

Queensland University of Technology Brisbane Australia

This is the author's version of a work that was submitted/accepted for publication in the following source:

Rani, Rozina A., Zoolfakar, Ahmad Sabirin, O'Mullane, Anthony P., Austin, Mike, & Kalantar-zadeh, Kourosh (2014) Thin films and nanostructures of niobium pentoxide : fundamental properties, synthesis methods and applications. *Journal of Materials Chemistry A*, *2*(38), pp. 15683-15703.

This file was downloaded from: http://eprints.qut.edu.au/78377/

© Copyright 2014 The Royal Society of Chemistry

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1039/C4TA02561J

Thin Films and Nanostructures of Niobium Pentoxide: Fundamental Properties, Synthesis Methods and Applications

Rozina Abdul Rani,^{*a**} Ahmad Sabirin Zoolfakar,^{*a,b*} Anthony P. O'Mullane,^{*c*} Michael W. Austin^{*a*} and Kourosh Kalantar-zadeh^{*a**},

As one of the transition metal oxides, niobium pentoxide (Nb_2O_5) offers a broad variety of properties that make it a potentially useful and highly applicable material in many different areas. In comparison to many other transition metal oxides, Nb_2O_5 has received relatively little attention, which presents a significant opportunity for future investigations aimed at fundamentally understanding this material and finding new and interesting application for it. In this article, a general overview of Nb_2O_5 is presented which focuses on its fundamental properties, synthesis methods and recent applications, along with a discussion on future research directions relevant to this material.

1.0 Introduction

Niobium pentoxide (Nb₂O₅) is a metal oxide with great potential but to date this has yet to be fully realized. Interest in Nb₂O₅ can be dated back to the early 1940s when the polymorphs of Nb₂O₅ were first studied^{1, 2}. Nb₂O₅ has many polymorphic forms which gives rise to an interesting series of structural phases. The phases are generally based on NbO₆ octahedral groups, forming various configurations from the rectangular blocks or columns ³. Nb₂O₅ is relatively abundant in nature and has high corrosion resistance as well as being thermodynamically stable⁴⁻⁶.

In the very early stages of research on Nb₂O₅, this material was mostly studied in bulk or thin layer forms as well as in suspensions⁷⁻⁹. The very first applications of Nb₂O₅, as a functional material, were investigated as catalysts, sensors and in electrochromism¹⁰⁻¹⁷. The unique performance of Nb_2O_5 in such studies was due to an understanding of its energy band diagram and the identification of crystal phases, which created the initial interest among researchers to explore more of this metal oxide's capabilities. Nb₂O₅ has grown in popularity in recent years and a variety of morphologies ranging from large size bulk crystals to different nanostructures have been reported¹⁸⁻²⁵. In particular, nanostructured Nb₂O₅ offers high surface to volume ratios and quantum confinement effects that enable unique physical and chemical interactions to occur at the surface. As a result, such morphological manipulations significantly influence the optical and electronic properties of Nb₂O₅ leading to unique observations that are not seen in its bulk forms. Similarly, the chemical and physical properties of Nb₂O₅ can also be modified via other routes such as the incorporation of foreign ions, alteration of the crystal phase and post synthesis heat treatment²⁶⁻²⁸.

More recently, attention on Nb₂O₅ has gained more momentum due to applications other than electrochromism and catalysis. Especially, thin films and nanostructured Nb₂O₅ have been utilized in batteries, solar cells and other electronic devices such as memristors^{20, 29-31}. However, most of these investigations are still in their infancy and much more research should be conducted to explore the true capabilities of Nb₂O₅ in these and other applications. Thus, more comprehensive studies on Nb_2O_5 should be conducted to provide further insight for researchers who intend to use this material for such applications.

In this review article, we present a broad review on Nb₂O₅ that includes its fundamental properties, synthesis methods and applications. Many of the common methods for synthesizing thin films and nanostructures of Nb₂O₅ are presented with a separate emphasis on liquid and vapour phase techniques. We summarize a selection of interesting applications that exploit Nb₂O₅ as the core material. In the final section, future outlooks on the possibilities to expand the areas of research and investigations using this material are elucidated.

2.0 Fundamental Properties

In the following section, an overview of the basic properties of Nb_2O_5 including crystal structure, electronic band diagram and electrical properties are presented. The fundamentals of the optical, mechanical and thermal properties of Nb_2O_5 are also discussed.

2.1 Crystal Structure

Nb₂O₅ is a transparent (due to its large band gap), air-stable and water-insoluble solid material with a relatively complicated structure that displays extensive polymorphism ³². There are almost 15 polymorphic forms of Nb₂O₅ that have so far been reported, however, the most common crystal phases are generally pseudohexagonal (TT-Nb₂O₅), orthorhombic (T-Nb₂O₅), and monoclinic (H-Nb₂O₅) are shown in Figure 1, after any relatively low temperature synthesis route amorphous Nb₂O₅ is normally obtained and then crystallizes at ~500 °C into TT or T phases, at medium-temperature (~800 °C) transforms into the M phase (tetragonal), and above ~1000 °C it forms the H phase ³⁴. Despite this general temperature effect, the method of preparation, the nature of the starting material and the presence of impurities as well as interactions with other components also play decisive roles in the formation of the

resulting Nb₂O₅ crystal ^{3, 34}. H-Nb₂O₅ is the most thermodynamically stable crystal phase and is always produced when heated to temperatures above 1000 °C, while the TT- and M- Nb₂O₅ forms are mostly metastable ^{3, 35}. It is important to mention that in some reports, Nb₂O₅ crystal phases have been re-designated as $\gamma = T$, $\beta = M$, and $\alpha = H^{32}$. However, there are still many inconsistencies regarding the identification of Nb₂O₅ crystal phases. Some investigators suggested that the M is simply disordered H phases ³⁴ whereas M-Nb₂O₅ has been reported as a tetragonal Nb₂O₅ phase by Mertin *et al.* ³⁵.

Some of the crystallographic properties of the different crystal phases of Nb₂O₅, with reference to their associated literature, are presented in Table 1. The unit cells of TT-, Tand H-Nb₂O₅ crystals are shown in Figure 2. A unit cell of TT-Nb₂O₅ contains half of the formula equivalent with a constitutional defect of an oxygen atom per unit cell (Figure 2a) ³⁶. Each niobium (Nb) atom is at the center of four, five or six oxygen atoms on the ab-plane and an Nb-O-Nb-O chain structure exists along the c-axis. As a result, the oxygen deficiency leads to the distortion of these polyhedra. Meanwhile, the T-Nb₂O₅ phase is constructed with the orthorhombic unit cell where each Nb atom is surrounded by six or seven oxygen atoms, creating distorted octahedra or pentagonal bipyramids (Figure 2b, 2d)^{36, 37}. The polyhedra are connected by edge- or corner-sharing in the ab-plane and by corner-sharing along the *c*-axis ³⁶. The TT and T phases of Nb₂O₅ have quite similar X-ray diffraction patterns where the main difference is that some reflections that are split in T-Nb₂O₅ occur as one peak in the XRD patterns of the TT-Nb₂O₅ phase^{32, 34}. The broadening of peaks in TT (or the splitting of the corresponding peaks in T) is due to the occupancy of niobium atoms in separate, but closely-spaced, equivalent sites in the T form, giving rise to the split peaks observed from certain reflections, and the ability of Nb to occupy either of these sites or places between the TT form, resulting in broadening of the same peaks in XRD patterns of TT³⁴. These observations suggest that TT-Nb₂O₅ is a less crystalline form of T-Nb₂O₅, stabilized by impurities such as OH⁻, Cl⁻, or oxygen vacancies ³⁴. The monoclinic lattice of H-Nb₂O₅ contains ReO₃ type blocks of 3×4 and 3×5 groups containing NbO₆ octahedra (Figure 2c, 2e)^{36, 38, 39}. These blocks are coupled by edgesharing with a shift of half a unit cell dimension along the caxis. NbO₆ units are connected by corner-sharing with each other within a block ³⁶. One of the 28 Nb atoms in each unit cell is present in a tetrahedral site, which occurs at some block junctions $^{32, 40}$. M-Nb₂O₅ has similarity with the H-Nb₂O₅ crystal structure, which contains 4×4 of ReO₃ type blocks ^{3, 35} This was concluded from the close relationship of the X-ray powder diagram of the M- and H- forms, which agree in a large number of reflections³.

2.2 Band Energy Diagram and Electrical Properties

In electronic device development based on metal oxides, several properties of the incorporated materials are of utmost importance. These include the band energy diagram, electrical conductivity and dielectric permittivity. Nb_2O_5 is a wide band Table 1: Lattice parameters of TT, T, M and H phases of Nb_2O_5 .

gap *n*-type semiconductor with a conduction band comprised of empty Nb⁵⁺ 4d orbitals and has a conduction band value that is 0.2 - 0.4 eV higher than titanium dioxide (TiO₂)⁴¹. Its band gap energy (E_g) values have been reported to be in the order of 3.1 (semiconducting) to 5.3 eV (insulating with conductivity of $\sigma = -3 \times 10^{-6}$ S cm⁻¹)⁴²⁻⁴⁴. The ability to tune the band gap of Nb₂O₅ is possible and factors such as stoichiometry, crystallinity, heat treatment and incorporated foreign ions can dramatically influence the band gap energy. Previous studies have also shown that decreasing the dimensions of Nb₂O₅ into the nanoscale results in a blue shift of the energy gap, which can be attributed to the quantum-size effect ⁴⁵. Significantly, nanostructured Nb₂O₅ possesses grain dimensions that can critically influence the electronic structure of the material ⁴⁶.

Viet et al. experimentally determined the band gap of crystalline Nb2O5 nanofibers (hexagonal, orthorhombic and monoclinic) which had been sintered at three different temperatures (500, 800 and 1100 °C) ²⁷. Based on the Tauc plots derived from the absorption spectra in Figure 3a, they found that the hexagonal (labelled as H-Nb₂O₅), orthorhombic (labelled as O-Nb₂O₅) and monoclinic (labelled as M-Nb₂O₅) forms of Nb₂O₅ exhibited band gaps of 3.85, 3.77 and 3.79 eV, respectively ²⁷. Meanwhile, Abe reported that the powdersynthesized orthorhombic Nb₂O₅ had a band gap value of 3.4 eV, while that of monoclinic Nb₂O₅ gave a reported value of 3.1 eV^{26} . Moreover, the same author also investigated the effect of doping on the energy band gap of Nb₂O₅ by incorporating different concentrations of germanium (Ge) in the monoclinic Nb₂O₅ films. The optical absorption edge of the monoclinic Nb₂O₅ which is derived using the Kubelka-Munk function was observed at 3.1 eV without Ge doping which shifted up to 3.35 eV as the Ge concentration was increased 26 . The incorporation of tungsten and molybdenum into Nb₂O₅ has also been reported as well as the treatment of Nb₂O₅ with hydrogen peroxide in order to manipulate the band gap of Nb₂O₅

Recently, Liu et al. fabricated single-crystalline nanoporous Nb₂O₅ nanotubes using a two-step solution route; the growth of uniform single-crystalline Nb2O5 nanorods and the following ion-assisted selective dissolution along the [001] direction The band gap of Nb₂O₅ nanotubes and nanorods are 3.97 and 3.72 eV, respectively (Figure 3b). As mentioned previously, the 0.25 eV difference was due to the blue shift of the absorption edge for the porous nanotubes compared to solid nanorods which is due to the quantum size effect in hollow Nb₂O₅ nanotubes ⁴⁸. The same effect was also observed by Brayner et al. in the transmission spectrum of Nb₂O₅ particles: a significant blue shift of the absorption edge was observed and therefore the band gap increased from 3.4 eV to 4.2 eV, as the particle size of Nb_2O_5 decreased from about 40.0 nm to 4.5 nm . The effect of grain size on the band gap of Nb₂O₅ was also presented by Agarwal et al. 50, although they suggested that the energy of the absorption edge is influenced by both the size and local coordination of the grains.

Crystal phase	Space group	Lattice constant			Tomporature (°C)	Dofe
		a (Å)	b (Å)	c (Å)	Temperature (C)	Keis.
Pseudohexagonal	P6/mmm	3.60	3.61	3.92	500	27 51 52
Orthorhombic	Pbam	6.19	3.625	3.94	-	51 53, 54
Tetragonal	I4/mmm	20.44	3.83	3.82	900	35 55
Monoclinic	P12/m1, P2,	21.14	3.82	19.45	>1000	27 3, 56 1 53 57 58
$\beta = 119.9^{\circ} \pm 0.4^{\circ}$	P2/m					

In Nb₂O₅, like other semiconductors, the concentration of charge carriers is directly related to the defect structure of the metal oxide which is dependent on temperature and oxygen pressure ⁵⁹. Greener *et al.* conducted a detailed analysis of the relation between conductivity of α -Nb₂O₅ (monoclinic) and temperature under ambient oxygen pressure ⁶⁰. As presented in Figure 4, they showed that an increase in temperature and decrease in oxygen partial pressure increased the conductivity of α -Nb₂O₅. These results are in excellent agreement with the measurements by Kofstad and Chen *et al.* ^{61, 62}.

