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We perform a k · p theory analysis of the spectra of the lowest energy and excited states of the excitons
in few-layer atomically thin films of InSe taking into account in plane electric polarizability of the film and
the influence of the encapsulation environment. For the thinner films, the lowest-energy state of the exciton is
weakly indirect in momentum space, with its dispersion showing minima at a layer-number-dependent wave
number, due to an inverted edge of a relatively flat topmost valence band branch of the InSe film spectrum, and
we compute the activation energy from the momentum dark exciton ground state into the bright state. For the
films with more than seven In2Se2 layers, the exciton dispersion minimum shifts to � point.

DOI: 10.1103/PhysRevB.101.245432

Two-dimensional (2D) materials create new opportuni-
ties for semiconductor optoelectronics [1–3]. Among those
new materials, post-transition metal chalcogenides (InSe and
GaSe) occupy a special place, as they offer a flexibility to
choose a desirable size of their bandgap (in the range from
3 to 1.3 eV) depending on the number of atomic planes in a
thin film [4–8]. While the experimental studies of the band
gap and optical properties of few layer films of InSe [7,9–11]
and GaSe [12–15] have found a reasonably close quantitative
interpretation at the single-particle level, based on density
functional theory (DFT) [16–22] and the DFT-parametrized
tight-binding model [23], the fine tuning of the theory requires
taking into account excitonic effects in the system, which
remains an open question for atomically thin InSe films.

Here, we develop a mesoscale theory for the binding
energies, dispersions, and excited state spectra of excitons in
mono-, bi-, tri-, and few-layer InSe films (γ polytype), taking
into account the strongly nonparabolic features of the valence
band dispersion in these 2D materials and the influence of
various encapsulation environments. In particular, we study
the role of a weak inversion of the hole dispersion near the top
of the valence band [18,19,24–26], established in the thinnest
InSe and GaSe films using angle-resolved photoemission
spectroscopy [10,27] and high field magneto-optics studies
[23], and analyze the crossover of the excitons from weakly
indirect to direct in momentum space, as a function of the
InSe film thickness. The crossover of the exciton dispersion
from indirect [ε(Q) = min at Q �= 0] to direct [ε(Q) = min
at Q = 0] exciton was found at L = 7 layers. For films with
1 � L � 10, we compute the binding energies of the excitons
for hBN-encapsulated InSe films and the activation energies
from the momentum-dark excitonic bound states, with the
results summarized in Fig. 1.

*adrian.ceferino@postgrad.manchester.ac.uk
†kokwee.song@manchester.ac.uk

In the analysis presented below, we describe
excitons using two-particle wave functions, �

†
Q =∑

nm

∫
d2kψQ,nm(k)a†

k+Q,nck,m, written in the wave-number
representation for the constituent electrons and holes
occupying states with wave numbers k + Q and k in
sub-bands [11,28] n and m on the conduction (ak+Q,n)
and valence (ck,m) band side of few-layer InSe film spectrum.
Below, we project all electron and hole states onto the lowest
sub-bands (n = 1) in the film, which is justified by the much
larger inter-sub-band energies, as compared to the exciton
binding energies in the thin films (with L � 10 see Fig. 2). As
a result, the exciton creation operator takes the approximate
form �

†
Q = ∫

d2kψQ(k)a†
k+Q,1ck,1 where ψQ ≡ ψQ,11. This

gives the Bethe-Salpeter equation [29–33]:∫
q
[(εc(k)−εv (k−Q)− �)δq,0+V (q)]ψQ(k+ q)=0, (1)

for an effectively 2D exciton with momentum Q and energy
� (the latter is a sum � = Eg + Eb of the gap Eg and the

binding energy Eb). Here, we use the notation
∫

q ≡ ∫ d2q
(2π )2 .

The electron-hole (e-h) attraction is accounted for by the
Fourier transform of the interaction potential,

V (q)=−4πe2

ε0

∫∫
|φeke (z)|2W (q, z, z′)|φhkh (z′)|2dzdz′,

W (q, z, z′)= cosh
[
q̃
(

d
2 −z

)+η
]

cosh
[
q̃
(

d
2 +z′)+η

]
√

ε‖εzq sinh(q̃d + 2η)
;

q̃ = √
ε‖/εzq; η = 1

2
ln

√
ε‖εz + √

κ‖κz√
ε‖εz − √

κ‖κz
, (2)

designed to take into account both the dielectric polarizability
of the 2DM and the dielectric environment [34–37] (e.g., hBN
[38,39], with κ‖ = 6.9 and κz = 3.7). For L-layer InSe, film
thickness is d = Laz, where az = 8.32 Å is the interlayer dis-
tance and ε‖ and εz are the in- and out-of-plane permittivities
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FIG. 1. The dependence of the exciton binding energy on the
number of layers (L) for hBN encapsulated InSe films. Binding
energies at � point, Eb(0) are compared for two values of bulk InSe
dielectric constants ε‖ and εz. The inset shows the activation energy
εact = Eb(0) − Eb(Qmin ) (closed blue circles) where Qmin is approx-
imately the wave vector between the � point and the edge of the
highest valence band. The radius of the exciton, aexc =

√
〈|re − rh|2〉

is also shown (closed red square). The red dashed line shows the
thickness of the InSe film.

of bulk InSe [40]. The above expression takes into account
the z dependence of the lowest electron-hole sub-band wave
functions φe/h,k(z), and W is quoted for z � z′ (for z < z′, z
should be interchanged with z′). We note that, for L = 1 and
2, the 2D potential V (q) can be simplified to the Keldysh

potential [34,35,37,41],

V (q)≈− 2πe2

√
κzκ‖

1

q(1+r∗q)
, r∗ =

√
εzε‖ − 1

2
√

κzκ‖
d.

