different types of chocolates: a low yield stress is desirable for enrobed products, in which
the chocolate forms a thin shell around a solid core, whereas a high yield stress can be
favourable for moulded chocolates [2].

It has been found empirically that by using combinations of the food grade surfac-
tants, lecithin and polyglycerol polyricinoleate (PGPR), in varying ratios, the rheological
properties, as characterized by the viscosity and yield stress, of molten chocolate can be
controlled [3]. It has also been established that the rheology of dense suspensions can be
modified by tuning the nature of the inter-particle interactions [4], so it is hypothesized
that adsorption of the surfactants used in chocolate manufacture tunes the inter-particle
interactions between the solid grains, controlling the suspension rheology.

Rheology studies have shown that dense suspensions (>50% v/v) of sucrose in triglyc-
eride oils (soybean oil, sunflower oil and commercial medium chain triglycerides) exhibit
rheological properties similar to that of molten chocolate, where a yield stress is observed
followed by shear thinning before reaching Newtonian flow at high shear rates [5]. On the
basis of this observed rheological behaviour, such dense suspensions of sucrose in triglyceride
have been widely accepted as a suitable model system for studying the effect of surfactants
on the rheology of molten chocolate [6, 7].

Recently, AFM studies on grains of sucrose extracted from model chocolate suspensions
(and then washed with acetone) have suggested that PGPR forms pillow-like deposits, which
separate the sucrose particles by steric hindrance[8], whilst lecithin was found to be inho-
mogeneously distributed across the surface of the sucrose grains in layers up to 38 nm in
thickness [9]. AFM studies are unable to resolve the internal structure and composition of
these surfactant deposits at the molecular level. Furthermore, although the sucrose grains
used in these AFM studies, have been extracted from a model chocolate suspension, the
triglyceride oil has been washed away, hence the structure of the layers observed may differ
from those present when the interface is solvated by the triglyceride oil phase. We suggest
that detailed structural and compositional information obtained from sucrose/triglyceride
interfaces is the key to fully understanding the mechanism of the dramatic lowering of the
yield stress observed for mixtures of PGPR and lecithin. Understanding the structure-
function basis for this mechanism is crucial in attempts to rationally design alternative
surfactant combinations.

The ability of neutrons and synchrotron X-rays to penetrate condensed phases give small-
angle scattering and reflectivity techniques, which exploit these radiations, unique benefits
when trying to probe the structure and composition of such buried interfaces. Some infor-
mation about the adsorption of surfactants from the oil phase of these dense suspensions
onto the surfaces of the sucrose particles can be obtained by using small angle scattering
of X-rays and neutrons directly from the dense suspensions. Whilst this is an approach
that we have exploited [10], laboratory-based approaches to probe the adsorption of sur-
factants at solid/liquid interfaces, such as QCM-D and sessile drop tensiometry, cannot be

2



performed directly on the surfaces of sucrose grains as they require planar substrates with
areas & cm2. Furthermore, more detailed structural information at the solid/liquid interface
can be provided by neutron and X-ray reflectivity techniques than by small angle scattering
from dense suspensions. The detailed experimental structural information derived from pla-
nar sucrose interfaces is complementary to that obtained from the multi-scale simulations
used by Greiner and co-workers [11, 12].

The approach we describe in this manuscript has facilitated the execution of a self-
consistent strategy, in which neutron and X-ray reflectivity studies are used to provide the
detailed molecular compositional and structural information of the adsorbed layers formed
from PGPR/lecithin surfactant mixtures at sucrose triglyceride interfaces. The application
of neutron and X-ray reflectivity to investigate the adsorption of surfactants at solid/liquid
interfaces is well-established [13] but typically uses substrates such as silicon/silicon oxide.
As the suspensions studied by Arnold [6], in which glass beads replaced grains of sucrose,
showed different rheology to model chocolate suspensions, it was necessary to produce and
characterize a planar substrate bearing a sucrose interface before the power of these reflec-
tivity techniques could be applied to study the adsorption of surfactants relevant to un-
derstanding the rheology of molten chocolate. The grazing angle of incidence used in these
reflectivity techniques necessitates the use of planar substrates that are typically several cm2