To scale down the physical dimensions of integrated circuits, investigating of high-k (high permittivity) materials is important for reducing the leakage current in integrated capacitors and gate insulators. Based on experimental measurements and first-principles calculations, Clima et al. reported that the relative dielectric permittivity of sol-gel deposited Nb₂O₅ to be 77 for the orthorhombic phase, 58 for the $\delta_{\rm A}$ -hexagonal phase and 38 for the $\delta_{\rm B}$ -hexagonal phase ⁶³. They found that the dielectric constant of Nb₂O₅ strongly depended on the crystal structure and the inspection of the permittivity tensors revealed that the dielectric constants are anisotropic. More recently, Nb₂O₅ thin films were grown by atomic layer deposition using novel precursor chemistry for metal-insulatormetal (MIM) capacitors with a relative permittivity of 28⁶⁴ However, after annealing at 650 °C, the films' relative permittivity values increased to 45-50 due to the enhanced crystallinity of the films. In addition, Cavigliasso et al. reported that the dielectric constant of Nb₂O₅ films created electrochemically by electrooxidation depended on the electrolyte used, and resulted in dielectric constant values over the range of 49 to 120 65 .

Electronic mobility is another important parameter in semiconductor device development especially for field effect transistors (FETs). A mobility value of 7×10^{-2} cm²/Vs for α -Nb₂O₅ at a temperature of 1200 °C was reported by Yahia ⁶⁶. Further, it has been shown that the mobility is increased by increasing the temperature.

2.3 Optical Properties

As mentioned in section 2.2 the band gap of Nb₂O₅ ranges between 3.1 and 5.3 eV. As a result, Nb₂O₅, depending on its crystallinity and grain morphology can efficiently absorb light in the near UV and UV regions of the spectrum or it can be used as a transparent material to UV light. Nb₂O₅ has been identified as being capable of reversible and rapid coloration in the presence of intercalating ions such H⁺ and Li⁺ ions. It has been reported that this phenomenon can modulate the Nb₂O₅ optical transmission from a quasi-transparent state ($T \sim 85$ %) to less than $T \sim 10$ % in the ultraviolet (UV), visible or near infrared (IR) range, and can exhibit either a blue or brown colour depending on the crystallinity of the film ^{17, 67-69}. The optical properties of Nb₂O₅ have been experimentally studied *via* various techniques such as spectrophotometry and spectroscopic ellipsometry ⁷⁰⁻⁷³. The refractive index value of Nb₂O₅ films has been reported to be in the order of 2 to 2.3 ⁷¹, ⁷³. Also the crystallinity of the film plays a significant contribution to the refractive index of the material as it decreases from 2.30 to 2.20 after being annealed from room temperature to 700 °C ⁷⁰.

2.4 Mechanical Properties

Besides electronic and optical properties, an investigation of the mechanical properties of Nb₂O₅ is also of major importance for the fabrication of electronic devices especially for the development of flexible mechanical devices and actuators such as micro electro-mechanical system (MEMS) devices. Stress or strain commonly occurs in thin films depending on the deposition process and constraints imposed by the substrate. The average hardness (*H*) and Young's modulus (E_r) values of as-sputtered Nb₂O₅ films have been reported to be in the order of 5.6 to 6.8 GPa and 117 to 268 GPa respectively, which is again influenced by the crystal phase ^{70, 74}.

In flexible device applications, the bending test is essential to perform in order to monitor the effects of stretching on the device output and to make sure that all the component layers are stable even after several thousand flexes. Some of the appropriate flexibility tests and other related mechanical tests for electronic devices have been described in detail elsewhere⁷⁵⁻⁷⁸. Hota *et al.* have demonstrated that sputtered Nb₂O₅ thin films (~50 nm thickness) on flexible polyethylene terephthalate (PET) substrates show high mechanical flexibility in a repetitive bending test ⁷⁹. A collapsing radius test, which is one of the common bending test techniques, was applied to MIM capacitors based on sputtered Nb₂O₅ thin films, and the obtained results show endurance of up to 2500 flexes.

2.5 Thermal Properties

In an electronic system, heat dissipation is an acute problem due to miniaturization and the increasing power of microelectronic circuits. Thus, thermal conductor materials with high thermal conductivity and a low coefficient of thermal expansion (CTE) are essential for the purpose of heating and cooling. For Nb₂O₅, a limited number of studies have been carried out on its thermal properties. An investigation of the high-temperature thermal expansion of monoclinic Nb₂O₅ was conducted using X-ray and dilatometric techniques by Manning *et al.*⁸⁰. The results revealed that the lattice thermal expansion of Nb₂O₅ is anisotropic where the mean coefficients in the *a*, *b*, and *c* directions were 5.3×10^{-6} , 0 and 5.9×10^{-6} °C⁻¹, respectively. Previous works also demonstrated the low thermal expansion behaviour of Nb₂O₅ over the temperature range of 20 to 1000 °C ^{81, 82}. In addition, another report demonstrated a negative thermal expansion of Nb₂O₅ at relatively high temperatures as large as 500 °C ^{83, 84} which was attributed to the recombination of the microcrack network formed during cooling. There are just a few reports regarding the Seebeck coefficient of Nb₂O₅ ⁸⁵. It has been reported that its Seebeck coefficient changes from -0.5 to -1.2 mV/°C when the temperature changes from 500 to 1000 °C.

3.0 Synthesis of Nb₂O₅

 Nb_2O_5 has been synthesized using many approaches and the key motivation in choosing the right synthesis method is its capability in tuning the properties of Nb_2O_5 (mostly crystal phase and morphology). In this section, we have chosen the most common synthesis methods and classified them into two major categories: liquid and vapour phase based. In addition, complementary methods are also presented.

3.1 Liquid Phase Deposition Methods

Liquid phase techniques include methods such as hydrothermal, anodization, sol-gel and electrodeposition. These methods are chosen due to their low capital cost, relatively low operating temperatures and high control over Nb₂O₅'s properties in comparison to vapour phase deposition techniques, which is crucial for the fabrication of cheap and low-heat-tolerant substrates.

3.1.1 Hydrothermal and Solvothermal Methods

Hydrothermal (in water) and solvothermal (in other solvents such as acetone and isopropyl alcohol) synthesis techniques are simple methods that have been utilized to produce metal oxide crystals. These methods involve an ionic source of metal in a solution which is heated at an elevated temperature for a certain period of time. For the deposition of Nb₂O₅, the solution of Nb^{5+} ions is sourced either *via* the interaction of niobium metal in an acid or base or the dissolution of a niobium salt such as niobium chloride, niobium ethoxide, or ammonium niobium oxalate (see Table 2). The solvents are then heated at a temperature in the range of 100 - 600 °C for duration of a few hours to several days (see Table 2). Normally, this process allows the nucleation and growth of naturally crystalline Nb₂O₅ to proceed. Nanostructured Nb₂O₅ such as nanorods, nanobelts, nanospheres and other configurations are also possible to be synthesized using these hydrothermal or solvothermal methods. A brief summary of the type of nanostructured Nb₂O₅ that can result from such methods is presented in Table 2. Figure 5 presents a selection of the type of Nb₂O₅ nanostructures that have been achieved using a few selected hydrothermal or solvothermal methods. Due to the high-aspect-ratio properties and high surface area that can be obtained, these methods offer great potential for obtaining Nb_2O_5 that can be used in various specific applications including lithium-ion batteries, dyesensitized solar cells and photocatalysis applications which will be explained in the later sections ^{38, 86-89}

3.1.2 Anodization Method

Anodization is one of the most widespread nano-fabrication methods due to its capability of forming highly porous and ordered oxide morphologies^{90, 91}. In a typical anodization experiment, a potential is applied between two electrodes; a working and counter electrode, which are both immersed in a

liquid electrolyte. An electrical current or voltage is then applied, which results in electrochemical reactions occurring on the surface of the metal electrode (working electrode) and an oxide film is formed. The growth and morphology of the anodic oxide film strongly depends on the applied anodization potential, the composition of the electrolyte (aqueous, organic solvent with or without water and etching agent content), the electrolyte temperature, and the anodization duration. The asanodized Nb₂O₅ films are mainly amorphous and require a post-annealing treatment to be converted into highly crystalline and stoichiometric Nb₂O₅.

Studies on anodic Nb₂O₅ films have been conducted as early as the 1960s. Draper *et al.* presented work that was undertaken to study the anomalies in published work on the structure of the anodic films formed on niobium (Nb) and how the physical nature of the film material might influence the growth rate ⁹². Later, a study on anodic Nb₂O₅ film properties (i.e., resistivity, dielectric constant) was presented by Wood *et al.* ⁹³. Other early studies on anodized Nb₂O₅ surface morphology and crystallization analysis using an electron microscope, electronbeam crystallization and reflection electron diffraction have been reported elsewhere ^{94, 95}.

The anodization of Nb has been intensively studied in various electrolytes (sulfuric acid, phosphoric acid, NaOH, Na₂CO₃, HF, glycerol, ethylene glycol, fluoride, and phosphorus based solutions). Most of the reported anodic Nb₂O₅ films consist of highly nanoporous structures on a Nb foil substrate⁹⁶⁻¹⁰³. In one of the most important reports, conducted by Habazaki et al, the effect of water content on the formation of porous Nb2O5 anodized in a K2HPO4-glycerol electrolyte as well as at elevated temperature was discussed ⁹⁶. They showed that by reducing the water content to 0.08 mass%, the porous film growth rate markedly increased (as thick as 28 µm) at 160 °C, which is associated with the increased field strength by a higher concentration of phosphorus species. Ou et al. later reported the creation of a three dimensional (3D) veinlike nanostructured network in an electrolyte consisting of ethylene glycol with NH₄F and small content of water (~4%) (Figure 6a)²³. In all of these processes, an elevated temperature was applied based on the hypothesis that it increases the ion diffusion rate during the anodization process.

Apart from a nanoporous structure, microcones were also obtained by Nb anodization in an electrolyte containing deionized water with a low concentration of HF or in a glycerol electrolyte containing K_2 HPO₄¹⁰⁴⁻¹⁰⁷. Wei *et al.* reported anodized nanotubes of Nb₂O₅ up to 4 µm thick by optimizing the anodization of Nb in an NH_4F based glycerol electrolyte ¹⁰⁸ Recently, Lee et al. reported the first anodization procedure to produce highly ordered nanochannels of Nb₂O₅ grown in glycerol containing K_2 HPO₄ electrolyte also at 180 °C¹⁰⁹. They showed that the channel length could be adjusted from a few hundred nm to several tens of µm. Lee et al. were successful in growing films of thick nanochannels of Nb₂O₅ by pre-heating the electrolyte at 200 °C before conducting the anodization in order to reduce the water content ¹⁰⁹. Other reports on anodic nanochannelled Nb₂O₅ films were also reported by Abdul Rani et al. (Figure 6b) 22 . Moreover, reports on nanoporous Nb₂O₅ films and nanochannelled Nb2O5 films obtained from anodizing Nb films, which were RF sputtered on fluorine doped tin oxide (FTO) glass substrates, have also been demonstrated recently (Figures 6c and d) $^{69, 110, 111}$.

3.1.3 Sol-gel Methods

The sol-gel process is a simple wet-chemical method that involves the conversion of selected monomers into a colloidal solution (sol). The sol acts as the precursor for the formation of an integrated network (or gel) which can be eventually used for creating discrete particles or connected networks ¹¹². The deposition of the final oxide films using a sol-gel process is normally conducted by methods such as dip- or spin coating, electrospinning, or drop-casting. Despite its simplicity, there are some limitations as well. The bonding can be weak, resulting in inhomogeneity in subsequent films. There are also certain difficulties in controlling the reaction rate and porosity¹¹³⁻¹¹⁵.

The preparation of Nb₂O₅ via sol-gel methods was first reported by Alquier *et al.* in 1986 $^{112, 116}$. The typical precursors used for Nb₂O₅ films synthesised via sol-gel processes are quite similar to the hydrothermal or solvothermal methods, containing a mixture of niobium salt and its solvent. The sol-gel Nb₂O₅ films generally require a post-annealing treatment in order to induce crystallinity. Schmitt et al. have reported a solgel based Nb₂O₅ thin film by dissolving NbCl₅ powder in butanol and acetic acid 68. The Nb₂O₅ films were deposited by dip-coating and then annealed at 400 - 600 °C to obtain the TT crystal. Similar procedures have also been demonstrated by other researchers using different precursors such as niobium ethoxide and ammonium niobium oxalate⁴, ^{29, 67, 117-125}. As can be seen from Figure 7a, b and c, films consisting of nanoparticle structures are normally obtained by dip or spin coating deposition techniques^{121, 124}. Different structural morphologies of Nb₂O₅ have been demonstrated by Viet et al. using electrospinning which resulted in Nb₂O₅ nanofibers as shown in Figure 7d, e and f 27 . These nanofibers were synthesized from a polymeric solution prepared from polyvinylpyrrolidone (PVP) and niobium ethoxide in ethanol and hydrolyzed using acetic acid.

3.1.4 Electrodeposition

Electrodeposition can be considered as a common method for the fabrication of nanostructured materials in the form of thin films, powders and composites ¹²⁶. This process often involves a two electrode configuration immersed in an electrolyte, where a metal oxide film forms at the cathode in contrast to the anodization method described in section 3.1.2. The aqueous electrolyte used for Nb₂O₅ electrodeposition generally contains niobium ions and hydrogen peroxide (H₂O₂) ^{127, 128}.

In one of the very first electrodeposition reports, Zhitomirsky performed electrodeposition by applying a constant current density of 20 mA/cm² at 1 °C for 20 min in an electrolyte mixture of NbCl₅ and H₂O₂ ^{126, 127}. The produced Nb₂O₅ thin films exhibited microporosity with a thickness of 0.3 μ m, were crack free and adhered well to the substrate. Non-aqueous electrolytes can also be used in electrodeposition but they need to have some supporting electrolyte to allow the conduction of current. Kamada *et al.* added 0.01 M iodine (I₂) and bromine (Br₂) into acetone as an electrodeposition electrolyte to obtain Nb₂O₅ films ²⁵. Although the addition of I₂ into acetone induced anodic oxidation of the metal anode, subsequent electrochemical dissolution and cathodic deposition did not take place. The addition of Br₂ has been found to promote both anodic dissolution and electrodeposition of Nb species.

