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ABSTRACT 

Real-time decision making by production engineers in a petroleum field can be very challenging, 
especially when multiple wells with diverse operating conditions and production behaviours are present. 
Hence, semi-analytic or heuristic procedures are unlikely to yield an optimal operating strategy. This 
paper implements a Real-Time Production Optimisation (RTPO) approach to maximising production 
from naturally flowing, gas-lifted and Electrical Submersible Pump (ESP)-assisted wells while 
satisfying multiple operational constraints. This is achieved via the application of reduced order models 
which are developed by querying a black box production network simulator multiple times using 
different inputs. Also exploited in this work is the inherent decomposable property of the production 
network, into smaller components (wells, valves pipelines and separators), such that mass balance 
equations comprise the algebraic constraints of the optimisation framework which is solved as an 
MINLP. The adopted formulation also offers the advantage of flexibility for problem adjustment under 
different practical operating conditions which are presented as case studies. The changes incorporated 
into the production system include: increased liquid handling capacity of downstream separators, 
decreased well productivity/increased water cut and well intervention problems. The ability of the 
adopted framework to provide accurate and speedy computations of the optimal production scenario 
makes it reliable for real-time decision support.  

 

Keywords: Real Time Production Optimisation (RTPO); Mixed Integer Nonlinear Programming 
(MINLP); Well routing; Superstructure; Electrical Submersible Pumps (ESP); Gas Lift (GL); Naturally 
Flowing (NF); Gas Oil Ratio (GOR); Water Cut (WC)  
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1. Introduction 
Maximizing recovery from proven reserves is a highly demanding task which requires consistent and 
rigorous application of modelling, simulation and optimisation tools by engineers in the petroleum 
industry (Gerogiorgis et al., 2009; Tavallali et al; 2013; 2014; Epelle and Gerogiorgis, 2017). Accurate 
understanding of physical flow phenomena, advanced mathematical techniques and high performance 
computing are important components embedded in these tools which have led to lower operational cost 
and increased process efficiency when they are systematically applied (Epelle and Gerogiorgis, 2018a). 
However, with the ever-increasing petroleum exploration difficulties faced by most companies, there is 
a commensurate need for the development of novel modelling methods, and also better integration 
strategies of simulation and optimisation techniques to increase field profitability (Codas et al., 2015; 
Gupta and Grossmann 2012a; 2012b). Although many high-fidelity simulation packages exist, it is 
essential that optimisation is considered in the early stages of design and model development by 
production engineers (Eason, 2018). A typical oil and gas production system is a collection of 
interconnected components which include: reservoirs, wells (with an attached surface choke), 
manifolds, and pipelines for routing the fluids to a separator where the respective phases (oil, gas and 
water) are split. Given the decomposable nature of the network, an optimisation framework that 
implements component-based simulation will significantly improve the efficiency of the entire system. 
Each component behaviour can be approximated by a simple algebraic relationship, which is a function 
of the system’s properties (flow rates of respective phases, pressures and liquid and gas capacities). So 
far steady state simulation (over a short-term horizon) is the prevalent condition, these algebraic 
expressions are relatively uncomplicated (Ursin-Holm et al., 2014). 

High-fidelity simulators employed in the petroleum industry can be very complex due to size, the type 
of physical phenomena modelled and accompanying model uncertainty; thus, the runtime for these 
simulators can be enormous especially if high accuracy is required (Epelle and Gerogiorgis, 2018b; 
2018c). The number of network components and hence the number of equations describing each 
component, their physical interactions and interdependencies further imply that numerous equations 
and unknown variables are necessary to characterise the entire production system; this also adds to the 
complexity. The challenges faced from an optimisation viewpoint can be related to the type of problems 
solved (LP, MILP, NLP or MINLP) by available robust algorithms (commercial and open source). They 
can be classified based on the presence and type of constraints (equality and inequality), the amount of 
information provided by the model (derivative-free, first-order, second-order), the presence of 
nonlinearities and non-convexities, and the presence of discrete decisions in the problem (Kosmidis et 
al., 2004; 2005; Codas et al., 2012; Gunnerud et al., 2012). Leveraging the power of simulation within 
an optimisation framework often requires the development of equation-based approximations 
(surrogate or proxy models – polynomial interpolation, kriging, neural networks etc.) from the outputs 
of black-box simulators. The development of accurate proxy models is an active area of research that 
has received contributions from statistics, machine learning and engineering (Eason, 2018). When these 
models are to be used for optimisation purposes, the functional form and validation procedures are 
important concepts to consider in their construction. 

In this work, it is demonstrated that an independent application of network simulation of an operating 
field does not yield the best possible improvement in oil production. Rather, a methodical application 
of robust optimisation methods with simulation guarantees process enhancement. This is achieved by 
developing explicit surrogate models in combination with well routing constraints which are compatible 
with the adopted optimisation algorithms; thus resulting in an MINLP formulation. In Section 2, a 
discussion of related publications on petroleum production optimisation is presented in detail, after 
which insights into the simulation and Real-Time Production Optimisation (RTPO) methodology are 
explained alongside the mathematical formulation of the optimisation problem. Findings based on the 
implemented case studies are presented subsequently with some conclusions derived.  
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Figure 1: Petroleum production network structure and key elements. 

2. Relevant Literature 
Production systems optimisation in the oil and gas industry with practical operational constraints has 
received significant attention, documented in several publications. A comprehensive review by Khor 
and Elkamel (2007) classifies previous research endeavours into simulation-based, heuristic-based 
(Redden et al. 1974; Weiss et al. 1990; Litvak et al. 1995; 1997; 2002, such as choke diameter reduction 
and incremental GOR methods) and mathematical programming methods (Kosmidis, et al., 2005; 
2005). They pointed out that these methods have generally addressed problems such as: design and 
operation of production systems, rate allocation, reservoir planning and development. However, the 
prevalence of naturally flowing vertical wells coupled with the application of structure-specific 
methodologies that are difficult to automate (when the production network becomes larger) limits their 
applicability to dynamic practical operations. Fortunately, increasing computational power over the past 
decade has resulted in more advanced optimisation algorithms, which are capable of simultaneously 
handling many crucial constraints and incorporating real field dynamic data to ensure operational 
feasibility (Barragán-Hernández et al., 2005; van Essen et al., 2011; Bellout et al., 2012; Hassan et al., 
2013; Silva and Camponogara, 2014; Gu and Hoo, 2015; Siddhamshetty and Kwon, 2018; 2019). These 
advancements, which are incorporated in the current work, efficiently tackle the earlier-outlined 
automation and versatility challenges.  

