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Abstract .
We analyse the dependence between defaults in peer-to-peer (P2P) lending and credit bu-
reaus. To achieve this aim, we propose a new flexible bivariate regression model suitable
for binary imbalanced samples. We use different copula functions to model the depen-
dence structure between defaults in the two credit markets. We implement the model in
the R package BivGEV and we explore the empirical properties of the proposed fitti ng
procedure by a Monte Carlo study. The application of this proposal to a comprehensive
dataset provided by Lending Club shows a significant level of dependence between the
defaults in P2P and credit bureaus. Finally, we find that our model outperforms the bivari-
ate probit and univariate logit in predicting P2P default, in estimating the Value at Risk
and the Expected Shortfall.

Keywords: Binary imbalanced samples; Copula based model; Credit bureau; Gen-
eralised extreme value regression model; Peer-to-peer lending

1. Introduction

Peer-to-peer (P2P) lending allows direct lending between lenders and borrowers using
a platform that acts as a broker between them, without involving traditional financial
institutions, such as banks. On the platform, borrowers submit their requests for loan
amounts and lenders are able to fund these requests. Each borrower’s request is usu-
ally funded by multiple lenders. Transaction fees are usually charged at origination so
that platforms can make profits. In recent years, the P2P lending market has shown a
substantial increase in popularity (Bachmann et al., 2011; Berger and Gleisner, 2009;
Lin et al., 2017; Milne and Parboteeah, 2016; Wang et al., 2009). According to a Price-
WaterhouseCoopers report (PWC, 2015) in 2014 P2P lending generated approximately
$5.5 billion worth of loans in the US. PwC estimates that the market could reach $150
billion or higher by 2025.
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Matching the supply and demand of funds through an online platform can generate
information asymmetry between lenders and borrowers, as the creditworthiness of bor-
rowers is unknown to lenders. The main consequences of such asymmetric information
can be moral hazard and adverse selection (Stiglitz and Weiss, 1981). High street banks
provide credit only after an extensive check of the borrowers’ financial conditions, usu-
ally employing credit scoring models. This increases the level of trust that lenders have
towards borrowers and is likely to reduce adverse selection and moral hazard. However,
it is more difficult to reproduce this confidence in the online environment as there isn’t
any direct relationship between lenders and borrowers. The main aim of this paper is to
improve the assessment of default risk in P2P lending by gaining a better understanding
of the relationship between the defaults of P2P and credit bureaus.

The last financial crisis has decreased the availability of credit to different kinds of
borrowers in various regions from 2007-2008 for few years. The availability of household
unsecured credit started increasing again only in 2010 in the UK (Bank of England,
2018). In the US, the census shows that the percentage of households holding some
form of debt decreased from 74% in 2000 to 69% in 2011. Also bank lending to firms
declined by about 9% from 2008 to 2011 in the US, where small businesses have been
far more severely affected than large firms with a decline in bank lending of almost 18%
(Cole, 2012). The provision of credit by banks to small and medium enterprises has
been substantially reduced also in the Euro area (ECB, 2018) and in the UK (Zhao and
Jones-Evans, 2016).

As a result of this credit contraction, alternative financial services have been de-
veloped in the financial technology industry (fintech), such as P2P lending platforms.
Before providing credit, such online platforms need to estimate a scoring model that
discriminates between potential good and bad borrowers. To improve the predictive
accuracy of a scoring model for P2P lending, we suggest to estimate the P2P default
probability conditional on a loan being in default or not in credit bureaus. To the best
of our knowledge, this is the first paper that analyses the dependence between P2P and
bank loan defaults and that uses this dependence to improve the predictive accuracy of
a scoring model for P2P lending.

To perform this analysis, we propose a flexible bivariate regression model for binary
imbalanced outcomes. We consider two binary dependent variables, one represents if the
borrower is in default in the P2P online platform and the other represents if the same
borrower is listed as being in default by a credit bureau. A common characteristic of
empirical studies on default risk in both the P2P lending (e.g. Serrano-Cinca et al., 2015)
and the traditional banking market (e.g. Mian and Sufi, 2013) is to obtain a percentage
of bad loans that are substantially lower than that of good loans, so the binary sample
is defined as being imbalanced. Previous studies (Andreeva et al., 2016; Calabrese and
Osmetti, 2013; Wang and Dey, 2010) show in the univariate context that the use of a
symmetric link function, such as the logit or probit link, may not be appropriate for
imbalanced samples. Furthermore, the maximum likelihood estimators of the regression
parameters in a logistic model can be biased if the binary sample is imbalanced (King
and Zeng, 2001).

As the characteristics of bad borrowers are more informative than those of good
borrowers, Calabrese and Osmetti (2013) suggested to use an asymmetric link function
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that assign more importance to the information on defaulted loans. As the aim of a
scoring model is to estimate the probability of default, bad borrowers represent the
right tail of the response curve in a binary regression model. The Generalised Extreme
Value (GEV) distribution is a flexible function used in the literature to analyse the
tail of a distribution (Dey and Yan, 2016). Therefore, we suggest to use the GEV
link function to model the marginal probabilities in a bivariate regression. To study
the dependence between the marginal default probabilities we use a copula approach
(Nelsen, 2006) for its flexibility, analogously to Genest et al. (2013) and Radice et al.
(2016). We call this proposal the Bivariate Generalised Extreme Value model (BivGEV).
We apply the maximum likelihood method to estimate the parameters of the BivGEV
model and we implement it in the R environment using the package BivGEV (see
the supplementary material).

We use the BivGEV model to analyse 18,113 P2P loans from 2010 to 2012 provided
by Lending Club, the biggest US P2P lending platform. There are few recent studies that
analyse the determinants of default in the P2P platforms, for example Guo et al. (2016),
Dorfleitner et al. (2016), Lin et al. (2017), Serrano-Cinca et al. (2015). Knowing if a
borrower has a defaulted payment in the last 7 years, we can first analyse the dependence
between P2P and bank loan defaults. As the information on P2P default is sequential to
that from credit bureaus, P2P platforms usually use univariate logits to build scoring
models that consider as explanatory variable if the borrower has been listed in default
or not in credit bureaus (Lin et al., 2017). Instead, we suggest to discriminate between
good and bad borrowers in the P2P platform using the P2P default probability estimated
conditional on a loan being in default or not in credit bureaus. The empirical analysis
shows that our proposal provides a superior performance in predicting defaults and a
more accurate estimate of the Value at Risk and the Expected Shortfall compared to
those obtained by univariate logits, traditionally used in industry and in academic
research.

The paper is organised as follows. In Section 2, we present the BivGEV model for
binary imbalanced response variables and the estimation procedure. In Section 3 we
perform a Monte Carlo study. In Section 4, we analyse the dependence between
defaults in P2P lending and credit bureaus using data from Lending Club. We show
the best predictive accuracy of our models compared to the models used in industry.
Finally, section 6 is devoted to the concluding remarks.