3.2 Vapour Phase Deposition

In general, vapour phase deposition is a process to fabricate layers of materials from the condensation of their vaporized sources under favourable environments. There are two major categories of vapour phase deposition: physical vapour deposition (PVD) and chemical vapour deposition (CVD).

3.2.1 Physical Vapour Deposition (PVD)

PVD techniques are used for depositing a wide variety of films with thicknesses which vary from a few angstroms to several millimetres. The deposition of a film is through the evaporation of the precursors into a vapour phase by physical approaches such as ion bombardment, heat, electron beam or laser irradiation followed by the condensation of the vapour phase onto the required substrate ^{129, 130}.

So far, sputtering has been the most reported PVD technique to deposit Nb₂O₅ films. Generally, Nb₂O₅ films can be obtained using direct current (DC) ^{72, 131-136} or radio frequency (RF) ^{18, 132, 137-143} sputtering techniques with metallic niobium (Nb) ^{72, 131, 133-135, 138-142, 144-146} or Nb₂O₅ ^{18, 137, 143} targets in the presence of carrier gases such as argon (Ar) in oxygen (O₂) environments. These techniques are capable of producing Nb₂O₅ films or nanostructured forms with preferred dimensions, crystallinity, nanoscale grain sizes and morphologies by controlling the deposition parameters (i.e; pressure, distance between the target and the substrate, substrate temperature, discharge voltage, RF power) during the sputtering process ¹⁴⁷. Post-annealing treatment in a controlled gas environment is usually used to enhance the crystallinity of the sputtered films. Even though sputtering can produce high-quality films, this technique is time consuming due to its low deposition rates (typically in the µm/hour range) ¹⁴⁸.

In addition to sputtering, other PVD techniques have been established to fabricate Nb₂O₅ films such as ion-beam assisted deposition ^{70, 71, 149, 150}, thermal evaporation ¹⁵¹, pulsed magnetron sputtering ^{145, 152} and pulsed laser deposition (PLD) ^{20, 153-155}. Pulsed magnetron sputtering and PLD have been found to increase the deposition rate of Nb₂O₅ films to the order of tens of microns per hour and are also able to conserve the original stoichiometry of a bulk target to the deposited film ^{148, 153}. It is also possible to obtain high aspect ratio nanostructures such as nanobundles that have been shown by Ghosh *et al.* using PLD process (Figure 8) ²⁰.

3.2.2 Chemical Vapour Deposition (CVD)

CVD techniques are also commonly used in the formation of films (in particular conformal coatings) and nanostructures^{156,} ¹⁵⁷. Nb₂O₅ thin films (nanostructured and compact) have been successfully synthesized using CVD techniques such as metalorganic CVD (MOCVD) ^{158, 159}, plasma-enhanced CVD (PECVD) ¹⁶⁰, atmospheric pressure CVD (APCVD) ^{161, 162}, and vapour-liquid-solid (VLS) growth mechanisms under vacuum or atmospheric conditions ¹⁶³.

Morphology	Dimension (nm)	Solution	Temperature (°C)	Duration (h)	Crystal phase
Nanograins, nanorods and nanoplatelets ¹⁶⁴	D: 50 - 80 L:> 1000	NbCl ₅ and ethanol in cyclohexanol	200 - 240	8 - 90	Orthorhombic for $T > 225 $ °C
Nanoparticles ¹⁶⁵	D: 18 - 35	NbCl ₅ in anhydrous benzyl alcohol	250	72	Pseudohexagonal
Nanopowder ¹⁶⁶	L: < 80	Niobium pentabutoxide in toluene	300	2	Pseudohexagonal
Nanobelts ¹⁶⁷	T: ~15 W: ~60	Nb powder in urea	170 - 200	24 -336	N/A
Nanocables and nanorods ¹⁶⁸	D: 50 - 80 L:> 1000	NbCl ₅ and ethanol in cyclohexanol	200 - 240	8 - 90	Orthorhombic
Nanorods 169	D: 50	Nb powder in distilled water	200	72 - 720	Orthorhombic
Nanosheets ⁸⁶	T: 3 -5	NbO ₂ powder in distilled water and ethanol containing 1 M urea	130	72 - 720 Orthorhombic ar monoclinic	
Mesoporous ¹⁷⁰	-	NbCl ₅ in ethanol mixed with triblock copolymer dissolved in distilled water	110	24	Orthorhombic after calcined at 600 °C
Mesoporous spheres	D: 400 - 500	Niobium ethoxide, diethylene glycol and acetone in water	180	4 - 12	Pseudohexagonal
Nanospheres ⁸⁹	D: 20 – 50	Ammonium niobate oxalate hydrate in distilled water	580	1	Pseudohexagonal
Nanorods ⁸⁹	D: 5 – 20 L: 100 - 500	Ammonium niobate oxylate hydrate and oleic acid in trioctylamine	180	2 - 6	Pseudohexagonal
Nanotrees ¹⁷²	D: 30 - 500	Lithium hydroxide in HF acid	150 - 200	20 - 40	Pseudohexagonal
Nanorods ¹⁷³	D: 50 - 100	Ammonium fluoride	150	24 - 144	Orthorhombic for duration > 48 h
Nanoparticle ⁸⁸	D: 9 - 35	Ammonium niobium oxalate and hydrogen peroxide in distilled water	100 - 175 2 - 24		Orthorhombic
Hollow microspheres	D: 1000 - 2000	Nb_2O_5 , LiOH and NH_3 ·H ₂ O in H ₂ O ₂	240	24	Pseudohexagonal after calcined at 500 °C
Nanocomposite ⁸⁷	D: 25 - 29	Ammonium niobate oxalate hydrate, sucrose and HCl in deionized water	180	12	Pseudohexagonal
Nanorods ³⁸	D: 22 L: 230	NbCl ₅ in HCl	210	24	Monoclinic after calcined at 450 °C

Table 2: Summary of Nb_2O_5 nanostructures obtained using hydrothermal and solvothermal processes and their synthesis conditions.

Generally, to deposit the Nb₂O₅ films, precursors such as NbCl₅ and pentaethoxy niobium [Nb(OC₂H₅)₅] are transported using reactant/carrier gas species into the reaction chamber, and subsequently decomposed on the surface of a heated substrate¹⁶⁰.

O'Neill *et al.* showed that the Nb₂O₅ film growth strongly depended on the substrate temperature when deposited by the CVD reaction of NbCl₅ with ethyl acetate ¹⁶¹. At lower temperatures (400–500 °C), the resultant films tended to be uniform, forming layered growths. Deposition at temperatures higher than 500 °C produced hazy films with fairly uniform columnar nanostructure associated with Volmer-Webber growth throughout the films. At 600 °C a milky appearance was observed, which was attributed to the films being comprised of uniform inter-grown rods that were virtually all aligned

perpendicular to the substrate surface. These results indicated that the changes in the morphology of the films with substrate temperature were related to the number of nucleation sites available and the delivery rate of the precursor ¹⁶¹. In another approach, the initial niobium pentaisopropoxide $[Nb(O^{i}Pr)_{5}]_{2}$ precursor was decomposed at 950 °C onto polycrystalline alumina substrates, which resulted in one-dimensional monoclinic Nb₂O₅ nanorods ¹⁶³. Other studies using CVD methods offer excellent alternatives to produce layered Nb₂O₅ especially for fibre coating applications^{158, 162}.

Furthermore, spray pyrolysis which is a typical aerosolassisted CVD is among one of the most well utilized methods to synthesis thin or thick Nb₂O₅ films^{19, 175-178}. This method has the capability of forming large-scale thin films by using a simple apparatus with large productivity. With regard to the substrate temperature, a post annealing treatment is usually required to obtain highly crystalline Nb₂O₅ films if a low temperature is applied during the deposition.

3.3 Thermal Oxidation

Thermal oxidation is a simple fabrication technique. The starting material to fabricate Nb₂O₅ is normally Nb metal/foil or powder, and then the thermal oxidation is performed by heating the sample in a furnace at a temperature as high as 1000 °C generally in a O₂ or oxidizing rich environment ^{16, 21, 55, 179-183}. The technique forces the oxidizing reagent to diffuse into the substrate at a high temperature and react with it. The nanostructured Nb₂O₅ is directly grown onto the surface of a Nb substrate. The resultant structures can vary from compact films to nanowires and core-shell structures. It has been reported that nanowires as long as 20 µm can be produced by this approach^{180, 182}. The growth of these nanostructures can be controlled by optimizing the temperature, time, metal-catalyst and gas atmosphere during the synthesis process¹⁸⁴.

4.0 Applications

Applications of Nb₂O₅ normally involve the utilization of some unique properties of Nb₂O₅ such as its electronic and optical properties or biocompatibility which may be enhanced by the modification of Nb₂O₅ films such that they significantly enhance the performance of a device. In the following sections, some of the most common applications of Nb₂O₅ that have been reported in the literature are presented.

4.1 Solar Cells and Light Emitting Diodes

 Nb_2O_5 films are promising candidates for developing different types of optical devices, including solar cells based on dyesensitized and heterojunction architectures as well as light emitting diodes (LEDs).

Since their discovery by Grätzel in 1991, dye sensitized solar cells (DSSCs) have been extensively studied as they offer the potential for clean, reliable, cost effective and on-site energy generation ¹⁸⁵. Increasing the efficiency of DSSCs Table 3: Summary of DSSCs based on Nb₂O₅ nanostructured films featuring their typical performance data.

depends on improving every single element in their structure, including: photoanode, dye, electrolyte and counter-electrode. However, the development of the most suitable photoanode will still have the most significant impact on the DSSCs's performance ¹⁸⁵. Nb₂O₅ has recently drawn considerable attention as a promising photoanode in view of its wider band gap (due to its higher conduction band edge) as well as comparable electron injection efficiency and better chemical stability in comparison to titanium oxide (TiO₂) ^{23, 41, 186}. These properties of Nb₂O₅ can potentially enhance the DSSCs' efficiency by increasing the open circuit voltage (*V_{oc}*) and photoconversion efficiency (η) ¹⁸⁷.

Several studies have been reported on the synthesis of Nb₂O₅ photoanodes which were obtained using hydrothermal, chemical anodization, sol-gel coating and PLD techniques ^{17, 20, 22, 23, 38, 110, 167, 188-190}. The details are summarized in Table 3. To date, the highest conversion efficiencies of more than 6% have been exhibited by devices with a hydrothermally grown Nb₂O₅ photoanode with the optimum thickness of ~11 µm ³⁸. Ou *et al.* and Rani *et al.* have established an anodization method to obtain Nb₂O₅ nanovein-network photoanodes with large surface areas and low number of impurity defects for DSSCs ^{23, 110}. The photoanodes with no detectable impurities exhibited longer electron lifetimes, indicating more suitability in preventing charge recombination and possible enhancement of the conversion efficiency (Figure 9). However, the efficiency of the overall devices incorporating these photoanodes was still relatively low (~ 3.5 to 4.1 %) which was attributed to the lack of the optimisation of the thickness of the Nb₂O₅ frameworks.

Additionally, several researchers have applied Nb₂O₅ films as a blocking layer in DSSCs. Thin Nb₂O₅ films fabricated by spray pyrolysis, sputtering, sol-gel and dip coating methods have been used as potential blocking layers between the contact electrode and the TiO_2 layer, improving the V_{oc} which created a better conversion efficiency for TiO2 based DSSCs 176, 191-194 Furthermore, it has been shown that a Nb₂O₅ film could play an essential role in increasing the efficiency of the DSSCs as a layer between the TiO₂ photoanode and electrolyte¹⁹⁵⁻¹⁹⁷. This increase was attributed to the coating which either prevented the recombination of electrons and holes due to the barrier effect or the change in the energy level of the TiO₂ conduction band ¹⁹⁷. However, other investigations have disregarded those factors and claimed that the improvement in the performance of the cell could be attributed to an enhancement in the charge injection efficiency promoted by Nb_2O_5 ¹⁹⁵. Nb_2O_5 has also been incorporated as a counter electrode in DSSCs. Wu et al. and Lin et al. have reported a significant conversion efficiency between 4.65 to 5.82 % in DSSCs using a Nb₂O₅ counter electrode with a TiO₂ photoanode ^{198, 199}. In these studies, the types of gases used during the annealing treatment and changes in crystallinity of the Nb₂O₅ counter electrode were reported as a factor that influenced the DSSCs' efficiency.

For polymer based bulk heterojunction solar cells, Nb_2O_5 thin films commonly act as electron transport layers^{200, 201}. It has been found that Nb_2O_5 films are compatible with and have good adhesion properties to many polymer layers²⁰⁰.