More recently, Tavallali et al. (2016) thoroughly evaluated the differences in research contributions 
(relating to production optimisation) from both petroleum and process systems engineering 
perspectives. In doing this, they grouped research endeavours from both perspectives into 3 main 
classes: oil field design, oil field operations and integrated field design and operations. In their 
discussion of this broad classification, subcategory problems such as rig scheduling (Iyer and 
Grossmann, 1986; van den Heever and Grossmann, 2000a; 2000b; 2001), flow scheduling (Kosmidis, 
2005; Gunnerud et al., 2012), field planning (Gupta and Grossmann, 2012b; Tavallali et al., 2014; 2015; 
Humphries and Hayes, 2015), surface network design and well placement (Wang et al., 2012; Li et al., 
2013) were also discussed. An extensive review of current advances and the applicability of several 
simulation packages and optimisation solvers was also presented. A major highlight from this review 
was the fact that contributions from the petroleum engineering community have primarily focused on 
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the subsurface, whereas, the process systems engineering community has paid more attention to the 
surface networks. Given the highly interconnected nature of a production system, more work is needed 
to address the challenges of integrated field design and operation; thus capturing surface and subsurface 
complexities. 

Decline Curve analysis (based on real production data) has also been combined with production 
optimisation for fast prediction of future operating rates in the work of Kritsadativud et al. (2015). The 
motivation for this approach was to eliminate the huge time requirements in developing detailed 
numerical reservoir models, and the difficulty of using such models for optimisation purposes. Although 
their method does not adequately capture the underlying flow physics, they argue that it could provide 
good initial solutions for subsequent large-scale optimisation problems with full reservoir simulation. 
In spite of the prevalent application of Electrical Submersible Pumps–(ESP) artificial lift systems in 
petroleum field operations, production optimisation studies, which consider these well types, are very 
scarce. To the best of our knowledge, only the work of Hoffmann and Stanko (2016) addresses this kind 
of wells in the context of production optimisation. They formulated a Mixed Integer Linear Program 
(MILP via piecewise linearization), which determines the ESP performance characteristics for the 
different wells in their production network. The fast solution times they reported, demonstrated the real-
time applicability of their formulation. However, representing the exact model characteristics via 
nonlinear constraints is an important attribute of this work, hence the formulation of a Mixed-Integer 
Nonlinear Program (MINLP). MINLPs combine the modelling capabilities of mixed-integer programs 
and nonlinear programming (NLP) into a flexible and multifaceted framework (Kronqvist et al., 2018). 
Besides the capability of such framework to model discrete decisions, the linear and nonlinear function 
handling ability enables accurate modelling of challenging and diverse phenomena. Despite this 
advantage, MINLP problems are very difficult to solve because they integrate all the complexities of 
their subclasses: the combinatorial nature of mixed integer problems and the difficulty of solving highly 
nonconvex nonlinear programs (Bussieck and Pruessner, 2003). 

Gunnerud et al. (2013) elucidated the challenges of embedding a simulator in an optimization 
formulation. Simulators (depending on complexity) could be viewed as functions whose explicit forms 
are unknown, but compute outputs based on some input parameters. Furthermore, the inability of most 
black-box simulators to compute gradients necessary for speedy performance of an optimisation 
algorithm is an additional difficulty. In a bid to address these problems, they proposed a simulation-
based optimisation method that incorporates the complex behaviour of production system components 
via simulator data approximation. This was based on a trust region approach coupled with an MINLP 
formulation. They demonstrated superior performance of their approach (in terms of solution quality 
and runtime) to a standard industry approach where derivative-free optimisation methods (which 
directly call the blackbox simulator at each iteration) are used. However, their approach requires in-
depth knowledge of the simulator especially when large production networks with complicated 
nonlinear behaviours of the components are to be optimised. 

Existing research contributions can be categorised into the type of problem solved (with or without 
geological uncertainty), time horizon involved, resulting optimisation formulation, optimisation 
algorithms/solvers and implementation platform/computer specifications employed, wellbore geometry 
used, the field production mechanism and the number of production components involved (size of 
problem). Novel contributions in this field can either focus on improvements related to these categories 
or the integration of other physical concepts and modelling tools. More recently, streamline simulation 
(Thiele and Batycky, 2006) is an important tool that has been adopted in production optimisation 
studies, which consider secondary production via water injection (Al-Zawawi et al., 2011; Azamipour 
et al., 2017; 2018; Epelle and Gerogiorgis, 2019). Taking into account this classification, there are four 
major novel elements in this paper, which are addressed in comparison to previous work discussed: 

1. The combination of naturally flowing and artificially lifted (gas lift and ESP) wells creates complex 
pressure responses at the pipeline level which are accounted for via routing constraints and 
embedded in a complex economic objective function. 

2. Key attention is paid to the bottomhole pressure of the well which in turn is affected by the wellhead 
pressure at a certain production rate. This is done in order to avoid sand production, which could be 
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detrimental to the overall system performance. The works of Tiffin et al. (2003), Wong et al. (2005) 
and Karantinos et al. (2017) provide some insights into downhole pressure control for the mitigation 
of sand production using field data, laboratory tests and mathematical modelling respectively. 

3. The adaptability and flexibility of the proposed optimisation formulation to varying scenarios and 
practical operational difficulties is demonstrated. 

4. The complexities of varying wellbore geometries with different multiphase flow properties are 
accounted for in the network model development. 

3. Methodology  
The proposed methodology is presented in two parts. The first part outlines the modelling and design 
considerations when creating the surface network and its components; the second explains the detailed 
problem formulation for which mathematical optimisation is applied. A real-time optimisation scenario 
is considered here; thus, a detailed reservoir model which captures the slow-paced dynamic reservoir 
behaviour, fluid properties, and production pressures and rates is not necessary.  

3.1. Design and simulation considerations 

3.1.1 Naturally flowing wells 

Standard modelling procedures (casing, tubing and perforation design) are adopted in modelling the 
behaviour of naturally flowing wells in a multiphase flow simulator (PIPESIM® v2017.2). Robust 
multiphase flow correlations are employed for the pressure drop determination in the well tubing 
(Vertical Lift Performance curves–VLP); based on the well geometry and completion properties. Inflow 
Performance Relationships (IPR) are generated and used together with the VLPs to obtain the wells’ 
operating points in the multiphase flow simulator. These curves essentially relate the multiphase flow 
rates in the wellbore to the bottomhole pressure and well head pressures. In order to obtain the pressure-
rate response of a well, a nodal analysis (Fig. 2a) is run at different wellhead pressures. The obtained 
results can be approximated as an algebraic function which constitutes the constraints of the 
optimisation formulation. A similar procedure is adopted for the GL and ESP wells, but with extra nodal 
parameters such as the injection gas rate and the pump frequency. A detailed description of modelling 
considerations for the artificially lifted wells is presented next. 