in area, in addition to being flat and smooth at the nm level [14].
We have developed an experimental approach, using spin coating, to produce planar

thin films of sucrose on silicon oxide-capped silicon substrates that can be used to carry
out adsorption studies using QCM-D, contact angle tensiometry and neutron/synchrotron
X-ray reflectivity. We describe this approach and show the characterisation of the sucrose
film thickness, roughness and crystallinity. We also give examples of the neutron and X-ray
reflectivity that can be measured from the interface between this sucrose film and triglyceride
oils that can serve as a model for the cocoa butter phase in molten chocolate. The adsorption
behaviour of the surfactants used in chocolate manufacture measured using these planar
sucrose substrates and the implications for a structural basis for the control of the rheology
of molten chocolate will be reported in future publications.

Although chocolate provides the context for our investigations, a recent review addressing
the role of non-fat ingredients on confectionary fat crystallization in general, identified a lack
of information on the structure-function relationships for emulsifiers and their interactions
with fats [15], so we think that our approach will be of interest to the wider food science
community. Trying to identify common phenomenology across a range of food systems
is the basis of physics-based approach to food science. As such a physics-based approach
seeks to identify generic behaviour from minimal models, our studies use two separate single-
component triglyceride oil phases (with purity >99%) as models for molten cocoa butter: the
long-chain unsaturated triolein (TO) and the medium chain saturated glyceryl trioctonoate
(GTO). The rheology of sucrose/triglyceride oil suspensions formulated using these two
different oils is qualitatively similar [10], suggesting that the interfacial films present at
the sucrose/oil interfaces modulate the particle-particle interactions in a similar manner.
As GTO is more easily deuterated than TO, more extensive investigations using neutron
reflectivity are feasible by using both GTO and TO.
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2. Materials and Methods

The silicon substrates used for spin coating were either 55 mm diameter disks (thickness
5 mm) or 1′′ diameter wafers sourced from PI-KEM Ltd. In the case of spin coating onto
QCM-D sensors, silicon oxide Q-Sense E4 sensors were used. The sucrose used for spin
coating was crystalline icing sugar, sourced from British Sugar with an average particle size
∼10 µm, dissolved in Millipore Milli-Q water, with resistivity 18.2 MΩ cm and total organic
content = 4 ppb. Pure (≥99%) glyceryl trioctanoate (GTO) and glyceryl trioleate (TO),
purchased from Sigma Aldrich UK, were used for solid/liquid contact angle studies, QCM-D
and neutron reflectivity (NR). The deuterated glyceryl trioctanoate (d-GTO) used for NR
was kindly provided by the ISIS Deuteration Facility at Rutherford Appleton Laboratories,
Oxford, UK.

Spin coating is a commonly applied technique to deposit uniform thin films, ranging
from a few nanometres to a few microns in thickness, onto flat substrates [16]. The silicon
substrates were cleaned first using piranha solution, a 5:4:1 (by volume) mixture of water,
concentrated sulphuric acid and 30% hydrogen peroxide, followed by either uv ozone treat-
ment for 30−50 mins or oxygen plasma for 1 min. The uv ozone or oxygen plasma treatment
is necessary to create a hydrophilic, high surface energy surface onto which the sucrose is
spin coated, in order that the spin coating solution uniformly wets the substrate. For spin
coating onto QCM-D sensors, the Q-sense E4 sensors were cleaned first with 2% SDS solution
followed by uv ozone. Sucrose solutions of concentrations in the range 30− 1800 mM were
made by dissolving sucrose in Milli-Q water and sonicating for 10 minutes. This solution
was then spin coated onto the cleaned silicon substrates at 4000 rpm for 1 minute and dried
under vacuum at 70°C overnight.