In the above equation, r∗ is the screening length [42] indi-
cating the region dominated by the logarithmically divergent
potential at length scales smaller than r∗ and the region
dominated by the Coulombic interaction potential at distances
greater than r∗. However, for L � 3, the exciton radius (aexc)
appears to be smaller than the film thickness, so that the
electron/hole charge distribution along the z axis in Eq. (2)
needs to be taken into account in full details. To do that,
we use the quantum-well approximation for the z distribution
of the lowest sub-band [28,43], φe/h,k(z) ≈ √

2/d cos(πz/d ).
We note that separating wave-function variables and dis-
carding higher energy sub-bands in Eq. (1) is applicable if
the quantization energy due to confinement is much larger
than the excitonic energy scale, which will be justified later
by comparing the inter-sub-band energies to the calculated
exciton binding energies.

To implement numerical diagonalization of the Bethe-
Salpeter equation (1), we use a basis of harmonic
oscillator functions for the bound electron-hole states
[44], ψQ(k) = ∑Nmax

0�nx+ny
AQ

nx,ny
ϕnx (kx )ϕny (ky) where ϕn(k)=√

λ
π1/22nn! (−i)ne−k2λ2/2Hn(kλ) and Hn(x) is the nth Hermite

polynomial. In the above described basis, the choice of the
length λ and the cutoff Nmax are optimized for speeding
up a converging calculation (see Appendix C for details).
We also checked the performance of the developed code by
comparing its results to the exact solution of the 2D hydrogen
problem, aiming at <2% error as compared to the ground-
state energy of the Rydberg series. A software package for

FIG. 2. The bound electron-hole states and the quasiparticle dispersion in momentum space: (a)–(c) The plots for L =1–3 layers film.
The solid (dashed) yellow and blue curves are conduction and valence (sub)band tight-binding dispersions [23]. The gray curves are the k · p
dispersion where εc and εv are expanded into a polynomial of k. The sizes of the red (blue) circles are proportional to the probability density
|ψQ(k)|2 with Q = 0 (Q = Qmin being the total momentum of the lowest energy exciton. (d) Plot for bulk InSe dispersion near A point: Each of
the bands plotted both in conduction and in valence band correspond to kz = 0 − 0.06 Å−1 in steps of 0.01 Å−1. Blue shaded region indicates
the region in in-plane momentum and in energy covered by the ground-state exciton in the bulk limit as determined by the size of the Gaussian
wave packet and the exciton binding energy. (Insets) (a) Brillouin zone of 2D-InSe, blue circles showing C6-symmetric localization of holes;
(b) a comparison of the Q = 0 exciton binding energy (closed black circles) with the sub-band energy splittings. �e (open yellow circles) and
�h (open blue circles) correspond to the e-e1 and h-h1 splitting at the � point, respectively. The closed black circles are the total splitting,
�e + �h; (c) schematic of hBN-encapsulated InSe, with their different dielectric constants; (d) Brillouin zone of bulk InSe.
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the implementation of numerical diagonalization of Eq. (1)
with arbitrary parameters for InSe films and encapsulation
environment and instructions for interested users are included
in the Supplemental Material [45].

With this numerical setting, we solve Eq. (1) using the
DFT-parametrized k · p theory for InSe films with dispersions
illustrated in Fig. 2. In particular, we used a polynomial expan-
sion around � point both for the conduction and valence bands
[46] computed using the GW-parametrized hybrid k · p tight-
binding model (see Appendix B), εc/v (k) = ∑

i, j=0 Ae/h
i j ki

xk j
y

also plotted in Figs. 2(a)–2(c). For comparison, in Fig. 2(d),
we show the conduction and valence band dispersion of bulk
InSe near the band edges (which are at A point in the 3D
Brillouin zone), where the inversion of εv (k, kz ) develops
upon the increase of z-axis momentum kz (counted from
A point).

In Fig. 3(a), we show the first eight bound states energies
of the �-point exciton with Q = 0 (solid line) [47] and the
lowest-energy momentum-dark state of the exciton at Q =
Qmin (dashed line) for 1 � L � 3. A minimum at Q = Qmin

in the exciton dispersion for each state [Fig. 3(b)] is due to the
sombrero of the h band (see Fig. 2). The non-hydrogen-like
energy sequence [48,49] is due to the 2D screening of the e-h
interaction in the film leading to a Keldysh-like potential for
L = 1 and 2.

To illustrate the layer-number dependence of the exciton
dispersion, we compare the exciton binding energy at the �

point, Eb(0), and at its dispersion minimum, Eb(Qmin), for L
up to 10 layers. In the inset in Fig. 1, we plot the activation
energy εact from the dark exciton state (at Q = Qmin) to the op-
tically active state (at Q = 0). We find that εact → 0 at L∗ = 7,
which indicates that an indirect to direct crossover for the ex-
citon occurs before the expectation based on a single-particle
valence band dispersion (at L∗ = 10, see Appendix B). For
completeness, we also analyzed excitons in bulk 3D InSe
using bulk band dispersions shown in Fig. 2(d) and V (q, qz ) =
− 4πe2/ε0

ε‖q2+εzq2
z
. We solve the Bethe-Salpeter equation for bulk InSe

using the 3D harmonic oscillator basis, and use dielectric
constants [40] ε‖ = 10.9, εz = 9.9 for InSe, together with the
GW-computed valence band masses (mv‖ = −5.35m0, mvz =
−0.078m0) and the conduction band masses (mc‖/m0 = 0.16
and mcz/m0 = 0.086 where m0 is the free electron mass)
which are close to those measured in cyclotron resonance
experiments [50]. The examples of computed bulk exciton
dispersions, E3D(Q, Qz ) are shown in Fig. 3(c). Using (Qz ≈
π