2. The bivariate generalised extreme value regression for binary imbalanced
responses

2.1. The univariate GEV model for the marginal defaults
We consider a portfolio of n loans, the binary outcomes yi

yi =

{
1 if the borrower i defaults
0 otherwise

and the p covariates xi1, xi2, ..., xip, with i = 1, 2, ..., n. The most used models to
estimate the default probability πi = P (Yi = 1|xi1, xi2, ..., xip) are the logistic and the
probit models. When the binary dependent variable Y is rare, for example in a credit
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portfolio, the logistic and probit models have some drawbacks (King and Zeng, 2001 and
Calabrese and Osmetti, 2013). As a symmetric link function is used in these models,
the response curve approaches zero at the same rate that it approaches one. Instead,
the characteristics of the rare events, represented by the defaulted borrowers yi = 1, are
more informative than those of the non-defaulters yi = 0, so the default probability for
the actual defaults is underestimated (Andreeva et al., 2016 and Calabrese et al., 2016).
Previous studies (Calabrese and Osmetti, 2015 and Calabrese et al., 2016) show these
disadvantages for different default percentages (1%, 2%, 5% and 10%).

To overcome this drawback and to focus the attention on the tail of the response
curve for values close to 1 that represent defaults, we use an asymmetric link function.
Since the Generalised Extreme Value (GEV) random variable is used in the literature
for modelling the tail of a distribution (see Falk et al., 2010 and Kotz and Nadarajah,
2000), Calabrese and Osmetti (2013) suggested its quantile function as the link function
in a Generalised Linear Model (GLM)

[−ln(πi)]
−τ − 1

τ
= x′

iβ with τ ∈ R, (1)

where x′ = (1, x1, .., xp) is the vector of the explanatory variables for the loan i and
β = (β0, β1, ..., βp)

′ is the vector of the constant and the regressor parameters. The
log-log and the complementary log-log link functions are asymmetric link functions used
in the literature (Agresti, 2002) and they represent particular cases of the GEV model.
By applying the inverse of the link function in equation (1), the response curve of the
GEV model results

π(xi;β, τ) = exp
{
−
[
1 + τ(x′

iβ)
]−1/τ

}
. (2)

The shape parameter τ of the GEV distribution controls the tail behaviour. For
different values of the parameter τ , three families of distributions are defined:

• for τ → 0, the GEV distribution is known as the Gumbel class;

• for τ > 0, the GEV distribution is known as Fréchet;

• for τ < 0, the GEV distribution is known as Weibull.

Several studies (Andreeva et al., 2016; Calabrese and Osmetti, 2013 and 2015; Cal-
abrese et al., 2016; Calabrese and Giudici, 2015) show that this model is very flexible
and outperforms the logit and the probit models in predicting defaults. Moreover, if the
sample is imbalanced with a low percentage of y = 1, as in credit scoring models, the
best link function is obtained for τ < 0.

To extend the GEV model to the bivariate case, we use the copula function described
in the following section.

2.2. The copula function
Every bivariate cumulative distribution function (cdf) F (·) can be considered as the
result of two components: two marginal distributions and a dependence structure. A
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bivariate copula function Cλ : I2 → I, with I2 = [0, 1]×[0, 1] and I = [0, 1], describes the
way in which the marginals cdfs F1(·) and F2(·) are linked together. It is the bivariate
cdf of a bivariate random variable (U, V )

Cλ(u, v) = P (U ≤ u, V ≤ v), 0 ≤ u ≤ 1 0 ≤ v ≤ 1 (3)

where the marginal distributions of U and V are uniform over [0, 1] and the copula
parameter λ ∈ Λ describes the intensity of the association between the marginal random
variables U and V .

The Sklar’s theorem (Sklar, 1959) states that there is a function Cλ : I2 → I such
that

FX,Y (x, y) = Cλ(FX(x), FY (y)) (4)

where (X,Y ) is a bivariate random variable with joint cdf FX,Y (x, y) and marginals
cdf FX(x) and FY (y). If the marginals cdf are continuous then the copula is unique.
Otherwise, if FX(x) and FY (y) are not continuous, the copula Cλ(·, ·) is uniquely deter-
mined on RanFX × RanFY . Conversely, if Cλ(·) is a copula and FX(x) and FY (y) are
marginal cdfs, then the FX,Y (x, y) is a cdf.

Analogously, we can define the survival copula function Ĉλ : I2 → I as

Ĉλ(FX(x), F Y (y)) = P (X > x, Y > y) = FX,Y (x, y), (5)

where FX(x) and F Y (y) are the marginal survival cdfs and FX,Y (x, y) is the bivariate
survival cdf. The relationship between the copula and the survival copula is given by
the following equation

Cλ(u, v) = u+ v − 1 + Ĉλ(1− u, 1− v) (6)

We use the Kendall’s Tau coefficient to measure the association between the marginal
cdfs, assuming values over the interval [−1, 1]. We can compute it from the copula
parameter λ as follows

Kendall − Tau = 4

∫

I2

Cλ(u, v)dCλ(u, v)− 1. (7)

Another important aspect of a copula function is the tail dependence, which measures
the association between the marginal cdfs FX(x) and F Y (y) in the tails (Trivedi and
Zimmer, 2007). Particularly, the parameter used to measure the upper tail dependence
is defined as

χu = lim
u→1−

P [Y > F−1
Y (u)|X > F−1

X (u)]. (8)

Similarly, the lower tail dependence parameter is given by

χl = lim
u→0+

P [Y ≤ F−1
Y (u)|X ≤ F−1

X (u)]. (9)

Both the parameters χu and χl assume values over the interval (0, 1] where higher the
value of the parameter, the higher the intensity of the tail dependence.
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Table 1. Some characteristics of the main copula functions
Copula Dependence Tail Dependence Cλ(u, v)

Gaussian radially no asymptotic Φλ(Φ
−1
1 (u),Φ−1

2 (v)) with λ ∈ (−1, 1)
symmetric tail dependence

Clayton asymmetric strong left (lower) max
[
(u−λ + v−λ − 1), 0

]
with λ ∈ [−1,∞

(exchangeable) tail dependence for λ > 0

Gumbel asymmetric strong right (upper) exp
(
−
[
(− ln(u))λ + (− ln(v))λ

]1/λ)
with λ ∈

(exchangeable) tail dependence

Frank radially no asymptotic − 1
λ ln

(
1 + (exp(−λu)−1)(exp(−λv)−1)

(exp(−λ)−1)

)
with λ ∈

symmetric tail dependence

Joe asymmetric strong right (upper) 1−
[
(1− u)λ + (1− v)λ − (1− u)λ(1− v)λ

(exchangeable) tail dependence with λ ∈ [1,∞)

The widely used copula functions are the Gaussian, Clayton, Gumbel, Frank and
Joe copulas, described in Table 1 (see Nelsen (2006) and Joe (1997) for details). The
Gaussian and Frank copulas have radial symmetry. The Gaussian copula is the copula of
the bivariate normal distribution. The parameter −1 < λG < 1 of the Gaussian copula
represents the linear correlation coefficient. Assuming a Gaussian copula, the marginal
probabilities have the same level of dependence (positive or negative) below and above
their mean and there is no higher association among extreme values. On the contrary,
the Clayton, Gumbel and Joe copulas are asymmetric and show tail dependence. The
Clayton copula shows a strong lower tail dependence, where small values of the two
marginal probabilities are more associated. In this case, the intensity of the lower
tail dependence is a function of the copula parameter χl = 2−1/λCL.