 

Figure 2: Typical nodal analysis (a) and gas lift optimisation curves (b); proxy model plots for an 
ESP well (c) and a pipeline (d). 
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3.1.2 Gas lift wells 

In continuous gas lift (adopted here), a certain amount of gas at high pressure is introduced to aerate the 
fluid column (the tubing) so that the fluids readily flow to the surface (due to lower hydrostatic 
pressure). In order to perform this operation efficiently, it is often desired that injection is done via a 
single valve at the deepest possible point (this depends on the available surface injection pressure). In 
designing the gas lift system in the wellbore simulator, careful consideration was made in ensuring this 
single point injection scenario (Mukherjee and Economides, 1991; Gerogiorgis et al., 2006; Gerogiorgis 
and Pistikopoulos, 2008; Guo, 2011; Epelle and Gerogiorgis, 2019). Based on various lift gas 
availabilities, a production system analysis is necessary to ascertain well operating points using the 
bottom hole as the principal node of analysis. In performing this analysis, it was important to determine 
the injection rate that was sufficient to enable liquid production and to avoid excessive injection which 
prevents liquid flow due to pipe friction produced by the gas. Furthermore, excessive gas injection can 
significantly increase the gas capacity-handling requirement with minimal increment in oil production 
(Fig. 2b). 

For a field-scale evaluation, the optimisation framework is designed to determine the optimal lift gas 
allocation to the respective wells based on their productivities and the total available gas for injection. 
Liquid fall-back during the unloading process of gas lift operations (especially intermittent gas lift) 
induces a back pressure effect on the formation (Guo, 2011). This could cause erratic rates and also 
impact flow rates of other wells close by (well flow interdependence), which could be detrimental to 
the flowline shared by these wells. The continuous gas lift operation adopted here significantly 
minimises this effect. Since the wells are connected to downstream separators operating at a specified 
pressure, any possible pressure fluctuations will be more pronounced in the wellbore than in the pipeline 
network (Kritsadativud et al., 2015). Furthermore, the short term horizon considered here implies that 
the reservoir and fluid properties do not vary significantly. Thus, back pressure effects at the surface 
pipeline can be considered negligible. However, the pressure drop along flowlines (between junctions 
J-i and manifolds M-i in Fig. 3) is assumed negligible and ignored in the optimisation computations. 

3.1.3 Electrical Submersible Pumps (ESP)-assisted wells 

The application of ESPs is particularly favourable for lifting high liquid volumes from wellbores with 
high productivity. Based on the desired volumetric flow rate of the well and the wellbore depth, the 
pump specifications (power, frequency and number of stages) can be calculated using the wellbore 
simulator. In order to avoid pump cavitation due to excessive free gas produced, high efficiency 
downhole separation is employed in the ESP design model. Since pump performance curves are based 
on water systems, a viscosity correction is implemented to account for the oil phase. Sand production 
is another important factor influencing the ESP performance; thus, it was important to estimate the 
critical drawdown pressure for limiting the liquid production based on the nodal analysis plots of the 
well. With the available pump manufacturer specifications, it was essential to ensure that the tubing 
size (internal diameter) selected could accommodate the outside diameter of the ESP with enough 
downhole clearance for the pump’s liquid intake. This enabled accurate determination of the Total 
Dynamic Head (TDH) of the pump. ESP frequency was chosen as the main influencing parameter on 
the production capacities of the ESP wells. The power requirement of the pumps can be calculated 
subsequently from the optimal frequency and wellhead pressure of an ESP-assisted well. Incorporating 
constraints on the power requirements of the ESP was not necessary, because careful selection of high 
efficiency pumps based on the manufacturer’s specifications characterised the ESP design process. 

3.1.4 Other network components 

The internal diameter, thickness, length and elevation difference were the pipeline specifications 
required for accurate pressure drop calculations. However, considerable effort was necessary for data 
generation at different operating conditions in the simulator. Based on the gas oil ratio (GOR), water 
cut (WC) and liquid rate (LR) ranges for the respective wells, a system analysis was performed multiple 
times to obtain high resolution data tables which were used for proxy model development and 
verification. In generating the proxy models, 25 data points are utilised for each well and 60 data points 
for each pipeline. 
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It is worth mentioning that the choke flow model is based on PIPESIM’s mechanistic correlation that 
calculates the pressure drop across the choke using a weighted average of the liquid and gas phase 
pressure drops. The liquid and gas phase pressure drops are based on the Bernouilli’s equation. The 
critical pressure ratio is calculated using the Ashford-Pierce (1975) equation; this distinguishes 
subcritical from supercritical flow. However, the latter (supercritical flow conditions) represents a 
situation that rarely occurs in reality (PIPESIM, 2017); and does not manifest in our simulations. The 
choke bean size is a constant value in the simulations performed and is initially assumed 100% open. 
Binary variables are introduced to route production from wells only. In the case that a well violates the 
separator capacity or water capacity constraints, then the algorithm automatically shuts the well. 
Besides the binary variables present (𝑥𝑥𝑤𝑤,𝑔𝑔,𝑖𝑖𝑖𝑖𝑖𝑖, 𝑥𝑥𝑤𝑤,𝑙𝑙,𝐸𝐸𝐸𝐸𝐸𝐸, 𝑥𝑥𝑤𝑤,𝑝𝑝), all other variables are continuous.  
 
In generating the proxy model, the Hagedorn and Brown (1965) correlation is adopted for the vertical 
multiphase flow; whereas the revised Beggs and Brill (1973) correlation is utilised for horizontal 
multiphase flow calculations. The basic assumption for the friction model (Moody, 1944) is that the 
pressure drop during transient flowing conditions is the same as the steady flowing conditions using an 
average instantaneous transient velocity and the apparent mixture properties.  

3.2. Problem definition and optimisation formulation 

Given the network superstructure (Fig. 3), comprising of a single reservoir, 6 wells (3 pairs of NF, GL 
& ESP wells), 2 manifolds, 2 pipelines and 2 separators, the aim is to optimise the Net Present Value 
(NPV) by determining the optimal well controls, lift gas allocation and routing strategy on a real-time 
basis. Operational constraints include the wellbore- and pipeline-approximated models, mass and 
energy balances across the network, upper and lower bounds on all operating pressures and flow rates 
(for the avoidance of sand production). In the mathematical description, wells are assigned the index w, 
manifolds, m, pipelines, p, separators, s, oil, water and gas phases, o, wat, g, liquid phase l; collectively 
all phases are represented as i. 

