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ABSTRACT
In this paper, we propose a novel reconstruction scheme for the low-frequency
near-field electromagnetic imaging of high-contrast conductivity distributions inside
shielded regions using the system of Maxwell’s equations in 3D. In our novel scheme,
we focus on estimating the shape characteristics of the electrical conductivity profile
inside these regions from low-frequency electromagnetic data measured at external
locations for a single frequency. We introduce a color level set regularization scheme
which is a shape-based approach focusing on the simultaneous reconstruction of sev-
eral shape-like distributions of different conductivity values in the same region of
interest. We also introduce a topological perturbation scheme alongside the color
level set regularization that is used to avoid a certain type of local minima which is
characteristic for this simultaneous multi-value shape-based reconstruction. Using
two numerical experiments focusing on a three-value reconstruction problem related
to the imaging of shielded boxes or cargo containers, we compare this novel approach
with results obtained from standard voxel-based reconstruction schemes on the one
hand and the more established two-value shape based approach on the other hand.
We demonstrate that, depending on the particular situation of the imaging setup,
this three-value (or in general multiple-value) shape-based reconstruction technique
has the potential to provide superior reconstruction results in many situations, in
particular regarding reconstruction of the correct shapes. We also discuss particular
challenges of this novel methodology.

KEYWORDS
inverse problems; electrical conductivity; shape-based reconstruction; topological
perturbations; color level sets.

1. Introduction

Level set regularization schemes have become a popular methodology when inter-
ested in solving shape-based inverse problems. For example, single level set inversion
schemes have been designed in a multitude of applications, including non-destructive
testing [1,4,15,29], reservoir imaging [22,60,61], medical imaging [17,20,51], or geo-
physical prospecting [12,65], amongst others. Its extension, color level set inversion
schemes, have also proven to be useful as they sometimes depict more realistic scenar-
ios. For example, a structural level set method was developed in [32] to detect tumours
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in breast tissue, a related approach was applied to industrial process tomography in
[3], and similar schemes have been developed in the history matching of petroleum
reservoirs [21]. Additional level set regularization techniques, such as parametric level
sets, have also been used in other imaging modalities such as electrical impedance
tomography, see [2,38–43] for more information.

We focus on developing a scheme to image the contents of boxes and/or containers,
using near-field electromagnetic (EM) data. This is a challenging task as the under-
lying inverse problem is highly ill-posed and the data available is typically limited,
resulting in a severely under-determined system. Moreover, shielded containers stop
high frequency EM waves from passing into the contents, through the skin effect. On
the other hand, low frequency contributions to the time signal do have the potential
to extract information from inside these shielded regions. The use of low frequency in
near-field EM imaging presents an additional challenge of obtaining high resolution
reconstructions of material properties in the contents of a shielded container.

In this paper, we introduce a novel color level set inversion scheme for low fre-
quency near-field EM imaging to reconstruct material properties inside a shielded
region of interest. A special focus is on high contrast situations where traditional pixel
or voxel-based approaches do not yield satisfactory results due to the inherent smooth-
ing properties of those techniques when using low frequency data. Those techniques
tend to deliver severely low-pass filtered versions of the box content from which it can
be impossible to extract sufficient information for detecting or classifying specific ob-
jects. In a previous paper [29], a shape-based method as well as a sparsity regularized
technique have been proposed in order to better address such a challenging situation.
However, whereas both of them perform very well in situations where the content of
the domain of interest is mainly composed of two classes of materials with only low
variation inside each class, they both struggle to handle other scenarios. For example,
when the materials have high contrast with values centred about more than two clearly
defined average values. One such situation is the screening of a box or cargo container
where there are regions filled with air, as well as moderate and highly conductive
material. Classifying such a content into only two classes as implicitly or explicitly
done in the sparsity approach or the two-value level set approach does not deliver
good results. Therefore, in this paper we extend the two-value shape reconstruction
approach to a multiple-value shape reconstruction approach using more than one level
set function for the practical modelling. In particular, we will concentrate on the most
prevalent situation of three different classes as indicated in the example given above.
This approach is novel in this challenging application and shows surprising results.

The presented color level set scheme, or its variants, are not limited to low frequency
electromagnetic applications, but can be applied to a wide range of tomography prob-
lems. This includes X-ray computerized tomography (CT), electrical impedance to-
mography, microwave medical imaging, and history matching of production data in
reservoir characterization. Some currently available work on several of those applica-
tions can be found in [16,18,21,32,41,42], and in the references provided there.

It is interesting to compare our application of low frequency electromagnetic imag-
ing with the above mentioned application of CT, which essentially uses very high
frequency electromagnetic beams (X-rays). In most clinical applications of CT (nowa-
days using sophisticated sampling geometries) the classical reconstruction algorithms
provide high-resolution images [47], such that the combined reconstruction and seg-
mentation approach as followed in our discussion does not on the first view seem to
provide significant advantages there. Those CT reconstructions are usually obtained
by applying some approximation of the Radon inversion formula, which result in highly
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Figure 1. Comparison of the traditional ’first reconstruct then segment’ scheme with the proposed ’simulta-
neously reconstruct and segment’ scheme. The results on the right hand side are both segmented images, of

which only the one from the simultaneous approach is guaranteed to satisfy the physically obtained EM data.

efficient implementations, provided that the raw data (so-called ‘sinograms’ or photon
counts) are sufficiently complete and of sufficiently high quality (see [47] for details).
Therefore, when segmented CT images are needed, a standard CT image is obtained
using fast reconstruction techniques, which is then further treated by tailor-made (for
example level set based) segmentation post-processing techniques in order to obtain
segmented images [58].

However, even in X-ray CT there are many situations where those quality conditions
on raw data are not satisfied. This is the case for example in many industrial settings,
but also in specific clinical and biochemical applications where only limited view data
or very sparse data are available or desired. In those situations, a combined level set
reconstruction and segmentation algorithm, similar to the one proposed here, becomes
much more competitive or even superior to standard reconstruction techniques since
many classical reconstruction algorithms show significant artefacts which cannot easily
be handled by standard segmentation post-processing strategies. For some discussions
in the literature addressing such situations we refer to [6,17,47,48,64,66].

In the application of low-frequency electromagnetic imaging, there currently does
not exist the luxury of a high-resolution reconstruction algorithm (as in X-ray CT) in
the first place. Compared to standard X-ray CT images, reconstructions show signif-
icantly less details here and interfaces which might be present in the original objects
are usually not at all represented in the images obtained from standard reconstruction
techniques [44,54]. They need to be enforced by tailor-made reconstruction techniques,
making sure that they are in agreement with the physically measured data. The use
of a combined ‘reconstruction and segmentation’ algorithm as discussed in this paper
seems to be a very natural way of obtaining such segmented images from physical
data.

The remaining part of the paper is organized as follows: Section 2 describes the math-
ematical setup of our low frequency EM imaging problem with Maxwell’s equations.
Section 3 formulates the underlying EM inverse problem for recovery of the conduc-
tivity value inside the imaging domain, and derives some general concepts which are
essential for voxel-based and color level set based reconstruction schemes. As a side
product, a voxel-based reconstruction scheme is derived in this section which we use
for comparison with the color level set scheme. Section 4 introduces the color level
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set shape-based scheme and formulates the corresponding inverse problem. Section 5
presents a methodology for avoiding certain local minima in the color level set recon-
struction. Section 6 presents two numerical experiments for the color level set inversion
as well as a comparison with alternative regularization schemes (including results us-
ing the methodology in Section 5). In this section, we also provide reconstructions
which are based on more realistic compositions inside the region of interest in the true
phantom with significant internal parameter fluctuations in one of the target zones.
Section 7 presents a summary and conclusions of our findings. Lastly, Appendix A
explains in details the new tailor-made line search method for our scheme.

2. The Near Field Electromagnetic Imaging Problem

We model the propagation of EM fields by Maxwell’s equations in the frequency do-
main. These are given as:

∇×Ej(x)− a(x)Hj(x) = Mj(x); (1a)

∇×Hj(x)− b(x)Ej(x) = Jj(x), (1b)

where we assume a time-dependence exp(−iωt) for a given and fixed frequency ω =
2πf , with i =

√
−1 denoting the imaginary unit and t denoting time. In (1a, 1b),

E denotes the electric field, H the magnetic field, M the magnetic source and J the
electric source. The material parameters are

a(x) = iωµ(x) , b(x) = σ(x)− iωϵ(x), (2)

where σ(x) is the electrical conductivity, µ(x) is the magnetic permeability and ϵ(x)
is the electric permittivity. The index j in (1a, 1b) indicates that the jth source
distribution is considered, where j = 0, 1, · · · , ns − 1. Therefore, in our setup, we
will consider ns different applied sources. These will be modelled in our numerical
experiments as rectangular wire loops, but the reconstruction schemes presented here
do not depend on this particular choice. The sources give rise to probing fields Ej and
Hj in (1a, 1b), which can be measured at the receiver locations. Again, we will use
rectangular wire loops as receiving devices, even though the general schemes derived
here will work with other measurement approaches with only very minor adjustments.
The physically obtained (or in our numerical experiments simulated) measurements
are called in the following simply ‘data’, which will be used in order to infer medium
characteristics at those places which are not accessible by the antennas.