To characterise the thickness and roughness of the spin coated sucrose films, specular X-
ray reflectivity (XRR) was measured on the Rigaku Smartlab Diffractometer in the Materials
Characterisation Laboratory at ISIS Neutron & Muon source using X-rays of wavelength
1.54 Å (Cu-K-α) incident onto the air/sucrose interface from air. Using 2θ in the range 0.1−
5°, a Q−range of 0.01−0.3 Å−1 was obtained. The crystallinity of the films was investigated
by Grazing Incidence X-ray Diffraction (GIXRD), using the same instrument, with 2θ in
the range 5 − 60° and an angle of incidence Ω = 0.7°. The QCM-D measurements were
made using a Biolin Scientific QCM-D in the Biology Laboratories at ISIS Neutron & Muon
source. Sessile drop interfacial tensiometry experiments were conducted using the Drop
Shape Analyser (DSA) from KRUSS GmbH. NR from the sucrose/triglyceride interface was
measured using D17 at the ILL, Grenoble, France [17] with a horizontal scattering geometry
(vertical surface) and OFFSPEC at ISIS Neutron & Muon source, Oxford, UK [18] with
vertical scattering geometry (horizontal surface). XRR was measured using I07 at Diamond
Light Source, Oxford, UK [19] with vertical scattering geometry (horizontal surface). The
NR data presented here was measured on D17 using the divergent beam method [20, 21],
which enabled measurements to be made from comparatively small (28×28 mm) samples,
without drastically extending the measurement time. Neutron wavelengths in the range
2-27 Å and incidence angles of 0.8° and 2.4° allowed the reflectivity to be measured for
0.006 ≤ Q ≤ 0.26 Å−1. On I07 using 24.4 keV X-rays with wavelength of 0.51 Å, data was
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collected in the Q-range spanning 0.017 ≤ Q ≤ 0.32 Å−1 by changing the incident angle
and using different levels of attenuation for the incident beam. The XRR and NR data has
been analysed using simple layer models, in which each layer is characterised by a thickness,
scattering length density (SLD), and a Nevot-Croce (Gaussian) roughness in Motofit [22]
and RasCAL [23]. Confidence bands on the fit parameters were determined using RasCAL’s
inbuilt Bootstrap analysis function.

3. Results and Discussion

3.1. Sample Preparation

Figure 1(a), shows photographs of spin coated sucrose films of varying thicknesses be-
tween 10 nm and 550 nm. SEM and AFM images, shown in Figures 1(b) and 1(c) respec-
tively, show that the films are globally flat on a sub-micrometer scale. The rms roughness
obtained for a 100× 100 µm2 sample area was 1.9 nm1.

Under ambient lab atmosphere, these sucrose films degrade in 4-6 hours due to absorption
of moisture, but they can be stored for days (upto 2 weeks has been tested) under vacuum.
When sealed into our flow cells, containing triglyceride oils, they were stable for at least
2 days, which allowed the neutron and synchrotron X-ray reflectivity measurements to be
completed without degradation of the sucrose layers. All samples were prepared directly
before the meausrements, stored under vacuum at 70◦C prior to sealing into flow cells,
which were then filled with triglyceride oil.

3.2. Characterisation of Sucrose Thin Films

The thickness of the spin coated sucrose films with thicknesses less than 300 nm was
measured using XRR [25]. For films thicker than 300 nm the Kiessig fringes become too
closely spaced to be resolved, and so the thickness of these thicker films has been determined
by dividing the the mass per unit area obtained by applying the Sauerbrey [26] equation to
the frequency shift observed in QCM-D measurements on sucrose-coated sensors in air, by
the density of the film [27]. As the d-spacing obtained from GIXRD suggests that the unit
cell volume, and hence the film density, will be within 10% of the bulk values for sucrose
(density=1.59 g/cm3), this value has been used for the film density.