The Gumbel copula is asymmetric (exchangeable) with strong right (upper) tail de-
pendence, indicating that high values of the two marginal probabilities are more asso-
ciated. Its parameter λGU ≥ 1 is a measure of positive association and represents the
intensity of the upper tail dependence (χu = 2 − 21/λGU ). Frank copula is a symmetric
copula with weak tail dependence. The Frank copula shows positive dependence for
λF ∈ (0,+∞), negative dependence for λF ∈ (−∞, 0) and independence for λF → 0.
Finally, Joe copula with parameter λJ ≥ 1 shows positive association and upper tail
dependence (χu = 2 − 21/λJ ). Figures 1 and 2 show the contour plots of the copula
functions for different values of λ, corresponding to a Kendall’s Tau coefficient close to
0.2, 0.5 and 0.8.

2.3. The BivGEV model
Let Y = (Y1, Y2) be a binary bivariate response variable which can assume the values
(0, 0); (0, 1); (1, 0); (1, 1). Y1 describes if a loan is in default or not for credit bureaus and
Y2 if the same loan is in default or not on the P2P lending platform. We model the
marginal default probabilities

π1(x;β1, τ1) = P (Y1 = 1|x;β1, τ1) (10)

π2(x;β2, τ2) = P (Y2 = 1|x;β2, τ2) (11)
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Figure 1. Contour plots of Gaussian, Gumbel and Clayton copula for several values of λ.

using the GEV model defined in equation (2).
To analyse the dependence structure between the marginal default probabilities we

use a copula approach for its simplicity and flexibility (Nelsen, 2006 and Fisher, 1997).
Let Cλ be the copula function defined in the equation (3) that describes the dependence
between the default probabilities: π1(x;β1, τ1) and π2(x;β2, τ2). We define the joint
default probability π11(x; δ, τ ) as

π11(x; δ, τ ) = P (Y1 = 1, Y2 = 1|x; δ, τ )

= Cλ(π1(x;β1, τ1), π2(x;β2, τ2)) (12)

= Cλ

(
exp

{
−
[
1 + τ1x

Tβ1)
]−1/τ1

}
, exp

{
−
[
1 + τ2x

Tβ2)
]−1/τ2

})

with δ = (β1,β2, λ) and τ = (τ1, τ2). Therefore, the joint probability of the bivariate
variable is

πy1,y2
(x; δ, τ ) = P (Y1 = y1, Y2 = y2|x; δ, τ )
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Figure 2. Contour plots of Frank and Joe copula for several values of λ.

such that

(Y1, Y2) =





(0, 0) π00(x; δ, τ )
(0, 1) π01(x; δ, τ )
(1, 0) π10(x; δ, τ )
(1, 1) π11(x; δ, τ )

where
π10(x; δ, τ ) = π1(x;β1, τ1)− π11(x; δ, τ ),

π01(x; δ, τ ) = π2(x;β2, τ2)− π11(x; δ, τ ),

π00(x; δ, τ ) = 1− π11(x; δ, τ )− π01(x; δ, τ )− π10(x; δ, τ )

and π11(x; δ, τ ) is defined by equation (12). We so propose the Bivariate GEV (BivGEV)
model. For simplicity, we omit δ, τ , β1, β2 and x from the arguments of the functions.

Each binary dependent variable Y can be represented using a latent variable Y ∗

(Greene, 2012) as follows

Yj =

{
1 if y∗j > 0

0 if y∗j ≤ 0
(13)

for j = 1, 2, where
Y ∗
1 = x′

1β1 + ǫ1

Y ∗
2 = x′

2β2 + ǫ2.

The error terms ǫ1 and ǫ2 of the two equations can be dependent in a bivariate regression
model. Their dependence is described by the survival copula Ĉλ, as the following theorem
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explains the relationship between the model described in equation (12) and its latent
representation in equation (13).

Theorem 2.1. If ǫ1 and ǫ2 are continuous variables with marginal cdf Fǫj (ε) = 1−

H(−ε) for j = 1, 2, where H(ε) = exp{1− (1 + τε)(−1/τ)} is the extreme value cdf, and

their dependence is modelled by the copula Ĉλ such that

P (ǫ1 ≤ ε1, ǫ2 ≤ ε2) = Ĉλ(1−H(−ε1), 1−H(−ε2)),

then the bivariate regression model for (Y1, Y2) is given by the equation (12).

Proof. Let π11 be the joint default probability

π11 = P (Y ∗
1 > 0, Y ∗

2 > 0) = P (ǫ1 > −x′
1β1, ǫ2 > −x′

2β2) =

= 1− P (ǫ1 < −x′
1β1, ǫ2 < −x′

2β2)− P (ǫ1 < −x′
1β1, ǫ2 > −x′

2β2)

− P (ǫ1 > −x′
1β1, ǫ2 < −x′

2β2)

= 1− P (ǫ1 < −x′
1β1, ǫ2 < −x′

2β2)− [P (ǫ1 > −x′
1β1)− π11]− [P (ǫ2 > −x′

2β2)− π11]

Using the survival copula function Ĉ defined in (5), the previous equation becomes

π11 = Ĉλ(Fǫ1(−x′
1β1), Fǫ2(−x′

2β2)) + F ǫ1(−x′
1β1) + F ǫ2(−x′

2β2)− 1

where Fǫj (−x′
jβj) = P (ǫj ≤ −x′

jβj) and F ǫj (−x′
jβj) = P (ǫj > −x′

jβj).
Let u and v be the marginal default probabilities

u = F ǫ1(−x′
1β1) = P (ǫ1 > −x′

1β1) = P (Y ∗
1 > 0) = π1

v = F ǫ2(−x′
2β2) = P (ǫ2 > −x′

2β2) = P (Y ∗
2 > 0) = π2.

Using the equation (6), the joint default probability can be written as

π11 = P (Y1 = 1, Y2 = 1) = Cλ(π1, π2),

that corresponds to the equation (12).

Note that, since the errors ǫ1 and ǫ2 are continuous, the copula Ĉλ between the errors
is uniquely defined for the Sklar theorem.

The BivGEV model proposed in equation (12) is suitable to explain the determinants
of two joint binary events in imbalanced samples. On the one hand, the flexible link
function used in the BivGEV model could accommodate samples with different percent-
ages of default (for example 5% or 1%). On the other hand, a broad class of copula
functions (the most used copulas are described in Table 1) could be used to model the
dependence structure between the marginal default probabilities.

2.4. The estimation procedure
For fixed values of τ = (τ1, τ2) and for a copula C, given a sample of n observations
the BivGEV model is estimated by maximising the complete log-likelihood function
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l(δ, y1, y2) =

n∑

i=1

y1iy2i ln(π11i) + y1i(1− y2i) ln(π10i) + y2i(1− y1i) ln(π01i) (14)

+(1− y1i)(1− y2i) ln(π00i),

where δ = (β1,β2, λ), that is

l(δ, y1, y2) =

n∑

i=1

yi1yi2 ln[Cλ(π1i, π2i)]

+ yi1(1− yi2) ln[π1i − Cλ(π1i, π2i)] + yi2(1− yi1) ln[π2i − Cλ(π1i, π2i)]

+(1− yi1)(1− yi2) ln{1− [π1i + π2i − Cλ(π1i, π2i)]}.

We could estimate jointly the parameters τ and λ,β1,β2 by maximising the equation
(14). Since the support of the joint probability density function depends on the unknown
parameters τ1 and τ2, the estimation process would be difficult and the classical regularity
conditions for maximum likelihood estimation could not be satisfied (see Smith, 1989
for details). Therefore, we fix the values of the parameters τ1, τ2 and we fit few BivGEV
models with different values of τ1 and τ2. Then, we select the model with the highest
predictive accuracy, analogously to Calabrese et al. (2016).