We are mainly interested here in the non-invasive imaging of the interior of boxes
whose walls show a significant conductivity profile. The main difficulty is that EM fields
of high frequency do not penetrate sufficiently through such conductive walls due to
the well-known skin-effect. Therefore, relatively low frequencies need to be employed
which require specialized approaches for data inversion. A possible experimental setup,
which is used in our numerical experiments, is indicated in Figure 2. It also shows a
possible distribution of sources and receivers outside the shielding walls. Here, the
domain of interest is represented by a cuboid-shaped domain Ω ⊂ R3 surrounded
at all six sides by shielding walls of constant and known thickness. The sources and
receivers are distributed uniformly along two planes parallel to the x − y plane each
of constant z coordinate. This means that they are opposing each other, separated by
the shielded box of interest (see Figure 2). Notice that there are no sources or receivers
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Figure 2. Opposing arrays of Sources and Receivers with shielded cage in between. The interior of the box is

hidden behind the shields. The sources and receivers are only located on top and bottom of the box, but other

setups are also possible. Left: Complete set up of imaging the contents of a shielded cage. Right: Schematic of
shielding in z direction. The domain of interest is between these shields in each direction.

at the other four sides of the box, which limits the aperture of our measurement setup
but is more realistic in potential applications such as the fast screening of luggage
or cargo containers. We mention again that most of these special assumptions on the
geometry can be relaxed in order to arrive at more general imaging scenarios, but are
sufficient for our proof-of-concept study presented here.

In this paper, we are interested in estimating shapes of the electrical conductivity
profile σ(x) = <b(x) (where < refers to taking the real part of the complex quan-
tity) inside the box from data measured outside the shields. For simplicity, we choose
µ(x) = µ0 and ϵ(x) = ϵ0 everywhere where µ0 and ϵ0 represent free space values.
This means two of the three material parameters are constant and known throughout
the entire domain. We will therefore often refer to the parameter b of (2) simply as
‘conductivity’ in this paper, even though it also contains the known parameter ϵ0.
In our future research we plan to address the incorporation of two or three material
parameters as space-varying unknowns into the inversion process, but in this study we
will concentrate on the conductivity σ only.

We require a mathematical model of the scenery when doing the inversion. Tradi-
tionally, a discretization of the entire 3D domain into a (often rectangular) grid of
voxels is the most popular approach for the inversion, where each voxel is assigned
a potentially different value of conductivity inferred from data in the inversion pro-
cess. Following notation from the classical (mainly 2D) literature, we will call this
approach ‘pixel-based inversion’, even though it is actually voxels that are assigned
values to in our 3D application. In our approach, however, we have chosen to use a
completely different model for reasons explained further below. We are interested in
imaging situations where some objects of significantly higher conductivity profile are
located inside the box surrounded by some background of lower conductivity values,
and the task is to identify and characterize those high-conductivity objects from data
obtained outside the box. In pixel-based inversion approaches the classification into
different material types is done as a post-processing step, after an inversion has been
obtained, by some form of segmentation routine. However, a potential problem occurs
here since the classical segmentation post processing tools, being purely image based
but not data based, do not usually verify the agreement of the segmented image with
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the physically obtained data. Since the modifications which are needed by classical seg-
mentation tools for transforming a very smooth reconstruction into a segmented image
are significant in our situations, there is no guarantee that the segmented image still
agrees with the measured data the same way as the originally smooth reconstruction.

Therefore, in a previous publication [29], we have proposed a single level set re-
construction approach which combines the segmentation task and the inversion task
into one optimization loop, providing segmented 3D images honouring the physically
measured data. In that approach it is assumed that only two conductivity values are
permitted inside the box, namely the high conductivity value of the object of in-
terest and one single lower value for the background medium. This approach yields
reasonable results in many applications. However, there are certain situations where
the background medium itself is highly heterogeneous (e.g. consisting of air and some
lower conductive materials), such that modelling it by a constant average value every-
where seems to be an oversimplification. In this paper, we extend the previous model
to also allow the background medium to obtain two (or even more) different (fixed
and suitably chosen) values of a priori unknown distribution. This means, that now in
total three (or a specified low number of) different conductivity values are considered
for each location inside the box, one for the object of interest and the remaining values
for the background. In the inverse problem, we are trying to identify shapes of not
too complicated topology which represent distributions of the different materials in
the box. During the inversion, each background conductivity value will be classified
this way, by implicit means, to belong to exactly one of the corresponding prescribed
background material classes. Embedded in this segmented background is the object of
interest which corresponds to a separate class representing high conductivity values.
In other words, we perform a simultaneous reconstruction and segmentation of the
domain of interest into various different zones which, when we plug the correspond-
ing distribution of material parameters into the forward simulator, reproduces the
measured data.

We mention again that this classification can be derived and implemented in a
flexible way to represent an arbitrary (usually small) number of representative classes.
See for example a previous publication related to a different application [32] where a
medical setup of higher (microwave) frequency ranges has been treated successfully
with more than three parameter classes using a similar scheme, but only in 2D so
far. We have tested the use of more than three classes in our numerical experiments
(not presented in this paper) also to the low frequency situation discussed in this
paper, but have observed that the use of more than three classes does not provide
any advantages at this low frequency regime, mainly due to the lack of resolution
inherent to it. Therefore, we will concentrate in this paper on the particular setup of
three material classes only. It will become obvious below how to extend our model to
incorporate more than three classes in a straightforward way if desired.

In our numerical experiments we assign a very low value σ ≈ 10−8 Sm−1 to the
region which represents poorly conductive materials such as air or other essentially
non-conductive materials. In addition to this very low conductivity region, there will
also be one moderate value representing a class of material at the intermediate regime,
and one highly conductive region capturing any materials with significant conductivity
properties, all of unknown shape. We emphasize that in our experience it is not very
critical which values exactly are taken to represent those classes due to the signifi-
cant contrast between them. However, in cases where prior information is available
indicating the use of specific values this can and should certainly be incorporated in
the algorithm by assigning those numbers to the individual classes. A summary of
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conductivities used in our numerical experiments is described in Table 1.

Table 1. Conductivity parameters used in numerical experiments

Domain Characteristic σ = <(b) (Sm−1)
Region S3 1× 10−8

Region S2 1.0 / 10.0
Region S1 0.5
Shields 0.1

The shielded walls, which are not part of our level set representation and are mod-
elled explicitly, are here assumed to have a known topology and a moderate conduc-
tivity value of σ ≈ 0.1 Sm−1. This assumption will be relaxed in our future work when
we incorporate estimation of some characteristics of the shields into the inversion task.
An important observation of Table 1 is that the conductivity values range over sev-
eral orders of magnitude. This is difficult to model with a pure pixel-based inversion
model, due to the typical effect of smeared-out values in the reconstructions. In those
classical approaches, sharp interfaces between different materials are usually smeared
out over large transition zones, which makes the identification of particular regions or
shapes extremely difficult or impossible. We will demonstrate this in our numerical
experiments.

3. Pixel-based Inversion Tools

Inverse problems for Maxwell’s equations have been investigated for a long time in a
variety of applications and settings. For recent overviews of available theoretical and
computational results we refer to [10,11,67] and the references provided there. The
important questions of uniqueness and differentiability of related inverse problems are
addressed for example in [7,9,27,30,49,57]. For derivation of the algorithms in this
paper, we assume differentiability (in properly chosen function spaces) of all forward
mappings that arise here, allowing us to adopt well-established expressions for the
relevant derivatives (or sensitivities) with respect to the unknown medium parameters
[13,14,30,36,46,55,67].

The color level set inversion approach outlined above can be considered a shape-
based regularization scheme which provides an alternative to the more classical
Tikhonov-regularized pixel-based inversion schemes. As already mentioned, due to
the smearing effect related to Tikhonov regularization, the classical Tikhonov-
regularization pixel-based scheme is not well-suited for the imaging of high contrast
situations with low frequency EM fields. Nevertheless, both approaches are based on
gradient calculations with respect to the continuous parameter-to-data maps, which
need to be considered first. Fortunately, most of the results related to this basic in-
gredient are already well-known, see for example [14,19] or some of the above cited
overview articles. Therefore, we will very briefly summarize some of the most important
results. These gradient calculations are relevant to both pixel-based and shape-based
approaches. They will also provide us directly with a basic Kaczmarz-type pixel-based
inversion approach which we will use in our numerical experiments for comparing our
novel shape-based techniques with more classical Tikhonov-style schemes.

Let us index the forward operator by each source j, giving rise to the notation
Fj [b] = MjEj(x; b). The quantities Ej , Hj solve (1a,1b) with parameter b and Mj is a
linear measurement operator which might be dependent on the source. Here we take
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Mj to behave the same across all sources. In our numerical setup explained further
below and in [28], we will formally model measurements at each of the nr rectangular
closed-loop receiver coils Sk (k = 0, . . . , nr − 1) by

[MjEj ]k =

∮
Sk

Ej · t̂ dl, (3)

assuming proper regularity of Ej . Here, t̂ denotes the tangential unit vector along
such a receiver coil. More general linear measurement operators can be used as well
without significant modifications of the algorithm. See for example [28,30,36,44,56] for
more details and for alternative formulations.