Specular XRR profiles measured from sucrose thin films spin coated onto silicon oxide-
capped silicon substrates, with the X-rays incident from air onto the sucrose, are shown in
Figure 2(a). The circles show the measured data points and the solid lines show the fit to
the data using the SLD profile given in Figure 2(b). The silicon substrates are capped by a
thin oxide layer as a result of the uv ozone/plasma treatment, as is illustrated in the inset
layer profile of Figure 2(b) with the X-ray scattering length densities (SLD) of the various
components given in Table 1. Fitting the data to the model SLD profile results in sucrose

1The AFM texture profile can be decomposed into waviness and local roughness components. The
waviness is typically on the ∼ 10 µm scale and is a consequence of the surface topography convoluted with
the finite size of the stylus tip [24]. The rms roughness quoted here was evaluated after removal of waviness
from the measured profile, as is typical when evaluating roughness from AFM profiles.
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Figure 1: (a) Photographs showing sucrose films spin coated onto silicon substrates from aqueous
sucrose solutions with concentrations ranging from 30 mM to 1000 mM producing films with
thicknesses ranging from 10 nm to 550 nm. (b) SEM image of 50 nm thick sucrose film. (c) AFM
image of ∼1 µm thick sucrose film with the inset showing the roughness along a typical line profile.

layer thicknesses in the range 10−300 nm depending on the concentration of the spin coating
solution, as shown by the red square data points on Figure 2(c) and summarised in Table 2.

The thicknesses determined from QCM-D measurements made on sucrose films spin
coated onto sensors using solutions ranging from 125 mM to 1800 mM are summarised in
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Figure 2: (a) XRR from sucrose films, spin coated onto silicon oxide-capped silicon substrates, with
thicknesses from 10 to 180 nm , with the hollow circles representing the measured XRR profile and
the black solid line showing the fit using a simple layer model. (b) SLD profiles for the model fits
with the inset showing the arrangement of the layers. (c) A plot showing the dependence of spin
coated sucrose film thickness on the concentration of sucrose in the spin coating solution.

Table 2 and shown by blue circular data points on Figure 2(c). The thickness determined
using XRR for films deposited using 125 mM sucrose solution is an average over 28 samples,
with a standard deviation of 4.2 nm, whereas the thicknesses determined for the other films
are an average over 2 or 3 samples. Overall the sample-to-sample variability is 8%, which
we attribute to small differences in the volume of solution that is spread before spinning and
in the wetting properties of the silicon oxide layer caused by variations in the uv ozone or
plasma treatment used to create the hydrophilic surface.

Both the XRR and QCM-D results show that the spin coated film thickness increases
as the concentration of the sucrose solution used for spin coating increases. The combined
data are best described by a second-order polynomial, in which the quadratic dependence is
attributed to the effect of the increase in the viscosity of the solution with increasing concen-
tration, which means that the amount of solution that is spun off (at constant spinning speed)
decreases with increasing solution concentration. Film thickness can also be controlled by
varying the spinning speed, ω, with thickness varying as 1/

√
ω [28]. The roughness of the

sucrose films determined by fitting the specular XRR is in the range 0.5−1.0 nm, depending
on film thickness.

Our subsequent studies of the sucrose/triglyceride interface using XRR and NR used
sucrose films with thicknesses ∼ 50 nm, for which the roughness of 0.9 nm is sufficiently
low to be able to measure specular reflectivity profiles. Although the thicker films have a
lower roughness at the air/sucrose interface, reflectivity profiles are more sensitive to any
changes in the interfacial layer, when the interfacial layer and sucrose layer thicknesses are
comparable. The 50 nm thick sucrose films provides a compromise between this sensitivity
and an acceptable interfacial roughness.

The physical properties of sucrose depends on whether it is crystalline or amorphous [29],
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Table 1: X-ray and neutron scattering length density
for various chemicals.

Chemical X-ray SLD neutron SLD

×10−06 Å
−2 ×10−06 Å

−2

Silicon 20.1 2.07

Silicon oxide 22.5 3.47

Air 0 0

Sucrose 14.4 1.72

h-GTO 9.0 0.33

h-TO 8.8 0.15

d-GTO NA 6.6

d50-GTO NA 3.45a

(a) d50-GTO is a 50:50 mixture of h-GTO
and d-GTO.