For a fixed copula function, we propose the following procedure to estimate
the BivGEV model and to select the parameters τ1 and τ2:

(a) We specify the BivGEV model:

• We set T different values of (τ1, τ2) taking into account the three distribution
families of the GEV model defined in Section 2.1 for τj → 0, τj > 0 and τj < 0
with j = 1, 2.

• We set the dependence structure of the model choosing a copula
function.

(b) We estimate the vector parameter δ = (β1,β2, λ) for all the T BivGEV
models defined in the step (a) by maximising the equation (14).

(c) We choose the values of the parameters (τ1, τ2) that minimise the MSE+ as follows

MSE+ =
1

n1

n1∑

i=1

(1− πy2|y1,i)
2 (15)

where πy2|y1,i = Pi(Y2 = 1|Y1 = y1) is the conditional probability that a loan is
in default in the P2P lending platform given that it is (y1 = 1) or not (y1 = 0)
reported in default by a credit bureau. n1 is the number of the P2P defaults.
The symbol + in the equation (15) indicates that the MSE is computed only for
P2P defaulted loans, coherently with Andreeva et al. (2016). From the results of
the study on real data shown in Appendix B we obtain that the same values of
(τ1, τ2) minimise the MSE+ for different dependence structure (Gaussian, Clayton,
Gumbel, Frank and Joe copulas).
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We choose a copula function among the alternatives defined in Table 1 to
define a given dependence structure in the model. To choose the best copula
among the provided competitors, as suggested by Zimmer and Trivedi (2006) and
Radice et al. (2016), we apply either the Akaike information Criterion (AIC) or Schwarz
Bayesian Information Criterion (BIC) on the training set. These criteria are based on
the log-likelihood function of the model defined in equation (14) (see Breymann et al.,
2003). In our context:

AIC = 2k − 2l(δ)

BIC = ln(n)k − 2l(δ)

where l(δ) is the maximised log-likelihood function, k is the number of estimated pa-
rameters, and n is the sample size. According to these criteria, the best fitting model
is the one that minimises AIC or BIC. Note that when all rival models have the
same number of parameters, it is equivalent to use the log-likelihood, AIC
or BIC for the model selection (see Panagiotelis et al., 2017).

To obtain stable computations, the Fisher scoring is advisable for simulta-
neous equation estimation methods (Marra and Radice, 2017). Particularly,
we implement the Fisher scoring in the BivGEV R package using a trust region
method based on the Fisher matrix.

To derive the Fisher information matrix, we consider the following derivatives:

ϑπ11
ϑβj

=
ϑCλ

ϑπj

ϑπj
ϑβj

j = 1, 2

ϑπ10
ϑβ1

=

(
1−

ϑCλ

ϑπ1

)
ϑπ1
ϑβ1

ϑπ10
ϑβ2

= −
ϑCλ

ϑπ2

ϑπ2
ϑβ2

ϑπ01
ϑβ2

=

(
1−

ϑCλ

ϑπ2

)
ϑπ2
ϑβ2

ϑπ01
ϑβ1

= −
ϑCλ

ϑπ1

ϑπ1
ϑβ1

ϑπ11
ϑλ

= −
ϑπ10
ϑλ

= −
ϑπ01
ϑλ

=
ϑCλ

ϑλ

The Fisher information matrix is

−E

(
ϑ2l

ϑδϑδT

)
=

ϑp

ϑδ

(
diag(p) +

1

1− π11 − π10 − π01
11T

)
ϑp

ϑ
δT

with δ = (β1,β2, λ), p = (π11, π10, π01) and 1 = (1, 1, 1)T .

3. Simulation study

We perform a Monte Carlo simulation study to explore the empirical prop-
erties of the BivGEV model. All computations are carried out using the
BivGEV package in the R environment available in GitHub.
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The simulation study is based on the following bivariate model

y∗1i = α1 + x1iβ1 + ǫ1i (16)

y∗2i = α2 + x2iβ2 + ǫ2i (17)

where the binary outcomes y1i and y2i are obtained based on the equations
(13).

We generate the values for the covariate x1 and x2 from a normal dis-
tribution N(1.2, 0.25). The parameters of interest are set as follows: in the
equation (16) α1=-1.7 and β1=0.4, while in the equation (17) α2=-2.2 and
β2=0.8. We choose these parameter values in order to obtain imbalanced
proportions of 1s and 0s for the dependent variables Y1 and Y2 (around 6%
of ones in both the equations). Following the results of Theorem (2.1), we
generate the error terms ǫ1 and ǫ2 in the equations (16) and (17) from the
two cumulative distribution functions Fǫj (ε) = 1−H(−ε) defined in Theorem

2.1, where H(ε) = exp{1− (1 + τε)(−1/τ)} with parameters τ1 = τ2 = −0.3.
We choose the Gaussian and the survival Gumbel copula† to generate the

dependence structure between the error terms ǫ1 and ǫ2. We consider the
values for the association parameter λ that correspond to a Kendall’s Tau
coefficient of 0.2, 0.5 and 0.8, respectively, as explained in Section 2.2. We
use the function BiCopSim(n, family, lambda) implemented in the R package
VineCopula (Nagler et al., 2017) to represent the dependence structure. We
consider different sample sizes n = 1, 000; 3, 000; 5, 000 and 1, 000 replications for
each combination of parameter settings.

We analyse the distribution of the estimates of the parameters β1 and β2,
defined in the equations (16) and (17), and the Kendall’s Tau coefficient de-
fined in equation (7). As Table 1 shows, the copula parameter λ is defined
on different intervals for different copula function. To make the results com-
parable between different copulas, we instead analyse the estimates of the
Kendall’s Tau coefficient.

Figure 3 and Figure 4 present the boxplots of the estimates of the pa-
rameters β1, β2 and of the Kendall’s Tau coefficient for three sample sizes
n = 1, 000; 3, 000 and 5, 000. We show the results only for the Gaussian copula
in Figure 3 and for the Gumbel copula in Figure 4 as they are coherent with
those obtained for other copula families‡.

For both the copula functions and for all the parameters, as the sample
size n increases, the estimates converge to their true values represented by
the horizontal line in Figure 3 and Figure 4. In addition, the standard
deviations of the parameter estimators become smaller for larger n. As the
Kendall’s Tau coefficient increases, the precision of the estimates improves.
This means that β1 and β2 are more accurately estimated as the association
between the dependent variables Y1 and Y2 increases. Even if this result

†From the Theorem (2.1) we obtain that a survival Gumbel copula between the error terms is
equivalent to a Gumbel copula between the marginal default probabilities.
‡The simulation results for other copula functions are available upon request from the authors.
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BivGEV: Gaussian Copula

Figure 3. Boxplots of the estimates of β1, β2 and of the Kendall’s Tau coefficient. Data are
generated from a Gaussian copula with different values of Kendall’s Tau coefficient = 0.2, 0.5, 0.8
and different sample sizes n = 1, 000; 3, 000; 5, 000. The number of Monte Carlo replications is
1, 000.
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Figure 4. Boxplots of the estimates of β1, β2 and of the Kendall’s Tau coefficient. Data are
generated from a Gumbel copula with different values of Kendall’s Tau coefficient = 0.2, 0.5, 0.8
and different sample sizes n = 1, 000; 3, 000; 5, 000. The number of Monte Carlo replications is
1, 000.
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Figure 5. Quarterly time series of the percentage of defaults for the credit bureau (CB) and for
P2P loans provided by Lending Club.

might appear counter-intuitive, a lower level of association between Y1 and
Y2 suggests that the precision in the parameter estimates is lower. In other
terms, if the association between the dependent variables Y1 and Y2 is high,
then this can be easily detected by a bivariate model that estimates jointly all
the parameters. Similar results have been obtained by Chib and Greenberg
(2007), Marra and Radice (2011).