A typical way of addressing the pixel-based inverse problem is to write down a least
squares data misfit functional in terms of residual operators. In our case this reads as

J[b] =

ns−1∑
j=0

Jj [b]; and Jj [b] :=
1

2
||Rj [b]||2Zj

, (4)

with Rj [b] = Fj [b]− F̃j , and || · ||Zj
being the norm in the data space Zj . F̃j indicates

the true data. Here, the index j refers again to the chosen source distribution. There-
fore, the residual operator quantifies the mismatch between model prediction (forward
problem) and true data. The cost functional J[b] is useful for monitoring progress of
any iterative estimation technique and is often used directly for the design of suitable
reconstruction schemes. For example, we can formulate an optimization problem in-
corporating J[b] with or without additional suitably chosen regularization terms. Many
popular minimization schemes use the formal gradient of (4):

∇J[b] =

ns−1∑
j=0

∇Jj [b], (5)

which can be calculated efficiently by a so-called adjoint scheme [13,14]. We refer the
reader to these references for a full derivation of the adjoint problem and the gradient
of (4). Here, it suffices to quote the result. This is found to be:

∇Jj [b] = R′
j [b]

∗Rj [b] (6)

and is given by [
R′
j [b]

∗Rj [b]
]
(x) = Ej(x) · Ej(x) . (7)

Here, the operator R′
j [b]

∗ is known as the adjoint linearized residual operator. The
fields Ej(x) are taken from (1a, 1b) and Ej(x) are obtained by solving a supplementary
adjoint Maxwell problem of similar structure as (1a, 1b) but with using the residual
values Rj [b] as artificial adjoint sources at the receiver locations. For more information
on this scheme, see [13,14,28,29,46,55,67].

The nonlinear problem described is of large scale in 3D. Usually, iterative techniques
are employed for the solution, requiring repeated calculation of descent directions to
J[b] in (4). Many standard schemes require calculation of the full gradient ∇J[b] in (5).
Depending on the available Maxwell solver, this might consume considerable resources
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and processing time in each iteration. Therefore, alternative techniques have been
developed in order to speed up the inversion process. One of those is the non-linear
Landweber-Kaczmarz (LK) scheme which is employed here. The optimizer cycles over
each source in a certain order and only requires to calculate gradients of partial data
sets in each step, which can be done efficiently with the above mentioned adjoint
method.

With this single-step scheme it is no longer the primary goal to maximally reduce
the data misfit J[b] in (4) in each individual step. Instead, in each iteration, we reduce
the data misfit Jj [b] with respect to the jth source only, which needs to be done very
carefully in order not to deteriorate too much the data fit regarding the remaining
sources. For more information on this general scheme we refer to [13,33–35,45,48].

The scheme yields a single-step update formula:

bs+1 = bs − τ<
(
∇J[s][b

s]
)
, (8)

where we will follow here a sequential rule [s] := (s modulo ns) ∈ {0, 1, · · · , ns − 1}
for simplicity. Notice that we take the real part < in (8) since we assume that the
electric permittivity is known. As already mentioned, choosing the step size τ in this
single-step scheme is a difficult problem, and it should be chosen such that updates
maintain a balance with the already achieved data fit regarding the remaining sources.
Convergence properties of such a single step approach have been discussed in the
literature, see for example [35,48]. A random selection of source positions, leading
to variants of stochastic gradient schemes, might provide additional benefits, see for
example [23] for related applications in the field of machine learning.

The iteration formula in (8) updates the electrical conductivity profile such that it
minimizes the cost functional given in (5). This minimization usually delivers quite
smooth results due to the specific form of individual updates in (8), but also can con-
tain quite erratic features since in its current form, there are no additional regulariza-
tion terms, implicit or explicit, included. Therefore, classical regularization approaches
often add a Tikhonov-type additional term to (4) in order to stabilize the inversion
process. This is usually called ‘Tikhonov regularization’. A similar effect is achieved by
keeping (4) unchanged but instead using specifically chosen function spaces. In partic-
ular the choice of certain Sobolev spaces enforces higher regularity properties of their
members. We will adopt such a Sobolev gradient approach because it does not come
with the need for modifying the cost functional (4). In particular, a direct comparison
is possible between the results obtained with this approach and those obtained by
our color level set shape reconstruction method, since both are designed to minimize
the same data misfit functional but with respect to a different set of optimization
parameters.

In the Sobolev gradient approach, we assume that the quantities of interest (say, u, v)
are members of a Sobolev space Wα,β equipped with the (α, β) norm ‖u‖2α,β = 〈u, u〉α,β
and inner product 〈u, v〉α,β = α〈u, v〉L2 + β〈∇u,∇v〉L2 with suitable boundary condi-
tions, see for example [12,15,18,29,51] for more details. In our numerical experiments
we will choose α = 1 and select 0 < β < 1 empirically in order to achieve a stable
reconstruction process. Since the gradient operator depends on the spaces and corre-
sponding inner products, we have to calculate new expressions for the corresponding
gradient directions. Fortunately, as shown in [12,15,18,29,51], the Sobolev gradient

expressions ∇̂Jj [b] can be obtained in a straighforward way from the L2 based gradi-
ents (6), (7) by simply projecting these expressions into a smoother space using the
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following recipe

(αI − β∆)∇̂Jj [b] = ∇Jj [b] in Ω . (9)

Here, I is the identity operator and ∆ is the Laplacian operator. Solving (9) to obtain

∇̂Jj [b] provides us with a smoothed gradient for the inverse problem. For derivation of
(9) and for more information on practical ways of calculating this smoothed gradient,
we refer the reader to a more detailed discussion in [12,15,18,29,51].

4. Color Level Set Shape-based Inversion

Level set shape-based reconstruction methods provide an alternative to pixel-based
schemes and have been applied in many areas [8,16,18,19,37,52]. Level set methods
provide additional regularization to the inverse problem as they combine parameter
values into a small number of classes with fixed (or simultaneously estimated) repre-
sentative values. This way level set based schemes solve two tasks at the same time:
reconstruction of physical profiles from physically measured indirect data and the
segmentation of that profile into a small number of classes. The most basic of those
schemes, here called standard level set method, assumes that the domain is composed
of exactly two different classes of fixed parameter values. They have been shown to per-
form well in certain situations of low-frequency EM inverse problems [1,12,16,18,29,60].
However, in some scenarios, for example when multiple conductivity values of signif-
icantly different magnitudes are present in the domain, standard level set methods
are not optimal (neither are pixel-based inversion schemes). In such scenarios, color
level set methods can be applied in an attempt to deal with such more challenging
situations.

We refer to the theory of standard level set methods, in particular with respect
to the application considered here, to a previous publication [29]. In the following,
we directly turn our attention on the extended setup necessary for handling more
than two different regions by a certain number of level set functions. A very general
introduction to multiple shape reconstruction by a variety of practical level set based
approaches can also be found in [16,18].

For modelling three different regions, we will be using here two different level set
functions. Therefore, we begin by introducing two sufficiently smooth level set func-
tions ϕ1,2 : R3 → R, such that

b(Φ)(x) =

 b1 in S1 where ϕ1(x) ≤ 0,
b2 in S2 where ϕ1(x) > 0 and ϕ2(x) ≤ 0,
b3 in S3 = Ω\(S1 ∪ S2) where ϕ1(x) > 0 and ϕ2(x) > 0,

(10)

where Φ = (ϕ1, ϕ2) and (b1, b2, b3) are the corresponding parameter values (the super-
scripts not to be confused in the following with powers of b which are not needed in
this study).

A similar but conceptually different multiple level set model has been introduced
originally for the application of image segmentation in [59] where two level set functions
are used for describing four different regions. In contrast to the model used in [59], our
representation (10) uses two level set functions in order to only model three different
regions. Moreover, our model is not completely symmetric in the three values (b1, b2, b3)
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Figure 3. 2D Visualization of level set representation described in (10); In this schematic visualization it is
assumed that the individual regions {x : ϕ1(x) ≤ 0} and {x : ϕ2(x) ≤ 0} are both disc-shaped, but that the

specific rule (10) specifies which value to take in the overlap region {x : ϕ1(x) ≤ 0 and ϕ2(x) ≤ 0}

in the sense that ϕ1 exclusively specifies the region filled with b1, whereas the sign of
ϕ2 by itself does not provide sufficient information about which value to choose. See
Figure 3 for a visualization of this situation. This hierarchical arrangement actually
provides some advantages compared to the model proposed in [59] when applied to
shape reconstruction problems from indirectly obtained data.

One of its advantages is that it allows us in a very convenient way to introduce
single new regions at any stage of the reconstruction process into the model without
the need of redefining the representation of already existing regions. We just add
one additional level set function which will specify a new region without the risk of
ambiguity. For example, a reconstruction could start from just using ϕ1 during early
sweeps, segmenting the domain into only two regions, and at a later stage could branch
out by adding ϕ2 in order to refine the segmentation.

Another advantage is that two regions usually do not have a point-like (or cusp-like)
interface with each other (except of some very unlikely special situations). Instead, two
different regions normally share a full curve-like interface in 2D or a full surface-like
interface in 3D, which makes it easier to apply the concept of shape velocity and
shape gradient for shape propagation, or their ‘narrowband analogon’ as it is outlined
further below and used in this paper. Notice also that our scheme extends accordingly
when more than two level set functions are used in order to model more than three
regions, and avoids some local minima which can occur with some other schemes of
using multiple level set functions [16,18].