Photoanode	Efficiency (%)	Voc (V)	Jsc (mA/cm ²)	Thickness / substrate	Refs.
Nb_2O_5 with nanochannel structures (anodization process – Nb foil as a substrate)	4.48	0.639	17.6	10.0 µm / Nb foil	22
Nb ₂ O ₅ with nano-vein networks	3.45	0.635	8.72	$5.0~\mu m$ / FTO glass	110
Nb ₂ O ₅ with nanochannel structures	2.20	0.670	6.91		
(anodization process – RF sputtered Nb metal on FTO as a substrate)					
Nb ₂ O ₅ with micro-mountain and nano- forest pancake structures	3.35	0.59	10.66	$27.7~\mu m$ / Nb disk	190
(anodization process)					
Nb ₂ O ₅ nanorod film	6.03	0.749	12.20	11.2 µm / FTO glass	38
(By transforming Nb ₃ O ₇ (OH) hydrothermal into Nb ₂ O ₅ nanorods after annealing)					
Nb ₂ O ₅ nanoparticle	4.68	0.662	11.57	12.1 µm / FTO glass	
Nb ₂ O ₅ with nano-vein networks (anodization process – Nb foil as substrate)	4.1	0.701	10.00	4.0 μm / Nb foil	23
Nb ₂ O ₅ nanoforest by PLD	2.41	0.710	6.65	5.9 µm / FTO glass	20
Nb ₂ O ₅ thin film deposited by spray pyrolysis	0.98	0.455	1.6	ITO glass	19
Nb ₂ O ₅ nanobelts (powder-air thermal)	1.42	0.580	3.93	10.0 μ m / FTO glass	167
Nb ₂ O ₅ sol-gel film with polymeric ligand and carbon soot deposited by spin coating	4.00	0.665	12.20	15.5 μ m / FTO glass	17
Nb ₂ O ₅ colloids and adding hydroxypropyl cellulose	4.00	0.595	9.70	15.5 μ m / FTO glass	202
(Hydrolysis and spin coating – autoclave technique)					
Nb_2O_5 sol-gel film deposited by spin coating	2.20	0.610	7.00	$6.0\mu{\rm m}$ / FTO glass	121
Nb_2O_5 nanoporous film (powder-air thermal)	2.00	0.630	4.90	$8.0\mu{\rm m}$ / FTO glass	188
Nb ₂ O ₅ ordered needles film	-	0.400	0.53	$6.0\mu{ m m}$ / ITO glass	189
(Colloidal suspensions were made from hydrolyzed niobate solutions by an autoclave method)					

Wiranwetchayan *et al.* reported that very thin Nb_2O_5 films between the electron collecting electrodes and active layers were necessary to promote the formation of continuous uniform active layers and thus blocking the holes in those layers from being recombined with the electrons in the collecting electrode ²⁰¹. However, further investigations of such polymeric solar cells should be considered in order to obtain higher conversion efficiencies. The capability of Nb₂O₅ films have also been studied in LED applications^{203, 204}. Su *et al.* applied Nb₂O₅ and SiO₂ films as high and low refractive indices of omnidirectional high reflector (ODR) in white LEDs, respectively ²⁰⁴. The Nb₂O₅ and SiO₂ pair was chosen due to their high transparencies in the visible and UV wavelength ranges^{71, 204}. They observed that the leaked UV light escaping from the white LED is completely blocked and remarkably enhanced visible light extraction (400-750 nm) of the white LED which incorporated ODR packaging

was enhanced with an average enhancement of 15% in luminous intensity.

4.2 Sensing Devices

Like other metal oxides such as TiO_2 and zinc oxide (ZnO), Nb_2O_5 has shown great potential to be used as a sensing material. Sensor devices based on Nb_2O_5 for gas, humidity, biological and chemical sensing as well as photodetection have been successfully demonstrated. Generally, the main parameters for good sensing device performance are the size, morphology, aspect ratio, intergranular connectivity, porosity, surface energy, stoichiometry and surface area to volume ratio of the incorporated sensing material^{205, 206}.

In 1983, Kondo et al. reported the first Nb₂O₅ gas sensors for $\mathrm{O_2}\ ^{207}.$ Before the nanostructured form of $Nb_2\mathrm{O_5}$ had been introduced in a gas sensor, generally techniques such as RF magnetron sputtering was used to deposit dense Nb_2O_5 films ¹⁵, ²⁰⁸⁻²¹⁰. Several studies applied metal catalysts such as platinum (Pt) and palladium (Pd) onto the surface of Nb₂O₅, which could promote chemical reactions between the target gas and the oxide film and consequently, increase the sensing capability ⁵⁵, ^{211, 212}. The types of sensing methods or principles that have so far been reported were mainly based on conductometric, voltammetric, chronoamperometric and Schottky contact sensors ^{15, 55, 208, 209, 211-220} Depending on the type of gas species, reducing or oxidizing, the interaction between the gas molecules and the Nb₂O₅ films changes the charge carrier concentration and the potential barrier of the Nb₂O₅ films. These affect the physio-chemical property of the films corresponding to the gas constituents exposed to the sensor. So far, the investigated gases that have been examined using Nb₂O₅ are O₂, hydrogen (H₂), dissolved O₂, carbon monoxide (CO), ammonia (NH₃) and a number of hydrocarbons (HCs) $^{15,\ 55,\ 208,\ 209,\ 211-220}.$ An example of a H₂ Schottky based gas sensor based on a Nb₂O₅/Pt contact and the dynamic responses of this device is presented in Figure 10. For humidity sensing, pellet type Nb_2O_5 sensors have been explored by Yadav *et al.*²²¹. More recently, Fiz *et al.* have synthesized single-crystalline Nb_2O_5 nanorods and SnO_2/Nb_2O_5 core-shell heterostructures by CVD method $^{163}.$ The results have demonstrated that the growth of the nanoscopic Nb₂O₅ overlayer on SnO₂ nanowires introduced defects in the structure, which influenced the electronic properties of the material and enabled the design of more efficient sensor.

Due to the chemical stability and corrosion resistance of Nb_2O_5 , the material has also been explored for pH and ascorbic acid measurements^{5, 222}. Furthermore, Nb_2O_5 has also been used as a working electrode in electrochemical based DNA biosensors^{223, 224}.

Beside gas, chemical and biological sensing, it has been demonstrated that Nb₂O₅ with its wide bandgap and long electron life time, is a good candidate for making fast ultraviolet photodetection systems²²⁵. Fang *et al.* have shown that a photodetector based on individual Nb₂O₅ nanobelts resulted in a high external quantum-efficiency (EQE) of > 6000%²²⁶.

4.3 Batteries and Supercapacitors

The development of energy storage devices based on lithiumion batteries (LIBs) and supercapacitors have created great interest among researchers and Nb_2O_5 is certainly a favorable material for creating such storage devices²²⁷⁻²³⁰. Developing devices that can store sustainable energy with long term stability, very prolonged cycle life and meeting environmental constraints as well as safe operating potential windows (in the range of $1.0 \le V \le 3.0$ V vs. Li⁺/Li) are the main goals of this field.

The study of Nb_2O_5 as an electrode material for lithium ion cells started in the early $1980s^{231, 232}$. The observations by Reichman et al. demonstrated that Nb2O5 can undergo intercalation with Li⁺, leading to the possibility of repeated charging and discharging ²³¹. Subsequently, a LIB based on a Nb₂O₅ cathode was studied extensively by the Kumagai group $^{183,\,\widetilde{2}3\widetilde{2}\text{-}239}$. The structural changes of the Nb_2O_5 cathodes which are caused by discharging and recharging were investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) analysis methods $^{183, 232}$. They suggested that tetragonal-Nb₂O₅ exhibited the best cycling performance with a large discharge capacity of 190 mAh g^{-1} for up to 30 cycles. XRD analysis suggested that the orthorhombic- and tetragonal-Nb $_2O_5$ maintain their original crystal lattices, accompanying a small change in the cell volume even after Li^+ intercalation. However, the two-dimensional layered structure of tetragonal-Nb₂O₅ was suggested to be the best for accommodating a large concentration of the intercalating ions 183. Investigations of Nb₂O₅ LIBs using several electrolytes and different amounts of graphite in the electrodes have also been reported ²³⁹. It was observed that the discharge capacity decreased with a decrease in the graphite content, and declined to 20 - 120 mAh per gram oxide in the graphite content range 0 - 10 wt.%. Furthermore, there are also reports on the application of sputtered Nb₂O₅ as a LIB electrode (Figure 11a and b)^{236, 238}. Nakazawa *et al.* reported a battery with a sputtered Nb₂O₅ negative electrode of 100 nm thickness showed the most favourable charge-discharge properties with a capacity of 310 - 380 mAh cm⁻³ for 500 cycles²³⁸.

Obviously the incorporation of nanostructured Nb₂O₅ should enhance the performance of LIBs. Nb₂O₅ nanobelts were the first nanostructured Nb₂O₅ to be used as an electrode material in LIBs which reported a potential window of 3.0-1.2 V (vs. Li^+/Li) ²⁴⁰. LIBs made of Nb₂O₅ nanobelts demonstrated a high reversible charge/discharge capacity, high rate capability with excellent cycling stability as large as 180 mAhg⁻¹ after 50 cycles which could work smoothly even at a high current density of 10 Ag⁻¹. Le Viet et al. reported LIBs based on three different polymorphs of Nb₂O₅ nanofibers prepared by an electrospinning method and annealing treatment ³¹. Among pseudohexagonal-, orthorhombic- and monoclinic-Nb₂O₅ nanofibers, the monoclinic based LIB showed the highest capacity, lowest capacity fading and good cycling stability. In addition, Li et al. demonstrated that Nb₂O₅ nanocrystals coated with a thin layer of a homogeneous carbon shell as an electrode demonstrated a relatively long cycle life (130 mAhg⁻¹ after over 300 cycles) by preventing the Nb_2O_5 volume change and pulverization during the charge-discharge process $^{87}\!\!.$ A study on Ta-substituted Nb_2O_5 nanofibers and Nb₂O₅ nanocomposites with various vanadium oxide contents -based LIBs have also been discussed elsewhere ^{119, 241}. A report on a battery based on a Nb₂O₅ anode with a KS-6 graphite cathode showed it to be an inherently safe energy storage system due to no oxygen release from the cathode materials, no lithium dendrite formation and no possibility of overcharge from the electrode/electrolyte reaction ²⁴². However, the cell capacity and cycling stability of such devices are still considered to be low.

Sasidharan et al. demonstrated a LIB based on Nb₂O₅ hollow nanospheres which can deliver a high capacity of 172 mAhg⁻¹ after 250 cycles of charge/discharge that maintained electrode structural integrity with an excellent cycling stability even after exposing it to a high current density of 6.25 $Ag^{-1 24}$. In this work, the enhanced LIB's performance was attributed to the hollow cavity coupled with the nanosized domain that facilitated Nb₂O₅ shell fast lithium intercalation/deintercalation kinetics. Meanwhile, anodic Nb2O5 electrodes for LIB applications have been reported by Yoo et al. ¹⁰². The discharge capacity of 53 μ Ah cm⁻² was obtained at 800 nm thick Nb₂O₅ without a surface dissolution layer at a potential window of 1.2 - 3.0 V. Experiments were also conducted by Rahman et al. using LIB electrodes based on vein-like nanoporous networks of anodic Nb2O5 mixed with acetylene carbon black¹⁰³. The device exhibited a reversible capacity of 175 mAhg⁻¹ even after 300 cycles at a current density of 0.4 Ag⁻¹ and a potential window of 1.2-3.0 V (Figure 11c and d). This work also demonstrated an excellent reversible discharge capacity at a high current density of 2.6 Ag^{-1} .

In comparison to batteries, supercapacitors (SCs) offer significantly higher power densities with longer cycling life and fast charging. However, the main shortcoming of SCs is their low energy density, due to the restricted storage capacity as a result of the limitation of the size of the electrodes. One possible strategy to address these challenges is to develop high energy density electrodes. The effect of Nb₂O₅ crystallinity on the capacitive response of SCs has been reported by Kim *et al.*²⁴³. Augustyn *et al.* have shown that thick electrodes of up to 40 µm offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices²⁴⁴. Another study on understanding the origin of high-rate intercalation pseudocapacitance in Nb₂O₅ crystals was presented by Lubimtsev *et al.*²⁴⁵.

So far, incorporation of carbon with Nb₂O₅ to fabricate a composite SC electrode has been considered as one of the most effective solutions in developing high energy density electrodes ²⁴⁶. Wang *et al.* developed a SC electrode that consisted of CNT networks intimately mixed with Nb₂O₅ nanocrystals to generate a SC with a high capacitance, excellent rate capability as well as cycling capability ²⁴⁷. The intimate contact between the nanocrystals and the CNTs enabled fast electron transport and increased current, while the small dimensions of the nanocrystals shortened the lithium-ion diffusion length.

4.4 Catalysts

Nb₂O₅ in its pure form has been used as a high temperature catalyst for the oxidative dehydrogenation (ODH) of organic materials in their gaseous form such as methane to formaldehyde and propane to propene^{28, 248}. In addition, other reports have demonstrated that Nb₂O₅ could serve as an efficient catalyst for the transesterification of β -keto esters with several kinds of alcohols, leading to good conversion at acceptable yields ²⁴⁹. It has been suggested that the catalytic performance of each polymorphic form of Nb₂O₅ differs significantly from one another. However, Nb₂O₅ has commonly been used with other metal oxides/metals due to the following properties that it offers to the composite catalyst ²⁵⁰⁻²⁵²: (i) promotion and support properties: Nb₂O₅ enhances catalytic activity, selectivity and prolongs catalyst life when a small amount of this oxide is added to known catalysts, (ii) acidic property: the surface acid strength of hydrated Nb₂O₅ exhibits high catalytic activity, selectivity and stability for acid

catalysed reactions in which water molecules participate, and (iii) redox properties and photosensitivity: Nb_2O_5 in mixed oxides is an oxidant and demonstrates photosensitivity.

Similar to its pure form, Nb₂O₅ has also been used together with other metal/metal oxide for the dehydrogenation of organic compounds in their gaseous forms^{250, 251, 253-255}. Cherian *et al.* investigated a Nb₂O₅ supported chromium oxide (Cr₂O₃) catalyst for the ODH of propane to propene which demonstrated more than 80% selectivity in a temperature range of 673-723 K ²⁵⁴. They also claimed the Nb₂O₅ support did not degrade the propene as much as Al₂O₃ and TiO₂ supports. The ODH of propane was also investigated by the addition of 1 to 20 wt % of Nb₂O₅ in Pd/Al₂O₃ catalysts (Figure 12) ²⁵⁶. Similar catalytic properties have also been shown for other metal oxide compounds with Nb₂O₅ including Re₂O₇, CrO₃, WO₃, MoO₃, and V₂O₅ ²⁵⁷.