Max (𝑁𝑁𝑁𝑁𝑁𝑁) = 𝑅𝑅𝑅𝑅𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑁𝑁 − 𝐶𝐶𝐶𝐶𝑁𝑁 − 𝐶𝐶𝑄𝑄𝑔𝑔,𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑄𝑄𝑙𝑙,𝐸𝐸𝐸𝐸𝐸𝐸 (1) 
 
The objective function (Eqs. 1-6) maximises the Net Present Value (NPV) of the production system 
while ensuring the wellbore pressures (wellhead, wh and bottomhole, wf) are within acceptable ranges 
that prevent sand production (Eq. 7-11). The cost indices ro, rg, rwat, rg,inj, and rl,ESP were  $70/STB, 
$2000/MMSCF, $20/STB, $10,000/MMSCF, and $12/STB respectively. The total revenue from 
produced gas produced (Eq. 3) excludes the quantity of injected gas in the GL wells. Well flow 
behaviour is approximated via the algebraic relationships (Eqs. 12, 13 and 15) for the NF, GL and ESP 
wells respectively. Eq. 14 ensures that the allocated lift gas to the GL wells is below the field available 
gas for injection. Binary variables xw,p assigned to each well ensure that the produced fluids from a well 
are routed to one of the pipelines. Eq. 16 represents the well choke settings which ensure that if a well 
is routed to a particular pipeline, then the manifold pressure must be lower than the wellhead pressure 
of the well to avoid backward flow of material. The mass balance constraint between wells and pipelines 
is represented as Eq. 17. In the formulation, it is assumed that the separators operate at a fixed known 
pressure, Ps; thus, Eqs. 19 and 20 ensure that the manifold pressure, Pm, is sufficient to overcome the 
pressure drop in the pipelines, and the fluids eventually reach the separator at the desire pressure. Liquid 
and gas capacity constraints of the separators are represented by Eqs. 21 and 22 respectively.   
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𝑤𝑤𝑤𝑤 = 𝑓𝑓(𝑁𝑁𝑤𝑤𝑤𝑤ℎ,𝐷𝐷𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜)  ∀ 𝑁𝑁𝑁𝑁 𝑤𝑤 (7) �𝑥𝑥𝑤𝑤,𝑝𝑝 ≤ 1

𝑝𝑝

 (18) 

𝑁𝑁𝑤𝑤
𝑤𝑤𝑤𝑤 = 𝑓𝑓�𝑁𝑁𝑤𝑤𝑤𝑤ℎ,𝑄𝑄𝑔𝑔,𝑖𝑖𝑖𝑖𝑖𝑖�  ∀ 𝑅𝑅𝐺𝐺 𝑤𝑤 (8) ∆𝑁𝑁 = 𝑓𝑓(𝑞𝑞𝑝𝑝,𝑜𝑜,𝑞𝑞𝑝𝑝,𝑤𝑤𝑚𝑚𝑤𝑤 ,𝑞𝑞𝑝𝑝,𝑔𝑔) (19) 

𝑁𝑁𝑤𝑤
𝑤𝑤𝑤𝑤 = 𝑓𝑓(𝑁𝑁𝑤𝑤𝑤𝑤ℎ,𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸)  ∀ 𝐸𝐸𝐸𝐸𝑁𝑁 𝑤𝑤 (9) 𝑁𝑁𝑠𝑠 = 𝑁𝑁𝑚𝑚 − ∆𝑁𝑁 (20) 

𝑁𝑁𝑤𝑤,𝑚𝑚𝑖𝑖𝑖𝑖
𝑤𝑤𝑤𝑤 ≤ 𝑁𝑁𝑤𝑤

𝑤𝑤𝑤𝑤 ≤ 𝑁𝑁𝑤𝑤,𝑚𝑚𝑚𝑚𝑚𝑚  
𝑤𝑤𝑤𝑤    ∀ 𝑤𝑤 (10) �𝑞𝑞𝑔𝑔,𝑝𝑝 ≤ 𝐶𝐶𝑅𝑅𝑠𝑠

𝑝𝑝

 (21) 

𝑁𝑁𝑤𝑤,𝑚𝑚𝑖𝑖𝑖𝑖
𝑤𝑤ℎ ≤ 𝑁𝑁𝑤𝑤𝑤𝑤ℎ ≤ 𝑁𝑁𝑤𝑤,𝑚𝑚𝑚𝑚𝑚𝑚  

𝑤𝑤ℎ    ∀ 𝑤𝑤 (11) �𝑞𝑞𝑙𝑙,𝑝𝑝 ≤ 𝐶𝐶𝐺𝐺𝑠𝑠
𝑝𝑝

 (22) 

𝑞𝑞𝑖𝑖,𝑤𝑤,𝑁𝑁𝑁𝑁 = 𝑓𝑓(𝑁𝑁𝑤𝑤𝑤𝑤ℎ,𝐷𝐷𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜)  ∀ 𝑖𝑖,∀ 𝑤𝑤  (12)   

 
The proxy model generation (Figs. 2a- 2d) using least-squares method and the optimisation formulation 
(objective and constraint functions) were written in MATLAB and solved using the Basic Open-source 
Nonlinear Mixed Integer Programming (BONMIN) solver via the Opti toolbox interfacing platform 
(Currie and Wilson, 2012). The ‘B-BB’ and ‘B-OA’ algorithms of BONMIN were utilised in finding 
good local solutions. The former (B-BB), implements a simple branch and bound algorithm based on 
the solution of the continuous NLPs at each node of the search tree and subsequently branching on the 
integer variables. This is made possible by modifying Cbc (a mixed integer linear programming solver) 
so that LP solutions at each node of the tree are replaced by NLP solutions (Bonami et al., 2008). NLP 
solutions at each node are obtained speedily using the IPOPT solver. This B-BB algorithm of BONMIN 
is similar to the one implemented in the solver, ‘SBB’. The latter (B-OA), is an outer-approximation 
branch and cut algorithm, similar to that implemented in DICOPT. It iteratively solves and improves 
the MIP relaxation of the MINLP problem and also solves the NLP subproblems (Fletcher and Leyffer, 
1994; Gupta et al., 1985). In the algorithm, a single tree search is performed, and the resulting NLP 
solutions are used to progressively tighten the MILP relaxation. The motivation of this approach was to 
avoid the sequential solution of several relaxed MILPs; thus increasing the computational speed 
(Bonami et al., 2008). 