In general, all three profiles (b1, b2, b3) can be either smoothly varying functions in
these regions or can be taken as constants. In our numerical experiments and in the
notation of this paper, we only consider the latter choice. An equivalent way of writing
the conductivity profile in (10) is

b(Φ) = b1(1−H(ϕ1)) + b2H(ϕ1)[1−H(ϕ2)] + b3H(ϕ1)H(ϕ2), (11)

where H(·) is the Heaviside function.
With the color level set representation of the electrical conductivity profile formally
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defined, we now introduce the relevant data misfit and cost functional:

T(Φ) = R[b(Φ)], J(Φ) = ||T(Φ)||2L2(Ω), (12)

(and similarly the quantities Tj(Φ) and Jj(Φ) as in (4)). We are now interested in
finding a suitable Φ such that the data misfit J(Φ) is minimized. Notice that, even
though using the same symbol as in the pixel-based case for simplicity in the notation,
J is now assumed to be a function of Φ.

When comparing with more traditional color level set approaches for image process-
ing, we would like to point out here that the cost functional (12) for our color level
set inversion method still contains the data-to-model mapping R in its formulation.
Image post-processing applications usually replace this (physical) data fidelity term
by a term measuring proximity to a reference image [58,59] as outlined in Figure 1.
We cannot rely on any reference image in our application, but only on the physically
gathered data.

With (5) and (6), and by applying formally the chain rule for differentiation with
respect to Φ, we obtain an expression for the gradient of the color level set cost
functional:

∇J(Φ) =

ns−1∑
j=0

∇Jj(Φ) =

ns−1∑
j=0

T′
j(Φ)

∗Tj(Φ) , (13)

where

T′
j(Φ)

∗Tj(Φ) = <
[
bϕ1

(Φ)R′
j [b]

∗Rj [b]

bϕ2
(Φ)R′

j [b]
∗Rj [b]

]
, (14)

and

bϕ1
(Φ) = [(b2 − b1) + (b3 − b2)H(ϕ2)]δ(ϕ1), (15)

bϕ2
(Φ) = (b3 − b2)H(ϕ1)δ(ϕ2) . (16)

Here, the notation bϕi
refers to the partial derivative with respect to that level set

function, < indicates again to take the real part in order to account for real-valued
level set functions, and δ(·) denotes the Dirac delta distribution. Evaluating those
expressions (14) requires us to solve one adjoint Maxwell problem for each index j
in order to obtain R′

j [b]
∗Rj [b]. In the advent of numerical experiments, δ(ϕi) has to

be approximated by a function in a suitable space, since it is not well defined on a
numerical grid. Therefore, we choose to use already in this theoretical derivation a
narrowband function as an approximation to it [50,53], such that δ(ϕi) ≈ χBd(Γi),
where

Bdi
(Γi) = {x : ||x− Γi||22 ≤ di/2}, (17)

di > 0 and χD is the characteristic function. Notice that this approximation conserves
the descent direction property of the (negative) gradient for small values of di, which is
all we need for implementing our descent scheme. In the general case, we assume that
boundaries of objects are smooth. Therefore, each component in the gradient from (14)
is projected to a smoother space using the recipe in (9), and is denoted accordingly by
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∇̂J[s]. The resulting gradient is now a sufficiently smooth function well-defined on the
entire domain Ω which can be used for updating the level set function Φ everywhere.
We mention that the process of extending the Dirac delta to a smooth function on
the entire domain is reminiscent of finding an ‘extension velocity’ for classical level
set applications in computational physics [53]. Indeed, a similar interpretation can be
obtained in our case [16,18]. This leads to the LK single-step iteration formula:

Φs
j+1 = Φs

j − τ s ◦ ∇̂Jj(Φ
s
j), (18)

where the step size is τ s = [τ s1 , τ
s
2 ]

T and ◦ denotes the Hadamard (element-wise) prod-
uct. When using non-linear LK schemes in single level set inverse problems, choosing
the step size has proven to be tricky [15,29]. However the line search scheme devised
in [29] was shown to be successful, therefore we adopt the criterion developed there
and extend it to the color level set regime. Note that the parameter s denotes the
current sweep number, which increases by once when we have computed an update
for all sources.

The line search essentially uses a backtracking scheme which does not require any
additional solves of the forward or adjoint problem. It controls the number of interior
voxels whose conductivities change per iteration. A sufficiently large line search pa-
rameter τ is chosen and reduced until a smooth evolution of the shape is guaranteed.
This amounts to counting the number of voxels that change value based on the current
step size, then reducing it until the number of voxels that change value is inside an
admissible interval. An outline of the scheme in a generalized color level set setting is
given in Appendix A, where we apply the criterion for a particular case.

5. A Stochastic Seeding Process

We mentioned above that the color level set scheme (10),(11) helps avoiding certain
local minima. However, shape evolution schemes with more than two values still suffer
from a particular type of local minima due to the nature of only moving interfaces
locally.

In particular, certain local minima are associated with the incorrect classification of
isolated objects embedded in a background region S3 as being composed of material
associated with region S1 instead of region S2, or vice versa. This situation does not
occur in standard level set applications where only one background profile and one
possible inclusion value are used. We will demonstrate this ambiguity in our numerical
experiments.

In order to deal with that type of local minima, we introduce a stochastic seeding
process which improves the situation to a certain degree. Unfortunately, due to the
high degree of ill-posedness of this inverse problem, and the poor resolution resulting
from it, this problem cannot be completely avoided.

The general idea is to randomly place small objects, alternating between type S1

and type S2, into the domain in order to let the algorithm decide whether such an
object can favourably replace the already existing structures. Therefore, this strategy
can be considered as a way of probing at different stages of the algorithm different
variants of ‘advanced initial guesses’, with the hope that the algorithm will select
the one leading to the global minimum. Since the entire shape evolution does take a
significant number of iterations also without this seeding, such an embedded probing
is more efficient compared to starting the entire reconstruction algorithm with a large
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number of different initial guesses in an ensemble type approach [63]. It still adds
computational expenses to the reconstruction, and we will investigate in this paper
amongst others whether this additional cost is rewarded by the results or not. For
similar stochastic seeding algorithms in a completely different level set reconstruction
problem, and employed for different reasons, we refer the reader to the publications
[21,22,61,62]. In the following we very briefly outline the general approach including
some technical aspects of it.

Let us assume that we want to place an object centred in a small region Ω2 ⊂ Ω.
This amounts to lowering the level set function until it is negative in the desired
region, forming a new object. Since our numerical experiments use a much coarser grid
compared to [21,22,61], we will only consider two regions: Ω1 and Ω2, such that Ω =
Ω1 ∪Ω2, where Ω2 is the domain containing a seeded object and Ω1 is its complement.
Whilst an additional interim region of smoothing the level set function between Ω1

and Ω2 would be useful, in our application we will not consider this additional region
due to the coarseness of the grid in 3D. Placing an object in Ω is practically achieved
by solving the following supplementary minimization problem on the corresponding
level set function ϕ at selected steps of the color level set reconstruction:

ϕnew = argmin
Ψ

K(Ψ) =
α1

2
||(Ψ− ϕold)χ1||2 +

α2

2
||(Ψ− µ)χ2||2, (19)

where α1, α2 > 0 are suitably chosen weighting parameters, µ < 0 and χ2 and χ1 are
characteristic functions concentrated on the domains Ω2 and Ω1 = Ω\Ω2, respectively.
The minimizer of this cost functional, ϕnew, replaces the level set function ϕold. The
first term in the cost functional is a penalty on the distance between new and old level
set functions in the domain outside the seeded region (Ω1) and the second penalizes
distance between the desired minimizer Ψ and some negative µ inside Ω2. A desired
smoothness of the resulting level set function is obtained by searching for the minimizer
inside a suitably chosen Sobolev space Wα,β, as introduced in Section 3.

We minimize the cost functional in (19) for randomly selected locations for Ω2

at different steps of our color level set inversion routine, but only during a specific
range of iteration numbers which defines the seeding phase. This process is external
to the actual color level set inversion routine and can be seen as off-line iterations
which are performed either before or after selected updates for Φ. In context of the
level set functions themselves, all we want to achieve in those external iterations is to
approximate a given value by the level set function inside the seed region Ω2, with
minimal changes outside of it. We summarize the new shape-based reconstruction
approach discussed so far in form of a pseudo-code in Algorithm 1.