Nb₂O₅ has also been utilised as a photocatalyst. Under illumination, Nb₂O₅ produces electron/hole pairs that can generate hydroxyl radicals ('HO) from water, which are able to undergo further reactions in solution. Such photocatalytic applications have been successfully demonstrated for water splitting and degradation of harmful organic contaminants^{47, 89, 258-263}. Increased photocatalytic activity was achieved by forming Nb₂O₅ nanostructures such as mesoporous, electrospun nanofibers, nanorods and nanospheres as a result of their high surface area^{258, 262}. The addition of metal particles (i.e., Pt, Au, Cu) and metal oxides (i.e., CuO, NiO) into a Nb₂O₅ photocatalysts can delay the electron and hole recombination rate which enhances reduction reactions and improves the hydrogen production rate^{259, 260}. Furthermore, carbon incorporation is also an effective technique to enhance photocatalytic activity. This is due to the capability of the carbon to modify the surface chemical composition of Nb₂O₅ and extend its absorption into the visible light range ²⁶².

4.5 Electrochromic Devices

Electrochromism is the ability of a material to change its transparency upon exposure to stimuli. Electrochromic (EC) materials are at the core of a variety of applications including smart windows for architectural and automotive industries as well as optical displays²⁶⁴⁻²⁶⁶. An ideal EC material should have high initial transparency, large optical contrast between coloured and bleach states, short switching time, and long-term cyclic stability ²⁶⁷.

 Nb_2O_5 has an excellent potential for the development of EC systems. It has multicolour capabilities and it also shows long-term cyclic stability due to its relatively large band gap ^{268, 269}. To date, the best EC ever reported has been for elevated temperature anodized Nb_2O_5 showing values as large as 47.0 cm² C⁻¹ at an applied potential of -1.5 V for samples of 500 nm thickness (Figure 13) ⁶⁹. Other studies of EC systems based on Nb_2O_5 films using other synthesis techniques including sol-gel, thermal oxidation, chemical vapour deposition and pulse-laser deposition have also been reported elsewhere but resulted in lower ECs ^{16, 29, 67, 118, 153, 269-272}.

4.6 Other Applications

 Nb_2O_5 has also been reported for applications other than those presented in sections 4.1 to 4.5. As highlights, Nb_2O_5 has been incorporated in electronic devices such as memristors, capacitors, and field-effect transistors (FETs).

Highly crystalline orthorhombic Nb₂O₅ nanofibers obtained by electrospinning have been used in the development of memristors ²⁷³. Reproducible bipolar resistive switching with an ON-OFF resistance ratio as high as 2×10^4 was observed in individual fibers. Hota et al. investigated the performance of Pd nano-dots (NDs) embedded in Nb₂O₅ memristors by scanning microscopy³⁰. tunnelling From the current-voltage measurements, the memristors showed non-volatile memory and bipolar resistive switching characteristics. They claimed that the inclusion of Pd NDs played a critical role by acting as oxygen ion reservoirs and/or by polarizing a large volume of oxygen vacancies³⁰. In addition, non-volatile resistive switching behaviour was also demonstrated at anodic Nb2O5 based memristors (in the configuration of Au/ Nb₂O₅/Nb/Si sandwich memory cells)²⁷⁴. The devices exhibited reproducible performance with a resistance ON-OFF ratio of $\sim 10^3$.

Meanwhile, an interesting report on a capacitor based on Nb₂O₅ was presented by Garcia *et al.*, who investigated the influence of the growth and annealing temperatures on the electrical properties of Nb₂O₅ based MIM capacitors⁶⁴. The obtained results show that the permittivity values exceeded 50 for the films crystallized after annealing at temperatures higher than 500 °C. However, the leakage current values for the crystalline films were higher than those in the case of amorphous films.

It has also been shown recently that Nb_2O_5 can be used in FETs by Kao *et. al.*²⁷⁵. The gain of the device could be readily controlled via the gate voltage modulations. The same group also showed the incorporation of such a FET as transducers for pH and biosensing.

Conclusion and Future Outlook

In this comprehensive review, we have presented the fundamental physical and chemical properties of Nb_2O_5 , focusing on crystal structure and its electrical, optical, mechanical and thermal properties. In addition, we also discussed the various techniques that have been used to synthesize various forms of Nb_2O_5 , and the most commonly reported applications incorporating Nb_2O_5 were summarized.

It was highlighted that Nb_2O_5 is found in a variety of crystal phases. The most common phases that are observed include pseudohexagonal, orthorhombic and monoclinic. There are still many unsubstantiated statements regarding the crystal structures of Nb_2O_5 , especially when sub stoichiometry is present, thus more rigorous crystal phase analysis should be conducted to shed light on such conflicting arguments. Tetragonal Nb_2O_5 , which is an unstable crystal structure between the orthorhombic and monoclinic phases, is still not well understood and less explored, which may present an opportunity for future research.

The reports regarding band energy diagrams, and as a result, the electronic and optical properties of Nb_2O_5 were presented. The mechanical and thermal properties of Nb_2O_5 were also discussed. However, it was hinted that many fundamental topics such as the Seebeck coefficient, thermal conductivity and carrier mobility of Nb_2O_5 have been rarely studied opening great avenues for future investigations.

Numerous synthesis techniques of Nb_2O_5 were briefly discussed in this review. It was seen that there exists a wide range of nanostructured Nb_2O_5 that have been successfully synthesized including nanoporous, nanosheets, nanorods,

nanochannels, and nanowires, among others. However, a variety of other Nb_2O_5 morphologies have yet to be explored and fully characterized. We also believe that simple synthesis methods and low cost production routes should be investigated in more detail.

We have described numerous applications of Nb₂O₅ in catalysis, electrochromic devices, batteries, sensors and solar cells. However, many of these studies are still in their infancy and require further exploration. For example, in solar cell applications, Nb₂O₅ has received relatively little attention compared to materials such as TiO₂ and ZnO even though theoretically, Nb₂O₅ in both dye sensitized and heterostructure systems can offer enhanced efficiency. Furthermore, Nb₂O₅ in transistor, memristor and superconductor devices has been less studied compared to other metal oxides. There are certainly significant chances for further investigations of the capabilities of these devices through the exploitation of nanostructured Nb₂O₅.

Since Nb₂O₅ demonstrates excellent mechanical flexibility and durability as well as fantastic electronic and optical properties, one should consider the opportunity for its use in microelectro-mechanical systems (MEMS) and sensors, especially in combination with microfluidics and biomedical devices. There are many more applications that can be considered and comprehensive studies using Nb₂O₅ in many relevant fields should be encouraged, since its capability in many applications has not yet been examined.

Notes and references

^aSchool of Electrical and Computer Engineering, RMIT University, Melbourne, VIC 3001, Australia.

*Emails: rozina.abdulrani@student.rmit.edu.au and

kourosh.kalantar@rmit.edu.au

^bFaculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia.

^cSchool of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, QLD, 4001, Australia.

- F. Holtzberg, A. Reisman, M. Berry and M. Berkenblit, *Journal of the American Chemical Society*, 1957, 79, 2039-2043.
- 2. G. Brauer, Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1941, 248, 1-31.
- 3. H. Schäfer, R. Gruehn and F. Schulte, *Angewandte Chemie International Edition in English*, 1966, 5, 40-52.
- M. P. F. Graca, A. Meireles, C. Nico and M. A. Valente, *Journal of* Alloys and Compounds, 2013, 553, 177-182.
- L. T. Arenas, P. C. M. Villis, J. Arguello, R. Landers, E. V. Benvenutti and Y. Gushikem, *Talanta*, 2010, 83, 241-248.
- D. Velten, E. Eisenbarth, N. Schanne and J. Breivie, *Journal of Materials Science-Materials in Medicine*, 2004, 15, 457-461.
- R. Pinto and B. M. Shaha, *Japanese Journal of Applied Physics*, 1968, 7, 1542.
- B. Lelevic, N. Fuschillo and N. K. Annamalai, *Thin Solid Films*, 1974, 23, 249-256.
- P. Griesmar, G. Papin, C. Sanchez and J. Livage, *Chemistry of Materials*, 1991, 3, 335-339.
- 10. G. R. Lee and J. A. Crayston, *Journal of Materials Chemistry*, 1991, 1, 381-386.

- E. I. Ko, J. M. Hupp and N. J. Wagner, *Journal of the Chemical Society-Chemical Communications*, 1983, 94-95.
- 13. K. Kunimori, H. Abe and T. Uchijima, *Chemistry Letters*, 1983, 1619-1622.
- 14. A. V. Chadwick, W. Zhou and J. M. Thomas, *Angewandte Chemie-International Edition in English*, 1989, 28, 75-76.
- D. Rosenfeld, P. E. Schmid, S. Széles, F. Lévy, V. Demarne and A. Grisel, *Sens. Actuators, B*, 1996, 37, 83-89.
- M. A. B. Gomes, L. O. d. S. Bulhões, S. C. de Castro and A. J. Damião, *Journal of The Electrochemical Society*, 1990, 137, 3067-3070.
- 17. M. A. Aegerter, M. Schmitt and Y. P. Guo, *International Journal* of *Photoenergy*, 2002, 4, 1-10.
- Ö. D. Coşkun and S. Demirela, *Applied Surface Science*, 2013, 277, 35-39.
- M. Kovendhan, D. P. Joseph, P. Manimuthu, S. Ganesan, S. Sambasivam, P. Maruthamuthu, S. A. Suthanthiraraj, C. Venkateswaran and R. Mohan, *Transactions of the Indian Institute of Metals*, 2011, 64, 185-188.
- R. Ghosh, M. K. Brennaman, T. Uher, M.-R. Ok, E. T. Samulski, L. E. McNeil, T. J. Meyer and R. Lopez, *Acs Applied Materials & Interfaces*, 2011, 3, 3929-3935.
- C. Nico, L. Rino, M. Matos, R. Monteiro, F. M. Costa, T. Monteiro and M. P. F. Graça, *Journal of the European Ceramic Society*, 2013, 33, 3077-3083.
- R. Abdul Rani, A. S. Zoolfakar, J. Subbiah, J. Z. Ou and K. Kalantar-zadeh, *Electrochemistry Communications*, 2014, 40, 20-23.
- J. Z. Ou, R. A. Rani, M. H. Ham, M. R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R. B. Kaner and K. Kalantar-Zadeh, *ACS Nano*, 2012, 6, 4045-4053.
- M. Sasidharan, N. Gunawardhana, M. Yoshio and K. Nakashima, Materials Research Bulletin, 2012, 47, 2161-2164.
- 25. K. Kamada, M. Mukai and Y. Matsumoto, *Electrochimica Acta*, 2004, 49, 321-327.
- 26. S. Abe, Nanoscale Research Letters, 2012, 7, 1-6.
- A. Le Viet, R. Jose, M. V. Reddy, B. V. R. Chowdari and S. Ramakrishna, *Journal of Physical Chemistry C*, 2010, 114, 21795-21800.
- B. Michalkiewicz, J. Srenscek-Nazzal, P. Tabero, B. Grzmil and U. Narkiewicz, *Chemical Papers*, 2008, 62, 106-113.
- 29. A. Michel A, Solar Energy Materials and Solar Cells, 2001, 68, 401-422.
- M. K. Hota, M. K. Bera, S. Verma and C. K. Maiti, *Thin Solid Films*, 2012, 520, 6648-6652.
- A. L. Viet, M. V. Reddy, R. Jose, B. V. R. Chowdari and S. Ramakrishna, *J. Phys. Chem. C* 2009, 114, 664-671.
- 32. I. N. a. M. Ziolek, Chem. Rev., 1999, 99, 3603-3624.
- L. A. Reznichenko, V. V. Akhnazarova, L. A. Shilkina, O. N. Razumovskaya and S. I. Dudkina, *Crystallography Reports*, 2009, 54, 483-491.
- 34. E. I. Ko and J. G. Weissman, Catalysis Today, 1990, 8, 27-36.
- 35. W. Mertin, S. Andersson and R. Gruehn, *Journal of Solid State Chemistry*, 1970, 1, 419-424.