Table 2: Average thickness of spin coated sucrose films calculated from XRR (left) and QCM-D (right)

Layer thickness roughness

Conc SiOx sucrose sucrose

mM nm nm nm

30 1.7 10.4 0.7

60 1.0 22.1 0.9

125 1.8 53.1 0.6

250 1.1 97.8 0.5

400 1.6 183 0.7

600 3.8 267 0.5

Layer thickness

Conc sucrose

mM nm

125 55

650 302

1000 542

1400 993

1800 1650

and in chocolate, crystalline sucrose, with a low water content is used. To investigate the
crystallinity of the thin films prepared by spin coating, Grazing Incidence X-ray Diffraction
(GIXRD) was measured. By using a fixed grazing angle of incidence, Ω = 0.7°, set to
be slightly larger than the critical angle for total reflection the contribution from the film
relative to that from the substrate can be maximised as the penetration depth of the incident
X-rays is limited.

Figure 3(a) shows GIXRD from films with thicknesses in the range 10− 500 nm. Broad

Bragg reflections are observed from the films at q ∼ 1 Å
−1

and q ∼ 1.5 Å
−1

. For films with
thicknesses below 100 nm, the reflections are difficult to resolve from the background signal
from the silicon substrate. To enhance the features from the thin films, we divide the total
signal by that measured from the bare silicon substrate, and this relative GIXRD intensity
is shown in Figure 3(b). From this relative GIXRD intensity, it can be seen that the broad
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Figure 3: (a) GIXRD from sucrose films of thicknesses ranging from 10 nm to 500 nm. (b) Relative
GIXRD intensity for various films with thickness <250 nm.

peaks are still present even in the 50 nm thick film prepared from a 125 mM sucrose solution.
Crystalline sucrose is monoclinic [30] and a powder diffraction pattern measured from

the sucrose used in this study suggests lattice parameters of a = 10.48 Å, b = 8.54 Å,
c = 7.58 Å, β = 105°, which is consistent with literature values [30]. For these lattice

parameters, the broad peak observed in GIXRD at q ∼ 1.5 Å
−1

could contain contributions

from (020) and (120) reflections and that at q ∼ 1 Å
−1

contributions from (110), (011),
(101) reflections. The broad and overlapping nature of these reflections, suggests that the
thin film has a polycrystalline character. That these planar interfaces have a polycrystalline
character makes them comparable to the interfaces imaged with AFM from single sucrose
grains extracted from chocolate-like dispersions [8, 9]. These AFM images show the surfaces
feature steps, 1-2 nm in height, which the authors point out are consistent with the sucrose
crystal lattice [8, 9]. Interestingly the surface planes we identify as possibly contributing to
the broad GIXRD peaks observed all correspond to faces observed in the growth habit of
sucrose [31]. Furthermore the rms roughnesses we obtained by fitting the specular X-ray
reflectivity from the bare sucrose thin films in air are consistent with our planar surfaces
featuring similar 1 nm height steps to those observed in the AFM studies on single sucrose
grains [8, 9]. We note that a recent study that focussed on sucrose films of thickness ≤
33 nm, concluded that their films showed no crystalline character [32]; this is in contrast to
our observation of broad GIXRD peaks for the 22 nm film. This emphasizes that the details
of the interfacial preparation procedure influences the crystalline character of the sucrose
thin films.

3.3. Applications

The silicon blocks coated with polycrystalline sucrose films can be used for interfacial
studies. Sessile drop contact angle measurements (as in Figure 4(a)) indicate TO/sucrose
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and GTO/sucrose contact angles of 17.9◦ and 19.1◦, respectively; as there is no systematic
deviation of the contact angle with time, we have no evidence for adsorption of partial glyc-
erides or free fatty acids from these >99% purity triglycerides . As the pure triglyceride
oils partially wet the sucrose, with a low contact angle, it is clear that lecithin and PGPR
in chocolate are not simply acting to promote wetting of the sucrose by the oil. Some in-
formation about the interfacial behaviour of the oils and surfactants present in chocolate
can be obtained by measuring QCM-D from sucrose-coated sensors [10] but to fully under-
stand why the triglyceride oils wet the hydrophillic sucrose interfaces and to understand
the mechanism by which lecithin and PGPR alter the interfacial properties of sucrose, re-
quires the molecular scale structural and compositional information to be measured at the
sucrose/triglyceride interface using neutron and X-ray reflectivity [33].