6. Numerical Experiments

In this section, we will demonstrate the performance of this novel algorithm in a num-
ber of different situations, and compare it with a selection of alternative algorithms.
In particular, we want to use the LK-Color Level Set scheme in Algorithm 1 for the
application of imaging shielded regions. We choose to model the entire experimen-
tal domain as a cube-shaped region Ωh = [3] × [3] × [3]m3 which includes a shielded
container of size [3] × [3] × [2.4]m3, similar to the situation depicted in Figure 2. As
indicated in that figure, the regions of heights 0.3m above and below the container
are reserved to accommodate the (source and receiver) antennas. The walls of the
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Algorithm 1 LK-Color Level Set Shape Reconstruction with Seeding Phase

1: procedure Initialization
2: Choose ns, nr, f, γ,M, S and Ij for j = 0, 1, · · · , ns − 1
3: Initialize level set vector Φ0 = (ϕ0

1, ϕ
0
2), where each entry in Φ0

4: is signed distance function representing ellipsoids
5: Choose intervals Imtarget = [Nm

inf , N
m
sup], which induce I ′mtarget

6: Initialize w0 ◦ τ 0 so that N
m ∈ Imtarget

7: procedure Reconstruction
8: for s = 0 : S − 1 do (loop over sweeps)

9: Compute Îmtarget(s, ηm) and use for backtracking line search
10: if 0 ≤ s < γ then
11: procedure Seeding Phase
12: for each entry in Φs do
13: Choose Ω2 by random selection (without replacement)
14: Determine ϕnew according to (19)

15: for j = 0 : ns − 1 do (loop over sources)
16: Calculate ∇Jj(Φ

s
j) using (13 - 16)

17: Compute ∇̂Jj(Φ
s
j) using (9)

18: Compute step size τ s = f(ws ◦ τ 0) [f(·) is the backtracking function]

19: Update level set vector: Φs
j+1 = Φs

j − τ s ◦ ∇̂Jj(Φ
s
j)

20: Rescale Φs
j+1 7→ ξΦs

j+1 with scaling parameter ξ ∈ R+.

21: Set Φs+1
0 = Φs

ns

22: Compute ws+1 by using criteria in (A8)

container are 0.3m thick at each side. We discretize this experimental domain Ωh by
using a regular 20× 20× 40 rectangular grid, each grid cell having physical dimension
[0.15]× [0.15]× [0.075]m3. This means that the actual container including shields occu-
pies 20× 20× 32 grid cells. The internal region of the container without the shields is
represented by 16×16×24 grid cells, which amounts to a total of 6144 grid cells. Those
are the locations where the physical parameter (conductivity) needs to be specified by
the algorithm. In order to do so, we consider a number of ns = 16 sources and nr = 16
receivers, with all sources and receivers representing wire loops as indicated as well in
Figure 2. Each source and receiver has dimension [0.6] × [0.6] × [0.075]m3, with the
sources being excited with an electric current Ij = I = 0.1A and each receiver record-
ing a data value represented by (3). A fixed and given probing frequency of f = 1MHz
is applied in all cases.

On a more technical note, the computational domain is furthermore surrounded
in our computational setup by additional absorbing boundary layers in order to pre-
vent any outgoing fields from being reflected back into the computational domain.
Our discretization of Maxwell’s equations in (1a, 1b) follows closely the scheme de-
scribed in [24–26] and has been implemented for our purposes in Python. It is a finite
volume method using a Yee grid which is well suited to deal with high contrast situ-
ations as the ones considered here. It solves for the EM fields E and H indirectly via
finding a vector potential solution. The discrete Maxwell system is iteratively solved
using the BiCGSTAB algorithm, following advice from [5], with a tolerance 10−4. For
more details on the numerical code for solving Maxwell’s equations in our numerical
experiments, we refer to [28].
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Here we demonstrate the performance of Algorithm 1 by using two numerical exper-
iments, both of which involve placing two objects with differing constant conductivities
in a background conductivity profile resembling air. The first is an object embedded
inside another, whereas the second consists of two isolated objects. Both examples
come with particular challenges.

In all numerical experiments, we choose this domain of interest to be shielded by a
closed solid cage with conductivity of the walls being b = 0.1 Sm−1. Currently, a level
set representation is not used for the shields since they are assumed to be given and
known. These are added to the conductivity profile once it has been defined by ϕ1 and
ϕ2, for both data generation and when the level set functions are updated. As a default,
we initialize both level set functions in the vector Φ(0) as ellipsoids in the central area
of our domain (but not identical). This initial guess is by far not optimal and better
initializations can be designed by simple preprocessing steps. However, for our purpose,
an almost centred initial guess for each level set function suffices for demonstrating
the general behaviour of the algorithm. Specific values for the conductivities used in
the two numerical experiments are shown in Table 2.

Table 2. Conductivity parameters used in numerical experiments
b1 (Sm−1) b2 (Sm−1) b3 (Sm−1)

Numerical Experiment 1 0.5 10.0 1× 10−8

Numerical Experiment 2 0.5 1.0 1× 10−8

In all our numerical experiments presented in this article, we choose to use syn-
thetically generated data using the same forward modelling method, with additional
noise added in the form of white Gaussian noise (1%). Therefore, the data F̃j admits
a decomposition

F̃j = MjÊj(x)(1 + cϵj), (20)

where Êj(x) is the electric field generated by the true objects in each numerical exper-
iment, Mj is given by (3), ϵj ∼ N(0, 1) and c ∈ R is a scaling parameter representing
the noise level. In both numerical experiments we assume the computational setup
described above and that the measured data F̃j used for recovery follows the form
described in (20). Notice also that, in order to avoid the so-called ‘inverse crime’, we
have included three different variations of the first numerical experiment where one
of the background distributions occupying one of the regions is perturbed by different
types of additional (including non-Gaussian) noise. We will comment on that further
below. In our future work we plan to use data generated by different grid sizes and/or
different forward solvers, but for our proof-of-concept study presented here, we are
confident that adding Gaussian noise fits the same purpose and allows us to evalu-
ate better the quality of the final reconstructions against more traditional inversion
schemes.

6.1. LK-Color Level Set Inversion for Numerical Experiment 1

We refer to Appendix A for details on the particular values chosen for the line search
scheme. Even though the line search criteria are quite technical, they form an impor-
tant part of our reconstruction algorithm. Therefore, along with images of the color
level set reconstruction, we also display information on the step size in relationship
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with the average number of voxels that change per sweep and information on how
the pseudo-cost behaves (the concept of a pseudo-cost is defined further below when
discussing Figure 5 in more detail). In the corresponding Figure 5 displaying the step

size information, we display the admissible interval range Îmtarget as block black lines,

and bounds of the desired region Î ′mtarget are shown in dashed green lines.
Figure 4 shows various stages of a 3D LK-Color Level Set inversion for the Nu-

merical Experiment 1 in form of surface plots. The bottom right image displays the
true phantom, and the upper left image shows the initial guess. The remaining im-
ages display snapshots of the shape evolution at various sweep numbers (each sweep
considering all source positions exactly once). Cross sections of the final result are
also displayed in the fourth row of Figure 6 which will be discussed further below. It
becomes visible that, upon convergence, the algorithm has managed to capture the
main topological characteristics of the true phantom, even though we have by far less
data available than we have pixels with unknown conductivity values. This is even
more impressive considering that each of the three conductivity regions present in the
true phantom has quite a high contrast with respect to the others.

Compare already here the corresponding evolution of line search criteria and cost
functional displayed in Figure 5 (discussed further below). As expected, the recon-
struction cannot be perfect even though the value of the cost functional has been
reduced significantly by sweep s = 500. Based on the above count of unknowns and
data, one expects some form of non-uniqueness in the reconstructions which cannot be
removed without additional prior knowledge. Indeed, the final reconstruction shows a
higher amount of fine details compared to the true phantom. Some smaller parts of
value b2 are attached to the main body of value b1. This appears to be an artefact that
stems from details of the shape evolution, and can be characterized as a typical local
minimum. Removing those artefacts would not make a significant change in the final
cost. On the other hand, it is comforting to observe that the annulus in the region of
b2 is correctly identified, even though it is not included in the initial guess. Overall
most of the material with values b1 and b2 are contained in the correct area of the
container when compared with the true model.

Figure 5 shows reconstruction information of Numerical Experiment 1. In the top
figure, we observe the average number of voxels that change each sweep for both
level set functions (yellow dotted line: ϕ1, black dotted line : ϕ2). The top black line
descends as the algorithm progresses, making the admissible interval smaller. This
induces Î ′mtarget to also be smaller, meaning acceptance of an update is more difficult.

Rather than monitoring the actual cost, which is computationally demanding, we
choose to track a different measure which is cheap to compute. As indicated in Algo-
rithm 1, let s denote the sweep number, j the index of the source position and Jj [Φ

s
j ]

the corresponding cost value as calculated according to (12) in order to obtain the

next update. The pseudo-cost J̃s and actual cost Ĵs, both obtained upon completion
of sweep number s, are defined as

J̃s =

ns−1∑
j=0

Jj [Φ
s
j ] , Ĵs =

ns−1∑
j=0

Jj [Φ
s
(ns−1)] = J

(
Φs
(ns−1)

)
. (21)

The actual cost Ĵs corresponds to the standard cost value evaluated off-line by us-
ing the last level set function obtained by sweep s. Its calculation requires us to run
ns forward problems using our Maxwell solver on this single level set function. The
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Initial Shape s = 5 s = 25

s = 50 s = 100 s = 200

s = 400 s = 500 True Phantom

Figure 4. Surface plots of 3D shape evolution for Numerical Experiment 1. Shown are the initial shape and
snapshots at iteration numbers s = 5, 25, 50, 100, 200, 400, 450 and the true phantom. The surrounding shields

are not shown here. The color red indicates the shape of the conductivity b2 and blue indicates the shape of
the conductivity b1. The third region is transparent and represents air (b3).
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Figure 5. Line Search Analysis of LK-Color Level Set reconstruction for Numerical Experiment 1. Top Row:
Evolution of the average number of voxels N as a function of the sweep number s. The dotted yellow line

represents N
1
s and the black line represents N

2
s. Middle Row: Evolution of the step sizes τs1 and τs2 each

denoted by yellow and black dotted lines. Bottom Row: Evolution of pseudo-cost J̃ [Φ]s as a function of the
sweep number s

pseudo-cost J̃s, on the other hand, uses partial cost values associated with the level
set functions that are calculated by Algorithm 1 during sweep s in order to obtain
the individual updates. Its calculation comes without any significant additional ex-
penses. It can be viewed as a lagged cost and is significantly less expensive to obtain
than computing the actual cost Ĵs after each sweep. When adopting our line search
strategy, significant differences between the pseudo and actual cost have not been
observed throughout the evolution when choosing to calculate both in the numerical
experiments. Therefore, only J̃s is calculated and displayed here.