Laz
) for the quantization of the transverse exciton motion,

we find that the crossover into indirect spectrum should be
expected at L ≈ 6–7 layers, in agreement with the transition
number of layers L∗ found in the layer dependence of the
activation energy εact (inset in Fig. 1). We note that the com-
puted bulk (3D) exciton binding energy is about 30% lower
than the experimentally claimed [51,52] values of 13–15 meV.
Binding energy can be increased to 14.6 meV by choosing
ε‖ = 9.5, εz = 8.6 (with

√
εz/ε‖ = 0.95 as in Ref. [40]). For

this reason we computed and compared the exciton spectra in
the films using two choices of dielectric parameters ε‖ = 10.9,
εz = 9.9 and ε‖ = 9.5, εz = 8.6. We find that in thin films
L � 10 such a variation of InSe dielectric parameters has a
much weaker influence on the exciton bindings than in the

FIG. 3. (a) The first eight low-energy states of the exciton
at Q = 0, Qmin in hbN-encapsulated InSe. Insets on the right are
the schematic exciton wave functions ψ0(re, 0) in the real space
(ψQ(re, rh ) ≡ ∑

k ψQ(k)eik·(re−rh )) which are sorted from higher to
lower binding energies (bottom to top). The dark and bright region
correspond to a negative and positive value for the wave-function
amplitude. (b) The exciton dispersion for the first four low-energy
states. The schematic real-space probability distributions of a bound
electron, |ψQmin (re, 0)|2, are illustrated by the insets. (c) The energy
dispersion of the exciton ground state in bulk InSe with Qy = 0. The
different Qz values are indicated in the plot. We use the adjusted
dielectric parameters in the plot which are ε‖ = 9.5 and ε‖ = 8.6.

245432-3



ADRIÁN CEFERINO et al. PHYSICAL REVIEW B 101, 245432 (2020)

TABLE I. Polynomial fit of the sombrero dispersion as for the
topmost valence band and parabolic dispersion of the lowest conduc-
tion band. m0 is the free electron mass.

L Ah
8 (eVÅ8) Ah

6 (eVÅ6) Ah
4 (eVÅ4) Ah

2 (eVÅ2) mc/m0

1 −1188.591 471.809 −68.601 3.674 0.266
2 −1210.270 388.158 −49.004 1.989 0.223
3 −1308.626 371.401 −43.048 1.372 0.207
4 −1411.696 364.846 −39.437 0.985 0.198
5 −1565.869 366.036 −36.797 0.703 0.193
6 −1745.505 368.254 −34.556 0.487 0.189
7 −1938.337 369.112 −32.543 0.316 0.187
8 −2130.725 367.119 −30.684 0.179 0.184
9 −2302.573 361.073 −28.941 0.068 0.183
10 −2085.138 331.905 −27.004 −0.026 0.181

bulk material. These calculated binding energies compare well
with the values observed in the recent experiments [11] on
hBN-encapsulated thin InSe films. In summary, we present a
mesoscale theory which is particularly useful for investigating
the energy spectrum of a Wannier-Mott exciton in large gap
semiconductors (Eg � |Eb|). Most interestingly, this theoreti-
cal framework can also be applied to study direct and indirect
excitons in complex van der Waals heterostructures [53–61].
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APPENDIX A: PARAMETRIZATION OF
ELECTRON-HOLE DISPERSION IN L-LAYER INSE

Here, we give the details on the parametrized electron and
hole dispersion by using polynomial fit. The conduction and
valence band dispersions near the � point are approximated
by

εc(k) = 1

2mc
k2, (A1)

εv (k) = Ah
2k2 + Ah

4k4 + Ah
6k6 + Ah

8k8, (A2)

where the hexagonal wrapping terms are ignored, because
the exciton wave function is strongly localized in k-space.
These polynomials are obtained by fitting to bands from the
GW-parametrized hybrid k · p tight-binding (HkpTB) model,
Appendix B, and the fitted values for 1- to 10-layer InSe film
are listed in Table I. We note for L � 9 that the quadratic term
in the valence band dispersion corresponds to negative effec-
tive hole masses. This yields a sombrero-shaped dispersion in
the valence band and requires one to retain higher-order terms

in the expansion for fitting. The hole mass becomes positive
at L = 10. For the 3D bulk dispersion near the conduction
and valence band edges of γ -InSe, we employ the following
polynomial of the form,

εc(k, kz )= k2

2mc‖
+ k2

z

2mcz
, (A3)

εv (k, kz )= k2

2mv‖
+ k2

z

2mvz
+γ k4+αk2k2

z +γzk
4
z . (A4)

Here, kz is measured from the A point. In the fit, ob-
tained using GW-DFT computed bands, the effective in-plane
and out-of-plane masses for the electron are mc‖ = 0.16m0

and mcz = 0.086m0, close to the experimentally measured
[50] values of mc‖ ≈ 0.14m0 and mcz ≈ 0.08m0, respectively.
For the valence band, the fitted parameters are as fol-
lows: mv‖ = −5.35m0, mvz = −0.078m0, γ = −10.84 eVÅ4,
α = 1074 eVÅ4, and γz = 1688 eVÅ4.

APPENDIX B: HYBRID MULTIBAND k · p
TIGHT-BINDING THEORY WITH PARAMETERS FROM

QUASIPARTICLE SELF-CONSISTENT GW
CALCULATIONS

1. Hybrid multiband k · p tight-binding model

The model used in this study is built using two main
components: a multiband k · p model describing the mono-
layer bands (following Refs. [20,62]), and interlayer cou-
pling in few-layer and bulk systems, described using a
tight-binding approach based on the monolayer k · p bands
(similar to the hybrid k · p tight-binding approach taken in
Refs. [28,63]).