Successful implementation of the described formulation (Eqs. 1-22) requires that proxy models are 
developed within a certain range of wellhead and bottomhole pressures in which these models 
accurately approximate the simulator outputs; it is preferable that this range is not very far from the 
initial guesses. From preliminary tests performed, the optimisation algorithm fails after a certain number 
of iterations when the input range (search space involved) is very large or the upper and lower bounds 
of the independent decision variables are very loose. Thus, it is imperative that reasonably tight bounds 
are set and that the parameters of the proxy model are updated via rerunning the black box simulators; 
especially when operating conditions change significantly (e.g. a change in flow regime or well 
productivity). Gunnerud et al. (2013) provide recommendations/algorithmic modification strategies for 
updating the proxy models and their corresponding trust regions.  
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Figure 3: Superstructure of network connections for the petroleum production system. 

4. Results and Discussion 

The superstructure of the production network with all possible connections is shown in Fig. 3; 12 
possible routing options exist for which the optimisation algorithm is expected to find the best well-
manifold connections that guarantee an optimal NPV.  

Furthermore, three case scenarios are compared to a base case in which all wells perform well with high 
productivity indexes (>1 STB/day.psi), relatively low average water cut (30%), an average GOR of 800 
SCF/STB and limited water and gas handling capacities. By considering these case studies, the 
flexibility of the optimisation formulation is demonstrated. 

• Base Case (BC): Limited separator handling capacities. 
• Case Study 1 (CS1): Increased liquid and gas handling capacities of S-2. 
• Case Study 2 (CS2): Decreased well productivity and increased water cut for the NF well (W-

1). 
• Case Study 3 (CS3): Well intervention on the W-5 and W-6 due to ESP damage. 
• Case Study 4 (CS4): Switching W-3 to ESP mode with increase separator handling capacities. 

Table 1: Separator capacities and operating pressures for all cases explored. 

Case study  Separator  Operating 

pressure (psia) 

Liquid capacity 

(STB/day) 

Gas Capacity 

(MMSCF/day) 

Base Case (BC) S–1  80 15000 9 
S–2 50 10000 6 

Case Study 1 (CS1) 
S–1  80 15000 9 
S–2 50 15000 9 

Case Study 2 (CS2) 
S–1  80 15000 9 
S–2 50 10000 6 

Case Study 3 (CS3) 
S–1  80 15000 9 
S–2 50 10000 12 

Case Study 4 (CS4) 
S–1  80 15000 10 
S–2 50 15000 10 

 



10 
 

The separator, well and pipeline characteristics are given in Tables 1 and 2 respectively. S-1 is 
connected to M-1 (Figs. 1 and 3) by a longer pipeline (but with a smaller internal diameter) compared 
to S-2. The well characteristics are very similar as shown in Table 2; however, their perforation intervals 
and permeabilities around the well are different, thus resulting in the varying production responses 
observed in Fig. 4.  

Table 2:  Reservoir, well and pipeline parameters 

Parameter W–1 W–2 W–3 W–4 W–5 W–6 P–1 P–2 

Reservoir pressure (psia) 3800 3800 3800 3800 3800 3800 – – 

Well type  Deviated Vertical Deviated Vertical Deviated Vertical – – 

GOR (SCF/STB) 800 780 810 785 800 800 – – 

WC (%) 30 30 25 30 30 28 – – 

True Vertical Depth – 
TVD (ft) 

9000 10000 9500 10000 9500 10000 – – 

BHP constraint to avoid 
sand production (psi) 

700 700 700 700 700 700 – – 

Productivity Index 
(STB/day.psi) 

2.5 1 2.3 1.5 2.8 2 – – 

TVD of gas lift valve (ft) – – 5800 7500 – – – – 
Assumed temperature 
along wellbore (oF) 

200 200 200 200 200 200 200 200 

Tubing diameter (in) 3.5 3.5 3.5 3.5 3.5 3.5 – – 

Pipeline length (ft) – – – – – – 6000 4000 

Pipeline internal 
diameter (in) 

– – – – – – 10 12 

Pipeline internal 
roughness (in) 

– – – – – – 0.001 0.001 

 
Fig. 4 illustrates the production rates obtained via simulation with the multiphase simulator at a 
wellhead pressure of 380 psia, before the proposed optimisation formulation is applied. Based on the 
optimal wellhead pressures and flowrates, the optimal routing configurations are determined for the 5 
different case scenarios and presented next. 

 

Figure 4:  Simulated well production performance. 

4.1 Base Case 

It is illustrated in Fig. 5 that the optimal routing strategy involves connecting the GL well (W-4) and 
the ESP wells (W-5 and W-6) to M-1, and routing the NF wells to M2; whereas, W-3 is shut. A physical 
explanation for this routing strategy is that the gas handling capacity of the separators is relatively lower 
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than the combined gas production rates from W-3 and W-4. These high gas production rates can be 
attributed to the originally injected gas during the gas lift operation.  

 

Figure 5: Optimal routing structure for the Base Case 

For W-3 to be shut in place of W-4 (Fig. 5), it implies that the revenue due to additional oil production 
does not outweigh the cost of gas injection in this well (W-3). Conversely, W-4 remains open, despite 
its lower oil production rate, compared to W-3.  It is also worth noting the higher water production rate 
of W-3 in comparison to W-4 (Fig. 4) has made it a less preferable candidate for improving the NPV.  
Typical heuristic approaches which might involve opening high oil producing wells, with little 
consideration to the gas and liquid capacities of the separating units would not guarantee net 
improvement in field profitability. Enhancing the performance of W-3 and W-4 could involve more 
strategic positioning of well perforations that would prevent gas and water coning, thus reducing the 
wells’ GOR and WC. Furthermore, ESPs could be used in place of GL in these wells for GOR reduction. 
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Figure 6: Optimal routing structures for all case studies (CS1, CS2, CS3 and CS4) explored. 

4.2 Case Study 1 (Increased liquid and gas handling capacities of S-2) 

Increasing the liquid and gas handling capacities of S-2 to 15,000 STB/day and 9 MMSCF/day (same 
as the capacities of S-1, Table 1), changes the routing structure. As observed in Fig. 6, there is an 
increase of 1.8% in the NPV (compared to the base case) due to capacity enlargement of S-2. Although 
the cost of this enlargement is not included in the optimisation formulation, this 1.8% improvement 
would cumulatively surpass the expansion costs over a long production horizon. It is observed in Fig. 
6 that the shorter pipeline (P-2) with a lower operating separator pressure attached (S-2) is the preferred 
routing option for W-4, W-5 and W-6 respectively. Besides the increased capacity, another factor 
influencing this optimal routing option is the size and length of the pipeline (P-2); its shorter length and 
larger diameter implies that the pressure drop through the pipeline (P-2) is lower. Furthermore, the 
lower operating pressure of the separator (S-2) implies that a lower manifold pressure and in turn a 
reduced wellhead pressure would guarantee forward flow of the fluids from the wells. This reduced 
wellhead pressure translates to a higher production rate response from these wells. Due to capacity 
constraints, W-3 is still shut and W-1 and W-2 are routed to S-1 via P-1. 