- E. Tsang, X. Zhou, L. Ye and S. C. Edman Tsang, *Nano Reviews*, 2012, 3, 17631.
- Y. Kobayashi, H. Hata, M. Salama and T. E. Mallouk, Nano Letters, 2007, 7, 2142-2145.
- H. Zhang, Y. Wang, D. Yang, Y. Li, H. Liu, P. Liu, B. J. Wood and H. Zhao, *Advanced Materials*, 2012, 24, 1598-1603.
- J. S. Anderson, J. M. Browne and J. L. Hutchison, *Nature*, 1972, 237, 151-153.
- T. Ikeya and M. Senna, *Journal of Non-Crystalline Solids*, 1988, 105, 243-250.
- H. Luo, W. Song, P. G. Hoertz, K. Hanson, R. Ghosh, S. Rangan, M. K. Brennaman, J. J. Concepcion, R. A. Binstead, R. A. Bartynski, R. Lopez and T. J. Meyer, *Chemistry of Materials*, 2012, 25, 122-131.
- 42. J. W. Schultze and M. M. Lohrengel, *Electrochimica Acta*, 2000, 45, 2499-2513.
- T. Proslier, J. Zasadzinski, L. Cooley, M. Pellin, J. Norem, J. Elam, C. Z. Antoine, R. A. Rimmer and P. Kneisel, *Applied Superconductivity, IEEE Transactions on*, 2009, 19, 1404-1408.
- 44. S. Zhuiykov and E. Kats, *World Academy of Science, Engineering* and Technology, 2013, 78.
- 45. A. D. Yoffe, Advances in Physics, 2002, 51, 799-890.
- 46. K. Sattler, *The energy gap of clusters, nanoparticles, and quantum dots*, Academic Press, New York 2002.
- A. Esteves, L. C. A. Oliveira, T. C. Ramalho, M. Goncalves, A. S. Anastacio and H. W. P. Carvalho, *Catalysis Communications*, 2008, 10, 330-332.
- 48. J. Liu, D. Xue and K. Li, Nanoscale Research Letters, 2011, 6.
- 49. R. Brayner and F. Bozon-Verduraz, *Physical Chemistry Chemical Physics*, 2003, 5, 1457-1466.
- 50. G. Agarwal and G. B. Reddy, *Journal of Materials Science: Materials in Electronics*, 2005, 16, 21-24.
- 51. M. Palatnikov, O. Shcherbina, N. Sidorov and K. Bormanis, *Ukrainian Journal of Physical Optics*, 2012, 13.
- 52. L. K. Frevel and H. W. Rinn, *Analytical Chemistry*, 1955, 27, 1329-1330.
- O. Kubaschewski and B. E. Hopkins, *Journal of the Less Common Metals*, 1960, 2, 172-180.
- 54. W. T. Holser, Acta Crystallographica, 1956, 9, 196-196.
- Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan and H. Gu, *Int. J. Hydrogen Energy* 2012, 37, 4526-4532.
- 56. R. Norin and A. Magnéli, Naturwissenschaften, 1960, 47, 354-355.
- 57. B. M. Gatehouse and A. D. Wadsley, *Acta Crystallographica*, 1964, 17, 1545-1554.
- 58. K. Kato, Acta Crystallographica Section B, 1976, 32, 764-767.
- 59. S. Aggarwal and R. Ramesh, *Annual Review of Materials Science*, 1998, 28, 463-499.
- E. H. Greener, D. H. Whitmore and M. E. Fine, *The Journal of Chemical Physics*, 1961, 34, 1017-1023.
- 61. P. Kofstad, *Journal of Physics and Chemistry of Solids*, 1962, 23, 1571.
- W. K. Chen and R. A. Swalin, *Journal of Physics and Chemistry of* Solids, 1966, 27, 57-64.
- S. Clima, G. Pourtois, S. Van Elshocht, S. De Gendt, M. M. Heyns, D. J. Wouters and J. A. Kittl, *ECS Transactions*, 2009, 19, 729-737.

- H. García, H. Castán, E. Perez, S. Dueñas, L. Bailón, T. Blanquart, J. Niinistö, K. Kukli, M. Ritala and M. Leskelä, *Semiconductor Science and Technology*, 2013, 28, 055005.
- 65. G. E. Cavigliasso, M. J. Esplandiu and V. A. Macagno, *Journal of Applied Electrochemistry*, 1998, 28, 1213-1219.
- J. Yahia, Journal of Physics and Chemistry of Solids, 1964, 25, 881-887.
- 67. A. Pawlicka, M. Atik and M. A. Aegerter, *Thin Solid Films*, 1997, 301, 236-241.
- M. Schmitt, S. Heusing, M. A. Aegerter, A. Pawlicka and C. Avellaneda, *Solar Energy Materials and Solar Cells*, 1998, 54, 9-17.
- D. D. Yao, R. A. Rani, A. P. O'Mullane, K. Kalantar-zadeh and J. Z. Ou, *The Journal of Physical Chemistry C*, 2014, 118, 476-481.
- 70. E. Çetinörgü-Goldenberg, J.-E. Klemberg-Sapieha and L. Martinu, *Applied Optics*, 2012, 51, 6498-6507.
- 71. C.-C. Lee, C.-L. Tien and J.-C. Hsu, *Applied Optics*, 2002, 41, 2043-2047.
- N. Özer, M. D. Rubin and C. M. Lampert, *Solar Energy Materials* and Solar Cells, 1996, 40, 285-296.
- X. Xiao, G. Dong, C. Xu, H. He, H. Qi, Z. Fan and J. Shao, *Appl. Surf. Sci.*, 2008, 255, 2192-2195.
- O. B. Shcherbina, M. N. Palatnikov and V. V. Efremov, *Inorganic Materials*, 2012, 48, 433-438.
- S. Park, G. Wang, B. Cho, Y. Kim, S. Song, Y. Ji, M.-H. Yoon and T. Lee, *Nat Nano*, 2012, 7, 438-442.
- 76. J. Lewis, Materials Today, 2006, 9, 38-45.
- J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou and Z. Ma, Opt. Mater. Express, 2013, 3, 1313-1331.
- C. Peng, Z. Jia, H. Neilson, T. Li and J. Lou, Advanced Engineering Materials, 2013, 15, 250-256.
- M. K. Hota, M. K. Bera and C. K. Maiti, Semiconductor Science and Technology, 2012, 27.
- W. R. Manning, O. Hunter, F. W. Calderwood and D. W. Stacy, Journal of the American Ceramic Society, 1972, 55, 342-347.
- D. L. Douglass, Journal of the Less Common Metals, 1963, 5, 151-157.
- G. L. Dwivedi and E. C. Subbarao, Journal of the American Ceramic Society, 1973, 56, 443-444.
- H. Choosuwan, R. Guo, A. S. Bhalla and U. Balachandran, *Journal of Applied Physics*, 2002, 91, 5051-5054.
- M. N. Palatnikov, O. B. Shcherbina, A. A. Frolov, V. N. Pavlikov, M. V. Karpets, O. V. Makarova, N. V. Sidorov and V. T. Kalinnikov, *Inorganic Materials*, 2010, 46, 683-690.
- 85. K. E. Jesse, Journal of Applied Physics, 1969, 40, 3386-3389.
- H. Luo, M. Wei and K. Wei, *Materials Chemistry and Physics*, 2010, 120, 6-9.
- G. Li, X. Wang and X. Ma, *Journal of Energy Chemistry*, 2013, 22, 357-362.
- O. F. Lopes, E. C. Paris and C. Ribeiro, *Applied Catalysis B:* Environmental, 2014, 144, 800-808.
- Y. Zhao, C. Eley, J. Hu, J. S. Foord, L. Ye, H. He and S. C. E. Tsang, Angewandte Chemie-International Edition, 2012, 51, 3846-3849.
- G. K. M. K. Shankar, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese and C. A. Grimes, *Nanotechnology*, 2007, 18, 065707.

- D. Regonini, C. R. Bowen, A. Jaroenworaluck and R. Stevens, Materials Science and Engineering: R: Reports, 2013, 74, 377-406.
- P. H. G. Draper and J. Harvey, *Acta Metallurgica*, 1963, 11, 873-879.
- 93. G. C. Wood and C. Pearson, Nature, 1965, 208, 547-549.
- M. R. Arora and R. Kelly, *Journal of Materials Science*, 1977, 12, 1673-1684.
- 95. A. Aladjem, D. G. Brandon, J. Yahalom and J. Zahavi, *Electrochimica Acta*, 1970, 15, 663-671.
- H. Habazaki, Y. Oikawa, K. Fushimi, Y. Aoki, K. Shimizu, P. Skeldon and G. E. Thompson, *Electrochim. Acta* 2009, 54, 946-951.
- 97. J. H. L. Jinsub Choi, Jaeyoung Lee and Kyung Ja Kim, Nanotechnol., 2007, 18.
- J. Choi, J. H. Lim, S. C. Lee, J. H. Chang, K. J. Kim and M. A. Cho, *Electrochimica Acta*, 2006, 51, 5502-5507.
- Y. Oikawa, T. Minami, H. Mayama, K. Tsujii, K. Fushimi, Y. Aoki, P. Skeldon, G. E. Thompson and H. Habazaki, *Acta Materialia*, 2009, 57, 3941-3946.
- Q. Lu, T. Hashimoto, P. Skeldon, G. E. Thompson, H. Habazaki and K. Shimizu, *Electrochemical and Solid-State Letters*, 2005, 8, B17-B20.
- 101. I. Sieber, H. Hildebrand, A. Friedrich and P. Schmuki, *Electrochemistry Communications*, 2005, 7, 97-100.
- J. E. Yoo, J. Park, G. Cha and J. Choi, *Thin Solid Films*, 2013, 531, 583-587.
- 103. M. M. Rahman, R. A. Rani, A. Z. Sadek, A. S. Zoolfakar, M. R. Field, T. Ramireddy, K. Kalantar-zadeh and Y. Chen, J Mater Chem A, 2013, 1, 11019-11025.
- 104. J. Zhao, X. Wang, R. Xu, Y. Mi and Y. Li, *Electrochemical and Solid-State Letters*, 2007, 10, C31-C33.
- R. L. Karlinsey, *Electrochemistry Communications*, 2005, 7, 1190-1194.
- R. L. Karlinsey, *Journal of Materials Science*, 2006, 41, 5017-5020.
- S. Yang, Y. Aoki and H. Habazaki, *Applied Surface Science*, 2011, 257, 8190-8195.
- W. Wei, K. Lee, S. Shaw and P. Schmuki, *Chem. Commun.*, 2012, 48, 4244-4246.
- K. Lee, Y. Yang, M. Yang and P. Schmuki, *Chemistry-a European Journal*, 2012, 18, 9521-9524.
- 110. R. A. Rani, A. S. Zoolfakar, J. Z. Ou, R. Ab Kadir, H. Nili, K. Latham, S. Sriram, M. Bhaskaran, S. Zhuiykov, R. B. Kaner and K. Kalantar-Zadeh, *Chemical Communications*, 2013, 49, 6349-6351.
- S. Barredo-Damas, K. Lee, R. Kirchgeorg, R. Sánchez-Tovar and P. Schmuki, *ECS Electrochemistry Letters*, 2013, 2, C4-C6.
- 112. L. L. Hench and J. K. West, Chemical Reviews, 1990, 90, 33-72.
- 113. Markus Niederberger and N. Pinna, in *Metal Oxide Nanoparticles in Organic Solvents*, Springer London, 2009, ch. 2, pp. 7-18.
- A. Pierre, in *Introduction to Sol-Gel Processing*, Springer US, 1998, vol. 1, ch. 1, pp. 1-9.
- T. Olding, M. Sayer and D. Barrow, *Thin Solid Films*, 2001, 398, 581-586.
- C. Alquier, M. T. Vandenborre and M. Henry, *Journal of Non-Crystalline Solids*, 1986, 79, 383-395.

- N. Ozer, T. Barreto, T. Buyuklimanli and C. M. Lampert, Solar Energy Materials and Solar Cells, 1995, 36, 433-443.
- 118. P. R. Bueno, C. O. Avellaneda, R. C. Faria and L. O. S. Bulhoes, *Electrochimica Acta*, 2001, 46, 2113-2118.
- G. Li, X. Wang, Z. Chen, X. Ma and Y. Lu, *Electrochimica Acta*, 2013, 102, 351-357.
- L. Melo, C. O. Avellaneda and A. Pawlicka, *Molecular Crystals* and Liquid Crystals, 2002, 374, 101-106.
- 121. P. Guo and M. A. Aegerter, Thin Solid Films, 1999, 351, 290-294.
- 122. M. Ristic, S. Popovic and S. Music, *Materials Letters*, 2004, 58, 2658-2663.
- 123. D. A. de Barros Filho, P. P. Abreu Filho, U. Werner and M. A. Aegerter, *Journal of Sol-Gel Science and Technology*, 1997, 8, 735-742.
- T. Sreethawong, S. Ngamsinlapasathian and S. Yoshikawa, Materials Letters, 2012, 78, 135-138.
- 125. M. H. Habibi and R. Mokhtari, Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 158-165.
- I. Zhitomirsky, Journal of the European Ceramic Society, 1999, 19, 2581-2587.
- 127. Z. I, Materials Letters, 1998, 35, 188-193.
- 128. J.-H. Jang, T.-Y. Kim, N.-J. Kim, C.-H. Lee, E.-M. Park, C. Park and S.-J. Suh, *Materials Science and Engineering: B*, 2011, 176, 1505-1508.
- 129. D. Yang, Nanocomposite films for gas sensing, advances in nanocomposites Synthesis, characterization and industrial applications, InTech, 2011.
- Y. K. Yap, *Physical Vapor Deposition, Encyclopedia of Nanotechnology: SpringerReference* Springer, Berlin Heidelberg, 2012.
- F. Richter, H. Kupfer, P. Schlott, T. Gessner and C. Kaufmann, *Thin Solid Films*, 2001, 389, 278-283.
- B. Hunsche, M. Vergöhl, H. Neuhäuser, F. Klose, B. Szyszka and T. Matthée, *Thin Solid Films*, 2001, 392, 184-190.
- 133. S. Venkataraj, R. Drese, O. Kappertz, R. Jayavel and M. Wuttig, *physica status solidi (a)*, 2001, 188, 1047-1058.
- 134. K. Yoshimura, T. Miki and S. Tanemura, *Journal of The Electrochemical Society*, 1997, 144, 2982-2985.
- H. Mähne, L. Berger, D. Martin, V. Klemm, S. Slesazeck, S. Jakschik, D. Rafaja and T. Mikolajick, *Solid-State Electronics*, 2012, 72, 73-77.
- 136. J. M. Chappé, P. Carvalho, S. Lanceros-Mendez, M. I. Vasilevskiy, F. Vaz, A. V. Machado, M. Fenker, H. Kappl, N. M. G. Parreira, A. Cavaleiro and E. Alves, *Surface and Coatings Technology*, 2008, 202, 2363-2367.
- 137. A. Dhar and T. L. Alford, Journal of Applied Physics, 2012, 112.
- 138. F. Lai, M. Li, H. Wang, H. Hu, X. Wang, J. G. Hou, Y. Song and Y. Jiang, *Thin Solid Films*, 2005, 488, 314-320.
- 139. F. Lai, L. Lin, Z. Huang, R. Gai and Y. Qu, *Applied Surface Science*, 2006, 253, 1801-1805.
- 140. A. Pignolet, G. M. Rao and S. B. Krupanidhi, *Thin Solid Films*, 1995, 261, 18-24.
- 141. R. C. Lee and C. R. Aita, *Journal of Applied Physics*, 1991, 70, 2094-2103.
- 142. S. V. Zaitsev, Y. V. Gerasimenko, S. N. Saltykov, D. A. Khoviv and A. M. Khoviv, *Inorganic Materials*, 2011, 47, 412-416.