In this description we model the bands of few-layer and
bulk InSe near the � point using a Hamiltonian with the form,

H =
∑
k,σ

[
N∑

n=1

Hn
ML,k,σ +

N−1∑
n=1

Hn,n+1
IL,k,σ + H.c.

]
, (B1)

where Hn
ML,k,σ is the monolayer k · p Hamiltonian on layer n

of the N-layer crystal, at k with z projection of spin σ = ± 1
2 .

Hn,n+1
I−L includes the interlayer tight-binding hops between the

monolayer bands.

a. Monolayer k · p Hamiltonian

The monolayer Hamiltonian follows the multiband k · p
approaches of Refs. [20,62]. While in our previous works
[23,28] the basis of monolayer bands was a basis of single-
band k · p expansions, so that matrix elements such as cou-
plings to electromagnetic fields and the interlayer hops men-
tioned above had to depend on k, here we follow the multiband
approach and take as our basis the bands at �, and introduce
k-dependent off-diagonal terms to account for the variation
of the bands with k. At the expense of an increase in the
dimensionality of the parameter space, this allows us to make
the approximation that the interlayer hops are independent of
k, and assists in the capture of higher-order effects, such as
the offset valence band maximum, while keeping the k · p
expansions to order k2. The monolayer Hamiltonian for layer
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n of an N-layer crystal takes the form,

Hn
ML,k,σ = (εc1 + αc1 k2)aσ†

n,c1,k
aσ

n,c1,k + (εc + αck2)aσ†
n,c,kaσ

n,c,k + (εv + αvk2)aσ†
n,v,kaσ

n,v,k

+ (
εv1 + (

αv1 k2 + α′
v1

(
k2

x − k2
y

))
aσ†

n,v1x,k
aσ

n,v1x,k + (
εv1 + αv1 k2 + α′

v1

(
k2

y − k2
x

))
aσ†

n,v1y,k
aσ

n,v1y,k

+ (
εv2 + (αv2 k2 + α′

v2

(
k2

x − k2
y

))
aσ†

n,v2x,k
aσ

n,v2x,k + (
εv2 + αv2 k2 + α′

v2

(
k2

y − k2
x

))
aσ†

n,v2y,k
aσ

n,v2y,k + 2α′
v1

kxkyaσ†
n,v1x,k

aσ
n,v1y,k

+ 2α′
v2

kxkyaσ†
n,v2x,k

aσ
n,v2y,k + βc1,vk2aσ†

n,c1,k
aσ

n,v,k + iβc1,v2

(
kxaσ†

n,c1,k
aσ

n,v2x,k + kyaσ†
n,c1,k

aσ
n,v2y,k

)
+ iβv,v2

(
kxaσ†

n,v,kaσ
n,v2x,k + kyaσ†

n,v,kaσ
n,v2y,k

) + iβc,v1

(
kxaσ†

n,c,kaσ
n,v1x,k + kyaσ†

n,c,kaσ
n,v1y,k

)
− 2λv1,2 iσ

(
aσ†

n,v1x,k
aσ

n,v1y,k + aσ†
n,v2x,k

aσ
n,v2y,k

) + λv,v1

( − 2σaσ†
n,v,ka−σ

n,v1x,k
+ iaσ†

n,v,ka−σ
n,v1y,k

)
. (B2)

The bands which form the basis of the model are the mono-
layer �-point bands in the absence of spin-orbit coupling
(SOC) [23]. The operator aσ (†)

n, j,k annihilates (creates) an elec-

tron in layer n, band j, with spin σ = ± 1
2 and in-plane

momentum k. As singly degenerate bands which are totally
in-plane symmetric at �, bands c1, c, v are assigned �-point
energies εc1,c,v with quadratic “onsite” dispersions with re-
spective coefficients αc1,c,v . In contrast, in the absence of SOC
bands v1 and v2, being dominated by px and py orbitals, are
twice degenerate at � with energies εv1,v2 . The dispersions of
their two light- and heavy-hole branches are handled using
two components corresponding to a basis of their px and py

components, with quadratic intra- and intercomponent contri-
butions with coefficients α(′)

v1,2
. In the multiband k · p picture

away from � the bands are modified by off-diagonal terms
between them. These terms must preserve the σh symmetry of
the monolayer, so only involve the pairs c1, v, c, v1 and v, v2.
Of these, c1, v is between bands which are totally in-plane
symmetric at �, so the off-diagonal term is quadratic, while
terms involving the x and y components of v1,2 are linear
in kx and ky, respectively. The coefficients of these terms
are denoted as βc1,v , βc,v1 , and βv,v2 , respectively. Finally,
spin-orbit coupling (SOC) is included within the components
of v1 and v2 (lzsz with coupling strength λv1,2 ) and between v1

and v (the “spin-flip” lxsx + lysy with coupling strength λv,v1 ).
Cross-gap “spin-flip” terms are neglected.

b. Interlayer tight-binding hops

The nonzero interlayer tight-binding hops between the
monolayer bands, and their form, can be inferred from the
symmetries of the bands involved in the hop. The resulting
interlayer contribution to the Hamiltonian takes the form,