To enable structural investigations of the sucrose/triglyceride interfaces using synchrotron
XRR and NR, flow cells that have a similar geometry to a QCM-D flow cell have been con-
structed from PEEK. Figure 4(b) shows the NR cell: triglyceride oil is pumped into the
square cavity at the centre of the image through the seven inlet holes on the left-hand side
of the cavity and the oil leaves by the seven outlet holes on the right-hand side of the cavity;
the cavity is sealed with the sucrose coated face of the silicon disc facing the triglyceride
filled cavity, by means of the viton o-ring and an aluminium clamping frame; in the image
the silicon block has been replaced by a quartz optical flat to enable the flow of the triglyc-
eride oil through the cell to be visualised. By pumping at 1 mL/min we have observed that
the flow is laminar, which enables the contents of the cell to be exchanged by pumping in
just 1 mL of a new solution. In a NR experiment the neutrons enter through the side of the
silicon disc, making a grazing angle of incidence with the sucrose/triglyceride interface from
the silicon superphase.

Deuterated triglyceride oils are expensive, particularly if they are unsaturated, as in
the case of TO. The low volume (∼1 mL) cell described above, has enabled us to conduct
systematic NR investigations of structure of the sucrose/oil interface from hydrogenous GTO
and a 1:1 mixture of hydrogenous and perdeuterated GTO, which we label d50-GTO, as
well as from hydrogenous h-TO.

Example NR profiles measured from the sucrose/d50-GTO (blue data points), sucrose/h-
GTO (green data points) and sucrose/h-TO (red data points) interfaces are shown in Fig-
ure 5. Fitting the data to a simple layer model, using the neutron SLDs of various com-
ponents as given in Table 1, results in sucrose layer thicknesses of 50.7± 0.3 nm (χ2=1.2),
60.4 ± 0.5 nm (χ2 = 3.9) and 49.5 ± 0.6 nm (χ2 = 3.7), for d50-GTO, h-GTO and h-TO
interfaces respectively. This is consistent with the thicknesses measured by XRR in air for
sucrose spin coated from 125 mM solution, which is the concentration of the solution used
for creating these substrates. The interfacial widths on the sucrose/triglyceride interfaces
are 0.7± 0.3 nm, 1± 0.5 nm and 1± 0.9 nm, respectively. This simple layer model does not
provide a complete description of the low-Q reflectivity measured from the sucrose interfaces
with h-TO and h-GTO, as is evident from the higher χ2 values obtained from these samples.

To measure reflectivity from d50-TO, we needed to construct an even lower volume cell.
We created this extremely low volume (∼200 µL) cell by sandwiching a 0.1− 0.2 mm thick
film of the d50-TO between two silicon discs that were separated by a kapton gasket, held in
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Figure 4: (a) Interfacial tensiometry showing a droplet of Glyceryl Trioleate (TO) on the spin coated
sucrose substrate with a graph showing the measured contact angle for TO (red) and GTO (blue)
with time. The dashed line represents the average contact angle over 1 hour; the TO measurements
were taken after an upgrade to the instrument, making the error bars smaller than the data points.
(b) Low volume (∼1 mL) laminar flow cell for NR. The silicon substrate spin coated with the
sucrose sits in place of the optical flat currently shown in the picture to seal the flow cell (c)
Extremely low volume (∼200 µL) sandwich cell used for NR. (d) & (e) Pictures of flow cells used
for XRR.

place by double-sided sticky tape, creating an oil-filled cavity of dimensions 35 mm×35 mm.
One face of the cavity is provided by a 50 nm thick sucrose film, that has been spin coated
onto the polished surface of a silicon disc, as in the laminar flow NR cell described above, and
the other face of the cavity is provided by an unpolished silicon disc that was hydrophobised
using octadecyltrichlorosilane, to passivate it. Neutrons are again incident through the side
of the silicon disc with the polished face; using an unpolished face to seal the cell means
that there will be no contribution to the reflectivity from that surface.