- T. Maruyama and S. Arai, *Applied Physics Letters*, 1993, 63, 869-870.
- L. Berger, H. Maehne, V. Klemm, A. Leuteritz, T. Mikolajick and D. Rafaja, *Applied Physics a-Materials Science & Processing*, 2012, 108, 431-437.
- 145. Y. Shao, K. Yi, M. Fang and J. Zhang, in *Pacific Rim Laser Damage 2011: Optical Materials for High Power Lasers*, eds. J. Shao, K. Sugioka and C. J. Stolz, 2012, vol. 8206.
- 146. G. Ramírez, S. E. Rodil, S. Muhl, D. Turcio-Ortega, J. J. Olaya, M. Rivera, E. Camps and L. Escobar-Alarcón, *Journal of Non-Crystalline Solids*, 2010, 356, 2714-2721.
- 147. H. Wender, P. Migowski, A. F. Feil, S. R. Teixeira and J. Dupont, *Coordination Chemistry Reviews*, 2013, 257, 2468-2483.
- 148. P. J. Kelly and R. D. Arnell, Vacuum, 2000, 56, 159-172.
- 149. C.-L. Tien, Applied Surface Science, 2010, 257, 481-486.
- C. M. Cotell, S. Schiestel, C. A. Carosella, S. Flom, G. K. Hubler and D. L. Knies, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 127–128, 557-561.
- B. Reichman and A. J. Bard, Journal of The Electrochemical Society, 1980, 127, 241-242.
- 152. M. Vinnichenko, A. Rogozin, D. Grambole, F. Munnik, A. Kolitsch, W. Möller, O. Stenzel, S. Wilbrandt, A. Chuvilin and U. Kaiser, *Applied Physics Letters*, 2009, 95.
- Z. W. Fu, J. J. Kong and Q. Z. Qin, *Journal of The Electrochemical Society*, 1999, 146, 3914-3918.
- S. Hyunjun, C. Dooho, L. Dongsoo, S. Seo, L. Myong-Jae, Y. In-Kyeong and H. Hyunsang, *Electron Device Letters, IEEE*, 2005, 26, 292-294.
- M. E. Gimon-Kinsel and K. J. Balkus Jr, *Microporous and Mesoporous Materials*, 1999, 28, 113-123.
- 156. K. L. Choy, Progress in Materials Science, 2003, 48, 57-170.
- 157. Y. Kuzminykh, A. Dabirian, M. Reinke and P. Hoffmann, *Surface and Coatings Technology*, 2013, 230, 13-21.
- C. d. O. da Silveira, AF; de Campos, SD; de Campos, EA; Fraporti, AD Surface Engineering 2012 28 68-72
- 159. N. Hara, E. Takahashi, J. H. Yoon and K. Sugimoto, *Journal of the Electrochemical Society*, 1994, 141, 1669-1674.
- J. P. Masse, H. Szymanowski, O. Zabeida, A. Amassian, J. E. Klemberg-Sapieha and L. Martinu, *Thin Solid Films*, 2006, 515, 1674-1682.
- 161. S. A. O'Neill, I. P. Parkin, R. J. H. Clark, A. Mills and N. Elliott, Journal of Materials Chemistry, 2003, 13, 2952-2956.
- A. F. de Oliveira, C. B. da Silveira, S. D. de Campos, E. A. de Campos and E. Carasek, *Talanta*, 2005, 66, 74-79.
- 163. R. Fiz, F. Hernandez-Ramirez, T. Fischer, L. Lopez-Conesa, S. Estrade, F. Peiro and S. Mathur, *The Journal of Physical Chemistry* C, 2013, 117, 10086-10094.
- W. Hu, Z. Liu, D. Tian, S. Zhang, Y. Zhao and K. Yao, *Journal of Wuhan University of Technology-Materials Science Edition*, 2009, 24, 245-248.
- J. Buha, D. Arcon, M. Niederberger and I. Djerdj, *Physical Chemistry Chemical Physics*, 2010, 12, 15537-15543.
- H. Kominami, K. Oki, M. Kohno, S.-i. Onoue, Y. Kera and B. Ohtani, *Journal of Materials Chemistry*, 2001, 11, 604-609.

- M. Wei, Z. m. Qi, M. Ichihara and H. Zhou, *Acta Mater.*, 2008, 56, 2488-2494.
- 168. W. Hu, Y. Zhao, Z. Liu and Y. Zhu, Nanotechnology, 2007, 18.
- H. Luo, M. Wei and K. Wei, *Journal of Nanomaterials*, 2009, 2009.
- S. Kunjara Na Ayudhya, A. Soottitantawat, P. Praserthdam and C. Satayaprasert, *Materials Chemistry and Physics*, 2008, 110, 387-392.
- 171. C. C. Li, J. Dou, L. Chen, J. Lin and H. C. Zeng, *ChemCatChem*, 2012, 4, 1675-1682.
- 172. L. Fei and X. Dongfeng, Physica Scripta, 2010, 2010, 014074.
- 173. H. Wen, Z. Liu, J. Wang, Q. Yang, Y. Li and J. Yu, *Appl. Surf. Sci.*, 2011, 257, 10084-10088.
- 174. M. Liu and D. Xue, *Materials Research Bulletin*, 2010, 45, 333-338.
- 175. S. H. Mujawar, A. I. Inamdar, C. A. Betty, V. Ganesan and P. S. Patil, *Electrochim. Acta*, 2007, 52, 4899-4906.
- 176. J. Xia, N. Masaki, K. Jiang and S. Yanagida, Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 120-127.
- 177. R. Romero, J. R. Ramos-Barrado, F. Martin and D. Leinen, *Surface and Interface Analysis*, 2004, 36, 888-891.
- R. Romero, E. A. Dalchiele, F. Martín, D. Leinen and J. R. Ramos-Barrado, *Solar Energy Materials and Solar Cells*, 2009, 93, 222-229.
- 179. T. Rajesh, V. Binni, G. M. Subodh, T. Eng Soon and S. Chorng Haur, *Nanotechnology*, 2011, 22, 115202.
- 180. J. H. Lim and J. Choi, *Journal of Industrial and Engineering Chemistry*, 2009, 15, 860-864.
- J. H. Kang, Y. Myung, J. W. Choi, D. M. Jang, C. W. Lee, J. Park and E. H. Cha, *Journal of Materials Chemistry*, 2012, 22, 8413-8419.
- 182. B. Varghese, S. C. Haur and C.-T. Lim, *The Journal of Physical Chemistry C*, 2008, 112, 10008-10012.
- 183. R. Kodama, Y. Terada, I. Nakai, S. Komaba and N. Kumagai, Journal of The Electrochemical Society, 2006, 153, A583-A588.
- S. Choopun, N. Hongsith and E. Wongrat, *Metal-Oxide Nanowires* by Thermal Oxidation Reaction Technique, 2010.
- 185. G. Michael, J. Photoch. Photobio. C, 2003, 4, 145-153.
- 186. L. Alibabaei, H. Luo, R. L. House, P. G. Hoertz, R. Lopez and T. J. Meyer, *J Mater Chem A*, 2013, 1, 4133-4145.
- R. Jose, V. Thavasi and S. Ramakrishna, J. Am. Ceram. Soc., 2009, 92, 289-301.
- K. Sayama, H. Sugihara and H. Arakawa, *Chem. Mater.*, 1998, 10, 3825-3832.
- L. Hu, M. Wolf, M. Grätzel and Z. Jiang, J. Sol-Gel Sci. Techn., 1995, 5, 219-226.
- B.-Y. Jeong and E. H. Jung, *Metals and Materials International*, 2013, 19, 617-622.
- 191. J. Xia, N. Masaki, K. Jiang and S. Yanagida, Chemical Communications, 2007, 138-140.
- 192. J. Xia, N. Masaki, K. Jiang and S. Yanagida, *The Journal of Physical Chemistry C*, 2007, 111, 8092-8097.
- 193. T.-Y. Cho, K.-W. Ko, S.-G. Yoon, S. S. Sekhon, M. G. Kang, Y.-S. Hong and C.-H. Han, *Current Applied Physics*, 2013, 13, 1391-1396.

- 194. J. Kim, Journal of Nanoscience and Nanotechnology, 2011, 11, 7335-7338.
- E. Barea, X. Xu, V. Gonzalez-Pedro, T. Ripolles-Sanchis, F. Fabregat-Santiago and J. Bisquert, *Energy & Environmental Science*, 2011, 4, 3414-3419.
- 196. A. Zaban, S. G. Chen, S. Chappel and B. A. Gregg, *Chemical Communications*, 2000, 2231-2232.
- S. G. Chen, S. Chappel, Y. Diamant and A. Zaban, *Chemistry of Materials*, 2001, 13, 4629-4634.
- 198. M. Wu, X. Lin, W. Guo, Y. Wang, L. Chu, T. Ma and K. Wu, *Chemical Communications*, 2013, 49, 1058-1060.
- 199. X. Lin, M. Wu, Y. Wang, A. Hagfeldt and T. Ma, *Chemical Communications*, 2011, 47, 11489-11491.
- 200. M. K. Siddiki, S. Venkatesan and Q. Qiao, *Physical Chemistry Chemical Physics*, 2012, 14, 4682-4686.
- O. Wiranwetchayan, Z. Liang, Q. Zhang, G. Cao and P. Singjai, Materials Sciences and Applications, 2011, 2, 1697-1701.
- 202. F. Lenzmann, in *Mesoporous, nanoparticulate films of Nb*₂O₅ and *ZrO*₂ preparation and characterization., Switzerland, 2000.
- 203. T. W. Hickmott, Journal of Applied Physics, 1966, 37, 4380-4388.
- 204. J.-C. Su, C.-L. Lu and C.-W. Chu, *Applied Optics*, 2009, 48, 4942-4946.
- G. Shen, P.-C. Chen, K. Ryu and C. Zhou, *Journal of Materials Chemistry*, 2009, 19, 828-839.
- 206. N. S. Harale, D. L. Kamble, M. G. Gang, V. K. Rao, J. H. Kim and P. S. Patil, *Materials Today*, 2013, 16, 452-453.
- 207. H. T. H. Kondo, T. Takeuchi, I. Igarashi, Proc. 3rd Sensor Symp., Japan, 1983, 185-190.
- L. Chambon, C. Maleysson, A. Pauly, J. P. Germain, V. Demarne and A. Grisel, *Sens. Actuators*, *B*, 1997, 45, 107-114.
- L. Chambon, A. Pauly, J. P. Germain, C. Maleysson, V. Demarne and A. Grisel, *Sens. Actuators*, *B*, 1997, 43, 60-64.
- 210. L. Chambon, J. P. Germain, A. Pauly, V. Demarne and A. Grisel, *Sensors and Actuators B: Chemical*, 1999, 60, 138-147.
- 211. R. A. Rani, A. S. Zoolfakar, J. Z. Ou, M. R. Field, M. Austin and K. Kalantar-zadeh, *Sensors and Actuators B-Chemical*, 2013, 176, 149-156.
- 212. T. Hyodo, J. Ohoka, Y. Shimizu and M. Egashira, *Sens. Actuators, B*, 2006, 117, 359-366.
- L. Chevallier, E. Di Bartolomeo, M. L. Grilli, M. Mainas, B. White, E. D. Wachsman and E. Traversa, *Sensors and Actuators B: Chemical*, 2008, 129, 591-598.
- 214. L. Chevallier, E. Di Bartolomeo, M. L. Grilli and E. Traversa, *Sensors and Actuators B: Chemical*, 2008, 130, 514-519.
- 215. H. G. Moon, H. W. Jang, J.-S. Kim, H.-H. Park and S.-J. Yoon, *Sens. Actuators, B*, 2011, 153, 37-43.
- 216. T. Hyodo, H. Shibata, Y. Shimizu and M. Egashira, Sens. Actuators, B, 2009, 142, 97-104.
- 217. A. Kohli, C. C. Wang and S. A. Akbar, *Sensors and Actuators B: Chemical*, 1999, 56, 121-128.
- 218. L. Chevallier, E. Traversa and E. Di Bartolomeo, *Journal of The Electrochemical Society*, 2010, 157, J386-J391.
- M. S. P. Francisco, W. S. Cardoso and Y. Gushikem, *Journal of Electroanalytical Chemistry*, 2005, 574, 291-297.
- 220. U. Cvelbar, K. Ostrikov, A. Drenik and M. Mozetic, *Appl. Phys. Lett.*, 2008, 92, 133505-133503.