Hn,n+1
IL,k,σ

=
∑

j=c1,c,v

t ja
σ†
n, j,kaσ

n+1, j,k

+ tc1,c
(
aσ†

n,c1,k
aσ

n+1,c,k − aσ†
n,c,kaσ

n+1,c1,k

)
+ tc,v

(
aσ†

n,c,kaσ
n+1,v,k − aσ†

n,v,kaσ
n+1,c,k

)
+ tv1,2

∑
i=x,y

(
aσ†

n,v1i,k
aσ

n+1,v1i,k − aσ†
n,v1i,k

aσ
n+1,v2i,k

− aσ†
n,v2i,k

aσ
n+1,v2i,k + aσ†

n,v2i,k
aσ

n+1,v1i,k

)
. (B3)

Since the γ stacking preserves the C3 rotational symmetry of
the monolayer, the bands may be divided into two groups,
with no hopping between the singly and doubly degenerate

basis bands, with the x and y components also not mixed by
the interlayer hops. We have made the approximation that,
since interlayer hops are dominated by interlayer Se-Se pairs
[23], they may be taken as z/ − z symmetric. As a result, hops
between c1 and c, and between c and v, which are pairs of
bands with opposing symmetry under z/ − z reflection in the
monolayer, are antisymmetric under exchange of layers. We
neglect the hop tc1,v as the bands are well separated in energy,
and interlayer hops involving c1 are expected to be weak
owing to the dominance of the c1 wave function by orbitals on
the indium atoms in the center of each layer. Finally, using the
domination of v1 and v2 by Se px and py orbitals, we assume
that all hops within and between v1 and v2 are of the same
magnitude, tv1,2 .

2. Parametrization—bulk γ-InSe

Since DFT can often underestimate band gaps, signifi-
cantly so in the case of thicker 2D and bulk InSe, a means by
which one may obtain spectra of more use in comparison with
experiments is the use of a “scissor operator”—a rigid shift
upwards in energy of the unoccupied bands with respect to the
occupied bands. In other words, one assumes that features of
the DFT bands, such as effective masses, band widths, matrix
elements, and so on, are all correct, other than the size of the
gap itself. This has been shown to be a useful procedure in
theoretical studies of semiconductors [64–66], and in 2D InSe
[7,23]. However, the magnitude of the underestimation of the
gap (approaching a factor of ∼4 in the bulk limit) for InSe can
make the procedure more complex. For example, a straight
scissor correction without taking into account other effects of
the underestimation of the gap can lead to an overestimation
of the interband out-of-plane electric dipole matrix element
[23], or an underestimation of the band-edge effective masses
in the bulk case and hence an overestimation of the splitting of
sub-bands in the few-layer case [28]. While there are means
by which some of these problems may be overcome (for
example, the out-of-plane effective mass was corrected in Ref.
[28] by applying a scissor correction to the monolayer bands
after parametrization of the interlayer hops), the presence of
cross-gap off-diagonal matrix elements in even the monolayer
Hamiltonian presents challenges in the determination of the
appropriate means of compensating for an underestimation of
the band gap in a DFT reference.

In this case, therefore, we take as our first-principles refer-
ence a quasiparticle self-consistent GW (QSGW) calculation
for the bulk crystal. For this we use the QUESTAAL package
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[67,68], using the Bethe-Salpeter equation (BSE) to determine
the polarization in the calculation of W. Since the bands
and gaps of InSe have been shown to be sensitive to strain
[69,70], we use an experimental lattice with crystal structure
parameters found using x-ray diffraction [71]. The DFT part
of the calculation sampled the Brillouin zone with a 24 ×
24 × 24 k-point grid, while for the QSGW part a 6 × 6 × 6
grid was used. In the calculation of W, nine occupied bands
and fifteen unoccupied bands were handled using the BSE,
while the rest of the bands were handled at the random-phase
approximation level. In the DFT part, the G-vector cutoff
for the interstitial density mesh was 9.1 Ry1/2, while in the
QSGW part the cutoffs for the plane-wave expansions of
the eigenfunctions and the Coulomb integrals were 3.4 a.u.
and 2.9 a.u., respectively. The QSGW calculation of the self-
energy is carried out without taking SOC into account, with
the effects of SOC included at the DFT level afterwards. We
choose a calculation of the bulk crystal as a reference for
finding model parameters as a QSGW calculation for few-
layer InSe would be prohibitively expensive given the number
of atoms in a unit cell. The calculation gives a quasiparticle
band gap of 1.367 eV for the bulk, close to the experimentally
obtained 1.351 eV [72].

In the case of the model, Eq. (B1) is amended to describe
the bulk with a unit cell corresponding to a single layer as

H = H1
1L + H1,1

IL eikzaz + H.c., (B4)

where kz is the out-of-plane momentum and az = 8.315 Å is
the distance between successive layers [71]. The parametriza-
tion is carried out in two steps. First, we fit bands for 50 kz

points between kz = 0 and kz = π/az for k = 0, as we show in
Fig. 4, then holding the 2D �-point parameters fixed, we fit the
in-plane dispersions for small k near � up to k = K/5 for each
kz used in the first stage of the fitting. In Fig. 4 we show the
in-plane QSGW and model dispersions for kzaz = 0, π/2, π .
The model parameters are given in Table II.

3. Few-layer bands

Having found a parameter set for the model, we now
explore its behavior in the few-layer case, with an overview of
some of the key features of the bands of few-layer InSe shown
in Fig. 5. The dispersive nature of the bulk conduction and
valence bands, arising from the strong interlayer hops tc, tv, tcv
between bands with strong wave-function contributions from
selenium pz orbitals, translate to large splittings between
sub-bands in the few-layer case. It is this strong interlayer
hybridization which is responsible for the large variation of
band gap with crystal thickness [7,23], reaching >2.8 eV for
monolayer films. In contrast, v1 and v2, being dominated by
px,y orbitals which lie mostly in the 2D crystal plane, have
weak interband hops and exhibit much weaker splitting. As a
consequence when the conduction and valence bands acquire
contributions from v1 and v2 (due to, in the model, interband
k · p mixing) away from � their splitting becomes weaker.
In the conduction band this manifests itself as a difference
between the effective masses of successive sub-bands, which
in Ref. [28] was handled by a k-dependent tc.