4.3 Case Study 2 (Decreased productivity and increased water cut of W-1) 

In this case study, the reservoir permeability of the Joshi steady state IPR model (for the deviated well 
W-1) is reduced from 100 mD to 80 mD and the water cut of the well is increased from 30% to 45%.  
The operating gas and liquid handling capacities are same as that of the base case. Although there is an 
inevitable reduction in the NPV by 16% compared to the base case, the routing structure is maintained 
(same as the base case). Besides the capacity limitations earlier explained in Section 4.1, this structure 
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remains the optimal because by closing W-3, the pressure drop in either of the pipelines (that would 
have ensued if W-3 were connected to M-1 or M-2) is significantly reduced, and the production rate 
from other wells is consequently increased. Considering the intricacy and the number of parameters to 
simultaneously consider, heuristic methods cannot guarantee optimality of the routing structure of this 
production network. Additionally, it becomes impossible to apply such methods when the network 
becomes very large as there would be several routing possibilities. 

4.4 Case Study 3 (Well intervention due to ESP damage) 

In this illustrative example, a well intervention is carried out on the ESP assisted wells in order to 
perform maintenance activities and subsequently reinstall the ESPs. Hence W-5 and W-6 cannot 
produce and are considered closed wells by the optimisation solver. Furthermore the liquid and gas 
handling capacities of S-1 are retained at the same values as the base case; similarly, the liquid handling 
capacity of S-2 is maintained at the base case value. However, only the gas handling capacity of S-2 
has been increased from 6 MMSCF/day to 12 MMSCF/day. The resulting routing configuration based 
on these modifications are shown in Fig. 6. It is observed that the high gas producing wells (W-3 and 
W-4) are preferably routed to the separator with the highest gas handling capacity; whereas the NF 
wells are preferably routed to S-1 with the lower gas handling capacity. Despite shutting the 2 ESP 
wells, the NPV of CS3 $627,742 is comparable to that of CS2 (in which only 1 well is shut) with a 
$622,221 NPV. On analysing the field production rates of all phases in Table 3, an explanation for this 
similarity can be derived. Although CS2 yields a 23% higher oil production rate, its water production 
rate and thus its production cost is significantly higher (50%) than that of CS3. Furthermore, the gas 
production rate of CS3 is 40% higher than CS2. The cumulative effect of these differences is a slight 
enhancement (0.9%) in the profitability of CS3 over CS2 as reflected in the NPV. 

4.5 Case Study 4: Switching W-3 to ESP mode with increase separator handling capacities 

Given the previously identified problems with W-3, its performance is enhanced by switching the 
artificial lift operation from gas lift to an ESP in this case study. This translates to an increase in the oil 
production rate of this well compared to the increment in oil production that was obtainable via gas lift 
operation. It is illustrated in Fig. 6 that the optimal status of the network is now to open W-3 and route 
it to M-1. The increased separator capacities compared to the base case also resulted in the opening of 
all wells; thus resulting in a 39% increase in the NPV compared to the base case. Despite the pressure 
drop differences in the pipeline, the similarity of separator capacities has allowed a correspondingly 
equal split in the produced fluids from the 6 wells (3 wells each). It can thus be inferred that the handling 
capacities of the produced fluids and the wells’ mode of operation significantly influence the optimal 
routing strategy. 

Table 3 also illustrates good utilization of liquid and gas storage capacities by the optimisation algorithm 
for all case studies. However, CS 4 ranks highest with 91% capacity usage for the liquid phase, whereas 
the base case ranks highest with 85% usage of the total gas capacity. It is worth mentioning that the 
separator capacities mentioned here do not necessarily imply the capacity of a single separating vessel 
but rather multi-stage separation/separators equipped with extra storage is also possible. Although 
detailed design of the separating vessels and capacities is not within the scope of this paper, the 
optimisation methodology applied here could aid production engineers in the choice of appropriate 
vessel capacities in order to avoid redundancy.  
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Table 3: Optimal field production and injection rates, ESP power requirements and routing strategy. 

Field parameter BC CS1 CS2 CS3 CS4 

Oil production rate (STB/day) 14930 15209 13476 10924 19064 

Water production rate (STB/day) 6399 6518 7016 4682 8171 

Liquid production rate (STB/day) 21328 21726 20492 15605 27235 

Available liquid capacity (STB/day) 25000 30000 25000 25000 30000 

Liquid capacity utilized (%) 85.3 72.4 82.0 62.4 90.8 

Gas production rate (MMSCF/day) 12.81 12.91 11.64 16.34 16.00 

Available gas capacity (MMSCF/day) 15.00 18.00 15.00 21.00 20.00 

Gas capacity utilized (%) 85.4 71.7 77.6 77.8 80.0 

Total gas injection rate (MMSCF/day) 3.8 3.8 3.8 7.6 3.8 

Total ESP power requirement (hp) 520.3 574.8 522.1 – 702.5 

Optimal routing strategy of the surface production network for all case studies considered 

x1,1 W-1 

PIPE
L

IN
E

 1 

0 1 0 1 1 

x2,1 W-2 0 1 0 1 1 

x3,1 W-3 0 0 0 0 1 

x4,1 W-4 1 0 1 0 0 

x5,1 W-5 1 0 1 0 0 

x6,1 W-6 1 0 1 0 0 

x1,2 W-1 

PIPE
L

IN
E

 2 

1 0 1 0 0 

x2,2 W-2 1 0 1 0 0 

x3,2 W-3 0 0 0 1 0 

x4,2 W-4 0 1 0 1 1 

x5,2 W-5 0 1 0 0 1 

x6,2 W-6 0 1 0 0 1 

 

4.6 Solver performance analysis 

It can be shown in Table 4 that optimal results are obtained in a relatively short time; although this is 
largely due to the problem size, decomposition techniques that enhance solution speed (such as the 
Dantzig-Wolfe and Lagrange decomposition within a reformulated MILP) can readily be applied to 
larger problems (Gunnerud and Foss, 2010). The run time required for the applied method in this paper 
demonstrates its applicability to real-time decision making in practical operations. A major influencing 
factor on the solution time required is the number of discrete variables present.  
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Figure 7: Network superstructure with reduced routing options. 