In this particular example, now observing the middle figure, we see that the algo-
rithm has managed to find a step size which allows N

m ∈ Î ′mtarget for the majority
of sweeps. The bottom figure shows the pseudo-cost in each sweep, which decreases
as the algorithm progresses, meaning the error between the data generated by our
reconstruction and the test phantom is becoming smaller.

6.1.1. Comparison of regularization schemes

Figure 6 shows a comparison of the color level set inversion scheme with other re-
construction algorithms for Numerical Experiment 1. As part of this, we compare our
color level set reconstructions with two variants of a single level set inversion and also
a traditional L2-pixel based scheme. The two single level set inversions differ in their
a priori information; the first (diplayed in the second row of the figure) assumes that
the single interior conductivity value in the single level set inversion, which we label
bi, is an arithmetic average of the two different values present in the true phantom.
The second (displayed in row three of the figure) assumes that it coincides with the
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highest of the two values, namely bi = b2. The exterior background in both these cases
is assumed to be b3, as in the color level set approach.

The figure moreover shows in row one that the L2-pixel based scheme performs
reasonably well given that the true phantom has relatively high contrast between con-
ductivity domains. This reconstruction roughly corresponds to the upper left panel of
the flow chart provided in Figure 1. It satisfies the data but lacks the clear structure
suggested by our a priori information. It can be argued whether applying a standard
off-the-shelf image segmentation approach to the standard Tikhonov Philips type re-
sult shown in row one of this Figure 6 would be a good approximation to the correct
reference figure, which is shown in row five of the same figure. As mentioned before,
the pixel-based scheme promotes over-smooth conductivity profiles in low-frequency
situations, whereas in contrast the level set inversion schemes enforce non-smooth
conductivity profiles with sharp edges. When given correct a priori information on
conductivity values, the level set inversion can resolve interfaces between shapes more
clearly.

However, in this more challenging case, the binary approach using just one level
set function clearly might not be the best possible approach either, as seen in rows
two and three of the figure. Apparently, more complicated scenarios such as the true
phantom for Numerical Experiment 1 do not lend themselves well to the single level
set inversion, since fundamentally the method is designed to only recover shapes of
two-parameter domains. This observation motivates the extended studies performed
in this paper on employing more general color level set schemes instead.

But before examining results of the novel color level set approach, let us compare
two values for bi in this a priori incorrectly designed level set model. As shown in
[29], using an incorrect value for the level set inversion tends to deliver growing or
shrinking domains to fit the data depending on whether a priori information on the
conductivity is lower or higher than what is present in the true phantom. We observe
this phenomenon in the LK-Single Level Set reconstruction here. When we take the
interior conductivity value to be an average of the two present in the true phantom, we
observe an inflated or deflated conductivity profile as the algorithm tries to adjust the
shape to fit the data. We can compare this situation to the second scenario, where we
take the interior conductivity value to be the highest interior value present in the true
phantom. With this choice we obtain a much smaller interior shape since the interior
conductivity is almost double that of the averaged interior value.

The results of the LK-Color Level Set inversion algorithm, shown in row four of the
Figure 6, demonstrate that this novel scheme performs much better than the standard
level set approach (and also better than the pixel-based approach) in attempting to
recover the true phantom. This is so since characteristics of the true phantom are
present in the reconstruction. For example, the scheme has managed to recover a
conductivity profile that has the same distinctive separation features (i.e. a portion of
b3 is trapped in between b1 and b2). In comparison, the pixel-based scheme delivers a
smooth conductivity profile extended over the entire domain, and the single level set
scheme delivers an inflated or deflated shape (depending on the single internal value
used) of the true phantom.

Figure 7 shows a comparison of the pseudo-cost for each reconstruction scheme
shown in Figure 6. The L2-pixel based scheme has the highest data misfit value,
whereas the data misfit of both single level set schemes are relatively close to the
color level set scheme despite poor recovery of the true phantom. The relatively high
value for the pixel-based scheme is a little bit surprising, but can be due to very slow
convergence of this scheme. Displayed is the value after s = 500 sweeps, but it is
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Figure 6. 2D cross-sections through a 3D reconstruction for Numerical Experiment 1 using different regular-
ization schemes. Shown is the container region including shields.

Each row: Left z = 25, middle x = 15, right y = 18.
1st row: LK-Pixel, 2nd row: LK-Single Level Set bi = 1

2

(
b1 + b2

)
, 3rd row: LK-Single Level Set bi = b2, 4th

row: LK-Color Level Set and 5th row: true phantom.
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possible that further reduction is achieved by keeping the scheme running significantly
longer (which however would be impractical in realistic applications). It might also be
due to the smoothing effect of the pixel-based reconstruction schemes, which makes it
difficult to correctly fit data obtained with a high contrast model from reconstructions
of very low contrast. The two-value level set approach performs better here, but still
cannot match the low final cost value of the color level set reconstructions in this
example. This is certainly plausible, since the (three-value) color level set model agrees
best of all with the correct setup of the true phantom and incorporates optimally the
available prior information.

6.1.2. Variability in the true conductivity profile

We can test the numerical stability of the color level set scheme by increasing the
realism of the true phantom inside the container. In this case, we assume that the
background conductivity b1 (other than air which is b3) has some variability. Here, we
assume that the true conductivity profile admits the following decomposition:

b(Φ∗)(x) =

 ξ(x) in S1 where ϕ∗
1(x) ≤ 0,

b2 in S2 where ϕ∗
1(x) > 0 and ϕ∗

2(x) ≤ 0,
b3 in S3 = Ω\(S1 ∪ S2) where ϕ∗

1(x) > 0 and ϕ∗
2(x) > 0,

(22)

where ξ(x) is drawn from a probability distribution and the ′∗′ superscript denotes the
(discretized) true level set function. In other words, the parameter content of region
S1 is actually random with properly chosen statistical characteristics, to be explained
below. Those distributions are chosen to depict possible variations of actual boxes or
cargo containers in realistic situations. Here we will consider a comparison between
two variations of a normal distribution N and a uniform distribution U for the true
content of region S1. Therefore, in the two cases, ξ(xi) admits the decompositions

ξ(xi) ∼ N(βb1, αb1) (23a)

ξ(xi) ∼ U(b1 − δ, b1 + δ), (23b)
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Figure 8. Left: Sample of conductivity profile in S1 using probability distribution N(b1, 0.05), Middle: Sample
of conductivity profile in S1 using probability distribution U(0.2, 0.8), Right: Sample of conductivity profile in
S1 using probability distribution N(2b1, 0.25).

where α, β, δ ∈ R+ are chosen parameters. Note that our two variants of drawing
from a normal distribution in (23) stem from choosing various α which determines the
variance.

Numerically speaking we now assign each cell in S1 of the true phantom to a single
draw from a probability distribution without replacement. We consider three examples;
the first where ξ(x) is drawn from a normal distribution such that the conductivity
associated with S1 is now slowly varying around b1; the second where ξ(x) is drawn
from a uniform distribution whose mean is b1; and the third where ξ(x) is drawn from
a normal distribution with mean 2b1. See Figure 8.

This Figure 8 shows the statistical samples generated for building the true conduc-
tivity profiles associated with S1 used in the inversions depicted in Figures 9, 10 and
11, from left to right respectively. In all three figures, the red line denotes the value of
conductivity b1 which is used in the color level set inversion scheme.

Let us now apply the color level set inversion scheme to this new challenging situa-
tion where content in the region S1 is still assumed constant during the reconstruction,
reflecting our lack of knowledge of the detailed nature of the content inside the box.
Figures 9, 10 and 11 depict LK-Color Level set reconstructions where the true S1 is
characterized by using draws from both normal and uniform distributions.

All three figures show a LK-Color Level set reconstruction where the region S1 in
the true phantom has a significant variability of internal conductivity associated with
it. In comparison to the reconstructions shown in both Figures 4 and 6, we see that
the reconstruction of S3 is no longer occupying significant parts of the central region
between the structures described by S1 and S2 (representing a gap filled with air
in the true phantom). However, S2 still has resemblance with the true phantom and
some characteristics remain from the reconstruction involving a constant conductivity
profile associated with S2.

Apparently the samples shown in the left and middle images of Figure 8 do not
inhibit the LK-Color Level set inversion in its recovery of the shape in Figures 9,10
since values in S1 fall either side of b1. One possible explanation of this behaviour is
that the underestimation and overestimation of the conductivity associated with S1 in
the color level set inversion effectively cancel each other out when observing the data
(the growing and shrinking effect as discussed earlier), since both these reconstructions
are very similar to that shown in Figure 4.
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Figure 9. 2D cross-sections through a 3D reconstruction for Numerical Experiment 1 using the formulation
in (22) for the true phantom. Here, ξ(x) is drawn from a normal distribution with parameters β = 1, α = 10.