For the valence band the situation is more complex. As
has been theoretically predicted [17,19] and shown in ARPES

FIG. 4. Upper panel: QSGW (dots) and fitted model (lines) out-
of-plane dispersions for bulk γ -InSe, for in plane momentum k = 0.
Lower panels: in-plane dispersions (along kx) for (from left to right)
kzaz = 0, π/2, π . 0 eV set to valence band edge in all cases.

experiments [10], for the thinnest films an offset in the valence
band maximum develops, leading to a slightly indirect band
gap, in contrast to the direct gap found in thicker films and
in the bulk crystal. In the multiband k · p picture a key
contribution to this phenomenon can be understood [62] as
repulsion away from � between bands v and v2. When in
the few-layer case v splits much more than v2 this repulsion
becomes much weaker. Coupled with a weaker splitting of v

itself at larger k in a similar manner to that of the conduction
band, this causes the depth and radius of the “Mexican hat”
offest to decrease rapidly with increasing crystal thickness,
ultimately leading to a direct gap in the model for N � 10
layers.

APPENDIX C: NUMERICAL IMPLEMENTATION
OF HARMONIC OSCILLATOR BASIS

In the harmonic oscillator basis described in the text, the
BSE (1) takes the form,∑

n′
xn′

y

[
H0

nxny;n′
xn′

y
− Vnxny;n′

xn′
y

]
AQ

n′
xn′

y
= �AQ

nxny
, (C1)
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TABLE II. Model parameters for Eqs. (B2)
and (B3) fitted to QSGW bands for bulk InSe. 0 eV
is set to the valence band edge in the bulk.

εc1 3.064 eV
εc 2.015 eV
εv −0.855 eV
εv1 −1.449 eV
εv2 −1.538 eV

λv1,2 0.142 eV
λv,v1 0.119 eV

tc1 −0.011 eV
tc 0.333 eV
tv −0.420 eV
tv1,2 −0.048 eV
tc1,c 0.019 eV
tc,v 0.251 eV
αc1 1.54 eVÅ2

αc −18.7 eV Å2

αv −4.95 eVÅ2

αv1 6.48 eVÅ2

α′
v1

−10.51 eVÅ2

αv2 −0.28 eVÅ2

α′
v2

−4.20 eVÅ2

βc1,v 3.77 eVÅ2

βc1,v2 8.51 eVÅ
βc,v1 10.54 eVÅ
βv,v2 −2.78 eVÅ

with the kinetic energy matrix,

H0
nxny;n′

xn′
y
(Q) =

∫
d2k[εc(k) − εv (k−Q)]

× ϕ∗
nx

(kx )ϕ∗
ny

(ky)ϕn′
x
(kx )ϕn′

y
(ky), (C2)

and the interaction matrix,

Vnxny;n′
xn′

y
=

∫
d2kd2q

(2π )2
V (q)

× ϕ∗
nx

(kx )ϕ∗
ny

(ky)ϕn′
x
(kx + qx )ϕn′

y
(ky + qy). (C3)

In the following, we explain how to choose an optimal har-
monic oscillator basis set to speed up the convergence in a
calculation. We also give the details for how to construct the
matrix equation in Eq. (C1).

Choice of basis set. To diagonalize the BSE in Eq. (C1), we
first need to specify the harmonic oscillator basis set which
is determined by the parameters: λ, the length scale of the
oscillator, and Nmax, the cutoff of the oscillator modes with
nx + ny � Nmax. In principle, λ can be arbitrary since a unique
result can be obtained provided that Nmax is large enough.
In practice, working with a large basis set is undesirable
because large matrix diagonalization is a very demanding
computational task. In the following, we show that a good
convergent result can be obtained with a relatively small basis
set if a proper choice of λ is used.

The procedure for obtaining the optimal λ is to maximize
the exciton binding energy against λ (inset of Fig. 6). This λ

corresponds to the optimal coverage of the exciton by the basis
set in the momentum/real space. In Fig. 6, we demonstrate
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FIG. 5. (Upper panels) 2D model dispersions for monolayer,
bilayer, and five-layer InSe. (Middle panel) Vertical band gaps at �

for N = 1- to 15-layer InSe. Solid line is the bulk band gap. (Lower
panels) Position (left) and magnitude (right) of offset of valence
band maximum from � point for N = 1- to 15-layer InSe, showing
indirect-direct gap transition at 10 layers.

how the binding energy depends on λ of a finite basis set with
nx + ny � Nmax = 12. We note that the optimal λ for each dif-
ferent states need to be determined separately since each states
have a very different characteristic localized length scale. In
Fig. 6, one can see that once the optimal λ is determined,
we obtain a good convergent result for the binding energy at
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FIG. 6. The convergence in the calculation of exciton ground-
state binding energy by using the optimal λ for a monolayer InSe
with Keldysh potential. The optimal λ for each state is determined
by maximizing their corresponding binding energy which are marked
by the closed circles in the inset. The optimization for the first four
�-point exciton binding energy in the inset is performed with fixed
Nmax = 12.

Nmax ∼ 12. Increasing the number of basis beyond Nmax = 12
only leads to no more than 2 meV correction.