4. Empirical analysis

4.1. Data
To improve lender screening and monitoring (Miller, 2015), some P2P lending platforms
make the historical information of the loans that have been funded publicly available,
jointly with the characteristics of the loans and their status (default or non-default). For
this analysis, we use data provided by the biggest US P2P lending platform, Lending
Club§, who issued in total $29 billion in loans as of the second quarter of 2017¶. At the
beginning, we consider all the loans funded by Lending Club. We choose only 60 months
loans to have a time horizon that is sufficiently long.

As data starts from 2010, we remove all loans that are still outstanding. This leaves
a sample of 18,113 loans, from the second quarter of 2010 to the second quarter of 2012.
We report in Figure 5 the time series of the default rates for the P2P platform and for
the credit bureaus for each quarter.

To better understand the relationship between being in default for a credit bureau
and for a P2P lending platform, we propose to use a bivariate regression model whose
dependent variables are:

§The data are available in https://www.lendingclub.com/info/download-data.action
¶https://www.lendingclub.com/info/statistics.action
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• Credit bureau default (Y1): a binary variable that takes the value of 1 if the bor-
rower has one or more public record bankruptcies and 0 otherwise.

• P2P default (Y2): a binary variable that takes the value of 1 if the borrower at the
end of the contractual terms is in the status of default or charged-off in the Lending
Club platform, and 0 otherwise.

Given the information provided by Lending Club, the predictors of the scoring model
for the credit bureau default and for the P2P default are:

• Loan purpose: We classify the loan purposes as follows: debt consolidation; credit
card; car financing; home improvement; major purchase (including others); per-
sonal (including medical, moving, vacation, wedding, educational) and small busi-
ness. We use 6 dummy variables to represent these options.

• Housing situation: The home ownership status is information provided by the bor-
rower during registration or that it is obtained from the credit report. A borrower is
classified as having a mortgage, being a renter, owning their home/other situation
using two dummy variables.

• Interest rate: Interest Rate on the loan funded.

• Annual income: The self-reported annual income in US dollars provided by the
borrower.

• Revolving utilisation: measures the revolving line utilisation rate.

• DTI : The ratio of a borrower’s total monthly debt payments (excluding mortgage
and the requested Lending Club loan) to a borrower’s self-reported monthly income.

• Credit history length: Number of years since a borrower first opened a credit line.

• Loan amount to annual income: The ratio between the loan amount and the annual
income.

• Spatial variables defined using the first digit of the ZIP Code: This feature is rep-
resented using nine binary variables. ‖

To avoid multicollinearity, we consider only the predictor variables with a Variance
Inflation Factor (VIF) lower than 5. As the VIF is about the explanatory variables, it
can be used also for binary outcomes, as previous publication show (e.g. Allison, 2012:
pages 60-63; Calabrese and Osmetti, 2013; Calabrese et al., 2015, Andreeva et al., 2016).

4.2. Estimation results
In this section we present the main results from the application of the BivGEV model
to credit scoring in P2P lending market. This includes the model selection and estima-
tion, the interpretation of the parameter estimates and the comparison of the predictive
accuracy with those of other models traditionally used in the industry and in academic

‖The adopted classification is reported in Appendix A.
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Table 2. Copula parameter estimates with asymptotic confidence intervals and the corresponding values of the Kendall’s Tau coefficient
Copula Copula parameter λ Confidence intervals Kendall’s Tau Confidence intervals
Gaussian 0.133 (0.087; 0.174) 0.085 (0.056; 0.111)
Clayton 0.091 (0.055; 0.147) 0.044 (0.027; 0.069)
Gumbel 1.140 (1.100; 1.200) 0.122 (0.088; 0.169)
Frank 0.983 (0.530; 1.410) 0.108 (0.059; 0.154)
Joe 1.450 (1.270; 1.730) 0.201 (0.132; 0.289)

research. We fit the BivGEV model proposed in Section 2.3 on the data from Lending
Club described in Section 4.1. The sample size is 18,113. The percentage of defaulted
P2P loans is 25.18% and the percentage of credit bureau defaults is 4.17%.

To estimate the BivGEV model we apply the procedure described in Section 2.4.
First, we split the sample in a training sample (80% of the observations) and a control
sample (20%). Then, we choose the values for the parameters τ1 and τ2 of the GEV
marginal models. As explained in Section 2.1, when the sample is imbalanced with low
percentage of defaults (y = 1), the best link function to predict defaults is obtained
for τ < 0 (Weibull class). To check this evidence in our context, we estimate the
BivGEV model for different values of τ1 and τ2 in the range [−0.85; 0.35] and different
copula functions (Gaussian, Gumbel, Clayton, Frank and Joe). We choose the range
[−0.85; 0.35] for the parameters τ1 and τ2 because Tables 8-12 in Appendix B
show that the performances of the BivGEV model are worse for values of τ1
and τ2 close to −0.85 and 0.35. We estimate all the BivGEV models by using
the R package BivGEV publicly available in GitHub.∗∗

As described in Section 2.4, for each copula function, we select the values of τ1 and
τ2 that minimise the MSE+ computed on the training sample. In this way we select
the model with the best predictive accuracy in predicting defaults (e.g., Andreeva et
al., 2016, Calabrese et al., 2016, and Calabrese and Osmetti, 2013). Tables 8-12 in
Appendix B report an extract of the MSE+ obtained for different values of τ1 and τ2
and for each copula function††. We observe that the model with the best predictive
accuracy is obtained for τ1 = −0.75 and τ2 = −0.15 for each copula function.

Chosen the values of τ1 = −0.75 and τ2 = −0.15, we estimate the parameter λ of the
copula functions by maximising the equation (14). We also compute the Kendall’s
Tau coefficient using the equation (7) and the asymptotic confidence intervals of these
parameters. We report the results in Table 2.

The confidence intervals for the copula parameters and for the Kendall’s Tau coef-
ficient are obtained by Bayesian posterior simulation following the procedure described
in Radice et al. (2016) pag. 988.

The estimate of the parameter λ for the Gaussian copula is close to zero (0.133),
describing low dependence (linear correlation) between the marginal probabilities. This
result can be due to the type of dependence structure between the marginal probabilities
in a Gaussian copula that can be only linear and not in the tails. To analyse tail
dependence, we consider the Clayton, the Gumbel and the Joe copulas. In Table 2, we

∗∗https : //github.com/BivGEV/BivGEV . In the supplementary material, we provide the R
code to guide a researcher or practitioner in the estimation of a BivGEV model.
††The other results are available upon request.
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Table 3. Model selection measures of the BivGEV models for different
copula families. In bold the selected model

Copula AIC BIC
Gaussian 20,229.15 20,441.43
Clayton 20,230.27 20,442.54
Gumbel 20,226.41 20,438.68
Frank 20,226.47 20,438.71
Joe 20,226.57 20,438.85

obtain that the copula parameter λ is 0.091 and the Kendall’s Tau coefficient is 0.044
for the Clayton copula. The latter value indicates a low level of association between
the marginal default probabilities. We compute the lower tail dependence parameter for
the Clayton copula using equation (8) and we obtain a value close to zero (χu ≃ 0).
Therefore, the dependence between lower values of default probabilities for the P2P
platform and for credit bureaus is negligible. Both the Gumbel and the Joe copulas
show upper tail dependence between the marginal distributions. The Kendall’s Tau
coefficient for the Gumbel copula is lower (0.122) than that of the Joe copula (0.201).
The upper tail dependence parameters for the Gumbel copula (χu=0.163) and for the
Joe copula (χu = 0.387) show, respectively, a low and a medium intensity of association
between the two default probabilities.