- 221. B. C. Yadav and M. Singh, Sensors Journal, IEEE, 2010, 10, 1759-1766.
- 222. O. Korostynska, K. Arshak, E. Gill, A. Arshak and K. Kaneswaran, 2008.
- 223. J. P. Marco, K. B. Borges, C. R. T. Tarley, E. S. Ribeiro and A. C. Pereira, *Journal of Electroanalytical Chemistry*, 2013, 704, 159-168.
- 224. S. Rho, D. Jahng, J. H. Lim, J. Choi, J. H. Chang, S. C. Lee and K. J. Kim, *Biosensors and Bioelectronics*, 2008, 23, 852-856.
- 225. L. Sang, M. Liao and M. Sumiya, Sensors, 2013, 13, 10482-10518.
- 226. X. Fang, L. Hu, K. Huo, B. Gao, L. Zhao, M. Liao, P. K. Chu, Y. Bando and D. Golberg, *Adv. Funct. Mater.*, 2011, 21, 3907-3915.
- 227. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy & Environmental Science, 2011, 4, 3243-3262.
- 228. M. V. Reddy, G. V. Subba Rao and B. V. R. Chowdari, *Chemical Reviews*, 2013, 113, 5364-5457.
- K. Naoi, S. Ishimoto, J.-i. Miyamoto and W. Naoi, *Energy & Environmental Science*, 2012, 5, 9363-9373.
- 230. Y. Jing, Z. Zhou, C. R. Cabrera and Z. Chen, J Mater Chem A, 2014.
- 231. B. Reichman and A. J. Bard, *Journal of The Electrochemical Society*, 1981, 128, 344-346.
- 232. N. Kumagai, K. Tanno, T. Nakajima and N. Watanabe, *Electrochimica Acta*, 1983, 28, 17-22.
- 233. B. Kaplan, H. Groult, N. Kumagai, S. Komaba and F. Lantelme, *Electrochemistry*, 2001, 69, 592-597.
- 234. N. Kumagai, Y. Koishikawa, S. Komaba and N. Koshiba, *Journal* of the Electrochemical Society, 1999, 146, 3203-3210.
- 235. N. Kumagai, S. Komaba and N. Kumagai, in *New Materials for Batteries and Fuel Cells*, eds. D. H. Doughty, L. F. Nazar, M. Arakawa, H. P. Brack and K. Naoi, 2000, vol. 575, pp. 39-47.
- N. Kumagai, Y. Tateshita, Y. Takatsuka, M. Baba, T. Ikeda and K. Tanno, *Journal of Power Sources*, 1995, 54, 175-179.
- 237. F. Lantelme, H. Groult and N. Kumagai, *Electrochimica Acta*, 2000, 45, 3171-3180.
- 238. H. Nakazawa, K. Sano, T. Abe, M. Baba and N. Kumagai, *Journal of Power Sources*, 2007, 174, 838-842.
- N. Kumagai, I. Ishiyama and K. Tanno, *Journal of Power Sources*, 1987, 20, 193-198.
- 240. M. Wei, K. Wei, M. Ichihara and H. Zhou, *Electrochemistry Communications*, 2008, 10, 980-983.
- 241. A. Le Viet, M. V. Reddy, R. Jose, B. V. R. Chowdari and S. Ramakrishna, *Electrochimica Acta*, 2011, 56, 1518-1528.
- 242. G. Park, N. Gunawardhana, C. Lee, S.-M. Lee, Y.-S. Lee and M. Yoshio, *Journal of Power Sources*, 2013, 236, 145-150.
- 243. J. W. Kim, V. Augustyn and B. Dunn, *Advanced Energy Materials*, 2012, 2, 141-148.
- 244. V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. L. Taberna, S. H. Tolbert, H. D. Abruna, P. Simon and B. Dunn, *Nat Mater*, 2013, 12, 518-522.
- 245. A. A. Lubimtsev, P. R. C. Kent, B. G. Sumpter and P. Ganesh, J Mater Chem A, 2013, 1, 14951-14956.
- 246. P.-C. Chen, G. Shen, Y. Shi, H. Chen and C. Zhou, *ACS Nano*, 2010, 4, 4403-4411.
- 247. X. Wang, G. Li, Z. Chen, V. Augustyn, X. Ma, G. Wang, B. Dunn and Y. Lu, *Advanced Energy Materials*, 2011, 1, 1089-1093.

- 248. R. H. H. Smits, K. Seshan and J. R. H. Ross, *Journal of the Chemical Society-Chemical Communications*, 1991, 558-559.
- 249. M. I. de Sairre, E. S. Bronze-Uhle and P. M. Donate, *Tetrahedron Letters*, 2005, 46, 2705-2708.
- 250. K. Tanabe, Catalysis Today, 2003, 78, 65-77.
- 251. K. Tanabe and S. Okazaki, *Applied Catalysis a-General*, 1995, 133, 191-218.
- 252. T. Ushikubo, Catalysis Today, 2000, 57, 331-338.
- I. E. Wachs, Y. Chen, J. M. Jehng, L. E. Briand and T. Tanaka, *Catalysis Today*, 2003, 78, 13-24.
- 254. M. Cherian, M. S. Rao and G. Deo, *Catalysis Today*, 2003, 78, 397-409.
- 255. M. Ziolek, Catalysis Today, 2003, 78, 47-64.
- 256. F. B. Noronha, D. A. G. Aranda, A. P. Ordine and M. Schmal, *Catalysis Today*, 2000, 57, 275-282.
- J. M. Jehng, A. M. Turek and I. E. Wachs, *Applied Catalysis a-General*, 1992, 83, 179-200.
- 258. X. Chen, T. Yu, X. Fan, H. Zhang, Z. Li, J. Ye and Z. Zou, *Applied Surface Science*, 2007, 253, 8500-8506.
- 259. H.-Y. Lin, H.-C. Yang and W.-L. Wang, *Catalysis Today*, 2011, 174, 106-113.
- Y.-H. Pai and S.-Y. Fang, *Journal of Power Sources*, 2013, 230, 321-326.
- 261. S. Qi, R. Zuo, Y. Liu and Y. Wang, *Materials Research Bulletin*, 2013, 48, 1213-1217.
- S. Ge, H. Jia, H. Zhao, Z. Zheng and L. Zhang, Journal of Materials Chemistry, 2010, 20, 3052-3058.
- 263. S.-q. Guo, X. Zhang, Z. Zhou, G.-d. Gao and L. Liu, *J Mater Chem A*, 2014, 2, 9236-9243.
- R. Baetens, B. P. Jelle and A. Gustavsen, Solar Energy Materials and Solar Cells, 2010, 94, 87-105.
- 265. N. M. Rowley and R. J. Mortimer, *Science progress*, 2002, 85, 243-262.
- 266. J. J. Ho, C. Y. Chen, C. M. Huang, W. J. Lee, W. R. Liou and C. C. Chang, *Applied Optics*, 2005, 44, 6176-6180.
- 267. S. K. Deb, Solar Energy Materials and Solar Cells, 2008, 92, 245-258.
- S. Heusing, D. L. Sun, J. Otero-Anaya and M. A. Aegerter, *Thin Solid Films*, 2006, 502, 240-245.
- C. O. Avellaneda, A. Pawlicka and M. A. Aegerter, *Journal of Materials Science*, 1998, 33, 2181-2185.
- T. Maruyama and T. Kanagawa, Journal of The Electrochemical Society, 1994, 141, 2868-2871.
- 271. N. Ozer and C. M. Lampert, *Solar Energy Materials and Solar Cells*, 1998, 54, 147-156.
- A. Verma and P. K. Singh, Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 2013, 52, 593-598.
- A. M. Grishin, A. A. Velichko and A. Jalalian, *Applied Physics Letters*, 2013, 103.
- 274. T. V. Kundozerova, A. M. Grishin, G. B. Stefanovich and A. A. Velichko, *IEEE Trans. Electron Devices*, 2012, 59, 1144-1148.
- 275. C.-H. Kao, H. Chen, L.-T. Kuo, J.-C. Wang, Y.-T. Chen, Y.-C. Chu, C.-Y. Chen, C.-S. Lai, S. W. Chang and C. W. Chang, *Sensors and Actuators B-Chemical*, 2014, 194, 419-426.

Journal Name

Figure 1: (a) Alteration of Nb_2O_5 crystal phase as a function of temperature. Reprinted with permission from ref. 34. Copyright 1990, Elsevier.

Figure 2: Atomic representation of (a) pseudohexagonal (TT-Nb₂O₅), (b) orthorhombic (T-Nb₂O₅), (c) monoclinic (H-Nb₂O₅) and 3D structure schematics of (d) orthorhombic (T-Nb₂O₅) and (d) monoclinic (H-Nb₂O₅). (a,b,c) Reprinted with permission from ref. 36. Copyright 2012, Co-Action Publishing, (d) Reprinted with permission from ref. 37. Copyright 2007, American Chemical Society, (e) Reprinted with permission from ref. 38. Copyright 2012, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 3: Tauc plot of $(\alpha hv)^2 vs.$ photon energy (hv) of (a) hexagonal, orthorhombic and monoclinic Nb₂O₅ nanofibers, (b) orthorhombic Nb₂O₅ nanorods and nanotubes measured at room temperature. α is defined as absorption the coefficient. (a) Reprinted with permission from ref. 27. Copyright 2010, American Chemical Society, (b) Reprinted with permission from ref. 48. Copyright 2011, Springer.

Figure 4: (a) Electrical conductivity of sintered α -Nb₂O₅ and electrical conductance of Nb₂O₅ single crystal versus 1/ *T* for specimens heated in air. (b) Electrical conductivity of sintered α -Nb₂O₅ versus oxygen partial pressure. Reprinted with permission from ref. 60. Copyright 1961, AIP Publishing LLC.

Figure 5: Scanning electron microscopy (SEM) images show the morphologies of the hydrothermally synthesized Nb₂O₅. (a) Nb₂O₅-nanosheets synthesized from NbO₂ precursor at 130 °C for 30 days, (b) Nb₂O₅-nanotrees synthesized from niobium foil dipped in HF acid solution and lithium hydroxide of pH=3.3-3.4 at 150-200 °C for 20-40 h, (c) Nb₂O₅-nanorods synthesized at 150 °C for 48 h in NH₄F aqueous solution of 0.02 M concentration, (d) Nb₂O₅-mesoporous spheres synthesized using niobium ethoxide mixed with DEG solvent and acetone at 180 °C for 12 h, (e) Nb₂O₅-nanoparticles synthesized in ammonium niobium oxalate using a mix of distilled water and hydrogen peroxide kept at 100 °C for 12 h and (f) Nb₂O₅-hexagonal nanoplatelets synthesized in a mix of NbCl₅ in ethanol at pH =2.1 kept at a temperature of 235 °C for 90 h. (a) Reprinted with permission from ref. 86. Copyright 2010, Elsevier, (b) Reprinted with permission from ref. 172. Copyright 2010, IOP Publishing Ltd., (c) Reprinted with permission from ref. 171.

Copyright 2012, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (e) Reprinted with permission from ref. 88. Copyright 2014, Elsevier, (f) Reprinted with permission from ref. 164. Copyright 2009, Springer.

Figure 6: SEM images of: (a) Nb_2O_5 vein-like nanostructured networks and (b) Nb_2O_5 nanochannelled structure on foil; (c) nanoporous Nb_2O_5 and (d) nanochannelled Nb_2O_5 on FTO (the insets are top view images of the anodic films). (a) Reprinted with permission from ref. 23. Copyright 2012, American Chemical Society, (b) Reprinted with permission from ref. 22. Copyright 2014, Elsevier, (c,d) Reprinted with permission from ref. 110. Copyright 2013, The Royal Society of Chemistry.

Figure 7: SEM images of annealed Nb₂O₅ prepared by (a, b, c) dip-coating sol-gel method and (d,e,f) electrospinning sol-gel method. (a) Reprinted with permission from ref. 125. Copyright 2012, Springer, (b) Reprinted with permission from ref. 121. Copyright 1999, Elsevier, (c) Reprinted with permission from ref. 124. Copyright 2012, Elsevier, (d,e,f) Reprinted with permission from ref. 27. Copyright 2010, American Chemical Society.

Figure 8: Top and cross-sectional views (SEM and TEM images) of Nb₂O₅ films deposited using PLD process. Reprinted with permission from ref. 20. Copyright 2011, American Chemical Society.

Figure 9: Current–voltage (J-V) characteristics of DSSCs fabricated using Nb₂O₅ without impurity defects (blue line) and Nb₂O₅ with impurity defects (red line) in the photoanodes. Reprinted with permission from ref. 110. Copyright 2013, Royal Society of Chemistry.

Figure 10: (a) The schematic of a Schottky based gas sensor made of nanoporous Nb_2O_5 coated with Pt and (b) dynamic response of such Nb_2O_5 gas sensors with 1 and 2 µm thick layers measured with different concentrations of H₂ gas at 100 °C at a constant bias current of 100 µA. Reprinted with permission from ref. 211. Copyright 2013, Elsevier.

Figure 11: (a) A schematic diagram of a thin-filmed Nb₂O₅/Li₂Mn₂O₄ battery in a cross-section, and (b) a photograph of a thin-film battery with a 50 mm \times 50 mm size in a plane view. (c) Electrochemical performance of the nanoporous Nb₂O₅ electrodes: corresponding galvanostatic discharge–charge voltage profiles for the 1st cycle at each rate. (d) The porous network of Nb₂O₅ with possible fast pathways for Li ions and electrons. (a,b) Reprinted with permission from ref. 238. Copyright 2007, Elsevier, (c,d) Reprinted with permission from ref. 103. Copyright 2013, The Royal Society of Chemistry.

Figure 12: (a) Temperature-programmed reduction (TPR) profile of Pd/Nb₂O₅/Al₂O₃ catalysts. (b) Conversion of propane as a function of the reaction temperature for Pd/Nb₂O₅/Al₂O₃ catalysts at different ratios. Reprinted with permission from ref. 256. Copyright 2000, Elsevier.

Figure 13: SEM images of anodized Nb₂O₅ films and the coloration efficiency of 500 nm, 750 nm, and 1 μ m thick anodized Nb₂O₅ films under chronoamperometric (CA) at ±1.5 V applied potential for the optical wavelength of 550 nm. Reprinted with permission from ref. 69. Copyright 2014, American Chemical Society.