Each row: Left z = 23, middle x = 15, right y = 18 Top: True Phantom, Bottom: LK-Color Level Set

Reconstruction at sweep s = 1000
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Figure 10. 2D cross-sections through a 3D reconstruction for Numerical Experiment 1 using the formulation

in (22) for the true phantom. Here, ξ(x) is drawn from a uniform distribution with parameter δ = 0.3.

Each row: Left z = 23, middle x = 15, right y = 18 Top: True Phantom, Bottom: LK-Color Level Set
Reconstruction at sweep s = 1000
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Figure 11. 2D cross-sections through a 3D reconstruction for Numerical Experiment 1 using the formulation
in (22) for the true phantom. Here, ξ(x) is drawn from a normal distribution with parameters β = 2, α = 2.

Each row: Left z = 23, middle x = 15, right y = 18 Top: True Phantom, Bottom: LK-Color Level Set

Reconstruction at sweep s = 1000

In contrast, the conductivity reconstruction in Figure 11 associated with S1 for the
level set inversion using the sample in the right image of Figure 8 does not perform as
well as the others. Even though the reconstruction overall captures the true behaviour
of the conductivity profile, its resemblance to the true phantom is slightly worse than
the other two sampling techniques, as it should be expected. This most likely occurs
because the a priori information given to the algorithm overall underestimates con-
ductivity values in large parts of the domain. Though it is encouraging that even in
penalized situations like this the algorithm can still capture many characteristics which
are truly present.

Nevertheless, all three reconstructions are impressive considering many of the con-
ductivity values associated with S1 are not used as a priori information in the LK-Color
Level set reconstruction. Figure 11, for example, shows a LK-Color Level set recon-
struction of a true phantom whereby the conductivity profile associated with S1 has
large variability and has mean around twice the true value. Although the reconstruc-
tion scheme has been heavily penalized with wrong a priori information, the recovery
is quite similar to the first two, which is impressive.

Figure 12 shows a comparison of the pseudo-cost for each sampling technique.

6.2. LK-Color Level Set Inversion for Numerical Experiment 2

After the very convincing results seen in Numerical Experiment 1, we want to present
now a different setup which highlights some potential pitfalls of the newly proposed
algorithm. We also present a way of circumventing those maybe unexpected difficulties.
In a similar way as for Numerical Experiment 1, Figure 13 shows various stages of a
3D LK-Color Level Set reconstruction for Numerical Experiment 2. The general setup
of this example is similar to the one in Numerical Experiment 1, but the true profile
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Figure 12. Pseudo-cost comparison between different sampling methods for creating conductivity profile
associated with S1

(shown in the bottom right image of Figure 13) is quite different here with both objects
being separated by a very large distance.

By observation, the algorithm performs well in the sense of locating both objects
inside the imaging domain. However, the classification of the objects is obviously biased
by choice of the initial guess and is done incorrectly in this particular reconstruction.
This is problematic in situations where the exact nature of the recovered objects is of
importance. Notice that this incorrect classification is compensated by the algorithm
because it provides inflated or deflated areas for each of the two conductivity domains
as a result of optimally fitting the cost functional.

We mention here without showing this result (for the sake of brevity), that if the

initial guess is flipped, in the sense that ϕ
(0)
1 was changed to ϕ

(0)
2 and vice-versa, we

recover the correct classification and location as it might be expected. Accordingly,
choice of the initial guess can significantly influence the final reconstruction in the color
level set approach, even more than it is usually seen in the classical two-value level
set method. This indicates that expectations on distinguishing between all regions
correctly should not be set too high in this approach. The reconstructed internal
values at each location can be affected by a new type of local minima in the chosen
optimization approach, not present in the other methods discussed in this paper. We
emphasize, though, that reconstructions using the color level set scheme still seem at
least of the same quality and usefulness as the more traditional methods compared to
in this paper. None of those would be able to correctly identify the actual contrast to
the background of each object.

Certainly, some of the previously emphasised additional advantages of our novel
scheme are not guaranteed here and depend on choice of the initial guess. Certainly,
remedies are available and we will present one suggestion using random seeding of
objects next. Alternatively, more sophisticated global optimization approaches (as for
example ensemble-based methods [63]) might also yield more reliable results for the
color level set scheme, for the price of increased computational expenses. Those are
left for future research.

The proposed seeding method integrated into the color level set scheme represents a
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Figure 13. Surface plots of 3D shape evolution for Numerical Experiment 2. Shown are the initial shape

and snapshots at iteration numbers s = 5, 25, 200, 500 and the true phantom. The surrounding shields are not

shown here. The color red indicates shape of the conductivity b2 and blue indicates shape of the conductivity
b1

kind of ‘globalization’ of the local descent technique described so far. It adds a seeding
stage into the algorithm which can be interpreted as providing small perturbations or
‘jumps’ across the profile of the cost functional which can help guiding the scheme
out of a local minimum. In more detail, we choose throughout a certain stage of the
inversion process small parts of the imaging domain to be randomly selected for place-
ment of an artificial seed object at different iterations. In our numerical experiment for
testing this seeding technique, we choose each artificial object to have length 6 cells
in each direction, resembling a cube seed. This represents 3% of the imaging domain.
For comparison with Figure 13, we use the same initial guess. Figure 14 shows various
stages of a 3D LK-Color Level Set reconstruction with an added seeding phase, where
γ = 15, but keeping the misleading initial starting model. The reconstruction is an
improvement on that in Figure 13, in both classification and location. Therefore, the
added seeding phase has been rewarded by reaching a ‘better local minimum’ (closer
to the desired ‘global minimum’) judged by visual inspection when knowing the true
phantom.

Certainly, in practical scenarios the true phantom is not known and a more sys-
tematic analysis of the benefits of such a seeding phase would be desirable. In order
to understand those benefits better, we have performed many simulations to see and
compare their rewards in a statistical setting. Running 125 simulations of the inversion
with seeding (still keeping the biased initial starting model) revealed that only 15%
of reconstructions gave correct classification of objects. In another run of numerical
experiments without a biased initial guess, where the initialization would completely
rely on seeding objects throughout the reconstruction, we have seen an approximately
50/50 chance of reconstructing the correct shape, as it would be expected.

For this particular experiment of two isolated objects of small to medium size, we
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Figure 14. Surface plots of 3D shape evolution for Numerical Experiment 2 with an initial seeding phase

where γ = 15. The surrounding shields are not shown here. Displayed are the initial shape and snapshots at

iteration numbers s = 5, 25, 200, 500 and the true phantom. The color red indicates shape of the conductivity
b2 and blue indicates shape of the conductivity b1

have not found a clear measure for indicating in the final result which one represents the
correct contrast values for each of them. The main difficulty, in addition to obviously
representing local minima of the underlying cost functional, is that the final cost
value for both reconstructions does not show significant differences between those
different reconstruction options. This is due to the mutual compensation of the object’s
assumed internal value and its reconstructed size via the already mentioned inflation
and deflation mechanism in the inversion process. This behaviour reflects the severe ill-
posedness of the underlying inverse problem. It does affect certain geometrical setups
of the true phantom more than others, as seen in the first numerical experiment where
this did not cause any significant difficulties.

Even though the presented seeding phase does not always guarantee to reach the
global minimum of the chosen cost functional, as demonstrated in this particular
numerical example, we want to emphasize that it usually does improve results and
is useful for speeding up convergence in most cases. Moreover, it is quite flexible and
can be administered at any stage of the inversion routine. In [61], they decide to seed
in various cycles. We decide to have an initial burn-in phase, whereby we seed both ϕ1

and ϕ2 at the beginning of each sweep s for 0 ≤ s < γ < S. This amounts to solving γ
small-scale minimization problems of (19) in the burn-in phase. Choosing this specific
setup arises from an observation: when level set functions have converged in the color
level set regime, it tends to be difficult for the shapes to be flipped in value by seeding.
Therefore, allowing the process to be early in the inversion is more favourable if we are
to overcome this difficulty. Moreover, the seeding phase can be viewed as a dynamic
initial guess scheme to encourage the minimization process to leave the vicinity of a
local minimizer resembling incorrect classification. In this sense it can be considered
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a ‘low cost version of globalization’ of the applied local optimization scheme.
Employing more sophisticated truly global optimization schemes on color level set

models is possible as well, but we expect them to be computationally far more ex-
pensive. As part of such approaches, ensemble-based approaches would be a natural
option where several possible final results are recorded and statistically evaluated [63].
We also would like to mention that in many practical application it is often not really
necessary to identify one particular global minimum, but rather to be able to classify
a small number of possible local minima against certain criteria, e.g., identifying a
possible shape hidden in a box or in a cargo container. Since the shapes of the ex-
pected local minima in our examples are all very similar, such a classification can be
performed reliably in most cases.

Finally, also a joint reconstruction of all three internal parameter values and the cor-
responding shapes could be attempted in order to address this challenging situation.
This is in principle possible by following the general lines of theory as demonstrated
for example in [16,31,40]. However, this process of joint shape and parameter inver-
sion tends to be extremely slow in this low frequency situation, and appropriate line
search strategies for efficiently combining the searches of those quite different quanti-
ties (shape and contrast value) in our situation are still missing.