To choose the copula with the best fit among the provided alternatives,
we consider two main criteria. As the copula models are non-nested, we use the Akaike
Information Criterion and the Bayesian information criterion (see Section 2.4). We
report the results in Table 4.2.

We find that the copula that best fits the data according to both the AIC and the BIC
is the Gumbel copula. This result is in line with the expectations of obtaining an upper
tail dependence between the two default probabilities, coherently with the substantial
empirical evidence for interaction between default events. Dependence between defaults
stems from different sources. Common macroeconomic factors such changes in economic
growth can affect different borrowers. This type of dependence between defaults has
been modelled both in reduced models (Duffie and Singleton, 2003; Lando, 2004) and
structural models (Vasicek, 2002) and included in the Basel II Accord (BCBS, 2006).
Moreover, dependence between defaults could be caused by direct economic links between
borrowers. These direct links lead to default contagion and counterparty risk, which has
generated a lot of interest in the recent literature (Calabrese et al., 2017).

We report in Table 4 the parameter estimates of the BivGEV model for the Gumbel
copula applied to the training sample of 14,490 loans. We compare them with those
obtained from an univariate logit model where the dependent variable is default or non-
default in the P2P lending platform. In the first Logit model (Logit1 model) we
use the same explanatory variables of the BivGEV model. In the second
Logit model (Logit2 model), we add whether the loan has been classified in
default or not by a credit bureau as an additional explanatory variable. We
consider the Logit1 and Logit2 models because they are commonly used in
retail credit risk management (Baesens et al., 2016; Lin et al., 2013; Thomas
et al., 2017). Initially, we include all the independent variables and then
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Table 4. Parameter estimates for the BivGEV model with Gumbel copula and for the univariate Logit2 model. ∗p − value ≤ 0.1;
∗∗p− value ≤ 0.05

BivGEV model Logit2 model
Eq. 1: credit bureau default Eq. 2: P2P default Eq. P2P default

Variables Estimate Std. Error P-value Estimate Std. Error P-value Estimate Std. Error P-value
Loan Purpose
Credit card −0.007∗ 0.037 0.059 −0.131∗∗ 0.067 0.000
Car financing −0.243∗∗ 0.062 0.000 −0.512∗∗ 0.130 0.000
House −0.077∗ 0.040 0.084 −0.146∗ 0.075 0.051
Major purchase −0.387∗∗ 0.108 0.000
Small business 0.421∗∗ 0.050 0.000 0.705∗∗ 0.081 0.000

Housing situation
Rent −0.282∗∗ 0.067 0.000
Own 0.083∗ 0.043 0.057 0.136∗ 0.075 0.071

Borrower assessment
Interest rate 0.110∗∗ 0.009 0.000 0.058∗∗ 0.004 0.000 0.099∗∗ 0.006 0.000

Borrower characteristics
ln(Annual income) −0.655∗∗ 0.065 0.000 −0.327∗∗ 0.027 0.000 −0.559∗∗ 0.049 0.000

Credit history
Revolving utilisation 0.002∗∗ 0.001 0.000 0.003∗∗ 0.001 0.000
Credit history length 0.024∗∗ 0.005 0.000 0.007∗∗ 0.002 0.000 0.011∗∗ 0.003 0.001

Borrower indebtedness
Loan amount to annual income −2.307∗∗ 0.280 0.000 0.286∗∗ 0.099 0.004 0.602∗∗ 0.173 0.000

Spatial variables
Zone 0 −0.269∗∗ 0.115 0.019
Zone 1
Zone 2 −0.061∗ 0.036 0.009 −0.108∗∗ 0.064 0.009
Zone 3
Zone 4 0.327∗∗ 0.099 0.001
Zone 5
Zone 6 −0.139∗∗ 0.046 0.000 −0.245∗∗ 0.084 0.003
Zone 7 −0.067∗ 0.038 0.007 −0.137∗ 0.070 0.051
Zone 8
Zone 9
Credit bureau default 0.467∗∗ 0.089 0.000

Intercept 3.780∗∗ 0.739 0.000 2.115∗∗ 0.297 0.000 3.037∗∗ 0.526 0.000
Link function GEV GEV Logit
τ1 -0.75
τ2 -0.15
Number of observations 14,490 14,490

we remove those that are not statistically significant at a confidence level
α = 0.10.

Table 4 shows that the determinants of the default in P2P lending and for credit
bureau are different. For example, most of the spatial dummy variables are significant
for P2P default but not for default reported by credit bureaus. For housing, being a
renter is an important predictor for the credit bureau default. On the other hand, the
probability of P2P default is lower for home owners, in line with expectations and with
results obtained by Serrano-Cinca et al. (2015) on data provided by Lending Club.

It is interesting that the ratio between loan amount and annual income has a nega-
tive relationship with credit bureau default and a positive one with P2P default. From
the first result, we could deduce that borrowers that are reported in default by a credit
bureau usually apply for lower loan amounts to annual income than in the P2P plat-
form. However, higher loan amounts to income in the P2P platform show higher default
probabilities, in agreement with Serrano-Cinca et al. (2015). The parameter estimates
for P2P default obtained using the BivGEV and the univariate Logit2 model are similar.
As expected, in the second model being in credit bureau default is a highly signifi-
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cant explanatory variable that is positively associated to the probability of P2P default.
Analogously to most of the studies on P2P lending (e.g. Dorfleitner et al., 2016; Freed-
man and Jin, 2008; Serrano-Cinca et al., 2015), we find that the interest rate being
charged is a highly significant predictor of P2P default. Also, annual income and re-
volving utilisation are important for explaining P2P default, as Emekter et al. (2015)
and Serrano-Cinca et al. (2015) have previously shown. If we focus our attention on
the loan purpose, we obtain interesting results in accordance with Serrano-Cinca et al.
(2015): loans for small businesses show a positive relationship with P2P default. This
is negative for credit card, car financing and house loans.

4.3. Predictive accuracy
In this section, we compare the BivGEV model with the bivariate probit proposed by
Winkelmann (2011) using the Gumbel copula with two univariate logit models one in-
cludes the dummy variable credit bureau default as explanatory variable (Logit2)
and the other one no (Logit1). Moreover, since we are working with imbalanced sam-
ple, we apply the SMOTE approach to Logit1 and Logit2 models. The SMOTE (Chawla
et al., 2002; Baesens et al., 2016) is a synthetic minority over-sampling technique that
deals with the imbalanced sample by producing an adjusted dependent variable to be
used in the credit scoring model‡‡. In order to consider well-calibrated probabilities
of default compliant to Basel III (Basel Committee on Banking Supervision, 2015), we
apply the adjust of the posterior default probabilities proposed in Saerens et al. (2002)
and Baesens et al. (2016).