In the synchrotron XRR cell shown in Figure 4(d) & (e), the sucrose coated disc sits
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Figure 5: NR and XRR measured on D17 and I07, respectively, from the sucrose/triglyceride
interface. The blue data set was NR measured from the sucrose/d50-GTO interface, the green data
set NR from the sucrose/h-GTO interface, the red data set NR from the sucrose/h-TO interface
and the orange data set XRR from the sucrose/h-TO interface. Left panel: Measured reflectivity
profile (hollow circles) and the fit (solid lines) using a simple layer model. Right panel: SLD profile
corresponding to the model fit.

face up in a two piece PEEK pocket, which is sealed by a viton o-ring. Oil flows across
the sucrose surface, and the high energy X-rays are incident through the thin upper layer of
PEEK and the thin layer of triglyceride oil, sandwiched between this PEEK piece and the
sucrose coated silicon disc. By using these two types of cell, XRR and NR can be measured
from samples that have been prepared in exactly the same way, on the same silicon discs. By
using X-rays with an energy of 24.4 keV, absorption is kept sufficiently low for reflectivity
profiles to be measured from the sucrose interface.

An example XRR profile measured from the sucrose/TO interface (orange data points)
is shown in Figure 5. Fitting the data to a simple layer model, using the X-ray SLDs of
the various components results in a sucrose layer thickness of 57.9 ± 0.8 nm resulting in
a χ2 = 4.5 (blue line in left panel, dashed orange line in right-panel). The corresponding
interfacial width of 4.3± 0.9 nm is significantly higher than that determined by fitting the
NR data or the roughness of the bare sucrose surface measured by XRR in air. Using a more
realistic prior parameter distribution that restricts the maximum interfacial width to 20 Å
resulted in a fitted interfacial width of 8 Å but increased χ2 to 6.2 (black line in left panel,
solid orange line in right panel). The increase in χ2 was caused by the calculated Kiessig
fringes becoming out-of-phase with those measured for Q > 0.1 Å−1 and is a clear indication
that the simple layer model, using the bulk density of the triglyceride, does not provide a
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complete description of the structure of the sucrose/triglyceride interfaces from which these
reflectivity profiles have been measured. The complete structural characterisation of the
sucrose/triglyceride interface will be the subject of a future publication [33].

4. Conclusions

We have described a method to produce low roughness sucrose thin films, with thicknesses
in the range from 10 nm to ∼ µm, that is based on spin coating sucrose solutions onto silicon
oxide-capped silicon substrates. X-ray reflectivity measurements made at the sucrose/air
interface have shown the roughness of the sucrose film of thickness 50 nm to be 1 nm, which
is small enough to facilitate the measurement of specular neutron and synchrotron X-ray
reflectivity from the interface between the sucrose and a triglyceride oil phase. Grazing
incidence X-ray diffraction has been used to establish that the films have a polycrystalline
character, which makes them a good planar model for the interfaces found between sucrose
grains and the liquid component of cocoa butter found in molten chocolate.

Sessile drop contact angle measurements of triglyceride oils chosen to be suitable sin-
gle component models for molten cocoa butter indicate that the oils partially wet sucrose,
with a low contact angle. Preliminary fits to the neutron and synchrotron X-ray reflectiv-
ity measured from the interfaces between these sucrose thin films and the triglyceride oils
are sufficiently good to determine sucrose film thicknesses that are consistent with those
measured for the bare sucrose layers in air. However the deviations between the measured
reflectivity and that calculated using a simple layer models, at low-Q for the NR measure-
ments made with h-TO and h-GTO and at high-Q for the XRR measurements made with
h-TO, indicate that such a simple model does not provide a full description of the interfacial
structure.

The detailed molecular scale structural and compositional information that can be de-
termined from such reflectivity techniques will be complementary to information on adsorp-
tion that can be obtained using such planar substrates in lab-based measurements such
as QCM-D [10, 33] and to that provided by multi-scale simulations based on molecular
dynamics [11, 12].

The methodology we have described will facilitate the generation of structure-function
relations for chocolate and other food and pharmaceutical formulations that involve sucrose
interfaces.
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