Kinetic energy matrix. For a general band dispersion such
as those in tight-binding model, analytical expression may not
be available and the query of the band energy may be compu-
tationally expansive. Therefore, a straightforward numerical
integration in Eq. (C2) is not a practical approach. A feasible
numerical method is to expand the band dispersion (periodic
function) into a fast convergent Fourier series. Namely,

εc(k) − εv (k − Q) =
∞∑

s=−∞
[Cs − Vse

i2πs·Q̄]e−i2πs·k̄, (C4)

where s = (sx, sy), k̄ = (kx/Tx, ky/Ty), and Q̄ =
(Qx/Tx, Qy/Ty) with the (Tx, Ty) are the periodicity of
the dispersion in each dimensions. The Fourier coefficients
are therefore defined as[

Cs
Vs

]
=

∫ Tx
2

− Tx
2

dkx

Tx

∫ Ty
2

− Ty
2

dky

Ty
ei2πs·k̄

[
εc(k)
εv (k)

]
. (C5)

With this expansion, we can integrate out the momentum
explicitly. Hence, the band energy matrix in Eq. (C2) become

H0
nxny;n′

xn′
y
(Q)

=
∞∑

sx,sy=−∞
[Cs − Vse

i2πs·Q̄]
x,y∏

j

2ζ j− 1
2 (n j+n′

j )ζ j!(ā js j )� j

in′
j−n j+� j

√
n j!n′

j!

× e− 1
4 ā2

j s
2
j L

� j

ζ j

(
1

2
ā2

j s
2
j

)
, (C6)

with ζ j = min[n j, n′
j], � j = |n′

j − n j |, ā j = 2π/(Tjλ), and
Lα

n (x) is the associated Laguerre polynomial. Since the band
dispersion is periodic, only a few of the Fourier modes are

FIG. 7. The convergence of the Q = 0 exciton ground-state en-
ergy with different grid size for constructing the Fourier series of εc

and εv .

relevant to the series. Moreover, we note that the higher order
term in the sum are exponentially suppressed. This implies
that we have transformed the numerical integration problem
into a fast convergent summation.

To calculate the Fourier coefficients, we can approximate
the integral in Eq. (C5) as a Riemann sum by discretizing
the momentum space into a uniform grid. The calculation of
Riemann sum is the same as calculating the discrete Fourier
transformation which can be very efficiently evaluated by
the fast-Fourier transformation. In this numerical approach,
the tight-binding Hamiltonian only needs to be diagonalized
once in constructing the uniform grid. Depending on the
smoothness of the band structure, typically, the grid size
greater than 50 × 50 points is good enough for a desirable
convergent result (see Fig. 7). In this paper, we use 100 × 100
grid points for the calculation.

Although we have used a straightforward method with fast-
Fourier transformation. The idea of our method is essentially
the same as K-point sampling in Refs. [73–75]. The K-point
sampling method is much more efficient since it utilizes all
the symmetry in the function and regrouping the Fourier series
into a faster convergent series. The Fourier coefficient in the
series can be very efficiently calculated by the Monkhorst-
Pack grid in the reduced Brillouin zone. This method was
originally discussed in Ref. [75] as a “hybrid method.”

We can further simplify the calculation in Eq. (C2) if
only the low-energy exciton is in our interest. As indicated
in Fig. 2, only the low-energy electronic modes (red/blue
shaded region) which are well described by the k · p model
are relevant for exciton binding. In this low-energy regime,
one may approximate εc/v by expanding it into polynomial.
Thus, in this approach, we can use the following identity to
calculate Eq. (C2) analytically,∫

dkkl e−k2
Hm(k)Hn(k)√
πm!n!2m+n

=
√

n!

m!

�l/2�∑
r=0

min[m,l−2r]∑
s=0

(
m

s

)
2s−l− 1

2 (m−n)l!

r!(l − 2r − s)!
δl+m−2r−2s,n,

(C7)

245432-8



CROSSOVER FROM WEAKLY INDIRECT TO DIRECT … PHYSICAL REVIEW B 101, 245432 (2020)

TABLE III. Comparison of binding energies in meV as obtained
from the harmonic oscillator basis against analytical and calculated
results [49] for suspended MoS2. Basis size used in the comparison
with MoS2 monolayer corresponded to Nmax = 12 (basis size=91
states) and λ was optimized. For the 2D hydrogen atom with a
reduced effective mass of μ = 0.14 and ε = 9 the basis size used
for the comparison was Nmax = 20 for every states in the table except
the 1s. As for the 1s state a greater basis size of Nmax = 24 as used.

HO basis 2D hydrogen HO basis Suspended MoS2 [49]

0s 92.5 94.2 554 555
1px,y 10.38 10.47 315 316
1s 9.6 10.47 257 258
2dxy 3.76 3.77 209 209
2px,y 3.69 3.77 184 185

where �l/2� is the largest integer that is equal or smaller than
l/2.

Interaction matrix. In this paper, we assume in-plane ro-
tational symmetry in the e-h interaction. Hence, the k inte-
gration in Eq. (C3) can be carried out explicitly by using
Hn(x + y) = ∑n

s=0( n
s )Hs(x)(2y)n−s and this yields

Vnxny;n′
xn′

y
=

∫
qdq

(2π )2
V (q)e− 1

4 q2λ2
x,y∏

j

min[mj ,n j ]∑
s j=0

(λq)σ j ,

×
(

n j

s j

)(
mj

s j

)( − 1
2

) 1
2 σ j s j!√

mj!n j!
2B

(
σx + 1

2
,
σy + 1

2

)
,

(C8)

where σ j = n j + mj − 2s j and B(x, y) is the beta function.
For the Keldysh potential, V (q) = − 2πe2√

κ‖κzq(1+r∗q) , we have the

following analytical expression for∫
qdq

(2π )2
V (q)(λq)σx+σy e− 1

4 q2λ2

= −e2

2π
√

κ‖κz

(
− λ

r∗

)σx + σy

⎧⎨
⎩e

− λ2

4r2∗

2r∗/λ

[
πerf

(
λ

2r∗

)
− Ei

(
λ2

4r2∗

)]

−
σx+σy−1∑

j=0

�

(
j + 1

2

)(
−2r∗

λ

) j
⎫⎬
⎭,

where �(x) is the gamma function, Ei(x) is the exponential
integral, and erf (x) is the error function.