It is observed in CS3 that, where the number of routing variables becomes 8 (compared to the base case 
in which 12 routing variables are present), the solution runtime reduces by 2 orders of magnitude (Table 
4). In addition, the optimality gap and number of iterations are significantly reduced, thus indicating 
the relatively lower computational effort required for a good-quality solution. Hence, for very complex 
networks in which the number of wells become very large, a possible strategy for run time reduction is 
to group the production wells into clusters as shown in Fig. 7, so that the number of routing variables 
is reduced. Although this is usually done in practical operations (gathering wells at different clusters or 
junctions, J-1, J-2 and J-3 – Fig. 7), this approach further constrains the optimisation algorithm (and 
may yield suboptimal results) compared to a scenario in which the algorithm’s exploration space for 
better possible routing options is larger. However, it is vital to maintain a balance between solvability 
of the optimisation problem and the desired accuracy at all times. Moreover, in a situation where the 
well position/gathering network already exists/is fixed (which is the case in this paper), the existing 
structure has to be maintained and the routing options alone optimised. Infrastructural planning 
problems, which involve well placement decisions, can incorporate these different routing decisions 
(Figs. 3 and 7) as additional constraints. 

Although the B-OA algorithm of BONMIN was able to provide good solutions in much faster time 
(<10 sec) compared to the B-BB algorithm in a few cases, it was desirable to progressively monitor the 
change in the objective value at each iteration which was only outputted by the B-BB algorithm. This 
provided some insight into troubleshooting an unsuccessful optimisation run (changing variable 
bounds, or initial guesses etc.). Furthermore, in the preliminary test cases run, the B-BB algorithm 
proved more stable, with higher NPVs obtained compared to the B-OA algorithm for the problem 
described herein. Considering the problem’s non-convexity, and the fact that no specific heuristic 
method for treating nonconvex problems is implemented within the OA framework (Bonami and Lee, 
2013), the B-BB algorithm was adopted for all optimisation runs in this paper. 

Several factors are responsible for the solver performance shown in Table 4. One of the steps taken to 
ensure stability of the solver and repeatability of optimal solutions upon several runs was to reduce the 
relative disparity in the magnitude of the different variables, particularly during the proxy model 
generation. Furthermore, obtaining accurate proxy models that represent the simulator output within the 
supplied input range is vital for good solver performance. Generated well proxy models had an average 
error of 0.5% whereas that for both pipelines was 0.9%. In both cases, the maximum error was less than 
3%, thus demonstrating the structure/formulation quality of the proxy models.  
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Table 4: Solver performance analysis (BONMIN B-BB algorithm) 

Case 
Study 

Run 
time 
(sec) 

Number 
of nodes 

Number of 
iterations 

Optimality 
Gap 

NPV ($) – 
MINLP 
solution 

NPV ($) –   
NLP  
solution 

Absolute 
percentage     
difference 
(%) 

BC 96 4 423 0.131 738,669 738,659 0.001 
CS1 74 40 1346 0.197 751,878 751,878 0.00 
CS2 81 6 709 0.232 622,221 633,910 1.90 
CS3 0.9 2 23 0.003 627,742 627,742 0.00 
CS4 102 8 4612 0.006 1,026,914 1,026,918 0.00 

 

In order to investigate possible improvements in solution quality in terms of the NPV, the discrete 
variables obtained by solving the MINLP problem using BONMIN (shown in Table 3) are fixed and 
the resulting NLP problem is solved using IPOPT. This idea stems from the work of Gupta and 
Grossman (2012), in which they sought improvements (increased NPV) to their local MINLP solutions 
after fixing the optimal discrete solutions obtained. Table 4 also summarizes the differences in NPV 
obtained. It was discovered that this technique worked satisfactorily with a 1.9% increment in NPV for 
CS2. However, it resulted in a slightly reduced NPV for the Base Case. We attribute this occurrence to 
the fact that the NLP solver (IPOPT) is not a global solver by design and may have been trapped at a 
locally optimal solution. However, the percentage difference between the NPVs of the MINLP and NLP 
formulations of the base case are negligible.  

Thus far, we have presented, formulated and analysed a unified computational approach which 
combines polynomial-based surrogate models and operational constraints that simultaneously accounts 
for chokes, pipelines and wellbore physics (of different types – NF, GL, ESP) in the same oil field.  
Although a direct comparison of heuristic and deterministic methodologies escapes the scope of this 
study, a summary of Kosmidis et al. (2005) computational evaluation of both methodologies is given 
in Fig. A2 of the Appendix. They realise a 14.1% improvement in oil production compared to the 
heuristic method that is based on choke diameter reduction and the incremental GOR concept. 

5. Conclusions 

In this paper an optimisation framework that simultaneously considers the production behaviours of 
naturally flowing, gas-lifted and ESP-assisted wells is proposed. Simulation and computational analyses 
based on algebraic proxy models were carried out considering a synthetic but practical production 
network. Compared to previous optimisation formulations, this work has implemented a more realistic 
objective function in determining the optimal operating conditions and routing configurations. 
Specifically, the optimal field power requirements for the respective ESPs and the optimal gas injection 
rates are determined.  

Separator handling capacities of the respective gas and liquid phases is a highly influential factor on the 
optimal routing strategy. Considering the combination of several other contributing factors, such as the 
pipeline pressure drop and separator operating pressure, heuristic-based routing methodologies do not 
guarantee an optimal operating configuration. 

Speedy computations of the resulting MINLP problem using robust MINLP algorithms ensures that 
solutions of the optimal routing strategy in a production network can be obtained in real-time. 
Expansion of the applied formulation to larger fields with more wells will likely yield solutions within 
short time periods provided a systematic model parameter update loop in embedded in the formulation. 
Although the time required for proxy model data generation is not included in the analysis, automated 
data generation capabilities are emerging attributes of high-fidelity simulators that can be exploited for 
further computational time reduction. 

The proposed optimisation formulation demonstrates good utilisation of separator capacity for routing 
produced fluids. It is thus useful for production network design purposes, when decisions relating to the 
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size of separation facilities are to be made. Furthermore, its robustness is also illustrated by the similar 
NPV results obtained between the MINLP and NLP formulations (based on discrete solutions of the 
MINLP formulation). 

The adaptability of the proposed formulation to changing operational conditions is also demonstrated 
via 5 different case studies. It was discovered that changing the artificial lift mechanism could result in 
a 39% improvement in the NPV. 