7. Summary and Conclusions

We have introduced a novel regularization scheme for imaging shielded regions filled
with high contrast conductivity distributions using low frequency electromagnetics in
3D. The LK-Color Level Set scheme has been shown to produce interesting and in
many situations significantly improved results compared to more classical approaches.
We provided a comparison with alternative regularization schemes for this scenario to
see how well it fared against existing methods. The scenario considered in Numerical
Experiment 1 is more realistic and challenging than those previously considered for
this application. Increasing realism of the problem by choosing a conductivity profile
with more than two constant domains as the true phantom, has led to improved results
but also to additional challenges. In the LK-Color Level Set regime, we found that the
increased complexity of the model comes with some new types of local minima. Some
of those local minima resemble incorrect classification of internal conductivity values
of each individual object compared to the true value, regardless of a good approxi-
mation of its shape. Here, the seeding process can try to circumvent some of those
issues, or at least give a set of local minima to infer from by other means. Alternative
ensemble-based methods might provide a better global approach for characterizing
such situations at the expense of higher computational cost.

For future research, it has been shown that in most cases the use of more than
one level set function clearly demonstrates great promise when applied to a variety of
particular situations. We have used this extended flexibility here for modelling more
than two regions of different internal conductivity values. In addition to this, it can
also be applied to a joint inversion for more than one physical parameter. Clearly,
different level set functions can not only represent different values of one given phys-
ical parameter, but in addition they can represent different physical parameters. For
example, another material parameter variation such as the magnetic permeability µ
occupying a different region other than the conductivity, can be incorporated into the
model for the reconstruction. In particular, for the application of screening boxes or
containers, this might be of practical significance. Anisotropic behaviour of some EM

29



parameters might occur in realistic situations, which in principle can as well be ad-
dressed by a similar algorithm as the one presented here. Also, properties of the shields
can be incorporated into the inversion scheme and the use of data from more than
one frequency can be employed. Finally, the combined reconstruction-segmentation
approach presented here is not limited to low-frequency electromagnetic imaging. It
can be applied to a large variety of different imaging technologies where it might pro-
vide very promising advantages compared to the more traditional approach of first
reconstructing and then segmenting the obtained results.
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Appendix A. LK-Color Level Set Line Search Criteria

In this Appendix we introduce a line search technique for a color level set inversion
involving N level set functions. The scheme is used to choose a step size vector τ s =
[τ s1 , τ

s
2 , · · · , τ sN ] in the update formula

Φs
j+1 = Φs

j − τ s ◦ ∇Jj [Φ
s
j ], (A1)

where s denotes the sweep number.
Choosing the step size vector τ s is tricky. Here, we adopt ideas from [29] and choose

to modify (A1) such that

τ s = f(ws ◦ τ 0), (A2)

where f(·) is the vector-valued form of the backtracking scheme given in Algorithm
2, ws = [w1, w2, · · · , wN ] is a vector of scalars which are adjusted at the end of each
sweep and τ 0 is a vector of initializations of the step size for each level set function in
Φ. Hence, we arrive at the update formula:

Φs
j+1 = Φs

j − f(ws ◦ τ 0) ◦ ∇Jj [Φ
s
j ]. (A3)

Algorithm 2 Backtracking algorithm for one level set function

1: procedure f(τ, ϕ, g,Nsup)
2: Initialize m ∈ (0, 1) and I ∈ Z>1

3: for i = 0 : I − 1 do
4: τ = mτ
5: ϕt = ϕ− τg
6: Count voxel change V in x = ϕt − ϕ
7: if V < Nsup then
8: return τ
9: return 0
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The step-size in (A3) has two components: the first is applied every update (f) and
the second is a dynamic scheme which alters the input of f at the end of each sweep.

To begin, we discuss the first component of the scheme. Here, our goal is to choose
each entry in τ s such that Nm

j (the number of voxels that change per jth source for
the mth level set function, j = 0, 1, · · · , ns − 1) is contained in an interval which is
deemed suitable for the shape associated with the mth level set function to evolve
smoothly. The relationship between Nm

j and the data misfit is of interest, but as of
present is unclear. Although the relationship is unknown, intuition tells us that if we
only allow a small amount of voxels to change per update, then we ensure a smooth
evolution of the shape which also hopefully induces a smooth evolution of the cost. We
choose Nm

j ∈ Imtarget, where Imtarget = [Nm
inf , N

m
sup] is selected appropriately. Typically,

Nm
inf = 0 and Nm

sup is chosen as a small percentage of the total number of voxels in the
domain. This quantity gives us a metric for how much each level set function evolves
per sweep.

Although the backtracking line search makes sure that updates are only made if
Nm

j ∈ Imtarget, it does not ensure an unequal weighting to each sensitivity pattern
generated by the jth source. Ideally, we would like to give greater weighting to those
sources which capture objects present in their sensitivity patterns. For example, if
we initialize the pth entry in τ s such that an update to the pth level set function is
large, we will consistently accept a voxel change just below Np

sup for all sources. This
introduces two problems; the first is that more iterations of the backtracking scheme
will have to be computed in order to reduce τ0p such that Np

sup ∈ Iptarget and the second
is that we will give equal weighting to so-called bad updates in the Kaczmarz scheme.

To alleviate this problem, we make use of the quantityNm
j . Once a sweep is complete

(i.e. we make a Kaczmarz update for each source), we compute the average number of
voxels that have changed for that sweep. Mathematically, we have that

N
m

=
1

ns

ns∑
j=1

Nm
j . (A4)

This brings us to the second component of the line search criterion. We can adjust τ 0

with a weighting vector ws, which is chosen by some criterion involving (A4). Let us
now introduce the subinterval of I ′mtarget = [Nm

low, N
m
high], which will be included in our

criterion for updating the entries in ws:

Nm
high = (1− dm)Nm

sup, (A5)

Nm
low = dmNsup, (A6)

where dm ∈ (0, 1/2). From this, we can deduce that

Nm
inf < Nm

low < Nm
high < Nm

sup. (A7)

Following this, we adjust each entry in ws according to some criterion involving
(A4, A5, A6). For brevity, we show how the pth component of ws is updated per
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sweep:

ws
p =


k1pw

s−1
p if N

p
s > Np

high where k1p ∈ [0.5, 1);

k2pw
s−1
p if N

p
s < Np

low where k2p ∈ (1, 2];

ws−1
p if Np

low ≤ N
p
s ≤ Np

high,

(A8)

where s denotes the quantity for sweep number s.
In other words, this means that if the pth entry to the backtracking line search in

Algorithm 2 is too large then this criterion will reduce the step size before it is altered
by the backtracking line search. Likewise, if the step size is too low, then this scheme
can help the updates become larger. Of course, if entries are extremely large or small,
then a scalar multiplier in the intervals given may be insufficient. Nonetheless, the
scheme performs reasonably well for our application.

Note that so far, both intervals Imtarget and I ′mtarget have constant lower and upper
bounds. These can be generalized to include bounds which are linearly decreasing
dependent on the sweep number. This is not arbitrary, as we expect diminishing returns
of gradient descent methods as the sweep number increases. Insisting on the same
amount of voxels to be altered later in the algorithm is likely to lead to artefacts in
the reconstruction, as the data misfit reduces slower in later iterations. The proportion
between Nm

j and data misfit should remain the same, which is what these dynamic
intervals hope to capture.

Therefore, we introduce a dynamic interval Imtarget = Imtarget(s, ηm), which induces

Îmtarget = Îmtarget(s, ηm). We choose the bounds of Îmtarget to behave linearly as a function
of the sweep number s. It follows that

N̂m
low(s, ηm) = − 1

S
Nm

lowηms+Nm
low, (A9)

N̂m
high(s, ηm) =

1

S
(Nm

low −Nm
high)ηms+Nm

high; (A10)

where ηm ∈ [0, 1]. Defining the acceptance intervals Îmtarget(s, ηm) and using them for
the line search criterion is summarised below:

(1) Choose Nm
inf and Nm

sup.

(2) Determine Nlow = cmNm
sup and Nm

high = (1− cm)Nm
sup.

(3) Compute N̂m
low(s, ηm) and N̂m

high(s, ηm) using (A9, A10).

(4) Determine Îmtarget(s, ηm) using relationship in (2).

(5) Use Î ′mtarget(s, ηm) = [N̂m
low, N̂

m
high] to determine ws with criterion (A8).

(6) Use Îmtarget(s, ηm) = [N̂m
inf , N̂

m
sup] for backtracking scheme in Algorithm 2.

In the numerical experiments presented in this paper, we have chosen to use
the following line search criteria. In the first numerical experiment we have chosen
Imtarget = [0, 26] and in the second Imtarget = [0, 117]. Note that these numbers for Nm

sup

are not arbitrary; they are chosen as a percentage of the total number of interior
cells. Furthermore, we choose ηm = 1/5, S = 200 and [Nm

low, N
m
high] = [14Nsup,

3
4Nsup]

for both experiments. Note that here these intervals are constant for each level set
function, but other choices are also possible. These are the parameters that define the
dynamic intervals described in (A9, A10).
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