Comparison with hydrogenlike exciton levels for V ∝ −1/r
and Keldysh interaction. As shown in Table III, in comparing
the binding energy as obtained from the harmonic oscillator
basis with the analytically obtained 2D hydrogen atom energy
levels, the discrepancy between the two was found smaller
than 2% as for the ground-state energy and even lower for
the states with l �= 0. The higher excited states with l = 0
required a very large basis size in order to accurately calculate
the binding energy due to the very sharp singularity of the
wave function appearing at r = 0 (Kato cusp). This situation
is similar to the well-known problem in the Slater-type versus
Gaussian-type orbitals in quantum chemistry [76], since the

harmonic oscillator is essentially a Gaussian basis. Such a
sharp feature in the excitonic wave function is mitigated in
the Keldysh potential as the 1/r divergence becomes logarith-
mic. In this case, the harmonic oscillator basis yields better
accuracy for each binding state in the spectrum. In comparing
our binding energy calculation with the calculated bindings
for MoS2, the error was significantly reduced for the same
basis size with <0.3% as for the ground state and lower for the
l �= 0 states.

Connection to the real-space formalism. It is also in-
structive to describe the excitonic problem in terms of real
space. To do this, we can Fourier transform the Bethe-Salpeter
equation in (1) by using

ψ (re, rh) =
∑
ke,kh

ψQ(k)ei(ke·re−kh·rh ). (C9)

We remind that ke = k and kh = k − Q. This transformation
turns all momentum in the dispersion in Eq. (1) into derivative
operators and yields

[εc(−i∇re ) − εv (i∇rh ) − � + V (re − rh)]ψ (re, rh) = 0,

(C10)

where V (r) = ∫
q eir·qV (q) is the Fourier transformation of the

potential. The above equation yields the Mott-Wannier model
if only the quadratic mass term in εc/v is kept. However, in
our model, we need to retain higher-order terms in the hole
dispersion.

Similar to the Mott-Wannier model, Eq. (C10) can be
reduced to a one-body problem by using the canonical trans-
formation. Since the hole effective mass is not well defined
due to the sombrero-shaped dispersion, instead of using the
center-of-mass frame coordinate system, we choose

[
X
x

]
= 1√

2

[
re + rh

re − rh

]
,

[
P̂
p̂

]
= − i√

2

[∇re + ∇rh

∇re − ∇rh

]
.

The crucial requirement for this transformation is that the
new coordinate system satisfies [x j, p̂ j] = [Xj, P̂j] = i such
that the physical phase space volume is preserved. Using the
(X , x) coordinate, Eq. (C10) in the real space reads

[
εc

(
p̂ + P̂√

2

)
− εv

(
p̂ − P̂√

2

)
− � − V (

√
2x)

]
ψ (X , x) = 0.

(C11)

We note that, in this coordinate system, the correspondence
between momentum and real space representation of the
exciton momentum is Q = ke − kh ↔ −i∇re − i∇rh = √

2P̂.
First, it is noted that [P̂, H] = 0 where H (independent

of X ) is the electron-hole two-particle Hamiltonian in (C10)
indicating that P is a well-defined quantum number which
gives the exciton momentum Q = √

2P. Therefore, the wave
function is uniquely dependent on x:

ψ (X , x) = eiP·Xχ (x), (C12)
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which is the eigenfunction of H . Substituting the above ansatz
wave function into Eq. (C10), we reduce the equation into a
one-body Shrödinger equation as

[
εc

(√
2p̂ + Q

2

)

−εv

(√
2p̂ − Q

2

)
− � + V (

√
2x)

]
χ (x) = 0. (C13)

Expanding χ (x) into the harmonic oscillator basis as
χ (x) = ∑

n CQ
nxny

ϕnx (ρx )ϕny (ρy) where ρ = re − rh = √
2x is

the relative coordinate of electron and hole. The real-space
basis function, ϕn(ρ), is the Fourier transformation of ϕn(k)
which is also a harmonic oscillator. Therefore, the matrix
representation for Eq. (C13) is

∑
n′

xn′
y

[
H0

nxny;n′
xn′

y
+ Vnxny;n′

xn′
y

]
CQ

n′
xn′

y
= �CQ

nxny
, (C14)

with the kinetic Hamiltonian,

H0
nxny;n′

xn′
y
(Q) =

∫
d2ρϕnx (ρx )ϕny (ρy)

[
εc

(√
2p̂ + Q

2

)

− εv

(√
2p̂ − Q

2

)]
ϕn′

x
(ρx )ϕn′

y
(ρy), (C15)

and the Coulomb interaction matrix,

Vnxny;n′
xn′

y
=

∫
d2ρV (ρ)ϕnx (ρx )ϕny (ρy)ϕn′

x
(ρx )ϕn′

y
(ρy).

The integration in Eq. (C15) can be carried out exactly by
using the chain rule to rewrite p̂ = −i∇x = √

2(−i∇ρ ) and
then using the recursive relation of the Hermite functions.
Alternatively, one may also calculate it by turning −i∇ρ into
the simple harmonic ladder operators and carrying out the
commutation algebra. Nevertheless, the calculated result from
both methods is identical to the momentum space calculation
in Eq. (C7).
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