To fit the bivariate probit we use the R package GJRM (Marra and Radice, 2017),
while to apply the SMOTE technique we use the R package DMwR (Torgo, 2013).

As previously mentioned, to avoid overfitting we compute the measures of predictive
accuracy on an out-of-sample of 20% of observations randomly drawn from the data set.
First, we estimate the conditional probability πy2|y1,i = Pi(Y2 = 1|Y1 = y1) that a loan
is in default in the P2P lending platform, given that it is reported in default (y1 = 1) or
not (y1 = 0) by a credit bureau. For assessing the predictive accuracy, we compute the
MSE+, the Area Under the Curve (AUC), the H-measure with a severity ratio of 0.01
(Hand, 2009 and 2010) using πy2|y1,i for the bivariate models and πy2i

for the univariate
models. We report the values of MSE+, the AUC and the H-measure in Table 5.

The lower the values of the MSE+ or the higher the values of the AUC and the H-
measure, the more accurate the model correctly classifying defaults and non-defaults in
the P2P lending platform.

Firstly, we compare the accuracy measures of Logit1, Logit2, BivProbit and BivGev
models. As expected, the model with the worst performance is the univariate Logit
model without credit bureau default as an explanatory variable (Logit1). Most of the
performance measures in Table 5 show that the approach suggested in this paper of
using a BivGEV model outperforms the univariate Logit1 commonly used in industry.
Coherently with the results obtained in the univariate framework (Andreeva et al., 2016;

‡‡For lack of space we did not report the parameter estimates obtained using the SMOTE
technique. They are available upon authors’ request. However, we highlight that some of the
estimates are incoherent with those obtained in Table 4 and with the expectations
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Table 5. Predictive accuracy measures for different models. In bold the selected model
Model MSE+ AUC H0.01

Logit1 0.51399 0.64641 0.00265
Logit2 0.51254 0.64836 0.00264
SMOTE + Logit1 0.52381 0.63280 0.00428
SMOTE + Logit2 0.52200 0.63396 0.00427
BivProbit(Gumbel) 0.51220 0.64886 0.00306
BivGEV(Gumbel) 0.51196 0.64902 0.00495

Calabrese et al., 2016; Calabrese and Osmetti, 2013 and 2015), using an asymmetric
link function improves the predictive accuracy of the scoring model, as can be seen
by comparing the results of the BivGEV and the bivariate probit model. Finally, we
observe that the BivGev model is more accurate in forecasting defaults than the two
Logit models (SMOTE+Logit1 and SMOTE+Logit2) when a SMOTE approach
is applied.

5. Estimating the loss for the P2P lending platform

In this section, we assess the impact of using different scoring models for P2P loans on
the Value at Risk (VaR). The VaR at the confidence level (1−α) is the level of losses on
the portfolio that will be exceeded (1 − α)% of time on average (Thomas et al., 2017).
Compliant to Basel III and IFRS 9, we compute the Expected Credit Loss as

EL = PD × LGD × EAD (18)

where

• PD is the probability of default estimated using a regression model analysed in
section 3.3;

• EAD is the Exposure At Default;

• LGD is the Loss Given Default computed as 1−(amount recovered - recovery
fee)/EAD.

To compute the EAD and the LGD we use the Lending Club data. As the LGD
is zero for non-defaulted P2P loans, the EL for them is also zero. For this reason, we
compute the EL only on P2P defaults using the PDs obtained from Logit1, Logit2,
SMOTE+Logit1, SMOTE+Logit2, BivProbit and BivGEV models with a Gumbel
copula. The VaR at different confidence levels are reported in Table 6.

The confidence levels from 95% to 99.9% correspond to the usual intervals considered
by banks. The main result is that, for all the confidence levels except 95%, the VaR
estimates of the various models satisfy the same ordering: SMOTE + Logit1 always
underestimates the credit VaR of Logit2 which, in turn, underestimates the VaR obtained
Logit1 which underestimates the VaR obtained using a bivariate model. Particularly,
the BivGEV model proposed always shows the highest VaR, excluding 95%.

Given the disadvantages of the VaR (Saunders and Allen, 2010), we also compute
the Expected Shortfall (Acerbi and Tasche, 2002). The Expected Shortfall (ES) at the
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Table 6. Value at Risk of the (expected credit) loss distribution for different confidence levels
Model 95th percentile 97th percentile 99th percentile 99.9th percentile
Logit1 8,843 9,681 12,551 15,726
Logit2 8,935 9,659 12,538 15,618
SMOTE + Logit1 9,042 9,563 12,358 15,237
SMOTE + Logit2 9,084 9,689 12,580 15,990
BivProbit(Gumbel) 8,944 9,738 12,618 16,120
BivGEV(Gumbel) 8,966 9,756 12,714 16,320

Table 7. Expected Shortfall of the (expected credit) loss distribution for different confidence levels
Model 95th percentile 97th percentile 99th percentile 99.9th percentile
Logit1 10,849 11,880 14,493 16,229
Logit2 10,963 12,032 14,669 16,698
SMOTE + Logit1 10,958 11,995 14,108 16,620
SMOTE + Logit2 10,997 12,066 14,253 16,558
BivProbit(Gumbel) 10,990 12,069 14,698 17,021
BivGEV(Gumbel) 11,054 12,147 14,814 17,125

confidence level (1 − α) is the average of all losses which are greater or equal than the
VaR at the confidence level (1 − α). The results reported in Table 7 show that the ES
estimates of the bivariate models are higher than the estimates of the univariate models
for all the confidence levels except 95%. In particular, the BivGEV model always shows
the highest ES. As the LGD and EAD in equation (18) show the same values for the
six models in Table 6 and 7, we can deduce that the BivGEV model overcomes the
drawback of the univariate logit and bivariate probit models in underestimating the
probability of default for the actual defaults.

6. Concluding remarks

We suggested a scoring model for P2P lending. Firstly, we proposed to use a bivariate
approach that jointly modelled the defaults on the P2P platform and credit bureau de-
faults. Secondly, we introduced the BivGEV model based on an asymmetric link function
defined using the quantile function of a GEV random variable. The model is imple-
mented in the R package BivGEV available in GitHub. In the supplementary
material of this paper, we report the R code that can be useful for researchers
and practitioners who are interested in fitting the BivGEV model. Monte
Carlo experiments were conducted to evaluate the asymptotic properties of
the BivGEV estimates. We applied our proposal and its competitors to data on
18,113 P2P loans provided by Lending Club from 2010 to 2012. The main advantage
of the BivGEV model lies in its capacity to better forecasting P2P defaulted loans. In
the empirical analysis we showed that the BivGEV model provides more accurate esti-
mates of the VaR and the Expected Shortfall. This means that P2P platforms, based
on our proposal, could improve their internal assessment. Future research might look
at the possibility of applying a Bayesian approach to estimate all the parameters of the
BivGEV model. Another possible extension could be to use a regression splines in the
BivGEV model to flexibly estimate the covariate effects (Radice et al. 2016). Finally,
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it would be interesting to apply the BivGEV model on two simultaneous
definitions of default, instead of having one definition that is sequential to
the other one as it occurs in Lending Club data.
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7. Appendix A