Future investigations could consider the option of routing a well’s fluids to more than one pipeline at a 
time. Furthermore, incorporating piping costs in the NPV objective function is an important extension 
of the current work that is worth investigating. 
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7. Nomenclature 
Dchoke Choke size (in) 

FPSO Floating Production Storage and Offloading 

fESP ESP operating frequency (Hz) 

GOR Gas Oil Ratio (SCF/STB) 

k Permeability (mD) 

MSCF Mega standard cubic feet 

NPV Net Present Value ($) 

ΔP Pressure drop in pipeline (psi) 

PI Well productivity index (STB/day.psi) 

P Pressure (psia) 

Pm  Manifold pressure (psia) 

Ps  Separator pressure (psia) 

Pr Reservoir pressure (psia) 

Pwf Bottomhole flowing pressure (psia) 

Pwh Wellhead pressure (psia) 

CGs Separator gas capacity (MSCF/day) 

CLs Separator liquid capacity (STB/day) 

Qg,inj   GL well gas injection rate (MMSCF/day) 

Ql,ESP     ESP well liquid production rate (STB/day) 

Q,q Flowrates (STB/day or MMSCF/day) 

rop Unit oil price ($/STB)  

rgp Unit gas price ($/MSCF) 

rwp Unit water production cost ($/STB) 

rginj Unit gas injection cost ($/MMSCF) 

rl,ESP Unit ESP liquid operating cost ($/STB) 

Nprod Number of production wells (-) 

Ng,inj Number of gas lift wells (-) 

Nl,ESP Number of ESP-assisted wells (-) 

i Fluid phase index (-) 

m Manifold index (-) 

o Oil phase index (-) 

p Pipeline index (-) 

w Production well index (-) 

wat water phase index (-) 

xw Binary routing variable (-) 

Cbc  Coin-or branch and cut 

CWP Cost of water production ($) 

CQg,inj Cost of gas lift operation ($) 

CQl,ESP Cost of ESP operation ($) 

ESP  Electrical Submersible Pump (-) 

GL Gas lift (-) 

GOR Gas oil ratio (SCF/STB) 

NF Natural flowing (-) 

ROP Revenue from oil production ($) 

RGP Revenue from gas production ($) 

WC Water cut (%) 

TVD True Vertical Depth (ft)
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Appendix 

Model parameters 

The parameters in Table A1 represent the input data to the surface network simulator for accurate fluid 
description through the wells, chokes, flowlines, manifolds, pipelines and separators respectively. 

Table A1: Parameters used in the surface network model 

PVT model Black oil model 
Gas-oil ratio (SCF/STB) 720-800 
Water cut (%) 20-30 
Oil specific gravity (API) 45 
Gas density (lbm/ft3) 0.0507 
Bubble point pressure (psi) 1500 
Pipeline temperature (oF) 100 

 
Proxy models and validation 

The functional form of the proxy models used in this work are shown in Eqs. A1-A4 respectively 

𝑄𝑄𝑜𝑜,𝑁𝑁𝑁𝑁 = 𝛼𝛼0 + 𝛼𝛼1𝑁𝑁𝑤𝑤ℎ + 𝛼𝛼2𝑁𝑁𝑤𝑤ℎ2  (A1) 

𝑄𝑄𝑜𝑜,𝐺𝐺𝐺𝐺 = 𝛽𝛽0 + 𝛽𝛽1𝑁𝑁𝑤𝑤ℎ + 𝛽𝛽2𝑄𝑄𝑔𝑔,𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑁𝑁𝑤𝑤ℎ2 + 𝛽𝛽4𝑄𝑄𝑔𝑔,𝑖𝑖𝑖𝑖𝑖𝑖
2 + 𝛽𝛽5𝑁𝑁𝑤𝑤ℎ𝑄𝑄𝑔𝑔,𝑖𝑖𝑖𝑖𝑖𝑖 (A2) 

𝑄𝑄𝑜𝑜,𝐸𝐸𝐸𝐸𝐸𝐸 = 𝛿𝛿0 + 𝛿𝛿1𝑁𝑁𝑤𝑤ℎ + 𝛿𝛿2𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛿𝛿3𝑁𝑁𝑤𝑤ℎ2 + 𝛿𝛿4𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸2 + 𝛿𝛿5𝑁𝑁𝑤𝑤ℎ𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 (A3) 
𝑁𝑁𝑙𝑙 = 𝜀𝜀0 + 𝜀𝜀1𝑄𝑄𝑙𝑙𝑔𝑔 + 𝜀𝜀2𝑄𝑄𝑙𝑙𝑜𝑜 + 𝜀𝜀3𝑄𝑄𝑙𝑙𝑤𝑤 + 𝜀𝜀4(𝑄𝑄𝑙𝑙𝑔𝑔)2 + 𝜀𝜀5(𝑄𝑄𝑙𝑙𝑜𝑜)2 + 𝜀𝜀6(𝑄𝑄𝑙𝑙𝑤𝑤)2 + 𝜀𝜀7𝑄𝑄𝑙𝑙𝑔𝑔𝑄𝑄𝑙𝑙𝑤𝑤 + 𝜀𝜀8𝑄𝑄𝑙𝑙𝑔𝑔𝑄𝑄𝑙𝑙𝑜𝑜 + 𝜀𝜀9𝑄𝑄𝑙𝑙𝑜𝑜𝑄𝑄𝑙𝑙𝑤𝑤 (A4) 

Where Q represents the flowrate, Pwh, the wellhead pressure, Qg,inj the gas lift injection rate, fESP, the 
ESP frequency. Subscripts o, w, g, represent the oil, water and gas phase and l represents the pipeline.  
Coefficients of the proxy models are α, β, δ, and ε respectively. 

 
Figure A1: Well and pipeline proxy model validation using PIPESIM® simulation data.  
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The performance of the implemented proxy models (Eqs. A1-A4) is shown in Figure A1. For brevity, 
only the proxy models for the gas lift well-3 and pipeline-1 are presented. In performing the validation 
procedure, a mixture of datasets used in the model development phase and simulation datasets outside 
this range is applied (Figs. A1a-b). In Figs. A1c-d, the datasets utilised are entirely outside the data 
range used for the proxy model development. As expected, the proxy model performance with the mixed 
data set is better than that with the entirely different data range (as reflected in the absolute mean errors). 
Furthermore, it can be observed from all the plots, that a critical point is reached when the proxy model 
performance begins to diverge and become inaccurate. This is why an iterative proxy model updating 
procedure is essential and implemented. 

Comparison of heuristic and optimisation methodologies (Kosmidis, 2005) 

The economic benefits of mathematical optimisation when applied to oil producing fields was 
demonstrated by Kosmidis et al. (2005). As reflected in Fig. A2, up to 14 % improvement is obtained. 
The current work builds upon that of Kosmidis et al. (2005) by incorporating novel elements presented 
in Section 2 of this paper.  

 
Figure A2: A quantitative comparison of heuristic and optimisation methods for oil production 

optimisation. 
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