The United States are classified as follows:
Area 0 : Connecticut (CT), Massachusetts (MA), Maine (ME), New Hampshire (NH),
New Jersey (NJ), New York (NY, Fishers Island only), Rhode Island (RI), Vermont
(VT), Virgin Islands (VI);
Zone 1 : Delaware (DE), New York (NY), Pennsylvania (PA);
Zone 2 : District of Columbia (DC), Maryland (MD), North Carolina (NC), South Car-
olina (SC), Virginia (VA), West Virginia (WV);
Zone 3 : Alabama (AL), Florida (FL), Georgia (GA), Mississippi (MS), Tennessee (TN);
Zone 4 : Indiana (IN), Kentucky (KY), Michigan (MI), Ohio (OH);
Zone 5 : Iowa (IA), Minnesota (MN), Montana (MT), North Dakota (ND), South Dakota
(SD), Wisconsin (WI);
Zone 6 : Illinois (IL), Kansas (KS), Missouri (MO), Nebraska (NE);
Zone 7 : Arkansas (AR), Louisiana (LA), Oklahoma (OK), Texas (TX);
Zone 8 : Arizona (AZ), Colorado (CO), Idaho (ID), New Mexico (NM), Nevada (NV),
Utah (UT), Wyoming (WY);
Zone 9 : Alaska (AK), California (CA), Hawaii (HI), Marshall Islands (MH), Oregon
(OR), Palau (PW), Washington (WA).
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Table 8. Predictive accuracy measures and model selection measures of the BivGEV models with Gaussian copula for diff
values of (τ1, τ2). In bold the selected model

Credit bureau default Default P2P Predictive Accuracy Model selection measures
τ1 τ2 MSE+ AIC BIC

−0.75 −0.85 0.50398 20,246.84 20,459.11
−0.75 −0.75 0.50346 20,242.60 20,454.88
−0.75 −0.65 0.50303 20,238.98 20,451.25
−0.75 −0.55 0.50269 20,235.93 20,448.20
−0.75 −0.45 0.50242 20,233.44 20,445.71
−0.75 −0.35 0.50224 20,231.49 20,443.76
−0.75 −0.25 0.50212 20,230.07 20,442.34
-0.75 -0.15 0.50208 20,229.15 20,441.43
−0.75 −0.05 0.50210 20,228.74 20,441.02
−0.75 +0.05 0.50219 20,228.83 20,441.10
−0.75 +0.15 0.50234 20,229.40 20,441.67
−0.75 +0.25 0.50256 20,230.45 20,442.72
−0.75 +0.35 0.50284 20,231.98 20,444.26

8. Appendix B

We conduct a study on the BivGEV model selection following the procedure defined in
Section 2.4. We consider the training set and the control set described in Section 4.1.
Tables 8-12 report some results of the MSE+ and the AIC and BIC calculated on the
training sample. We consider several BivGEV models with 5 different copula functions
(Gaussian, Gumbel, Clayton , Frank, Joe) and different combination of the values of
τ1 and τ2 in the range [−0.85; 0.35]. The results are obtained by using the R package
BivGEV.
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Table 9. Predictive accuracy measures and model selection measures of the BivGEV models with Clayton copula for different
values of (τ1, τ2). In bold the selected model

Credit bureau default Default P2P Predictive Accuracy Model selection measures
τ1 τ2 MSE+ AIC BIC

−0.75 −0.85 0.50411 20,248.06 20,460.33
−0.75 −0.75 0.50359 20,243.81 20,456.09
−0.75 −0.65 0.50316 20,240.17 20,452.45
−0.75 −0.55 0.50282 20,237.11 20,449.38
−0.75 −0.45 0.50255 20,234.61 20,446.88
−0.75 −0.35 0.50237 20,232.64 20,444.91
−0.75 −0.25 0.50225 20,231.20 20,443.47
-0.75 -0.15 0.50220 20,230.27 20,442.54
−0.75 −0.05 0.50223 20,229.84 20,442.11
−0.75 +0.05 0.50231 20,229.90 20,442.17
−0.75 +0.15 0.50247 20,230.44 20,442.72
−0.75 +0.25 0.50268 20,231.47 20,443.75
−0.75 +0.35 0.50296 20,232.98 20,445.25

Table 10. Predictive accuracy measures and model selection measures of the BivGEV models with Gumbel copula for different
values of (τ1, τ2). In bold the selected model

Credit bureau default Default P2P Predictive Accuracy Model selection measures
τ1 τ2 MSE+ AIC BIC

−0.75 −0.85 0.50396 20,244.06 20,456.33
−0.75 −0.75 0.50344 20,239.83 20,452.10
−0.75 −0.65 0.50301 20,236.21 20,448.48
−0.75 −0.55 0.50267 20,233.16 20,445.44
−0.75 −0.45 0.50241 20,230.68 20,442.95
−0.75 −0.35 0.50222 20,228.74 20,441.01
−0.75 −0.25 0.50211 20,227.32 20,439.59
-0.75 -0.15 0.50203 20,226.41 20,438.68
−0.75 −0.05 0.50209 20,226.01 20,438.28
−0.75 +0.05 0.50218 20,226.10 20,438.37
−0.75 +0.15 0.50233 20,226.67 20,438.95
−0.75 +0.25 0.50255 20,227.73 20,440.01
−0.75 +0.35 0.50283 20,229.27 20,441.55
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Table 11. Predictive accuracy measures and model selection measures of the BivGEV models with Frank copula for diff
values of (τ1, τ2). In bold the selected model

Credit bureau default Default P2P Predictive Accuracy Model selection measures
τ1 τ2 MSE+ AIC BIC

−0.75 −0.85 0.50394 20,243.99 20,456.26
−0.75 −0.75 0.50342 20,239.76 20,452.04
−0.75 −0.65 0.50299 20,236.15 20,448.42
−0.75 −0.55 0.50265 20,233.11 20,445.38
−0.75 −0.45 0.50239 20,230.64 20,442.91
−0.75 −0.35 0.50220 20,228.70 20,440.98
−0.75 −0.25 0.50209 20,227.29 20,439.57
-0.75 -0.15 0.50204 20,226.47 20,438.71
−0.75 −0.05 0.50207 20,226.00 20,438.28
−0.75 +0.05 0.50216 20,226.10 20,438.38
−0.75 +0.15 0.50231 20,226.69 20,438.96
−0.75 +0.25 0.50253 20,227.76 20,440.03
−0.75 +0.35 0.50281 20,229.31 20,441.58

Table 12. Predictive accuracy measures and model selection measures of the BivGEV models with Joe copula for different
of (τ1, τ2). In bold the selected model

Credit bureau default Default P2P Predictive Accuracy Model selection measures
τ1 τ2 MSE+ AIC BIC

−0.75 −0.85 0.50393 20,244.03 20,456.3
−0.75 −0.75 0.50342 20,239.85 20,452.1
−0.75 −0.65 0.50299 20,236.26 20,448.5
−0.75 −0.55 0.50265 20,233.24 20,445.5
−0.75 −0.45 0.50239 20,230.78 20,443.1
−0.75 −0.35 0.50221 20,228.86 20,441.1
−0.75 −0.25 0.50209 20,227.46 20,439.7
-0.75 -0.15 0.50205 20,226.57 20,438.8
−0.75 −0.05 0.50207 20,226.19 20,438.5
−0.75 +0.05 0.50216 20,226.30 20,438.6
−0.75 +0.15 0.50232 20,226.89 20,439.2
−0.75 +0.25 0.50254 20,227.97 20,440.2
−0.75 +0.35 0.50282 20,229.53 20,441.8


